Токуо J. Матн. Vol. 34, No. 2, 2011

Asymptotic Behavior of Solutions to the Semilinear Wave Equation with Time-dependent Damping

Kenji NISHIHARA

Waseda University

Abstract. We consider the Cauchy problem for the semilinear wave equation with time-dependent damping

$$\begin{cases} u_{tt} - \Delta u + b(t)u_t = f(u), & (t, x) \in \mathbf{R}^+ \times \mathbf{R}^N \\ (u, u_t)(0, x) = (u_0, u_1)(x), & x \in \mathbf{R}^N. \end{cases}$$
(*)

When $b(t) = (t+1)^{-\beta}$ with $0 \le \beta < 1$, the damping is effective and the solution u to (*) behaves as that to the corresponding parabolic problem. When $f(u) = O(|u|^{\rho})$ as $u \to 0$ with $1 < \rho < \frac{N+2}{[N-2]_+}$ (the Sobolev exponent), our main aim is to show the time-global existence of solutions for small data in the supercritical exponent $\rho > \rho_F(N) := 1 + 2/N$. We also obtain some blow-up results on the solution within a finite time, so that the smallness of the data is essential to get global existence in the supercritical exponent case.

1. Introduction

We consider the Cauchy problem for the semilinear wave equation with time-dependent damping

$$\begin{cases} u_{tt} - \Delta u + b(t)u_t = f(u), & (t, x) \in \mathbf{R}^+ \times \mathbf{R}^N \\ (u, u_t)(0, x) = (u_0, u_1)(x), & x \in \mathbf{R}^N, \end{cases}$$
(1.1)

where the coefficient of damping

$$b(t) = b_0(t+1)^{-\beta}, \quad 0 \le \beta < 1(b_0 : \text{positive constant})$$
 (1.2)

and the sourcing semilinear term

$$f(u) = \pm |u|^{\rho} \text{ or } |u|^{\rho-1}u, \quad \rho > 1.$$
 (1.3)

Throughout this paper we assume

$$1 < \rho < \infty (N = 1, 2)$$
 and $1 < \rho < \frac{N+2}{N-2} (N \ge 3)$ (1.4)

Received March 8, 2010

This work was supported in part by Grant-in-Aid for Scientific Research (C) 20540219 of Japan Society for the Promotion of Science.

(denote this simply by $1 < \rho < \frac{N+2}{[N-2]_+}$) and

$$(u_0, u_1) \in H^1 \times L^2$$
, $\sup\{u_0, u_1\} \subset \{x; |x| \le L\} =: B_L$ (1.5)

for some positive constant L. Then there exists a unique weak solution u to (1.1) in

$$X_T := C([0, T); H^1) \cap C^1([0, T); L^2)$$
 for some $T > 0$,

whose support

$$\sup\{u(t, \cdot)\} \subset B_{t+L} = \{x; |x| \le t+L\}$$
(1.6)

(Strauss [20]). In these conditions our concern is with time-global existence of solutions and blow-up within a finite time.

When $f(u) \equiv 0$, Wirth has obtained in [23, 24] that, if $-1 < \beta < 1$, then "the damping term $+b(t)u_t$ is effective", and that the solution has "the diffusion phenomena" if $-1/3 < \beta < 1$, that is, the solution behaves as that of the corresponding diffusion equation

$$-\Delta\phi + b(t)\phi_t = 0 \tag{1.7}$$

as $t \to \infty$ (see also Yamazaki [25, 26]). Therefore, for (1.1) we can expect that there is some critical exponent and, in the supercritical exponent the time-global existence theorem of solutions for small data holds, while in the critical and subcritical exponents the blow-up phenomena within a finite time occurs.

The solution ϕ to (1.7) with $\phi(0, x) = \phi_0(x) \in L^q$ $(1 \le q \le \infty)$ is given by

$$\phi(t,x) = \left[e^{B(t)\Delta}\phi_0\right](x), \quad B(t) = \int_0^t \frac{d\tau}{b(\tau)}$$

= $(4\pi B(t))^{-\frac{N}{2}} \int_{\mathbf{R}^N} e^{-\frac{|x-y|^2}{4B(t)}} \phi_0(y) dy =: \left[G_B(t,\cdot) * \phi_0\right](x),$ (1.8)

so that for $1 \le q \le p \le \infty$

$$\|\phi(t,\cdot)\|_{L^p} \le Ct^{-\frac{(1+\beta)N}{2}(\frac{1}{q}-\frac{1}{p})} \|\phi_0\|_{L^q} .$$
(1.9)

If the solution u to (1.1) behaves as ϕ with q = 1, then

$$\int_0^\infty \int_{\mathbf{R}^N} b(t)^{-1} |f(u)|(t,x) dx dt \le C \int_0^\infty (t+1)^{\beta - \frac{(1+\beta)N}{2}(1-\frac{1}{\rho})\rho} dt < \infty$$

provided that $\beta - \frac{(1+\beta)N}{2}(1-\frac{1}{\rho})\rho < -1$ or $\rho > 1 + \frac{2}{N}$. Hence we expect the critical exponent to be the Fujita exponent

$$\rho_F(N) := 1 + \frac{2}{N}, \qquad (1.10)$$

named after his pioneering work [1]. In fact, when $f(u) = -|u|^{\rho-1}u$, that is, the semilinear term works as absorbing, the critical exponent is believed to be $\rho_F(N)$ even in the time-dependent damping case (Nishihara and Zhai [18]). When $b(t) \equiv const. > 0$, there are many

literatures [2]–[8], [10]–[12], [14]–[16], [19, 21, 27] etc. See also the references therein. In the case of space-dependent damping, see [9, 17].

Our main aim in this paper is to show the global existence theorem for small initial data in the case of supercritical exponent and some blow-up results.

THEOREM 1.1 (Small data global existence). Assume that the continuous function f satisfies $|f(u)| = O(|u|^{\rho})$ in the neighborhood of u = 0, and that

$$I_0^2 := \int_{\mathbf{R}^N} e^{\frac{(1+\beta)|x|^2}{2(2+\delta)}} (|u_1|^2 + |\nabla u_0|^2 + |u_0|^{\rho+1}) dx$$
(1.11)

is sufficiently small with some small $\delta > 0$ for the data (1.5). Then, when $\rho_F(N) < \rho < \frac{N+2}{[N-2]_+}$, there exists a unique global solution $u \in X_{\infty} = C([0,\infty); H^1) \cap C^1([0,\infty); L^2)$, which satisfies

$$\|u(t,\cdot)\|_{L^{2}} \leq C(\delta)I_{0}(t+1)^{-\frac{(1+\beta)N}{4}+\frac{\varepsilon}{2}}$$

$$\|(u_{t},\nabla u)(t,\cdot)\|_{L^{2}} \leq C(\delta)I_{0}(t+1)^{-\frac{(1+\beta)(N+2)}{4}+\frac{\varepsilon}{2}}$$

(1.12)

for some small $\varepsilon = \varepsilon(\delta) > 0$ and large $C(\delta) > 0$ with $\varepsilon(\delta) \to 0$ and $C(\delta) \to \infty$ as $\delta \to 0$.

Note that the decay rates (1.12) are almost same as those of ϕ in (1.8). So we believe that the asymptotic profile of the solution u is

$$\theta_0 G_B(t, x) := \theta_0 (4\pi B(t))^{-\frac{N}{2}} e^{-\frac{|x|^2}{4B(t)}}$$

for some constant θ_0 . Concerning the blow-up we have the following two theorems.

THEOREM 1.2 (Blow-up for any small data). Assume that

$$f(u) = |u|^{\rho} \quad with \quad 1 + \frac{2\beta}{N} \le \rho \le 1 + \frac{1+\beta}{N}$$
 (1.13)

 $(\rho > 1 \text{ if } \beta = 0), \text{ and that}$

$$\int_{\mathbf{R}^N} u_i(x) dx \ge 0 \\ (i = 0, 1) \quad with \quad \int_{\mathbf{R}^N} (u_0 + u_1)(x) dx > 0.$$
 (1.14)

Then the solution $u \in X_T$ to (1.1) does not exist globally.

THEOREM 1.3 (Blow-up for some data). Assume that

$$f(u) = |u|^{\rho - 1}u \quad \text{with} \quad 1 + \frac{4\beta}{N} \le \rho \le 1 + \frac{2(1 + \beta)}{N}$$
 (1.15)

 $(\rho > 1 \text{ if } \beta = 0), \text{ and that}$

$$\frac{1}{2} \left(\|u_1\|_{L^2}^2 + \|\nabla u\|_{L^2}^2 \right) - \frac{1}{\rho+1} \|u_0\|_{L^{\rho+1}}^{\rho+1} \le 0, \quad and \\
\int_{\mathbf{R}^N} (u_0 u_1)(x) dx \ge 0 \quad with \quad \int_{\mathbf{R}^N} [u_0(u_0+u_1)](x) dx > 0.$$
(1.16)

Then the solution $u \in X_T$ to (1.1) does not exist globally.

Theorems 1.2–1.3 are both based on the following blow-up lemma for the ordinary differential inequality.

LEMMA 1.1. Let
$$\alpha > 0, \ 0 \le \beta < 1 \text{ and } \Psi(t) \text{ satisfy}$$

 $(t+1)^{\beta} \Psi''(t) + \Psi'(t) \ge c_0 (t+1)^{\beta-\gamma} |\Psi|^{\alpha} \Psi(t),$
 $\Psi(0) \ge 0, \ \Psi'(0) \ge 0 \quad \text{with} \quad \Psi(0) + \Psi'(0) > 0$
(1.17)

for some constant $c_0 > 0$. Then $\Psi(t)$ blows up within a finite time provided that

$$2\beta \le \gamma \le \beta + 1. \tag{1.18}$$

More precisely, if $\Psi(0) = \varepsilon > 0(0 < \varepsilon \ll 1)$, then the life-span T_{ε} of $\Psi(t)$ is estimated from above as

$$T_{\varepsilon} \leq \begin{cases} C\varepsilon^{-\frac{\alpha}{1+\beta-\gamma}} & \gamma < \beta+1\\ e^{C\varepsilon^{-\alpha}} & \gamma = \beta+1 \,, \end{cases}$$
(1.19)

where $T_{\varepsilon} := \sup\{T; \Psi(t) < \infty, 0 < t < T\}.$

REMARK 1.1. When $\beta = 0$, Lemma 1.1 was given by Li and Zhou [12]. See also Todorova and Yordanov [21], and Zhou [28]. See also Qi. Zhang [27] for the different method on the blow-up. Theorems 1.2 and 1.3 are, respectively, based on [21] and [28].

Let the data be $(\varepsilon u_0, \varepsilon u_1)$, $\varepsilon > 0$, instead of (u_0, u_1) in (1.5). Then Theorem 1.3 does not hold for small $\varepsilon > 0$, because the assumption $(1.16)_1$ (1-st property of (1.16)) breaks since

$$\frac{\varepsilon^2}{2} \left(\|u_1\|_{L^2}^2 + \|\nabla u_0\|_{L^2} \right) - \frac{\varepsilon^{\rho+1}}{\rho+1} \|u_0\|_{L^{\rho+1}}^{\rho+1} > 0 \quad \text{as} \quad \varepsilon \to 0+ \ .$$

Note that some exponents ρ in Theorem 1.3 are in the supercritical exponent interval $(\rho_F(N), \frac{N+2}{[N-2]_+})$ when $\beta > 0$. Therefore, the smallness condition on the data in Theorem 1.1 is essential.

On the other hand, Theorem 1.2 hold for any small $\varepsilon > 0$. We expect this kind of blowup result for any $\rho \in (1, \rho_F(N)]$. But we could not show this. Our interval of exponents in (1.13) is not satisfactory. Also, we can obtain the estimate on the life-span T_{ε} of u as $\varepsilon \to 0$ in (3.11) later, but we are not sure whether it is optimal. In Theorem 1.3 the estimate on T_{ε} has no meaning because ε is not necessarily small.

Throughout this paper, by $C_i(a, b, ...)$ or $c_i(a, b, ...)$ denote several positive constants depending on a, b, ... Without confusions, denote them only by C or c which are changed from line to line. By $\|\cdot\|_X$ we denote the norm in the Banach space X. By $\|\cdot\|$ we simply denote the L^2 -norm in the Lebesgue space $L^2 = L^2(\mathbf{R}^N)$.

In Section 2 we prove Theorem 1.1. In Section 3 we first show Lemma 1.1. Based on it, we prove both Theorem 1.2 and Theorem 1.3.

2. Global existence for small data in the supercritical exponent

Let $u \in X_T$ be a weak solution to

$$\begin{cases} u_{tt} - \Delta u + b(t)u_t = f(u), & (t, x) \in \mathbf{R}^+ \times \mathbf{R}^N \\ (u, u_t)(0, x) = (u_0, u_1)(x), & x \in \mathbf{R}^N, \end{cases}$$
(2.1)

whose support is in $B_{t+L} = \{x; |x| \le t + L\}$. Here, the semilinear term satisfies (1.3) and $b_0 = 1$ without loss of generality, that is,

$$b(t) = (t+1)^{-\beta}, \quad 0 \le \beta < 1.$$
 (2.2)

For the proof of Theorem 1.1 it is enough for us to give a priori estimates. We apply the weighted energy method and introduce the weight

$$e^{2\psi}, \quad \psi(t,x) = \frac{a|x|^2}{(t+1)^{1+\beta}},$$
(2.3)

originally in Todorova and Yordanov [21]. See also Nishihara and Zhai [18]. Then

$$\psi_{t} = -(1+\beta)\frac{a|x|^{2}}{(t+1)^{2+\beta}} = -\frac{1+\beta}{t+1}\psi,$$

$$\nabla\psi = \frac{2ax}{(t+1)^{1+\beta}}, \quad \Delta\psi = \frac{2aN}{(t+1)^{1+\beta}}.$$
(2.4)

We choose the parameter *a* as

$$a = \frac{1+\beta}{4(2+\delta)}$$
 for some small constant $\delta > 0$, (2.5)

then $-b(t)\psi_t = \frac{1+\beta}{4a}|\nabla\psi|^2 = (2+\delta)|\nabla\psi|^2$ and so

$$\frac{|\nabla\psi|^2}{-\psi_t} = \frac{b(t)}{2+\delta}$$
(2.6)

and

$$\Delta \psi = \frac{(1+\beta)N}{2(2+\delta)} \frac{b(t)}{t+1} =: \left(\frac{(1+\beta)N}{4} - \delta_1\right) \frac{b(t)}{t+1}.$$
 (2.7)

Here and after, by δ_i denote the functions of δ satisfying

$$\delta_i = \delta_i(\delta) > 0 \ (i = 1, 2, \ldots), \quad \delta_i \to 0 \quad \text{as} \quad \delta \to 0.$$
(2.8)

Under these preparations, we show the following proposition, which yields Theorem 1.1.

PROPOSITION 2.1. For $0 \le t < T$ and $\varepsilon = 3\delta_1$, define

$$M(t) = \sup_{0 < \tau < t} \left\{ (\tau + 1)^{\frac{(1+\beta)(N+2)}{2} - \varepsilon} \int_{\mathbf{R}^{N}} e^{2\psi} (u_{t}^{2} + |\nabla u|^{2})(\tau, x) dx + (\tau + 1)^{\frac{(1+\beta)N}{2} - \varepsilon} \int_{\mathbf{R}^{N}} e^{2\psi} u^{2}(\tau, x) dx \right\}.$$
(2.9)

If $M(t) \le \mu(\ll 1)$ for some positive constant, then it holds

$$M(t) + \int_{0}^{t} \left[(\tau + 1)^{\frac{(1+\beta)N}{2} + 1 - \varepsilon} \int_{\mathbf{R}^{N}} e^{2\psi} u_{t}^{2}(\tau, x) dx + (\tau + 1)^{\frac{(1+\beta)N}{2} + \beta - \varepsilon} \int_{\mathbf{R}^{N}} e^{2\psi} |\nabla u|^{2}(\tau, x) dx + (\tau + 1)^{\frac{(1+\beta)N}{2} - 1 - \varepsilon} \int_{\mathbf{R}^{N}} e^{2\psi} u^{2}(\tau, x) dx \right] d\tau$$

$$\leq C I_{0}^{2}.$$
(2.10)

PROOF OF PROPOSITION 2.1. Multiplying (2.1) by $e^{2\psi}u_t$ and $e^{2\psi}u$, we have

$$\frac{\partial}{\partial t} \left[\frac{e^{2\psi}}{2} (u_t^2 + |\nabla u|^2) \right] - \nabla \cdot (e^{2\psi} u_t \nabla u) + e^{2\psi} \left(b(t) - \frac{|\nabla \psi|^2}{-\psi_t} - \psi_t \right) u_t^2 + \underbrace{\frac{e^{2\psi}}{-\psi_t} |\psi_t \nabla u - u_t \nabla \psi|^2}_{(\#1)}$$

$$= \frac{\partial}{\partial t} [e^{2\psi} F(u)] - 2e^{2\psi} \psi_t F(u) \quad (F'(u) = f(u)),$$

$$(2.11)$$

and

$$\frac{\partial}{\partial t} \left[e^{2\psi} \left(u u_t + \frac{b(t)}{2} u^2 \right) \right] - \nabla \cdot \left(e^{2\psi} u \nabla u \right) + e^{2\psi} \left\{ |\nabla u|^2 + \left(-\psi_t + \frac{\beta}{2(1+t)} \right) b(t) u^2 + \underbrace{2u \nabla \psi \cdot \nabla u}_{(\#2)} - 2\psi_t u u_t - u_t^2 \right\}$$
(2.12)
$$= e^{2\psi} u f(u) .$$

When $b(t) \equiv 1$, the desired estimates were obtained by (2.11) and (2.12) ([21]), but in our

problem we change (#1) and (#2) as follows:

$$(\#1) = \frac{e^{2\psi}}{-\psi_t} \left(\psi_t^2 |\nabla u|^2 - 2\psi_t u_t \nabla u \cdot \nabla \psi + u_t^2 |\nabla \psi|^2 \right)$$

$$\geq \frac{e^{2\psi}}{-\psi_t} \left(\frac{1}{5} \psi_t^2 |\nabla u|^2 - \frac{1}{4} u_t^2 |\nabla \psi|^2 \right)$$

$$= e^{2\psi} \left\{ \frac{1}{5} (-\psi_t) |\nabla u|^2 - \frac{b(t)}{4(2+\delta)} u_t^2 \right\} \quad \text{by (2.6)}$$

and

$$(#2) = 4e^{2\psi}u\nabla u \cdot \nabla\psi - e^{2\psi}\nabla(u^2) \cdot \nabla\psi$$

= $4e^{2\psi}u\nabla u \cdot \nabla\psi - \nabla \cdot (e^{2\psi}u^2\nabla\psi) + 2e^{2\psi}u^2|\nabla\psi|^2 + e^{2\psi}(\Delta\psi)u^2.$ (2.14)

Hence, (2.11) and (2.12), respectively, change to

$$\frac{\partial}{\partial t} \left[\frac{e^{2\psi}}{2} (u_t^2 + |\nabla u|^2) \right] - \nabla \cdot (e^{2\psi} u_t \nabla u) + e^{2\psi} \left\{ \left(\left(\frac{3}{4} - \frac{1}{2+\delta} \right) b(t) - \psi_t \right) u_t^2 + \frac{-\psi_t}{5} |\nabla u|^2 \right\}$$

$$\leq \frac{\partial}{\partial t} [e^{2\psi} F(u)] - 2e^{2\psi} \psi_t F(u)$$
(2.15)

and

$$\frac{\partial}{\partial t} \left[e^{2\psi} \left(uu_t + \frac{b(t)}{2} u^2 \right) \right] - \nabla \cdot \left\{ e^{2\psi} \left(u \nabla u + u^2 \nabla \psi \right) \right\}$$

$$+ e^{2\psi} \left\{ \underbrace{|\nabla u|^2 + 4u \nabla u \cdot \nabla \psi + (-\psi_t b(t) + 2|\nabla \psi|^2) u^2}_{(\#3)} + \left(\beta + \frac{(1+\beta)N}{2} - 2\delta_1 \right) \frac{b(t)}{2(t+1)} u^2 - 2\psi_t uu_t - u_t^2 \right\}$$

$$= e^{2\psi} uf(u) .$$
(2.16)

By (2.6),

$$\begin{aligned} (\#3) &= |\nabla u|^2 + 4u\nabla u \cdot \nabla \psi + (4+\delta)|\nabla \psi|^2 u^2 \\ &= \left(1 - \frac{4}{4+\delta/2}\right)|\nabla u|^2 + \frac{\delta}{2}|\nabla \psi|^2 u^2 + \left|\frac{2}{\sqrt{4+\delta/2}}\nabla u + \sqrt{4+\delta/2}u\nabla \psi\right|^2 \quad (2.17) \\ &\geq \delta_2(|\nabla u|^2 + b(t)(-\psi_t)u^2) \,. \end{aligned}$$

To change the forms of (#2) and (#3) is a key point in the supercritical case, especially, to derive the last term $e^{2\psi}(\Delta\psi)u^2$ in (2.14). Hence, integrating (2.16) with (2.17) over \mathbf{R}^N , we

$$\frac{d}{dt} \int_{\mathbf{R}^{N}} e^{2\psi} \left(uu_{t} + \frac{b(t)}{2} u^{2} \right) dx
+ \int_{\mathbf{R}^{N}} e^{2\psi} \left\{ \delta_{2}(|\nabla u|^{2} + b(t)(-\psi_{t})u^{2}) + \left(\beta + \frac{(1+\beta)N}{2} - 2\delta_{1}\right) \frac{b(t)}{2(t+1)} u^{2}
- 2\psi_{t} uu_{t} - u_{t}^{2} \right\} dx
\leq \int_{\mathbf{R}^{N}} e^{2\psi} uf(u) dx.$$
(2.18)

To cover the bad term $-u_t^2$ in the second term of (2.18), we integrate (2.15) over \mathbf{R}^N and multiply it by $(t + t_0)^{\beta}$ $(t_0 \gg 1)$ to get

$$\frac{d}{dt} \left[(t+t_0)^{\beta} \int_{\mathbf{R}^N} \frac{e^{2\psi}}{2} (u_t^2 + |\nabla u|^2) dx \right] - \frac{\beta}{(t+t_0)^{1-\beta}} \int_{\mathbf{R}^N} \frac{e^{2\psi}}{2} (u_t^2 + |\nabla u|^2) dx
+ \int_{\mathbf{R}^N} e^{2\psi} \left\{ \left(\frac{1}{4} + (-\psi_t)(t+t_0)^{\beta} \right) u_t^2 + \frac{(-\psi_t)(t+t_0)^{\beta}}{5} |\nabla u|^2 \right\} dx
\leq (t+t_0)^{\beta} \left[\frac{d}{dt} \int_{\mathbf{R}^N} e^{2\psi} F(u) dx - 2 \int_{\mathbf{R}^N} \psi_t F(u) dx \right] =: (NL)_1.$$
(2.19)

We now add (2.19) to $\nu \cdot (2.18)$ (0 < $\nu \ll 1$):

$$\begin{aligned} \frac{d}{dt}\hat{E}(t) + \hat{H}(t) \\ &:= \frac{d}{dt} \int_{\mathbf{R}^{N}} e^{2\psi} \left\{ \frac{(t+t_{0})^{\beta}}{2} (u_{t}^{2} + |\nabla u|^{2}) + \underbrace{vuu_{t}}_{(\#4)} + \frac{vb(t)}{2} u^{2} \right\} dx \\ &+ \int_{\mathbf{R}^{N}} e^{2\psi} \left\{ \left(\frac{1}{4} - v + (-\psi_{t})(t+t_{0})^{\beta} - \frac{\beta}{2(t+t_{0})^{1-\beta}} \right) u_{t}^{2} \right. \\ &+ \left(\frac{(-\psi_{t})(t+t_{0})^{\beta}}{5} + v\delta_{2} - \frac{\beta}{2(t+t_{0})^{1-\beta}} \right) |\nabla u|^{2} \\ &+ v\delta_{2}b(t)(-\psi_{t})u^{2} + \left(\beta + \frac{(1+\beta)N}{2} - 2\delta_{1} \right) \\ &\times \frac{vb(t)}{2(t+1)} u^{2} \underbrace{-2v\psi_{t}uu_{t}}_{(\#5)} \right\} dx \end{aligned}$$

$$\leq (NL)_{2}, \end{aligned}$$

where by the form $(NL)_1$ in (2.19)

$$(NL)_{2} = \frac{d}{dt} \left[(t+t_{0})^{\beta} \int_{\mathbf{R}^{N}} e^{2\psi} F(u) dx \right] + C \int_{\mathbf{R}^{N}} e^{2\psi} (1 + (t+t_{0})^{\beta} (-\psi_{t})) |u|^{\rho+1} dx .$$
(2.21)

The terms (#4) and (#5) are absorbed in the other good terms by choosing small parameters ν , $\delta_2(\nu \ll \delta_2)$ and large parameter t_0 :

$$|(#4)| \le \frac{\delta_2 \nu b(t)}{2} u^2 + \frac{\nu}{\delta_2} \frac{(t+t_0)^{\beta}}{2} u_t^2, \qquad (2.22)$$

$$|(\#5)| \le \frac{1}{2} (-\psi_t)(t+t_0)^{\beta} u_t^2 + 2\nu^2 b(t)(-\psi_t) u^2.$$
(2.23)

In the results, denoting

$$E(t) = \int_{\mathbf{R}^N} e^{2\psi} (u_t^2 + |\nabla u|^2)(t, x) dx, \qquad (2.24)$$

$$E_{\psi}(t) = \int_{\mathbf{R}^{N}} e^{2\psi} (-\psi_{t}) (u_{t}^{2} + |\nabla u|^{2}) (t, x) dx$$
(2.25)

and, for $g(t, x) \ge 0$

$$J(t;g) = \int_{\mathbf{R}^{N}} e^{2\psi} g(t,x) dx, \qquad (2.26)$$

$$J_{\psi}(t;g) = J(t;(-\psi_t)g) = \int_{\mathbf{R}^N} e^{2\psi}(-\psi_t)g(t,x)dx\,,$$
(2.27)

we have

$$c_{0}(t+t_{0})^{\beta}E(t) + (1-\delta_{2})\frac{\nu b(t)}{2}J(t;u^{2})$$

$$\leq \hat{E}(t) \leq C_{0}(t+t_{0})^{\beta}E(t) + (1+\delta_{2})\frac{\nu b(t)}{2}J(t;u^{2})$$
(2.28)

and

$$\hat{H}(t) \ge c_1(\delta)(E(t) + (t+t_0)^{\beta} E_{\psi}(t) + b(t) J_{\psi}(t; u^2)) + \frac{\beta + \frac{(1+\beta)N}{2} - 2\delta_1}{t+1} \cdot \frac{vb(t)}{2} J(t; u^2).$$
(2.29)

The coefficient $(\beta + \frac{(1+\beta)N}{2} - 2\delta_1)/(t+1)$ of $\frac{vb(t)}{2}J(t; u^2)$ in (2.29) is important, for which the parameter *a* was chosen in (2.5). For a moment we put

$$B = \beta + \frac{(1+\beta)N}{2} \tag{2.30}$$

and, by (2.28)–(2.29), multiply (2.20) by $(t + t_0)^{B-3\delta_1}$ to get

$$\frac{d}{dt} \Big[(t+t_0)^{B-3\delta_1} \hat{E}(t) \Big] + (t+t_0)^{B-3\delta_1} \Big(c_1(\delta) - \frac{C_0(B-3\delta_1)}{(t+t_0)^{1-\beta}} \Big) E(t) \\
+ (t+t_0)^{B+\beta-3\delta_1} \cdot c_1(\delta) E_{\psi}(t) + (t+t_0)^{B-\beta-3\delta_1} \cdot c_1(\delta) J_{\psi}(t; u^2) \\
+ (t+t_0)^{B-3\delta_1} \Big(\frac{B-2\delta_1}{t+1} - \frac{(B-3\delta_1)(1+\delta_2)}{t+t_0} \Big) \frac{vb(t)}{2} J(t; u^2) \\
\leq (t+t_0)^{B-3\delta_1} (NL)_2 ,$$
(2.31)

and hence, by integrating (2.31) over [0, t] and denoting $3\delta_1 = \varepsilon$,

$$(t+1)^{B+\beta-\varepsilon} E(t) + (t+1)^{B-\beta-\varepsilon} J(t; u^{2}) + \int_{0}^{t} \left[(\tau+1)^{B-\varepsilon} E(\tau) + (\tau+1)^{B+\beta-\varepsilon} E_{\psi}(\tau) + (\tau+1)^{B-1-\beta-\varepsilon} J(\tau; u^{2}) + (\tau+1)^{B-\beta-\varepsilon} J_{\psi}(\tau; u^{2}) \right] d\tau$$

$$\leq C I_{0}^{2} + C \int_{0}^{t} (\tau+1)^{B-\varepsilon} (NL)_{2} d\tau .$$
(2.32)

Considering $\int_0^t (\tau + 1)^{B-\varepsilon} E(\tau) d\tau$ to be estimated, we multiply (2.19) by $(t + t_0)^{B-\beta+1-\varepsilon}$ and integrate it over [0, t] to get

$$(t+1)^{B+1-\varepsilon}E(t) - C(B-\beta+1-\varepsilon)\int_{0}^{t} (\tau+1)^{B-\varepsilon}E(\tau)d\tau + c_{2}(\delta)\int_{0}^{t} \left[(\tau+1)^{B-\beta+1-\varepsilon}J(\tau;u_{t}^{2}) + (\tau+1)^{B+1-\varepsilon}E_{\psi}(\tau) \right]d\tau$$
(2.33)
$$\leq CI_{0}^{2} + C\int_{0}^{t} (\tau+t_{0})^{B-\beta+1-\varepsilon}(NL)_{1}d\tau .$$

Adding (2.32) to μ (2.33) (0 < $\mu \ll 1$), we have

$$(t+1)^{\frac{(1+\beta)(N+2)}{2}-\varepsilon}E(t) + (t+1)^{\frac{(1+\beta)N}{2}-\varepsilon}J(t;u^{2}) + \int_{0}^{t} \left[(\tau+1)^{\frac{(1+\beta)N}{2}+1-\varepsilon}J(\tau;u^{2}_{t}) + (\tau+1)^{\frac{(1+\beta)N}{2}+\beta-\varepsilon}J(\tau;|\nabla u|^{2}) + (\tau+1)^{\frac{(1+\beta)N}{2}-1-\varepsilon}J(\tau;u^{2}) \right] d\tau$$

$$\leq CI_{0}^{2} + (NL)$$
(2.34)

337

(we dropped the terms about E_{ψ} , J_{ψ} in the left-hand side) with

(NL)
$$\leq C(t+1)^{\frac{(1+\beta)(N+2)}{2}-\varepsilon} J(t; |u|^{\rho+1}) + C \int_0^t \left[(\tau+1)^{\frac{(1+\beta)N}{2}+\beta-\varepsilon} J(\tau; |u|^{\rho+1}) + (\tau+1)^{\frac{(1+\beta)(N+2)}{2}-\beta-\varepsilon} J_{\psi}(\tau; |u|^{\rho+1}) \right] d\tau .$$
(2.35)

We now go to estimate (NL) by M(t), and our goal is (2.40) below from (2.34).

LEMMA 2.1 (Gagliardo-Nirenberg). Let $p, q, r (1 \le p, q, r, \le \infty)$ and $\sigma \in [0, 1]$ satisfy

$$\frac{1}{p} = \sigma\left(\frac{1}{r} - \frac{1}{N}\right) + (1 - \sigma)\frac{1}{q}$$

except for $p = \infty$ or r = N when $N \ge 2$. Then for some constant C = C(p, q, r, N) > 0 it holds

$$\|g\|_{L^{p}} \leq C \|g\|_{L^{q}}^{1-\sigma} \|\nabla g\|_{L^{r}}^{\sigma}$$

for any $g \in C_0^1(\mathbf{R}^N)$).

Since

$$J(t; |u|^{\rho+1}) = \int_{\mathbf{R}^N} e^{2\psi} |u|^{\rho+1} dx = \int_{\mathbf{R}^N} |e^{\frac{2}{\rho+1}\psi} u|^{\rho+1} dx$$

and

$$\nabla(e^{\frac{2}{\rho+1}\psi}u) = \frac{2}{\rho+1}e^{\frac{2}{\rho+1}\psi}(\nabla\psi)u + e^{\frac{2}{\rho+1}\psi}\nabla u,$$

choosing $p = \rho + 1$, q = r = 2 and $\sigma = \frac{N(\rho - 1)}{2(\rho + 1)}$ (< 1), we have

$$J(t; |u|^{\rho+1})^{\frac{1}{\rho+1}} \leq C \bigg(\int_{\mathbf{R}^N} e^{\frac{4}{\rho+1}\psi} u^2 dx \bigg)^{\frac{1-\sigma}{2}} \bigg(\int_{\mathbf{R}^N} e^{\frac{4}{\rho+1}\psi} |\nabla\psi|^2 u^2 dx + \int_{\mathbf{R}^N} e^{\frac{4}{\rho+1}\psi} |\nabla u|^2 dx \bigg)^{\frac{\sigma}{2}}$$

and

$$J(t; |u|^{\rho+1}) \le C(t+1)^{-\frac{(1+\beta)(\rho+1)\sigma}{2}} J(t; u^2)^{\frac{\rho+1}{2}} + CJ(t; u^2)^{\frac{(\rho+1)(1-\sigma)}{2}} J(t; |\nabla u|^2)^{\frac{(\rho+1)\sigma}{2}}.$$
(2.36)

Hence, by simple calculations of the exponent of t + 1,

$$(t+1)^{\frac{(1+\beta)(N+2)}{2}-\varepsilon} J(t; |u|^{\rho+1}) \le C(t+1)^{-\frac{(1+\beta)N}{2}(\rho-1-\frac{2}{N})+\frac{\rho-1}{2}\varepsilon} M(t)^{\frac{\rho+1}{2}} \le CM(t)^{\frac{\rho+1}{2}}$$
(2.37)

since $\rho > \rho_F(N)$ and $\varepsilon = 3\delta_1$ is small. Similarly,

$$\int_{0}^{t} (\tau+1)^{\frac{(1+\beta)N}{2}+\beta-\varepsilon} J(\tau; |u|^{\rho+1}) d\tau$$

$$\leq C \int_{0}^{t} (\tau+1)^{-1-\frac{(1+\beta)N}{2}(\rho-1-\frac{2}{N})+\frac{\rho-1}{2}\varepsilon} M(\tau) d\tau.$$
(2.38)

Since $-\psi_t = \frac{1+\beta}{t+1}\psi$, for small $\mu > 0$

$$J_{\psi}(t;|u|^{\rho+1}) \leq C(t+1)^{-1} \int_{\mathbf{R}^{N}} e^{2\psi} \psi |u|^{\rho+1} dx \leq C(t+1)^{-1} \int_{\mathbf{R}^{N}} e^{(2+\mu)\psi} |u|^{\rho+1} dx.$$

Hence, similar to (2.36) and (2.38),

$$\int_{0}^{t} (\tau+1)^{\frac{(1+\beta)(N+2)}{2}-\beta-\varepsilon} J_{\psi}(\tau;|u|^{\rho+1}) d\tau$$

$$\leq C \int_{0}^{t} (\tau+1)^{-1-\beta-\frac{(1+\beta)N}{2}(\rho-1-\frac{2}{N})+\frac{\rho-1}{2}\varepsilon} M(\tau) d\tau.$$
(2.39)

Combining (2.9), (2.34)–(2.35) with (2.36)–(2.39), we obtain

$$(1 - CM(t)^{\frac{\rho-1}{2}})M(t) + \int_{0}^{t} \left[(\tau+1)^{\frac{(1+\beta)N}{2} + 1-\varepsilon} J(t; u_{t}^{2}) + (\tau+1)^{\frac{(1+\beta)N}{2} - \varepsilon} J(\tau; |\nabla u|^{2}) + (\tau+1)^{\frac{(1+\beta)N}{2} - 1-\varepsilon} J(\tau; u^{2}) \right] d\tau$$

$$\leq CI_{0}^{2} + C \int_{0}^{t} (\tau+1)^{-1 - \frac{1+\beta}{2}(\rho - 1 - \frac{2}{N}) + \frac{\rho-1}{2}\varepsilon} M(\tau) d\tau .$$
(2.40)

Therefore, when $M(t) \leq (1/2C)^{\frac{2}{\rho-1}}$, using the Gronwall inequality we have the desired estimate (2.10).

3. Blow-up properties

We first prove Lemma 1.1, for which we need the following comparison lemma.

LEMMA 3.1 (Comparison lemma). Suppose that the functions k(t) and h(t) satisfy

$$a_{1}(t)k''(t) + k'(t) \ge a_{2}(t)|k|^{\alpha}k(t)$$

$$a_{1}(t)h''(t) + h'(t) \le a_{2}(t)|h|^{\alpha}h(t)$$
(3.1)

for any $t \ge 0$, where $\alpha \ge 0$ and $a_i(t) > 0 (t \ge 0)$, i = 1, 2. If

$$k(0) > h(0), \quad k'(0) \ge h'(0)$$
 (3.2)

or

$$k(0) \ge h(0), \quad k'(0) > h'(0),$$
 (3.2)

then it holds

$$k'(t) > h'(t)$$
 and $k(t) > h(t)$ for any $t > 0$. (3.3)

The proof is given in [12] and omitted.

REMARK 3.1. If $h(t) \equiv 0$, then $k(t) \ge 0$ provided that $k(0) \ge 0$, $k'(0) \ge 0$ with k(0) + k'(0) > 0. Hence the absolute value mark can be deleted in $(3.1)_1$.

PROOF OF LEMMA 1.1. Let $\Phi(t) \ge 0$ be the solution to

$$\Phi'(t) = \delta_0 c_0 (t+1)^{\beta - \gamma} \Phi(t)^{1+\frac{\alpha}{2}}, \quad \Phi(0) = \Psi(0) \ge 0$$
(3.4)

with

$$\delta_0 = c_1 \Phi(0)^{\frac{\alpha}{2}} \quad (0 < c_1 \ll 1) \,. \tag{3.5}$$

Then, since $-\frac{2}{\alpha}\frac{d}{dt}\Phi(t)^{-\frac{\alpha}{2}} = \delta_0 c_0 (t+1)^{\beta-\gamma}$,

$$\Phi(t) = \begin{cases} \left[\Phi(0)^{-\frac{\alpha}{2}} - \frac{\alpha \delta_0 c_0}{2(1+\beta-\gamma)} ((t+1)^{1+\beta-\gamma} - 1) \right]^{-\frac{1}{\alpha}} & (\beta-\gamma > -1) \\ \\ \left[\Phi(0)^{-\frac{\alpha}{2}} - \frac{\alpha \delta_0 c_0}{2} \log(t+1) \right]^{-\frac{2}{\alpha}} & (\beta-\gamma = -1) \end{cases}$$

and hence $\Phi(t) \nearrow \infty$ as $t \rightarrow T_0 - 0$, where

$$T_{0} = \begin{cases} \left(\frac{2(1+\beta-\gamma)}{\alpha\delta_{0}c_{0}}\Phi(0)^{-\frac{\alpha}{2}}+1\right)^{\frac{1+\beta-\gamma}{1+\beta-\gamma}} - 1 & (\beta-\gamma > -1)\\ e^{\frac{2}{\alpha\delta_{0}c_{0}}\Phi(0)^{-\frac{\alpha}{2}}} - 1 & (\beta-\gamma = -1). \end{cases}$$

If $\Phi(0) = \varepsilon$, then by (3.5), T_0 is estimated as

$$T_0 \leq \begin{cases} C\varepsilon^{-\frac{\alpha}{1+\beta-\gamma}} & (\beta-\gamma>-1)\\ e^{C\varepsilon^{-\alpha}} & (\beta-\gamma=-1) \end{cases}.$$
(3.6)

We now show $\Psi(t) \ge \Phi(t)$ using Lemma 3.1. Since $\beta - \gamma \le -\beta \le 0$ by (1.18),

$$\Phi''(t) = \frac{(\delta_0 c_0)^2 (2+\alpha)}{2} (t+1)^{2(\beta-\gamma)} \Phi(t)^{1+\alpha} + \delta c_0 (\beta-\gamma) (t+1)^{\beta-\gamma-1} \Phi(t)^{1+\frac{\alpha}{2}}$$

$$\leq \frac{(\delta_0 c_0)^2 (2+\alpha)}{2} (t+1)^{2(\beta-\gamma)} \Phi(t)^{1+\alpha}$$

and

$$(t+1)^{\beta} \Phi''(t) + \Phi'(t) \le c_0 (t+1)^{\beta-\gamma} \Phi(t)^{1+\alpha} \cdot \delta_0 \left(\frac{(2+\alpha)\delta_0 c_0}{2} (t+1)^{2\beta-\gamma} + \Phi(0)^{-\frac{\alpha}{2}} \right).$$

Hence, the choice of δ in (3.5) means

$$\delta_0 \left(\frac{(2+\alpha)\delta_0 c_0}{2} (t+1)^{2\beta-\gamma} + \Phi(0)^{-\frac{\alpha}{2}} \right) \le c_1 \cdot \left(\frac{(2+\alpha)c_0 c_1}{2} \Phi(0)^{\alpha} + 1 \right) \le 1$$

when $\Phi(0) \leq C$, and, by (1.18)

$$(t+1)^{\beta} \Phi''(t) + \Phi'(t) \le c_0 (t+1)^{\beta-\gamma} \Phi(t)^{1+\alpha}.$$
(3.7)

By Remark 3.1, we can take $k(t) = \Psi(t)$, $h(t) = \Phi(t)$ in Lemma 3.1 and conclude $\Psi(t) \ge \Phi(t) \ge 0$ and the blow-up of $\Psi(t)$ within a finite time including the estimate (1.19) on the life-span.

REMARK 3.2. If L > 1 and $\beta - \gamma < 0$, then $(t + L)^{\beta - \gamma} \ge L^{\beta - \gamma} (t + 1)^{\beta - \gamma}$. Hence, even if $\Psi(t)$ satisfies

$$(t+1)^{\beta} \Psi''(t) + \Psi'(t) \ge c_0 (t+L)^{\beta-\gamma} \Psi(t)^{1+\alpha}$$

$$\Psi(0) \ge 0, \quad \Psi'(0) \ge 0 \quad \text{with} \quad \Psi(0) + \Psi'(0) > 0,$$
(3.8)

instead of (1.17), then Lemma 1.1 holds.

We now prove Theorems 1.2 and 1.3.

PROOF OF THEOREM 1.2. Let $u \in X_T$ be a local solution to (1.1) with $f(u) = |u|^{\rho}$ satisfying supp $\{u(t, \cdot)\} \subset B_{t+L}$. We define

$$\Psi(t) = \int_{\mathbf{R}^N} u(t, x) dx = \int_{B_{t+L}} u(t, x) dx, \qquad (3.9)$$

then, by $1/\rho + (\rho - 1)/\rho = 1$

$$|\Psi(t)| \le C \left(\int_{B_{t+L}} dx \right)^{\frac{\rho-1}{\rho}} \left(\int_{\mathbf{R}^N} |u|^{\rho} dx \right)^{\frac{1}{\rho}} \le C(t+L)^{\frac{N(\rho-1)}{\rho}} ||u(t)||_{L^{\rho}}.$$

Hence, by integrating (1.1) over \mathbf{R}^N ,

$$\Psi''(t) + b(t)\Psi'(t) = \|u(t)\|_{L^{\rho}}^{\rho} \ge c(t+L)^{-N(\rho-1)}|\Psi(t)|^{\rho}$$

and

$$(t+1)^{\beta} \Psi''(t) + \Psi'(t) \ge c(t+L)^{\beta - N(\rho-1)} |\Psi(t)|^{\rho}.$$
(3.10)

By (1.14), (1.17)₂ follows and $\Psi(t) \ge 0$. Hence Lemma 1.1 and Remark 3.2 yield the blowup of $\Psi(t)$, and the estimate of life-span T_{ε}

$$T_{\varepsilon} \leq \begin{cases} C\varepsilon^{-\frac{\rho-1}{1+\beta-N(\rho-1)}} & \rho < 1 + \frac{1+\beta}{N} \\ e^{C\varepsilon^{-(\rho-1)}} & \rho = 1 + \frac{1+\beta}{N} \end{cases},$$
(3.11)

which completes the proof of Theorem 1.2.

PROOF OF THEOREM 1.3. Let $u \in X_T$ be a local solution to (1.1) with $f(u) = |u|^{\rho-1}u$ whose support is in B_{t+L} . We define

$$\Psi(t) = \frac{1}{2} \int_{\mathbf{R}^N} u^2(t, x) dx = \frac{1}{2} \int_{B_{t+L}} u^2(t, x) dx \,. \tag{3.12}$$

Since $\Psi'(t) = \int_{\mathbf{R}^N} (uu_t)(t, x) dx$, (1.17)₂ follows from (1.16)₂.

Integrating (1.1) $\times u_t$ over \mathbf{R}^N , we have

$$\frac{d}{dt}E_0(t) := \frac{d}{dt} \left[\frac{1}{2} (\|u_t(t)\|^2 + \|\nabla u\|^2) - \frac{1}{\rho+1} \int_{\mathbf{R}^N} |u|^{\rho+1} dx \right]$$
$$= -(t+1)^{-\beta} \|u_t(t)\|^2 \le 0$$

and hence $E_0(t) \le E_0(0) \le 0$ by $(1.16)_1$. Therefore,

$$\Psi''(t) = \|u_t(t)\|^2 + \int_{\mathbf{R}^N} (uu_{tt})(t, x) dx$$

$$= \|u_t(t)\|^2 + \int_{\mathbf{R}^N} u(\Delta u - (t+1)^{-\beta} u_t + |u|^{\rho-1} u) dx$$

$$= \|u_t(t)\|^2 - \|\nabla u\|^2 - (t+1)^{-\beta} \int_{\mathbf{R}^N} (uu_t)(t, x) dx + \int_{\mathbf{R}^N} |u|^{\rho+1} (t, x) dx$$

$$= -(t+1)^{-\beta} \Psi'(t) + (-E_0(t)) + 2\|u_t(t)\|^2 + \frac{\rho-1}{\rho+1} \int_{\mathbf{R}^N} |u|^{\rho+1} dx.$$

(3.13)

Using $\frac{1}{(\rho+1)/2} + \frac{1}{(\rho+1)/(\rho-1)} = 1$, we have

$$\Psi(t) \le C(t+L)^{\frac{N(\rho-1)}{\rho+1}} \left(\int_{\mathbf{R}^N} |u|^{\rho+1}(t,x) dx \right)^{\frac{2}{\rho+1}}$$

or

$$\int_{\mathbf{R}^{N}} |u|^{\rho+1}(t,x) dx \ge c(t+L)^{-\frac{N(\rho-1)}{2}} \Psi(t)^{1+\frac{\rho-1}{2}}.$$
(3.14)

From (3.13)–(3.14) it follows that

$$(t+1)^{\beta} \Psi''(t) + \Psi'(t) \ge c(t+L)^{\beta - \frac{N(\rho-1)}{2}} \Psi(t)^{1 + \frac{\rho-1}{2}}.$$
(3.15)

Thus, when (1.15) or $2\beta \leq \frac{N(\rho-1)}{2} \leq \beta + 1$, the blow-up of $\Psi(t)$ occurs.

References

- [1] H. FUJITA, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, Sec. 1. **13** (1966), 109–124.
- [2] N. HAYASHI, E. I. KAIKINA and P. I. NAUMKIN, Damped wave equation with super critical nonlinearities, Differential Integral Equations 17 (2004), 637–652.
- [3] N. HAYASHI, E. I. KAIKINA and P. I. NAUMKIN, Damped wave equation in the subcritical case, J. Differential Equations 207 (2004), 161–194.
- [4] N. HAYASHI, E. I. KAIKINA and P. I. NAUMKIN, On the critical nonlinear damped wave equation with large initial data, J. Math. Anal. Appl. 334 (2007), 1400–1425.
- [5] T. HOSONO and T. OGAWA, Large time behavior and $L^p L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations, J. Differential Equations **203** (2004), 82–118.
- [6] R. IKEHATA, Diffusion phenomenon for linear dissipative wave equations in an exterior domain, J. Differential Equations 186 (2002), 633–651.
- [7] R. IKEHATA and K. NISHIHARA, Diffusion phenomenon for second order linear evolution equations, Studia Math. 158 (2003), 153–161.
- [8] R. IKEHATA, K. NISHIHARA and H. ZHAO, Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption, J. Differential Equations 226 (2006), 1–29.
- [9] R. IKEHATA, G. TODOROVA and B. YORDANOV, Critical exponent for semilinear wave equations with spacedependent potential, Funkcial. Ekvac. 52 (2009), 411–435.
- [10] R. KARCH, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations, Studia Math. 143 (2000), 175–197.
- [11] S. KAWASHIMA, M. NAKAO and K. ONO, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term, J. Math. Soc. Japan 47 (1995), 617–653.
- [12] T.-T. LI and YI. ZHOU, Breakdown of solutions to $\Box u + u_t = u^{1+\alpha}$, Discrete Cont. Dynam. Syst. 1 (1995), 503–520.
- [13] K. MOCHIZUKI, Scattering theory for wave equations with dissipative terms, Publ. RIMS, Kyoto Univ. 12 (1976), 383–390.
- [14] T. NARAZAKI, $L^p L^q$ estimates for damped wave equations and their applications to semi-linear problem, J. Math. Soc. Japan **56** (2004), 585–626.
- [15] K. NISHIHARA, $L^p L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application, Math. Z. **244**(2003), 631–649.
- [16] K. NISHIHARA, Global asymptotics for the damped wave equation with absorption in higher dimensional space, J. Math. Soc. Japan 58 (2006), 805–836.
- [17] K. NISHIHARA, Decay properties for the damped wave equation with space dependent potential and absorbed semilinear term, Commun. Partial Differential Equations 35 (2010), 1402–1418.
- K. NISHIHARA and J. ZHAI, Asymptotic behaviors of solutions for time dependent damped wave equations, J. Math. Anal. Appl. 360 (2009), 412–421.
- [19] K. NISHIHARA and H. ZHAO, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption, J. Math. Anal. Appl. 313 (2006), 598–610.
- [20] W. STRAUSS, Nonlinear wave equations, CBMS Regional Conference Series in Mathematics 73. Published for the Conference Board of the Mathematical Sciences, Washington, American Mathematical Society, 1989.
- [21] G. TODOROVA and B. YORDANOV, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001), 464–489.
- [22] G. TODOROVA and B. YORDANOV, Nonlinear dissipative wave equations with potential, AMS Contemporary Mathematics 426 (2007), 317–337.

- [23] J. WIRTH, Wave equations with time-dependent dissipation. I. Non-effective dissipation, J. Differential Equations 222 (2006), 487–514.
- [24] J. WIRTH, Wave equations with time-dependent dissipation. II. Effective dissipation, J. Differential Equations 232 (2007), 74–103.
- [25] T. YAMAZAKI, Asymptotic behavior for abstract wave equations with decaying dissipation, Adv. Differential Equations 11 (2006), 419–456.
- [26] T. YAMAZAKI, Diffusion phenomenon for abstract wave equations with decaying dissipation, Adv. Stud. Pure Math. 47 (2007), 363–381.
- [27] QI. ZHANG, A blow-up result for a nonlinear wave equation with damping: The critical case, C. R. Acad. Sci. Paris 333 (2001), 109–114.
- [28] Y. ZHOU, A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in R^N, Appl. Math. Lett. 18 (2005), 281–286.

Present Address: FACULTY OF POLITICAL SCIENCE AND ECONOMICS, WASEDA UNIVERSITY, TOKYO, 169–8050 JAPAN. *e-mail*: kenji@waseda.jp