Токуо J. Матн. Vol. 34, No. 2, 2011

Generating the Mapping Class Group of a Punctured Surface by Involutions

Naoyuki MONDEN

Osaka University

(Communicated by Y. Matsumoto)

Abstract. Let $\Sigma_{g,b}$ denote a closed oriented surface of genus g with b punctures and let $Mod(\Sigma_{g,b})$ denote its mapping class group. Kassabov showed that $Mod(\Sigma_{g,b})$ is generated by 4 involutions if g > 7 or g = 7 and b is even, 5 involutions if g > 5 or g = 5 and b is even, and 6 involutions if g > 3 or g = 3 and b is even. We proved that $Mod(\Sigma_{g,b})$ is generated by 4 involutions if g = 7 and b is odd, and 5 involutions if g = 5 and b is odd.

1. Introduction

Let $\Sigma_{g,b}$ be an closed oriented surface of genus $g \ge 1$ with arbitrarily chosen b points (which we call punctures). Let $Mod(\Sigma_{g,b})$ be the mapping class group of $\Sigma_{g,b}$, which is the group of homotopy classes of orientation-preserving homeomorphisms preserving the set of punctures. By $Mod^0(\Sigma_{g,b})$ we will denote the subgroup of $Mod(\Sigma_{g,b})$ which fixes the punctures pointwise.

The question of generating mapping class groups by involutions was first investigated by McCarthy and Papadopoulos (see [MP]). In [MP], they proved that $Mod(\Sigma_{g,0})$ is generated by infinitely many conjugates of a single involution for $g \ge 3$. Luo described the finite set of involutions which generate $Mod(\Sigma_{g,b})$ for $g \ge 3$ (see [Lu]). He also proved that $Mod(\Sigma_{g,b})$ is generated by torsion elements in all cases except g = 2 and b = 5k + 4, but this group is not generated by involutions for $g \ge 3$, b = 0 and $g \ge 4$, $b \le 1$ (see [BF]). In [Ka], Kassabov showed that $Mod(\Sigma_{g,b})$ is generated by 4 involutions if g > 7 or g = 7 and b is even, 5 involutions if g > 5 or g = 5 and b is even, and 6 involutions if g > 3 or g = 3 and b is even.

We show that when b is odd and $g \ge 7$, $Mod(\Sigma_{g,b})$ is generated by 4 involutions by improving two involutions which are constructed in Section 2 of [Ka]. Furthermore, by using the argument in Section 3.4 of [Ka] we show that when b is odd, $Mod(\Sigma_{5,b})$ is generated by 5 involutions. We prove these results by the arguments similar to [Ka]. When we combine Kassabov's theorem with these results, we get the following results:

MAIN THEOREM. For all $b \ge 0$, $Mod(\Sigma_{g,b})$ is generated by:

Received February 14, 2010

NAOYUKI MONDEN

- (a) 4 involutions if $g \ge 7$,
- (b) 5 involutions if $g \ge 5$.

2. Preliminaries

Let c be a simple closed curve on $\Sigma_{g,b}$. We will denote by T_c the (right handed) Dehn twists about the curve c.

We record the following lemmas.

LEMMA 1. For all $h \in Mod(\Sigma_{g,b})$,

$$T_{h(c)} = hT_c h^{-1}$$
.

LEMMA 2. Let c and d be two simple closed curves on $\Sigma_{g,b}$. If c is disjoint from d, then

$$T_c T_d = T_d T_c$$

It is clear that we have the exact sequence:

$$1 \to \operatorname{Mod}^0(\Sigma_{q,b}) \to \operatorname{Mod}(\Sigma_{q,b}) \xrightarrow{n} \operatorname{Sym}_b \to 1$$
.

Therefore, we see the following lemma;

LEMMA 3. Let H denote a subgroup of $Mod(\Sigma_{g,b})$, which contains $Mod^0(\Sigma_{g,b})$. If $\pi(H) = Sym_b$, then H is equal to $Mod(\Sigma_{g,b})$.

3. Proof of Main Theorem

Hereafter, we assume that $g \ge 5$, and that the number of punctures b = 2l + 1 is odd.

We will construct two involutions ρ_1 , ρ_2 by modifying the involutions ρ_1 , ρ_2 which are constructed in Section 2 of [Ka]. We note that we change the action of ρ_1 , ρ_2 on punctures and swap the top parts of Figure 1 of [Ka].

Let us embed our surface $\Sigma_{g,b}$ in the Euclidean space in two different ways as shown on Figure 1. (In these pictures we will assume that genus g = 2k + 1. In the case of even genus we only have to swap the top parts of the pictures.) In Figure 1 we have also marked the punctures as x_1, \ldots, x_b and we have the curves $\alpha_i, \beta_i, \gamma_i$ and δ . The curves $\alpha_i, \beta_i, \gamma_i$ are non separating curves and δ is a separating curve.

Let ρ_1 and ρ_2 denote the involutions which are rotation by π about the axises indicated in Figure 1. Then we get the following lemma;

LEMMA 4. The subgroup of $Mod(\Sigma_{g,b})$ be generated by ρ_1 , ρ_2 and 3 Dehn twists T_{α} , T_{β} and T_{γ} around one of the curve in each family contains the subgroup $Mod^0(\Sigma_{g,b})$.

304

FIGURE 1. The embeddings of the surface $\Sigma_{g,b}$ in Euclidean space used to define the involutions ρ_1 and ρ_2 .

We postpone the proof of lemma 4 until Section 4.

Let π be the homomorphism and H be the subgroup of $Mod(\Sigma_{g,b})$ mentioned in Lemma 3. Showing the surjectivity of π from H to Sym_b is equivalent to showing that the Sym_b can be generated by involutions;

$$r_1 = (1, b - 1)(2, b - 2) \cdots (l, l + 1)(b)$$

$$r_2 = (2, b - 1)(3, b - 2) \cdots (l, l + 2)(1)(l + 1)(b)$$

$$r_3 = (1, b)(2, b - 1)(3, b - 2) \cdots (l, l + 2)(l + 1)$$

corresponding to 3 involutions in *H* by π . The group generated by r_i contains the long cycle $r_3r_1 = (1, 2, ..., b)$ and transposition $r_3r_2 = (1, b)$. These two elements generate the whole symmetric group, therefore the involutions r_i (i = 1, 2, 3) generate Sym_b. We note that the images of ρ_1 and ρ_2 to Sym_b are r_1 and r_2 .

3.1. Generating Dehn twists by 4 involutions. By using the arguments similar to Section 3.4 of [Ka] we generate Dehn twists by 4 involutions.

We assume that $g \ge 5$.

Let $S_{0,4}$ be a surface of genus 0 with 4 boundary components. Denote by a_1, a_2, a_3 and a_4 the four boundary curves of the surface $S_{0,4}$ and let the interior curves y_1, y_2 and y_3 be as shown in Figure 2.

NAOYUKI MONDEN

FIGURE 2. Lantern.

The lantern relation is the following relation:

$$T_{y_1}T_{y_2}T_{y_3} = T_{a_1}T_{a_2}T_{a_3}T_{a_4}.$$
 (1)

Notice that the curves a_i do not intersect any other curve and that the Dehn twists T_{a_i} commute with every twists in this relation. Thus we have

$$T_{a_4} = (T_{y_1} T_{a_1}^{-1}) (T_{y_2} T_{a_2}^{-1}) (T_{y_3} T_{a_3}^{-1}).$$
⁽²⁾

Let *R* denote the product $\rho_2 \rho_1$. By Figure 1 we can see that $R = \rho_2 \rho_1$ acts as follows:

$$R\alpha_{i} = \alpha_{i+1}, \quad (1 \le i < g)$$

$$R\beta_{i} = \beta_{i+1}, \quad (1 \le i < g)$$

$$R\gamma_{i} = \gamma_{i+1}, \quad (1 \le i < g - 1).$$
(3)

Let *S* be a lantern whose boundary components are a_1 , a_2 , a_3 , a_4 , and $R^{-2}S$ a lantern whose boundary components are $R^{-2}a_1$, $R^{-2}a_2$, $R^{-2}a_3$, $R^{-2}a_4$. We identify a_1 with $R^{-2}a_2$. Then we obtain a surface S_2 homeomorphic to a sphere with 6 boundary components.

By Figure 3 we see that there exists an involution \overline{J} of S_2 which takes S to $R^{-2}S$. In [Ka] R^2 is used instead of R^{-2} , since g is even in [Ka].

Let us embed the surface S_2 in $\Sigma_{g,b}$ as shown on Figure 4. We note $a_1 = \alpha_{k+1}$, $a_2 = \alpha_{k+3}$, $a_3 = \gamma_{k+2}$, $a_4 = \gamma_{k+1}$, $R^{-2}a_1 = \alpha_{k-1}$, $R^{-2}a_2 = \alpha_{k+1}$, $R^{-2}a_3 = \gamma_k$, $R^{-2}a_4 = \gamma_{k-1}$ and $y_1 = \alpha_{k+2}$. Figure 4 shows the existence of the involution \tilde{J} on the complement of S_2 which is a surface of genus g - 5 with 6 boundary components. Gluing together \bar{J} and \tilde{J} gives us the involution J of $\Sigma_{g,b}$. By Figure 3 J acts as follows

$$J(a_1) = R^{-2}a_2$$
, $J(a_3) = R^{-2}a_1$, $J(y_1) = R^{-2}y_2$, $J(y_3) = R^{-2}y_1$.

Therefore, we have

$$R^{2}J(a_{1}) = a_{2}, \quad R^{2}J(y_{1}) = y_{2}$$
$$JR^{-2}(a_{1}) = a_{3}, \quad JR^{-2}(y_{1}) = y_{3}.$$
 (4)

FIGURE 3. S_2 and the involution \overline{J} .

Let ρ_3 denote $T_{a_1}\rho_2 T_{a_1}^{-1}$. In [Ka] $T_{a_1}\rho_1 T_{a_1}^{-1}$ is used instead of $T_{a_1}\rho_2 T_{a_1}^{-1}$. By Lemma 1, the relation (4) and $\rho_2(a_1) = \rho_2(\alpha_{k+1}) = \alpha_{k+2} = y_1$, we have

$$T_{y_1}T_{a_1}^{-1} = \rho_2 T_{a_1}\rho_2 T_{a_1}^{-1} = \rho_2 \rho_3 ,$$

$$T_{y_2}T_{a_2}^{-1} = R^2 J \rho_2 \rho_3 J R^{-2} ,$$

$$T_{y_3}T_{a_3}^{-1} = J R^{-2} \rho_2 \rho_3 R^2 J .$$
(5)

By the relation (2) and (5) we have

$$T_{\gamma_{k+1}} = (\rho_2 \rho_3) \left(R^2 J \rho_2 \rho_3 J R^{-2} \right) \left(J R^{-2} \rho_2 \rho_3 R^2 J \right).$$
(6)

3.2. In the case of genus 5. We assume that $g \ge 5$ and b = 2l + 1.

We proof that $Mod(\Sigma_{g,b})$ is generated by 5 involutions.

The five involutions are ρ_1 , ρ_2 , ρ_3 , J and another involution I which was constructed in Section 3.2 of [Ka]. We note that since we assume that g is odd, I maps α_{k+1} to β_{k+2} .

THEOREM 5. If $g \ge 5$ and b = 2l + 1, the group G_1 generated by $\rho_1, \rho_2, \rho_3, I$ and J is the whole mapping class group $Mod(\Sigma_{g,b})$.

PROOF. By the relation (6) we have $T_{\gamma_{k+1}} \in G_1$. Since $J(\alpha_{k-1}) = \gamma_{k+2}$ and $R(\gamma_{k+1}) = \gamma_{k+2}$, we see that $T_{\alpha_{k-1}} = JRT_{\gamma_{k+1}}R^{-1}J^{-1} \in G_1$. Moreover, since $R^2(\alpha_{k-1}) = \alpha_{k+1}$ and $I(\alpha_{k+1}) = \beta_{k+2}$, we have $T_{\beta_{k+2}} \in G_1$. By the construction of J, the image of J to Sym_b is r_3 . We note that the images of ρ_1 and ρ_2 to Sym_b are r_1 and r_2 . Therefore, there is the surjection from G_1 to Sym_b. By Lemma 3 and 4 we see that G_1 is equal to Mod($\Sigma_{g,b}$). \Box

3.3. In the case of genus 7. We assume that $g \ge 7$ and b = 2l + 1.

We will construct the involution J' which acts on the punctures as the involution r_3 by the method similar to Section 3.4 of [Ka]. We note that the action of J' on punctures is different

NAOYUKI MONDEN

FIGURE 4. The involution J on $\Sigma_{g,b}$.

from that of J which is constructed in Section 3.4 of [Ka].

The S_2 and two pairs of pants have common boundary components $R^{-2}a_1$ and a_3 and their union is a surface S_3 homeomorphic to a sphere with 8 boundary components. Figure 5 shows the existence of the involution \bar{J}' on S_3 which extends the involution \bar{J} on S_2 .

Let us embed S_3 in the $\Sigma_{g,b}$ as shown on Figure 5. We note that the embedding of S_2 is

FIGURE 5. The involution J' on $\Sigma_{g,b}$.

similar to that of Section 3.1. From Figure 5 we can find the involution \tilde{J}' of the complement of S_3 . Let J' be the involution obtained by gluing together \bar{J}' and \tilde{J}' . Moreover, from Figure 5 we find that J' acts on the punctures as the involution r_3 .

THEOREM 6. If $g \ge 7$ and b = 2l + 1, the group G_2 generated by ρ_1, ρ_2, ρ_3 and J' is

the whole mapping class group $Mod(\Sigma_{q,b})$.

PROOF. The proof is the argument similar to Section 3.4 of [Ka]. We omit the proof. $\hfill\square$

4. The subgroup generated by 2 involutions and 3 Dehn twists, which contains $Mod^0(\Sigma_{g,b})$

In this section we prove Lemma 4.

Let the subgroup G of $Mod(\Sigma_{g,b})$ be generated by ρ_1 , ρ_2 and 3 Dehn twists T_{α} , T_{β} and T_{γ} around one of the curve in each family. We will show that G contains $Mod^0(\Sigma_{g,b})$. Let $\delta', \eta', \delta'', \eta'', \delta_j, \eta_j$ (j = 1, ..., l-1, l+1, ..., b-2) be the curves illustrated in Figure 6. In [Ge] it is shown that $Mod^0(\Sigma_{g,b})$ is generated by Dehn twists about the curves α_i -es, β_i -es, γ_i -es, δ', δ'' and δ_j -es, for j = 1, ..., l-1, l+1, ..., b-2.

We recall that $R = \rho_2 \rho_1$. By Lemma 1 and the relation (3) we see that $T_{\alpha_i}, T_{\beta_i}, T_{\gamma_i} \in G$ for all *i*.

From the action of ρ_1 and ρ_2 we can find that $R^{-1}(\delta_j) = \eta_{j-1}$ $(l+2 \le j \le b-1)$ and $R^{-1}(\delta_{l+1}) = \eta'$.

FIGURE 6. The curves δ_i -es, η_i -es.

310

MAPPING CLASS GROUP OF A PUNCTURED SURFACE

LEMMA 7. $T_{\delta_i}, T_{\delta'}, T_{\delta''} \in G$ $(j = 1, \dots, l - 1, l + 1, \dots, b - 2).$

PROOF. We will prove $T_{\delta_j} \in G$ (j = l + 1, ..., b - 1) by induction on j and $T_{\delta'} \in G$. The base case, j = b - 1, is clear because G contains $T_{\delta_{b-1}} = T_{\alpha_1}$. Suppose that G contains the twist T_{δ_j} . By $R^{-1}(\delta_j) = \eta_{j-1}$ we have

$$T_{\eta_{i-1}} = R^{-1} T_{\delta_i} R \in G.$$

Let $U \in G$ denote the product

$$U = T_{\beta_1}^{-1} T_{\gamma_1}^{-1} T_{\beta_2}^{-1} \cdots T_{\beta_{g-1}}^{-1} T_{\gamma_{g-1}}^{-1} T_{\beta_g}^{-1} T_{\alpha_g}^{-1} T_{\alpha_1} T_{\beta_1} T_{\gamma_1} T_{\beta_2} \cdots T_{\beta_{g-1}} T_{\gamma_{g-1}} T_{\beta_g}.$$

We find that

$$U(\eta') = \delta' U(\eta'') = \delta'' U(\eta_{i}) = \delta_{i} \quad (j = 1, ..., l - 1, l + 1, ..., b - 2).$$
(7)

Therefore, we see that $T_{\delta_{j-1}} = UT_{\eta_{j-1}}U^{-1} \in G$ (j = l+2, ..., b-1). Moreover, since $R^{-1}(\delta_{l+1}) = \eta'$ and $U(\eta') = \delta'$, we have that $T_{\delta'} \in G$.

We will prove that $T_{\delta''}, T_{\delta_j} \in G$ $(j = 1, \dots, l-1)$.

By Figure 6, we find that $\rho_1(\delta'') = \eta'$, $\rho_1(\delta_j) = \eta_{b-1-j}$ $(1 \le j \le l-1)$. Therefore, we see that $T_{\delta_j} = \rho_1^{-1} T_{\eta_{b-1-j}} \rho_1$, $T_{\delta''} = \rho_1^{-1} T_{\eta'} \rho_1 \in G$. We finished proving Lemma 7.

COROLLARY 8. The group G contains the subgroup $Mod^0(\Sigma_{q,b})$.

Therefore, we can prove Lemma 4.

ACKNOWLEDGMENT. I would like to thank Professor Hisaaki Endo for careful readings and for many helpful suggestions and comments. And I would like to thank Hitomi Fukushima, Yeonhee Jang and Kouki Masumoto for many advices.

References

- [BF] T. E. BRENDLE and B. FARB, Every mapping class group is generated by 3 torsion elements and by 6 involutions, J. Algebra 278 (2004), 187–198.
- [Ge] S. GERVAIS, A finite presentation of the mapping class group of a punctured surface, Topology 40 (2001), No. 4, 703–725.
- [Ka] M. KASSABOV, Generating Mapping Class Groups by Involutions, arXiv:math.GT/0311455 v1 25 Nov 2003.
- [Lu] N. LU, On the mapping class groups of the closed orientable surfaces, Topology Proc. 13 (1988), 293–324.
- [MP] J. MACCARTHY and A. PAPADOPOULOS, Involutions in surface mapping class groups, Enseign. Math. 33 (1987), 275–290.

NAOYUKI MONDEN

Present Address: DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, TOYONAKA, OSAKA, 560–0043 JAPAN. *e-mail*: n-monden@cr.math.sci.osaka-u.ac.jp

312