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Abstract. In this note, we construct a birational map of a moduli space of stable sheaves on a K3 surface
induced by a reflection functor.

0. Introduction

Let X be a K3 surface defined over C and H an ample line bundle on X. Let
(H*(X,Z),{ , )) bethe Mukai lattice of X: for x = (ri,éi,ai) e H*(X,7Z2),i = 1,2,

L x?) =L e —rld*—ad'rrez.
For a coherent sheaf E on X,
v(E) :=ch(E)y/tdx
=0k E, ci(E), x(E) —1k(E)) € H (X, Z)

is the Mukai vector of E, where tdy is the Todd class of X and we identify H 4(X,Z) with Z.
We denote the moduli space of stable sheaves E of v(E) = v by My (v). If H is general and
v is primitive, then Mg (v) is a smooth projective scheme.

DEFINITION 0.1. For an object £ € D(X x X), we define an integral functor

os: DX) — D(X)

0.1
(0.1) x = Rpu(€®piKx),

where p1, po : X x X — X are projections. The Fourier-Mukai transform of X is an
equivalence D(X) — D(X) of this form ®¢.

Let /4 be the ideal of the diagonal A C X x X. Then we have the Fourier-Mukai
transform @;, whose inverse is given by @ % [2] : D(X) — D(X) with

0.2) PDpx (x) = RHom,, (14, pj(x)),x € D(X),

Rceived May 14, 2010
1991 Mathematics Subject Classification: 14D20



474 MASANORI KIMURA AND KOTA YOSHIOKA

where I, = RHomo,, ,(Ia, Oxxx). The Fourier-Mukai transform @¢ induces an isometry

@g of the Mukai lattice and we have a commutative diagram:

D) -2, DX

0.3) l l

@H
H*(X,Z) —5— H*(X,7Z)

If £ = 14, then —cbg coincides with the reflection by the (—2)-vector v(Ox) = (1,0, 1):

0.4) 0 ((r, &, 0)) = (a, &, 1) = x + (x, v(Ox))v(Ox),,

where x = (r, &, a).
Let E be a stable sheaf on X with v(E) = v. Assume that there is an integer i such that

(a) H (@ 1z (E)) is a stable sheaf.
(b) H-"(QBIZ (E)) =0for j #1i.

Then we have a rational map My (v) - - - — My (w) which becomes birational by the proper-
ties of the Fourier-Mukai transform, where w = v(F). In this note, we give some conditions
for E to satisfy (a) and (b).

THEOREM 0.1. Let X be a K3 surface with Pic(X) = ZH. Letv = (r,dH, a) be the
Mukai vector of a coherent sheaf with (vz) = dZ(HZ) —2ra > 0.
(1) Assume thata < 0.

(@) Ifr +a >0, then ®p,1] induces a birational map
My(r,dH,a)---— My(—a,dH, —r).
®) Ifr4+a <0,then CD[Z“] induces a birational map
My(r,dH,a)---— My(—a,dH, —r).
(2) Assumethata =0, 1, then D o @, induces a birational map
My(r,dH,a)---— My(a,dH,r)

unless (H*) = 2 and v = d — 1,dH, 1), d > 2, where D(E) =
R Homp, (E, Ox), E € D(X).

3) If(HZ) = 2, then there is an auto-equivalence @ : D(X) — D(X) such that D o @
induces a birational map

MpyQ2d —1,dH,1)--- - My(1,dH,2d — 1), d = 2.

COROLLARY 0.2. Let (X, H) be a pair of a K3 surface X and an ample divisor H on
X. Letv = (r,dH, a) be the Mukai vector of a coherent sheaf with (vz) =d*(H*)—2ra > 0.
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If a < 1 and ged(r, d(HZ), a) = 1, then we have a birational map My (r,dH,a)--- —
MH(a,dH, r).

PROOF. We first assume thata < 0. We take a flat family (X, H) — § of polarized K 3
surfaces over a smooth curve § such that (X, H),, = (X, H), so € S and Pic(X;,) = ZH,,
s1 € S. Then we have flat families M; — S, i = 1,2 of moduli spaces where M :=
My (r,dH,a) and My := My(—a,dH, —r). By our assumption, they are smooth and
projective families. By the openness of the stability condition, the Fourier-Mukai transform
induces a birational map f : My --- — Mj. Then [4, Theorem 4.3] implies the claim. O

REMARK 0.1. Related results are obtained by Zuo [17], Ballico and Chiantini [1],
Nakashima [8] and Costa [2].

It is conjectured that an irreducible symplectic manifold M is birationally equivalent to
an irreducible symplectic manifold with a Lagrangean fibration, if there is a line bundle which
is isotropic with respect to Beauville bilinear form (cf. [3], [5], [9]). The following corollary
supports this conjecture.

COROLLARY 0.3. Let (X, H) be a pair of a K3 surface X and an ample divisor H

on X. If ged(r, d(Hz)) = 1, then My (r,dH,0), d > 0 is birationally equivalent to a
holomorphic symplectic manifold with a Lagrangean fibration.

1. Preliminaries

Let M (v) be the moduli stack of coherent sheaves E on X with v(E) = v. Let M g (v)**
(resp. My (v)*) be the open substack of M (v) consisting of H-semi-stable sheaves (resp.
H -stable sheaves). From now on, we assume that Pic(X) = ZH. Then, H is a general
polarization, that is,

(c1(F),H) (ci(E), H)
rk F a rk E

F E
if and only if L _ €1
rk F tk E

(1.1)
for any subsheaf F of a p-semi-stable sheaf £ with v(E) = v.

PROPOSITION 1.1. Let M be an irreducible component of M(v). Then dim M >
() + 1.

PROOF. The claim is an easy consequence of the deformation theory of a coherent
sheaf. For a proof, see the proof of [13, Prop. 3.4]. O

For the open substack M g (v)**, we have dim My (v)** = (v*) + 1. Moreover we have
the following claims.

THEOREM 1.2. [13, Thm. 0.1, Prop. 3.4], [15, Cor. 3.5] Assume that (v*) > 0. Then
(1) My ) is an irreducible normal stack of dim M g (v)*s = (v?) + 1.
(2) Mpg)* is an open dense substack of M g (v)*S.
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DEFINITION 1.1. Forv = (r,dH,a) € Q® QH & Q, wesetv > 0,if i) r > 0, or
(ii)r =0andd > Qor(iii)r =d =0anda > 0. If v — w > 0, then we write v > w.

DEFINITION 1.2. Forv; := (ri,diH,a;), 1 <i < s withvi/r; > n/rn > .- >

vg /15, let FAN (v, vy, ..., vy) be the substack of M (v) whose element F has the Harder-
Narasimhan filtration

(1.2) OcFchcC.---CF=F

such that v; = v(F; /F;—1),i =1,2,...,s.

By the properties of Harder-Narasimhan filtration and the Serre duality,

(13)  Ex®(Fj/Fj_1. F:/Fi—1) = Hom(F; /F;_1, F;/Fj_1)” =0, i < j.
Then the following lemma holds (cf. [16, Lemma, 5.3]).

LEMMA 1.3.

(1.4) dim FHN (vy, v, v = ) (v v) + Y dim My ()

i<j i>1
LEMMA 1.4. Letv = IV be a Mukai vector such thatl > 0 and V' is primitive. Then
(1.5) dim My (v)* < (v?) +12.
PROOF. We note that
(1.6) dimExt*(E, E) = dimHom(E, E) < [

for E € My (v)*. Hence dim My (v)** < (v*) + [? by the deformation theory of a coherent
sheaf. O

1.1. Brill-Noether locus. We setv := (r,dH,a),r > 0,d > 0,a < 0. Let E be
a stable sheaf with v(E) = v. Then yx(E) = r + a. By the stability of E and d > 0, Serre
duality implies that H*(X, E) = Hom(E, Ox)Y = 0.

DEFINITION 1.3. We set
(1.7) My )} :={E e My()°'|H (X, E) = 0}.

By the Brill-Noether theory, it is expected that My (v)y # @ if r +a < 0. In this
subsection, we shall prove this expectation is true.

PROPOSITION 1.5. Letv = (r,dH, a) be a Mukai vector such thatr > 0,d > 0 and
r+a < 0. Then Mpy(v)y # 9.

Before proving this proposition, we shall explain that @;+ (E)[1] is a coherent sheaf
defined as the universal extension of E by Ox for E € My (v)). Assume that r +a < 0.
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For E € MH(U)(S), we consider the Fourier-Mukai transform @ ’Z(E)' By using the exact
sequence

(1.8) 00— Ip —> Oxxx > Oa— 0,

we have an exact sequence
(1.9)
0 ——— Homp, (O, p*(E)) —— HO(X,E)® Ox ———> Homy, (14, p’(E))

——— Ext}, (0, pj(E)) ——— H'(X,E)® Ox ——— Ext}, (I, p}(E)
——— Ext}, (0, p{(E)) ——— H*(X,E)® Ox ———> Ext3, (Ia. pj(E)) —— 0.

Since R Homoy, (O, Oxxx) = Oa[—2], we have

E, i=2

1.10 Ext. (O, p*(E)) = Rp\2(0O4 ® p*(E)) =
(1.10) 2, (Oa, pi(E)) Py (Oa ® pi(E)) 0. %2,

Since H/(X,E) = 0 for i # 1, we see that Hi(qﬁlA*(E)) = 0 fori # 1 and
F:=H' (cD,Z(E)) fits in an exact sequence

(1.11) 0> H' (X,E)Ox > F > E —> 0.
Since QDIZ (Ox) = Oy, we have
(1.12) Hom(F, Ox) = Hom(®;: (E)[1], @ (Ox)) = Hom(E[1], Ox) = 0.

By Lemma 3.1, (1.11) is the universal extension of E by Oy. In the next section, we shall
prove that F is stable for a general E. Then we have a rational map My (v) - -+ — Mpyg(w)
which becomes birational by the properties of the Fourier-Mukai transform, where w = v(F).
Thus we get Theorem 0.1 (1) for r +a < 0.

PROOF OF PROPOSITION 1.5. We first treat the case where r = 0. In this case, we can
take a smooth curve C € |d H|. Then it is easy to find a line bundle L on C with H*(C, L) = 0
and dim H'(C, L) = a. Since C is reduced and irreducible, L is stable. Thus the claim holds.
We next treat the case where r > 0. We start with a special case.

LEMMA 1.6. Letv = (r,dH, a) be a Mukai vector such thatr > 0,d > 0, (r,d) =1
andr +a < 0. Then My (v)y # 9.

PROOF. We shall prove our claim by induction on r. (I) Assume that r = 1. Then
My (v)* consists of Iz (dH), where Iz is the ideal sheaf of a 0-dimensional subscheme of

2
length (vV3)/2+41, thatis, I belongs to Hilbgf 21 Since x(Uz(dH)) = 14a < 0, we have

HY(X, I;(dH)) = 0 for a general I;. Moreover the same assertion also holds for d = 0.

(I) Let (r1, d1) be a pair of integers such that djr —dr; = 1 and 0 < r; < r. We set
(ro,dy) :== (r —r1,d —dp). Thend; > 0and d — d; > 0. Moreover if d — d; = 0, then
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r —rp = 1. We shall choose Mukai vectors v; := (r;,d; H,a;),i = 1,2suchthatr; +a; <0,
i = 1,2. We shall choose E; € My (vi)o, i = 1,2. Then HY(X, E| ® E>) = 0. We shall
prove that E1 & E; deforms to a stable sheaf. We set

M®) = My )" UUp=0F "N (0] — bw, v + bo) ,
where w = (0, 0, 1). We first prove that M (v)’ is an open substack of M (v).
Proof of the claim: If E € FHYN(v; — bw, vy + bw) belongs to the closure of
FHEN (41, us, ..., ug), then the Harder-Narasimhan polygon of uy, uy, ..., us is contained
in the Harder-Narasimhan polygon of v; — bw, v + bw. Then we see that s = 2 and

uy = vy — b'w, b’ > b. Therefore the claim holds.
We shall prove that

(1.13) dim FIN (v — b, va + bw) < (V) + 1.

Since every irreducible component of M (v) is at least of dimension (W?) +1 (Prop. 1.1) and
My (v)* is irreducible, (1.13) implies that M (v)’ is also irreducible. Since E @ E; belongs
to M(v)’, we get our claim Mg (v)}) # 9.

Proof of (1.13):
We shall first estimate dim F7V (v; — bw, vy + bw).

dim FAN (v; — bw, v2 + bw)
(1.14) =dim My (v — bw)*® + dim My (va + bw)** + (v| — bw, vy + bw)
=((v1 — bw)?) + ((v2 + bw)?) + (v| — bw, v2 + bw) +2

Hence
(1.15)
() + D) —dim FIN () — bw, v2 + bw) =(vi — bw, v2 + bw) — 1

=didr(H?) — rpa; — riaz + (ra — r)b — 1.

We note that ay +ap < —ry —ry = —rand ay + b < (d3(H?) +2)/2r>. If r| > r2, then we
see that

(1.16)
(V?) 4+ 1 = dim FAN (v — bw, vy + bw) = dida(H?) — ra(a) + a2)

— (1 —r)a+b)—1

d3>(H* +2
> didy(H?) + ror — (1) — r)—2————=— 1
2r)
—r)d
—diym (1o Ry o
2rp  dp 1)

r 2 ry
> didp— (H") +rpr — — >0,
2r] 1)
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where we used the inequality di/r; > da/r>. If r1 < ro, then since a; < —r, we see that
v?) + 1 —dim FAN (v) — bw, v2 + bw) = d1d2(H?) — (r2 — r1)(a1 — b)
—ri(a; +az) — 1
>didry(H) 4+ (o —r)rn+rnr—1>0. O
By using Lemma 1.6, we treat the general case. We set v := (Ir’,ld'H, a), where
[ := gcd(r, d). We choose integers ay, az, . . ., a; such that Zi:l ai =aandr’ +a; <0 for
1 <i<Il Wesetv; := (r',d'H,a;). By Lemma 1.6, Mg (v;)} # @, 1 < i < 1. We choose
elements E; € My (vi)), 1 <i <landset E := ealeEi. Then E is p-semi-stable and
HY(X, E) = 0. Since (v%) > 21%, [11, Lem. 4.4] implies that our proposition holds. O

2. Proof of Theorem 0.1

2.1. Estimates on the Mukai pairing. In order to estimate the dimension of the loci
of unstable sheaves, we prepare some estimates of the Mukai pairing.

LEMMA 2.1. Letvy = (r1,diH,a1), r1 > 0, and vo := (r,dyH, az), r» > 0 be
Mukai vectors such that

2.1 di/ri = da/ry > 0.
We set | := gcd(ra, da, az). Assume that a; <0, a1 + az < 0and (v%) > —212. Then
2.2) (vi, 1) —1>0.

Moreover, if (v%) <0, then
(2.3) (i, v)—1*>0.

PROOF. Assume that (v%) > 0. Then ap < rzdzz(Hz)/Z By our assumption, we have
dy = rida/ry. If r1 > rp, then we see that

(v1, 1) — 1 = dida(H?) — (r1 — r)az — raar + a2) — 1
(ri —r)d; (H?)

> dydy(H?) — 5~
(2.4) . 2
ryr—rnr 2
> L2 gy
zd = (H?)

>d3(HH -1>0.
If ri < rp, then
(v1, 12) — 1 =d1da(H?) — (r2 — r))ay — ri(a) +az) — 1

2.5) 5
>didr(H*) —1>0.
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If (v%) < 0, then we set va = I(r}, dyH, a}). Then a} satisfies the inequality

2 , 2
2.6) @rHY |, @NHY +2

2r2 2r2
Since
2.7 (v1,v2) — I = I(d1d5(H?) — (rjay + riay) — 1),
we shall prove that
2.8) didy(H?) — (rha1 + riab) > 1.

didy(H?) — (rhay + riab) > didy(H?) — (—rylah + riab)

> didy(H?) — rlaé + rajl

29) _ad ((H -+ d/ ) +
,  (H?)
= did, ((H ) — dd, 2)+d2T :
By using (2.1) and the inequality (2.6), we see that
2 A 2y rya;
(H?) — dd,az_(m i
(d v ((dz) (H )—r2a;)
(2.10) o (d))(H?) R s
= (dé)2 > + = (( 2) (H") — ”2a2)

/\2 2
~ (d))? 2 -

If did5(H?) — (rhay + riab) = 1, then we have riab = (d5)?(H?)/2 = 1. Thus vy = a) =
dy = (H?)/2 = 1.Sinced,/r1 > d—2'/ry = 1,d\d5(H?)— (rha\+ria}) = 2di—ri+1 > 1,
which is a contradiction. Therefore we get (2.8). O

LEMMA 2.2. Let vy := (r1,d1H,a1),r1 > 0and vy := (r,dyH,a2),r; > 0 be
Mukai vectors. Assume that a1 < 0,a; +ax = 1 anddy/r1 > dy/ry > 0.
@))] If(v%) > —2, then (v, v2) — 1 > 0, unless (H2) =2,v1=0Qdy—1,d1H,0) and
=Q,H,1).
() Ifl = ged(r2, do, a2) > 2 and —21% < (v3) < 0, then (vi, v2) — > > 0.

PROOF. (1) (i) We first assume that ap > 2. If r;{ > rp, then
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(v, v2) — | = d1d2(H?) — rairiaz
= didy(H?) — (r; — r)az — ra(a) + az) — 1
(r1 —rz)@) N

> dydyr(H?) (1 -

2rp  d 1)
ry+nr 2 ri
> didy——=(H?) —rp — —
@.11) R T
(H*) 4 didary(H?)
=(didy—= — — e
< Ty 2 2
d3(H?)
> > —nr

>(@-Drn—1>0.
If r; < rp, then
(v1,v2) — 1 = dida(H?) — (r1 — r2)az — ra(ay + a) — |
didy(H?) = 2r1 41, — 1

v

YY)
> —dy;(H") +ry —2r; — 1
(2.12) r

v

D= +rn—-2r-1
r2

2(ry — Dry +r2(rp — 1) -
r -

0.

(ii) We next treat the case of ap = 1. In this case, a; = 0. (a) If r{, » > 3, then

(vi, 1) — 1 =dida(H?) —r) — 1
s
—(H)—-1) -1
(2.13) >”<r2( ) )

2
zrl(l——>—120.
r2

(b) If r» > 3and r| <2, thend3(H?) > 4, and hence d>(H?) > 4. Then we see that
(2.14) (wi,v) — 1 =diday(H>) —r1 —1>4d; —3 > 0.

(c) If r, = 1, thend; > r1d>. Hence we see that
(2.15) (vi,n) —1l=didy(H>) —ri =1 >rd3(H) —ri—1>r —1>0.

(d) If , =2, thend; > ridy/2. (d-1) If dzz(Hz) > 4, then same computation as in (c)
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implies our claim. (d-2) If d3(H?) = 2, thatis, d» = 1 and (H?) = 2, then

(2.16) Wi, v) — 1 =dido(H*) —ri —1=2d1 —r —1>0.

If (vi,vy) —1=0,thena; =0and2d; —r; — 1 = 0. Thus vy = (2d; — 1,d1H,0) and
v =(2,H,1).
(2) Since

(2.17) (v1, v2) — 12 = l(d1d5(H?) — (rya1 + riab) — 1),
we shall prove that

(2.18) didy(H?) — (ryar +riay) > 1.

didy(H?) — (ryar + r1ay) = didy(H?) — (r5(1 — lab) + riab)

(2.19) = did5(H?) — r1d) 4 rh(—1 + lab)

-
=dd, <(H2) - ﬁaé) +ry(—=1+1a)).
2

(i) Ifay > 2orr) > 1, then r5(—1 + [a) > [. On the other hand, we see that

! !

2y 1, 2y "%
(1) = s = () =
1 / ’
(2.20) = @ ((d2)2(H2) _}"2(12)
/2 2
L (@

Hence we get (2.18). (ii) If ) = 1 and r» = 1, then (d})?(H?) < 2r} = 2. Hence d5 = 1 and
(H?) = 2. Since d/r1 > 1, we see that

(2.21) didy(H?) — (ryay +ray) —1=2dy —ri —1>r —1>0. 0

2.2. Proofof Theorem 0.1 (1). (I) We shall first prove (b). So we assume that 7 +a <
0. By Proposition 1.5, My (v)y # ¥. For E € Mpy(v)y, we shall consider the universal
extension

(2.22) 00 - F— E—0,

where n = dimExt! (E, Ox) = (v, v(Ox)). We shall prove that F is a semi-stable sheaf for
a general E € Mpy(v);.
(Step 1) Assume that F' is not semi-stable. For the Harder-Narasimhan filtration

(2.23) OCFICFC---CF,=F
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of F, we set
E; = F;/Fi1,
(2.24)
vi :=v(E;) = (ri,diH,a;) .
Then we get
d d d
(2.25) A-25..-% 20,
ri r s

Proof of (2.25): By the property of the Harder-Narasimhan filtration, it is sufficient to
prove ds/rs > 0. We shall consider the quotient ¢ : F — E; and the following diagram.

0—— 0% F E ——0
(2.26) l l" l
0 —— q(OF" Eq Eg/q(OF") —— 0

If dg/rs < O, then q(O?”) = 0. Thus g induces a surjective homomorphism £ — Ej.
Since E is stable and d > 0, ¢ must be 0, which is a contradiction. If ds/r; = 0, then
q(O%”) is a semi-stable sheaf of ¢ (g (O?")) = 0. By Lemma 3.2, q(O?”) = O%’" for
some m > 0. Since cl(ES/Ofm) =0and ES/O?" is a quotient of E, ES/O?" is a torsion
sheaf of dimension 0. Since Ej is torsion free and O?m is a locally free subsheaf of E, we

get E;/OY™ = 0. Then we get a splitting F = O™ & F’, which contradicts the choice of
extension class. Therefore (2.25) holds.
(Step 2) We shall next prove that

ay <0,

ai+a <0,
(2.27)

art+ar+---+a; <0.
In particular,
(i) = di(H?) > 0,
(@1 +v2)°) = (d1 + d)*(H?) > 0,
(2.28)
(W1 +v2+4+0)%) = (i +do+ - +d)*(H?) > 0.
Proof of (2.27): We shall consider an exact sequence

(2.29) 0— 0% NF — F— F/(OY"NF)— 0.
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Since F; is a filter of the Harder-Narasimhan filtration of F, F;/ ((’);‘?" N F;) # 0. Since

Fi /(09" N F,) is a subsheaf of E and H(X, E) = 0, H(X, F;/(Of" N F;)) = 0. Since

O?n N F; is a subsheaf of O?n, HO(X, O%n N F;) ® Ox is a subsheaf of (9%" N F;. Therefore

dim Ho(X, F;) < rk(O?" N F;) < rk(F;). Since x (F;) = tk(F;) + ij:l aj, we get (2.27).
(Step 3) We shall prove that

(2.30) dim FAN (v1, v2, ..., vs) < (V7).
Proof of (2.30): By Lemma 1.3, we have

(2.31) dim FHN (vy, v, v =) (v v) Y dim My ()

i<j i>1
Since (vf) > 0, dim Mg (v1)* = (vf) + 1 by Theorem 1.2. Applying Lemma 2.1 and
Lemma 1.4, we see that

(2.32) (V) + 1) + dim My (v2)** + (v2, v1) < ((v1 +v2)?) + 1.

We set v} := v1 + v and v} := v;, i > 2. Then we get that

(2.33)  dimFIN vy, v, ..., 04) < Z (U;,U;>+(((v;)2>+1)+ZdimMH(u;)”.
2<i<j i>3

By induction on s, we get (2.30).
(Step 4) By Step 3 and Theorem 1.2, <1§1’£[1](]-'HN(U1, V2, ..., 0s)) N Mp(v)*Sis alo-

cally closed substack of Mg (v)** such that dim 45;21[1](}"1”1 (v, v2,...,v5)) N Mg <
dim M g (v)*$. Combining this with Theorem 1.2, we have (D,ZU](MH(U)”) N Mpgw)® #
. We set
234 My )" :={E € Mg ()|@pz11(E) € Mu(w)},
My (w)* :={F € My (w)|®1,1)(F) € My (v)}.

Then Mg (v)* and My (w)* are non-empty open subschemes of My (v) and My (w) respec-
tively and @,Z[l] induces an isomorphism Mg (v)* = My (w)*. Since My (v)* and Mg (w)*
are irreducible by Theorem 1.2, we get Theorem 0.1 (1) (b).

(IT) We next assume that » 4+ a > 0. Since (—a) + (—r) < 0and w := (—a,dH, —r) is
@g (v), q)IZ[l] induces a birational map Mg (w) --- — Mpg(v). Since the inverse of qﬁ,ﬁl]

is @y ,[17, we get (1) (a). O

REMARK 2.1. For F € My(r,dH,a) withd > Oandr +a > 0, @;,(1)(F) fits in the
exact sequence

0 —— H Y (®,1(F)) —— H'X,F)® Ox —— F
(2.35)
— HY%®,(F) —— H'(X,F)@ Ox —— 0.
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If @1,[17(F) is a semi-stable sheaf, then Hl(X, F)=0and HO(X, F)®0Ox — F isinjective.

2.3. Proof of Theorem 0.1 (2). We note that (D o ¢>1A)*1 = Do @;,. Hence we
shall prove that D o @;, induces a birational map

(2.36) My(a,dH,r) -+ — My@r,dH, a)
fora =0, 1.

PROPOSITION 2.3. Letv = (0,dH,r),r > 0,d > 0 be a Mukai vector. Then
Doy, = @12[2] o D induces a birational map My (0,dH,r)--- —> My(r,dH,O0). Thus
Theorem 0.1 (2) holds for a = 0.

PROOF. We note that D induces an isomorphism Mg (0,dH,a) - My (0,dH, —a)
by sending L to Ext(lox (L, Ox). Hence the claim follows from Theorem 0.1 (1). O

In order to treat the case where a = 1, we study the properties of Do @, . For a coherent
sheaf E on X,

(2.37) Do @,(E) = @iy 0 D(E) = RHomy, (14 ® pi(E), Oxxx)[2]

and we have an exact triangle

(2.38) RHom,, (O ® pi(E), Oxxx) 2 RHom(E, Ox) ® Ox —
RHom,,(Ia ® pi(E), Oxxx) = RHom,, (O ® pi(E), Oxxx)[1].

Since RHom,,, (E @ O, Oxxx) = RHome, (E, Ox), we have an exact sequence
(2.39)

0 —> 0 — Hom(E,Ox) ® Ox —— HO(®IZ°D(E))
N 0 — > ExtY(E,0x) @ Ox —— H1(¢IZ°D(E))
H(¢)

—— Homo,(E,Ox) —— Ext*(E,Ox) ® Ox —— H2(®,20D(E))
[N Ext(lf)x(E,(’)x) — 0.

Assume that F is a stable sheaf with (c{(E), H) > 0. Then Hom(E, Ox) = 0, which implies
that HO(cD,Z oD(E)) = 0.

LEMMA 2.4. (1) IfHY(X,E)® Ox — E is generically surjective, then Hl(cblz o
D(E)) = Ext!(E, Ox) ® Ox.
(2) If E is a stable purely I-dimensional sheaf on X, then HI(CDIZ o D(E)) =

Ext! (E,0x) ® Ox and Hz(q)lz o D(E)) is the universal extension of
Exty (E, Ox) by Ox.
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PROOF. (1) By the Serre duality, the dual of ¢ is the evaluation map ev : R Hom
(Ox,E) ® Ox — E. Since H(ev) is generically surjective, H(¢) is generically injective.
Since Homp, (E, Ox) is locally free, H2(¢) is injective. Therefore (1) holds.

(2) Since E is purely 1-dimensional, we can apply (1) to prove the first claim. For the
second claim, we use Lemma 3.1. Since

Hom(H*(® ;5 0 D(E)), Ox) =Hom(®;; o D(E)[2], Ox)

=Hom(®;, (@ o D(E)[2]), 1,(Ox))
(2.40)
=Hom(D(E), Ox[-2])

=Hom(Ox, E[-2]) =0,
we get our claim. O

PROOF OF THEOREM 0.1 (2). We take an irreducible and reduced curve C € |[dH|.
Assume that there are distinct n points pi, p2, ..., py of C suchthat Z, := {p1, p2, ..., pn}
satisfies H!(X, I7,(dH)) = 0. This condition is equivalent to the surjectivity of the re-
striction map &, : HY(X, Ox(dH)) — H%(Z,, Oz, (dH)). If dim H*(X, Iz,(dH)) > 2,
then there is a section of HO(X, I7,(dH)) whose support D is not C. Then for Z, 4| =
Zn U {pnt1} with p,41 € C\ D, HY(X, Iz,,,(dH)) = 0. In this way, we can construct
I7(dH) € Mg(1,dH, r)** with a section ¢ : Ox — Iz(d H) such that coker ¢ is a torsion
free sheaf on an irreducible and reduced curve C and H' (X, I;(dH)) = 0. We shall study
the relation of @+ o D(Iz(dH)) and @+ o D(coker @). Since @+ o D(Ox) = Ox, we have
an exact sequence

0 —— H(®s o D(coker¢)) —— H(®x o D(Iz(dH))) ——> Ox
(2.41) — Hl(qﬁlz o D(coker ¢)) —— Hl(qﬁlz oDUz(dH)) —— 0
—— H(®y: o D(cokerp)) ——> H*(P;x o D(Iz(dH)) —— 0.
By Lemma 2.4, F = @,Z[z] o D(Iz(dH)) € Coh(X) and is the universal extension of
L .= Extéx (coker ¢, Ox) by Ox
(2.42) 0 — Ext’(Iz(dH), Ox) ® Ox — H2(q>,z oD(Uz(dH)) — L — 0.

We shall prove that F is a semi-stable sheaf for a general L.
(Step 1) Assume that F is not semi-stable. For the Harder-Narasimhan filtration

(2.43) OCFiCchC---CF=F
of F, we set

Ei = F;i/Fi—1,
(2.44)

vi ;== v(E;) = (r;,diH, a;) .
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Then we see that

d & d
r r rs
and
(2.46) di ) Gl 4 Gl

Ti Tit1 T Tit1
by a similar way as in the proof of (2.25).
(Step 2) We shall next prove that

ay <0,

ar+ar <0,
2.47)

ajtay+---+as—1 <0.
Proof of (2.47): We shall consider an exact sequence
(2.48) 0 0¥ NF - F — F/(OYNF)—0.

We shall prove that dim HOX, F)) < rk(F;) fori < s — 1. We note that F,'/(Ofr N F;)
is regarded as a subsheaf of L. Since dimH%(X,L) = 1, it is sufficient to prove
that dim HO(X, 0" N F) < rtk(F). If dim HO(X, 0" N F;) = rk(F;), then since
HO(X, O?r N F;) ® Ox is a subsheaf of O?r N F;, we get O?r NF = O?rk(F’). Since
F; is a filter of the Harder-Narasimhan filtration of F, F;/ ((’);‘?r N F;) # 0. We note that L is
a torsion free sheaf on an irreducible and reduced curve C. Hence ¢ (F;/ ((’);‘?r NF;) =dH.
Then F/F; is a torsion free sheaf with ¢ (F/F;) = 0. Since d;/rs; > 0, this is impossible.
Therefore dim HO(X, O%r N F;) < 1k(F;).
(Step 3) We shall prove that

di _ Yisid
Is Zf;ll ri
Proof of (2.49): By (2.45), dy/ry < (Zf;ll d,-)/(Zf;l1 ri). If the equality holds, then

(2.49)

(2.45) and (2.46) imply that d; /r; = dg/rs forall i and a;/ry < (Zf;ll a,-)/(Zf-;ll ri). By
(2.47), we have a; < 0. On the other hand, Zle a; = 1. Therefore (2.49) holds.
(Step 4) We shall prove that

(2.50) dim FHN (v1, v, ..., v5) < dim My (v)**

unless (H?) = 2,v = (2d — 1,dH,1),d > 2,s =2, v = (2d — 3,(d — 1)H, 0) and
v =(02,H,1).
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Proof of (2.50): We set v’ := Zl‘;ll v;. By (2.47), we can apply Lemma 2.1 successively
to prove

(2.51) dim FIN vy, va, .., v5) < (us, V) 4+ ((V, V) + 1) + dim M g (vg)**

as in the proof of Theorem 0.1 (1). Moreover if the equality holds, then we have s = 2.
Applying Lemma 2.2 to the pair v' and vy, we get

(2.52) (vs, V') + (U, V) + 1) + dim My (v5)* < (v¥) + 1 = dim My (v)** .

Moreover if the equality holds, then (H2) =2,vV=02dy —1,diH,0) and vy = (2, H, 1).
Therefore

(2.53) dim FHN (v1, v, ..., vy) < dim Mg (v)**

unless (H2) =2,v=02d—-1,dH,1),d = 2,s =2,vi = 2d — 3,(d — 1)H,0) and
v» = (2, H, 1). Thus Theorem 0.1 (2) holds. O

2.4. Proof of Theorem 0.1 (3). Assume that (H%) = 2. Wesetv := (1,dH,2d —1)
and assume that d > 2. For a simple and rigid vector bundle G on X, we set

(2.54) Ec=ker(GYXG — Op).

D¢, is a generalization of ®@;, and has similar properties. For example, if Hom(G, E) =
Ext’ (G, E) = 0, E € Coh(X), then @gg[l](E) is the universal extension of E by G.
We shall show that <1§gox (1] induces a birational map

(2.55) Mpg(1,dH,2d —1)--- - My(0,dH,2d — 3) .

In particular, a general member Iz(dH) € My(1,dH, 2d — 1) fits in the following exact
sequence

(2.56) 0— Ox(H)— Iz(dH) - L — 0

where L € My (0, (d — 1)H,2d — 3) and Ext' (L, Ox (H)) = C.

Proof of the claim: We have isomorphisms My (1,dH,2d — 1) = My(1,(d — 1)H, 0)
and My (0, (d—1)H,2d —3) = My (0, (d—1)H, —1) by the operation E +— E(—H). Since
(quox(m[I](E))(_H) = @1,111(E(—H)) for E € Coh(X), the claim follows from Theorem
0.1 (1).

Applying Theorem 0.1 (2) to Ox(H) and a general L € My (0, (d — 1)H,2d — 3),
we get stable sheaves E1 := D o &1,(Ox(H)) € Mg(2,H,1) and F := Do ®;,(L) €
My(2d —3,(d — 1)H,0). Hence D o @1, (Iz(d H)) fits in an exact sequence

(2.57) 0= F—->Do®;,(Iz(dH)) - E1 = 0.

Hence D o @;,(Iz(dH)) is not stable.
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By the stability of Eq and F, Ext>(E;, F) = 0. Since Hom(E;, F) = Hom(L, Oy
(H)) =0,Ext!(E|, F) = C and (DgE] (11(F) fits in an exact sequence
(2.58) 0— F — &g, 11(F) - Ext'(E}, F) @ E; — 0.
Therefore (ng1 m(F) =D o @, (Iz(dH)). On the other hand, since
(2.59) (tk Ey)e1(F) — (tk F)ei(E1) = H

[11, Thm. 2.5] implies that @gz_ (17 induces a birational map
1

(2.60) MyQd—3,d—1)H,0)---— My(2d —1,dH, 1).
We define @ : D(X) — D(X) by D = Doq?gz_][l] O¢g;§l[1] ODO@]A = QDgEI[l] O¢5EI[1] o

&@;,. Then (D o @)~ = D o @ gives a desired birational map My (2d — 1,dH, 1)--- —
My (1,dH,2d — 1). Thus Theorem 0.1 (3) holds. O

3. Appendix

LEMMA 3.1. Let E, G be coherent sheaves on X and V a finite dimensional vector
space. For an extension

3.1 0>V®G—>F—>E—0

of E by VQ®G, we assume that Hom(F, G) = 0. Then the extension class e € Ext/(E, G)®V
induces an injective homomorphism V¥ — Ext'(E, G). In particular, if Hom(F, G) = 0
and dimV = dim Ext! (E, G), then Then (3.1) is the universal extension of E by G, that is,
e € Ext'(E, G) ® V induces an isomorphism V' — Ext!(E, G).

PROOF. Assume that the induced homomorphism ¢ : VYV — Ext!(E, G) is not in-
jective. Then there is a non-zero homomorphism ¢ : V — C belonging to kere. For

VG i)) C ® G, we take the induced extension

00— VG F E 0
Il
0 —— C®G F’ E 0.

Since ¢ € kere, the induced extension is trivial, that is, /' = C ® G @ E. Then we get
Hom(F, G) # 0. Therefore ¢ is injective. O

LEMMA 3.2. Let E be a pu-semi-stable sheaf with (c1(E), H) = 0. If there is a sur-
Jective homomorphism 1 : O?n — E,then HY(X, E) ® Ox — E is an isomorphism.
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PROOF. We have a commutative diagram

HOX, 02" @ 0Oy —2s O

(3.3) l l‘”

H(X,.E)® Oy —2 E

where ¢; and ¢, are evaluation maps. Since ¢ is an isomorphism, the surjectivity of
implies that ¢, is also surjective. We shall prove that ¢, is injective. Assume that ker ¢» 7#~ O.
Then ker ¢ is a u-semi-stable locally free sheaf with (c(ker ¢»), H) = 0. We take a p-stable
subsheaf F' of ker ¢ with (ci(ker¢r), H) = 0. Then there is a non-zero homomorphism
F — Oy, which is an isomorphism. Then ker ¢»» contains Oy, which is a contradiction.
Therefore ¢, is injective and we get our claim. O
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