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Abstract. Let Σg,b denote a closed oriented surface of genus g with b punctures and let Mod(Σg,b) denote

its mapping class group. Kassabov showed that Mod(Σg,b) is generated by 4 involutions if g > 7 or g = 7 and b is

even, 5 involutions if g > 5 or g = 5 and b is even, and 6 involutions if g > 3 or g = 3 and b is even. We proved
that Mod(Σg,b) is generated by 4 involutions if g = 7 and b is odd, and 5 involutions if g = 5 and b is odd.

1. Introduction

Let Σg,b be an closed oriented surface of genus g ≥ 1 with arbitrarily chosen b points
(which we call punctures). Let Mod(Σg,b) be the mapping class group of Σg,b, which is
the group of homotopy classes of orientation-preserving homeomorphisms preserving the set

of punctures. By Mod0(Σg,b) we will denote the subgroup of Mod(Σg,b) which fixes the
punctures pointwise.

The question of generating mapping class groups by involutions was first investigated by
McCarthy and Papadopoulos (see [MP]). In [MP], they proved that Mod(Σg,0) is generated
by infinitely many conjugates of a single involution for g ≥ 3. Luo described the finite set of
involutions which generate Mod(Σg,b) for g ≥ 3 (see [Lu]). He also proved that Mod(Σg,b)

is generated by torsion elements in all cases except g = 2 and b = 5k+4, but this group is not
generated by involutions if g ≤ 2. Brendle and Farb proved that Mod(Σg,b) can be generated
by 6 involutions for g ≥ 3, b = 0 and g ≥ 4, b ≤ 1 (see [BF]). In [Ka], Kassabov showed
that Mod(Σg,b) is generated by 4 involutions if g > 7 or g = 7 and b is even, 5 involutions if
g > 5 or g = 5 and b is even, and 6 involutions if g > 3 or g = 3 and b is even.

We show that when b is odd and g ≥ 7, Mod(Σg,b) is generated by 4 involutions by
improving two involutions which are constructed in Section 2 of [Ka]. Furthermore, by using
the argument in Section 3.4 of [Ka] we show that when b is odd, Mod(Σ5,b) is generated by
5 involutions. We prove these results by the arguments similar to [Ka]. When we combine
Kassabov’s theorem with these results, we get the following results:

MAIN THEOREM. For all b ≥ 0, Mod(Σg,b) is generated by:
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(a) 4 involutions if g ≥ 7,
(b) 5 involutions if g ≥ 5.

2. Preliminaries

Let c be a simple closed curve on Σg,b. We will denote by Tc the (right handed) Dehn
twists about the curve c.

We record the following lemmas.

LEMMA 1. For all h ∈ Mod(Σg,b),

Th(c) = hTch
−1 .

LEMMA 2. Let c and d be two simple closed curves on Σg,b. If c is disjoint from d ,
then

TcTd = TdTc

It is clear that we have the exact sequence:

1 → Mod0(Σg,b) → Mod(Σg,b)
π−→ Symb → 1 .

Therefore, we see the following lemma;

LEMMA 3. Let H denote a subgroup of Mod(Σg,b), which contains Mod0(Σg,b). If
π(H) = Symb, then H is equal to Mod(Σg,b).

3. Proof of Main Theorem

Hereafter, we assume that g ≥ 5, and that the number of punctures b = 2l + 1 is odd.
We will construct two involutions ρ1, ρ2 by modifying the involutions ρ1, ρ2 which are

constructed in Section 2 of [Ka]. We note that we change the action of ρ1, ρ2 on punctures
and swap the top parts of Figure 1 of [Ka].

Let us embed our surface Σg,b in the Euclidean space in two different ways as shown
on Figure 1. (In these pictures we will assume that genus g = 2k + 1. In the case of even
genus we only have to swap the top parts of the pictures.) In Figure 1 we have also marked
the punctures as x1, . . . , xb and we have the curves αi , βi , γi and δ. The curves αi , βi , γi are
non separating curves and δ is a separating curve.

Let ρ1 and ρ2 denote the involutions which are rotation by π about the axises indicated
in Figure 1. Then we get the following lemma;

LEMMA 4. The subgroup of Mod(Σg,b) be generated by ρ1, ρ2 and 3 Dehn twists Tα ,

Tβ and Tγ around one of the curve in each family contains the subgroup Mod0(Σg,b).
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FIGURE 1. The embeddings of the surface Σg,b in Euclidean space used to define the

involutions ρ1 and ρ2.

We postpone the proof of lemma 4 until Section 4.
Let π be the homomorphism and H be the subgroup of Mod(Σg,b) mentioned in

Lemma 3. Showing the surjectivity of π from H to Symb is equivalent to showing that the
Symb can be generated by involutions;

r1 = (1, b − 1)(2, b − 2) · · · (l, l + 1)(b)

r2 = (2, b − 1)(3, b − 2) · · · (l, l + 2)(1)(l + 1)(b)

r3 = (1, b)(2, b − 1)(3, b − 2) · · · (l, l + 2)(l + 1)

corresponding to 3 involutions in H by π . The group generated by ri contains the long cycle
r3r1 = (1, 2, . . . , b) and transposition r3r2 = (1, b). These two elements generate the whole
symmetric group, therefore the involutions ri (i = 1, 2, 3) generate Symb. We note that the
images of ρ1 and ρ2 to Symb are r1 and r2.

3.1. Generating Dehn twists by 4 involutions. By using the arguments similar to
Section 3.4 of [Ka] we generate Dehn twists by 4 involutions.

We assume that g ≥ 5.
Let S0,4 be a surface of genus 0 with 4 boundary components. Denote by a1, a2, a3 and

a4 the four boundary curves of the surface S0,4 and let the interior curves y1, y2 and y3 be as
shown in Figure 2.
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FIGURE 2. Lantern.

The lantern relation is the following relation:

Ty1Ty2Ty3 = Ta1Ta2Ta3Ta4 . (1)

Notice that the curves ai do not intersect any other curve and that the Dehn twists Tai commute
with every twists in this relation. Thus we have

Ta4 = (Ty1T
−1
a1

)(Ty2T
−1
a2

)(Ty3T
−1
a3

) . (2)

Let R denote the product ρ2ρ1. By Figure 1 we can see that R = ρ2ρ1 acts as follows:

Rαi = αi+1 , (1 ≤ i < g)

Rβi = βi+1 , (1 ≤ i < g) (3)

Rγi = γi+1 , (1 ≤ i < g − 1).

Let S be a lantern whose boundary components are a1, a2, a3, a4, and R−2S a lantern
whose boundary components are R−2a1, R−2a2, R−2a3, R−2a4. We identify a1 with R−2a2.
Then we obtain a surface S2 homeomorphic to a sphere with 6 boundary components.

By Figure 3 we see that there exists an involution J̄ of S2 which takes S to R−2S. In

[Ka] R2 is used instead of R−2, since g is even in [Ka].
Let us embed the surface S2 in Σg,b as shown on Figure 4. We note a1 = αk+1, a2 =

αk+3, a3 = γk+2, a4 = γk+1, R−2a1 = αk−1, R−2a2 = αk+1, R−2a3 = γk , R−2a4 = γk−1

and y1 = αk+2. Figure 4 shows the existence of the involution J̃ on the complement of S2

which is a surface of genus g −5 with 6 boundary components. Gluing together J̄ and J̃ gives
us the involution J of Σg,b. By Figure 3 J acts as follows

J (a1) = R−2a2 , J (a3) = R−2a1 , J (y1) = R−2y2 , J (y3) = R−2y1 .

Therefore, we have

R2J (a1) = a2 , R2J (y1) = y2

JR−2(a1) = a3 , JR−2(y1) = y3 . (4)
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FIGURE 3. S2 and the involution J̄ .

Let ρ3 denote Ta1ρ2T
−1
a1

. In [Ka] Ta1ρ1T
−1
a1

is used instead of Ta1ρ2T
−1
a1

. By Lemma 1, the
relation (4) and ρ2(a1) = ρ2(αk+1) = αk+2 = y1, we have

Ty1T
−1
a1

= ρ2Ta1ρ2T
−1
a1

= ρ2ρ3 ,

Ty2T
−1
a2

= R2Jρ2ρ3JR−2 , (5)

Ty3T
−1
a3

= JR−2ρ2ρ3R
2J .

By the relation (2) and (5) we have

Tγk+1 = (ρ2ρ3) (R2Jρ2ρ3JR−2) (JR−2ρ2ρ3R
2J ) . (6)

3.2. In the case of genus 5. We assume that g ≥ 5 and b = 2l + 1.
We proof that Mod(Σg,b) is generated by 5 involutions.
The five involutions are ρ1, ρ2, ρ3, J and another involution I which was constructed in

Section 3.2 of [Ka]. We note that since we assume that g is odd, I maps αk+1 to βk+2.

THEOREM 5. If g ≥ 5 and b = 2l + 1, the group G1 generated by ρ1, ρ2, ρ3, I and J

is the whole mapping class group Mod(Σg,b).

PROOF. By the relation (6) we have Tγk+1 ∈ G1. Since J (αk−1) = γk+2 and

R(γk+1) = γk+2, we see that Tαk−1 = JRTγk+1R
−1J−1 ∈ G1. Moreover, since R2(αk−1) =

αk+1 and I (αk+1) = βk+2, we have Tβk+2 ∈ G1. By the construction of J , the image of J to
Symb is r3. We note that the images of ρ1 and ρ2 to Symb are r1 and r2. Therefore, there is the
surjection from G1 to Symb. By Lemma 3 and 4 we see that G1 is equal to Mod(Σg,b). �

3.3. In the case of genus 7. We assume that g ≥ 7 and b = 2l + 1.
We will construct the involution J ′ which acts on the punctures as the involution r3 by the

method similar to Section 3.4 of [Ka]. We note that the action of J ′ on punctures is different
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FIGURE 4. The involution J on Σg,b.

from that of J which is constructed in Section 3.4 of [Ka].
The S2 and two pairs of pants have common boundary components R−2a1 and a3 and

their union is a surface S3 homeomorphic to a sphere with 8 boundary components. Figure 5

shows the existence of the involution J̄ ′ on S3 which extends the involution J̄ on S2.
Let us embed S3 in the Σg,b as shown on Figure 5. We note that the embedding of S2 is
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FIGURE 5. The involution J ′ on Σg,b.

similar to that of Section 3.1. From Figure 5 we can find the involution J̃ ′ of the complement

of S3. Let J ′ be the involution obtained by gluing together J̄ ′ and J̃ ′. Moreover, from Figure 5
we find that J ′ acts on the punctures as the involution r3.

THEOREM 6. If g ≥ 7 and b = 2l + 1, the group G2 generated by ρ1, ρ2, ρ3 and J ′ is
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the whole mapping class group Mod(Σg,b).

PROOF. The proof is the argument similar to Section 3.4 of [Ka]. We omit the proof.
�

4. The subgroup generated by 2 involutions and 3 Dehn twists, which contains
Mod0(Σg,b)

In this section we prove Lemma 4.
Let the subgroup G of Mod(Σg,b) be generated by ρ1, ρ2 and 3 Dehn twists Tα , Tβ and

Tγ around one of the curve in each family. We will show that G contains Mod0(Σg,b). Let
δ′, η′, δ′′, η′′, δj, ηj (j = 1, . . . , l − 1, l + 1, . . . , b − 2) be the curves illustrated in Figure 6. In

[Ge] it is shown that Mod0(Σg,b) is generated by Dehn twists about the curves αi -es, βi-es,
γi-es, δ′, δ′′ and δj -es, for j = 1, . . . , l − 1, l + 1, . . . , b − 2.

We recall that R = ρ2ρ1. By Lemma 1 and the relation (3) we see that Tαi , Tβi , Tγi ∈ G

for all i.
From the action of ρ1 and ρ2 we can find that R−1(δj) = ηj−1 (l + 2 ≤ j ≤ b − 1) and

R−1(δl+1) = η′.

FIGURE 6. The curves δi -es, ηi -es.
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LEMMA 7. Tδj, Tδ′ , Tδ′′ ∈ G (j = 1, . . . , l − 1, l + 1, . . . , b − 2).

PROOF. We will prove Tδj ∈ G (j = l + 1, . . . , b − 1) by induction on j and Tδ′ ∈ G.
The base case, j = b − 1, is clear because G contains Tδb−1 = Tα1 . Suppose that G

contains the twist Tδj . By R−1(δj ) = ηj−1 we have

Tηj−1 = R−1Tδj R ∈ G .

Let U ∈ G denote the product

U = T −1
β1

T −1
γ1

T −1
β2

· · · T −1
βg−1

T −1
γg−1

T −1
βg

T −1
αg

Tα1Tβ1Tγ1Tβ2 · · · Tβg−1Tγg−1Tβg .

We find that

U(η′) = δ′

U(η′′) = δ′′ (7)

U(ηj ) = δj (j = 1, . . . , l − 1, l + 1, . . . , b − 2) .

Therefore, we see that Tδj−1 = UTηj−1U
−1 ∈ G (j = l + 2, . . . , b − 1). Moreover, since

R−1(δl+1) = η′ and U(η′) = δ′, we have that Tδ′ ∈ G.
We will prove that Tδ′′ , Tδj ∈ G (j = 1, . . . , l − 1).

By Figure 6, we find that ρ1(δ
′′) = η′, ρ1(δj) = ηb−1−j (1 ≤ j ≤ l − 1). Therefore, we

see that Tδj = ρ−1
1 Tηb−1−j

ρ1, Tδ′′ = ρ−1
1 Tη′ρ1 ∈ G. We finished proving Lemma 7. �

COROLLARY 8. The group G contains the subgroup Mod0(Σg,b).

Therefore, we can prove Lemma 4.
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