Generating the Mapping Class Group of a Punctured Surface by Involutions

Naoyuki MONDEN

Osaka University
(Communicated by Y. Matsumoto)

Abstract

Let $\Sigma_{g, b}$ denote a closed oriented surface of genus g with b punctures and let $\operatorname{Mod}\left(\Sigma_{g, b}\right)$ denote its mapping class group. Kassabov showed that $\operatorname{Mod}\left(\Sigma_{g, b}\right)$ is generated by 4 involutions if $g>7$ or $g=7$ and b is even, 5 involutions if $g>5$ or $g=5$ and b is even, and 6 involutions if $g>3$ or $g=3$ and b is even. We proved that $\operatorname{Mod}\left(\Sigma_{g, b}\right)$ is generated by 4 involutions if $g=7$ and b is odd, and 5 involutions if $g=5$ and b is odd.

1. Introduction

Let $\Sigma_{g, b}$ be an closed oriented surface of genus $g \geq 1$ with arbitrarily chosen b points (which we call punctures). Let $\operatorname{Mod}\left(\Sigma_{g, b}\right)$ be the mapping class group of $\Sigma_{g, b}$, which is the group of homotopy classes of orientation-preserving homeomorphisms preserving the set of punctures. $\operatorname{By} \operatorname{Mod}^{0}\left(\Sigma_{g, b}\right)$ we will denote the subgroup of $\operatorname{Mod}\left(\Sigma_{g, b}\right)$ which fixes the punctures pointwise.

The question of generating mapping class groups by involutions was first investigated by McCarthy and Papadopoulos (see [MP]). In [MP], they proved that $\operatorname{Mod}\left(\Sigma_{g, 0}\right)$ is generated by infinitely many conjugates of a single involution for $g \geq 3$. Luo described the finite set of involutions which generate $\operatorname{Mod}\left(\Sigma_{g, b}\right)$ for $g \geq 3$ (see $\left.[L u]\right)$. He also proved that $\operatorname{Mod}\left(\Sigma_{g, b}\right)$ is generated by torsion elements in all cases except $g=2$ and $b=5 k+4$, but this group is not generated by involutions if $g \leq 2$. Brendle and Farb proved that $\operatorname{Mod}\left(\Sigma_{g, b}\right)$ can be generated by 6 involutions for $g \geq 3, b=0$ and $g \geq 4, b \leq 1$ (see [BF]). In [Ka], Kassabov showed that $\operatorname{Mod}\left(\Sigma_{g, b}\right)$ is generated by 4 involutions if $g>7$ or $g=7$ and b is even, 5 involutions if $g>5$ or $g=5$ and b is even, and 6 involutions if $g>3$ or $g=3$ and b is even.

We show that when b is odd and $g \geq 7, \operatorname{Mod}\left(\Sigma_{g, b}\right)$ is generated by 4 involutions by improving two involutions which are constructed in Section 2 of [Ka]. Furthermore, by using the argument in Section 3.4 of [Ka] we show that when b is $\operatorname{odd}, \operatorname{Mod}\left(\Sigma_{5, b}\right)$ is generated by 5 involutions. We prove these results by the arguments similar to [Ka]. When we combine Kassabov's theorem with these results, we get the following results:

Main Theorem. For all $b \geq 0, \operatorname{Mod}\left(\Sigma_{g, b}\right)$ is generated by:

[^0](a) 4 involutions if $g \geq 7$,
(b) 5 involutions if $g \geq 5$.

2. Preliminaries

Let c be a simple closed curve on $\Sigma_{g, b}$. We will denote by T_{c} the (right handed) Dehn twists about the curve c.

We record the following lemmas.
Lemma 1. For all $h \in \operatorname{Mod}\left(\Sigma_{g, b}\right)$,

$$
T_{h(c)}=h T_{c} h^{-1}
$$

LEMMA 2. Let c and d be two simple closed curves on $\Sigma_{g, b}$. If c is disjoint from d, then

$$
T_{c} T_{d}=T_{d} T_{c}
$$

It is clear that we have the exact sequence:

$$
1 \rightarrow \operatorname{Mod}^{0}\left(\Sigma_{g, b}\right) \rightarrow \operatorname{Mod}\left(\Sigma_{g, b}\right) \xrightarrow{\pi} \operatorname{Sym}_{b} \rightarrow 1
$$

Therefore, we see the following lemma;
Lemma 3. Let H denote a subgroup of $\operatorname{Mod}\left(\Sigma_{g, b}\right)$, which contains $\operatorname{Mod}^{0}\left(\Sigma_{g, b}\right)$. If $\pi(H)=\operatorname{Sym}_{b}$, then H is equal to $\operatorname{Mod}\left(\Sigma_{g, b}\right)$.

3. Proof of Main Theorem

Hereafter, we assume that $g \geq 5$, and that the number of punctures $b=2 l+1$ is odd.
We will construct two involutions ρ_{1}, ρ_{2} by modifying the involutions ρ_{1}, ρ_{2} which are constructed in Section 2 of [Ka]. We note that we change the action of ρ_{1}, ρ_{2} on punctures and swap the top parts of Figure 1 of [Ka].

Let us embed our surface $\Sigma_{g, b}$ in the Euclidean space in two different ways as shown on Figure 1. (In these pictures we will assume that genus $g=2 k+1$. In the case of even genus we only have to swap the top parts of the pictures.) In Figure 1 we have also marked the punctures as x_{1}, \ldots, x_{b} and we have the curves $\alpha_{i}, \beta_{i}, \gamma_{i}$ and δ. The curves $\alpha_{i}, \beta_{i}, \gamma_{i}$ are non separating curves and δ is a separating curve.

Let ρ_{1} and ρ_{2} denote the involutions which are rotation by π about the axises indicated in Figure 1. Then we get the following lemma;

Lemma 4. The subgroup of $\operatorname{Mod}\left(\Sigma_{g, b}\right)$ be generated by ρ_{1}, ρ_{2} and 3 Dehn twists T_{α}, T_{β} and T_{γ} around one of the curve in each family contains the subgroup $\operatorname{Mod}^{0}\left(\Sigma_{g, b}\right)$.

Figure 1. The embeddings of the surface $\Sigma_{g, b}$ in Euclidean space used to define the involutions ρ_{1} and ρ_{2}.

We postpone the proof of lemma 4 until Section 4.
Let π be the homomorphism and H be the subgroup of $\operatorname{Mod}\left(\Sigma_{g, b}\right)$ mentioned in Lemma 3. Showing the surjectivity of π from H to Sym_{b} is equivalent to showing that the Sym_{b} can be generated by involutions;

$$
\begin{aligned}
& r_{1}=(1, b-1)(2, b-2) \cdots(l, l+1)(b) \\
& r_{2}=(2, b-1)(3, b-2) \cdots(l, l+2)(1)(l+1)(b) \\
& r_{3}=(1, b)(2, b-1)(3, b-2) \cdots(l, l+2)(l+1)
\end{aligned}
$$

corresponding to 3 involutions in H by π. The group generated by r_{i} contains the long cycle $r_{3} r_{1}=(1,2, \ldots, b)$ and transposition $r_{3} r_{2}=(1, b)$. These two elements generate the whole symmetric group, therefore the involutions $r_{i}(i=1,2,3)$ generate Sym_{b}. We note that the images of ρ_{1} and ρ_{2} to Sym_{b} are r_{1} and r_{2}.
3.1. Generating Dehn twists by $\mathbf{4}$ involutions. By using the arguments similar to Section 3.4 of [Ka] we generate Dehn twists by 4 involutions.

We assume that $g \geq 5$.
Let $S_{0,4}$ be a surface of genus 0 with 4 boundary components. Denote by a_{1}, a_{2}, a_{3} and a_{4} the four boundary curves of the surface $S_{0,4}$ and let the interior curves y_{1}, y_{2} and y_{3} be as shown in Figure 2.

Figure 2. Lantern.

The lantern relation is the following relation:

$$
\begin{equation*}
T_{y_{1}} T_{y_{2}} T_{y_{3}}=T_{a_{1}} T_{a_{2}} T_{a_{3}} T_{a_{4}} \tag{1}
\end{equation*}
$$

Notice that the curves a_{i} do not intersect any other curve and that the Dehn twists $T_{a_{i}}$ commute with every twists in this relation. Thus we have

$$
\begin{equation*}
T_{a_{4}}=\left(T_{y_{1}} T_{a_{1}}^{-1}\right)\left(T_{y_{2}} T_{a_{2}}^{-1}\right)\left(T_{y_{3}} T_{a_{3}}^{-1}\right) \tag{2}
\end{equation*}
$$

Let R denote the product $\rho_{2} \rho_{1}$. By Figure 1 we can see that $R=\rho_{2} \rho_{1}$ acts as follows:

$$
\begin{array}{ll}
R \alpha_{i}=\alpha_{i+1}, & (1 \leq i<g) \\
R \beta_{i}=\beta_{i+1}, & (1 \leq i<g) \tag{3}\\
R \gamma_{i}=\gamma_{i+1}, & (1 \leq i<g-1) .
\end{array}
$$

Let S be a lantern whose boundary components are $a_{1}, a_{2}, a_{3}, a_{4}$, and $R^{-2} S$ a lantern whose boundary components are $R^{-2} a_{1}, R^{-2} a_{2}, R^{-2} a_{3}, R^{-2} a_{4}$. We identify a_{1} with $R^{-2} a_{2}$. Then we obtain a surface S_{2} homeomorphic to a sphere with 6 boundary components.

By Figure 3 we see that there exists an involution \bar{J} of S_{2} which takes S to $R^{-2} S$. In [Ka] R^{2} is used instead of R^{-2}, since g is even in [Ka].

Let us embed the surface S_{2} in $\Sigma_{g, b}$ as shown on Figure 4. We note $a_{1}=\alpha_{k+1}, a_{2}=$ $\alpha_{k+3}, a_{3}=\gamma_{k+2}, a_{4}=\gamma_{k+1}, R^{-2} a_{1}=\alpha_{k-1}, R^{-2} a_{2}=\alpha_{k+1}, R^{-2} a_{3}=\gamma_{k}, R^{-2} a_{4}=\gamma_{k-1}$ and $y_{1}=\alpha_{k+2}$. Figure 4 shows the existence of the involution \tilde{J} on the complement of S_{2} which is a surface of genus $g-5$ with 6 boundary components. Gluing together \bar{J} and \tilde{J} gives us the involution J of $\Sigma_{g, b}$. By Figure $3 J$ acts as follows

$$
J\left(a_{1}\right)=R^{-2} a_{2}, \quad J\left(a_{3}\right)=R^{-2} a_{1}, \quad J\left(y_{1}\right)=R^{-2} y_{2}, \quad J\left(y_{3}\right)=R^{-2} y_{1} .
$$

Therefore, we have

$$
\begin{array}{r}
R^{2} J\left(a_{1}\right)=a_{2}, \quad R^{2} J\left(y_{1}\right)=y_{2} \\
J R^{-2}\left(a_{1}\right)=a_{3}, \quad J R^{-2}\left(y_{1}\right)=y_{3} . \tag{4}
\end{array}
$$

Figure 3. $\quad S_{2}$ and the involution \bar{J}.

Let ρ_{3} denote $T_{a_{1}} \rho_{2} T_{a_{1}}^{-1}$. In [Ka] $T_{a_{1}} \rho_{1} T_{a_{1}}^{-1}$ is used instead of $T_{a_{1}} \rho_{2} T_{a_{1}}^{-1}$. By Lemma 1, the relation (4) and $\rho_{2}\left(a_{1}\right)=\rho_{2}\left(\alpha_{k+1}\right)=\alpha_{k+2}=y_{1}$, we have

$$
\begin{align*}
& T_{y_{1}} T_{a_{1}}^{-1}=\rho_{2} T_{a_{1}} \rho_{2} T_{a_{1}}^{-1}=\rho_{2} \rho_{3}, \\
& T_{y_{2}} T_{a_{2}}^{-1}=R^{2} J \rho_{2} \rho_{3} J R^{-2}, \tag{5}\\
& T_{y_{3}} T_{a_{3}}^{-1}=J R^{-2} \rho_{2} \rho_{3} R^{2} J .
\end{align*}
$$

By the relation (2) and (5) we have

$$
\begin{equation*}
T_{\gamma_{k+1}}=\left(\rho_{2} \rho_{3}\right)\left(R^{2} J \rho_{2} \rho_{3} J R^{-2}\right)\left(J R^{-2} \rho_{2} \rho_{3} R^{2} J\right) \tag{6}
\end{equation*}
$$

3.2. In the case of genus 5. We assume that $g \geq 5$ and $b=2 l+1$.

We proof that $\operatorname{Mod}\left(\Sigma_{g, b}\right)$ is generated by 5 involutions.
The five involutions are $\rho_{1}, \rho_{2}, \rho_{3}, J$ and another involution I which was constructed in Section 3.2 of $[\mathrm{Ka}]$. We note that since we assume that g is odd, I maps α_{k+1} to β_{k+2}.

THEOREM 5. If $g \geq 5$ and $b=2 l+1$, the group G_{1} generated by $\rho_{1}, \rho_{2}, \rho_{3}, I$ and J is the whole mapping class group $\operatorname{Mod}\left(\Sigma_{g, b}\right)$.

Proof. By the relation (6) we have $T_{\gamma_{k+1}} \in G_{1}$. Since $J\left(\alpha_{k-1}\right)=\gamma_{k+2}$ and $R\left(\gamma_{k+1}\right)=\gamma_{k+2}$, we see that $T_{\alpha_{k-1}}=J R T_{\gamma_{k+1}} R^{-1} J^{-1} \in G_{1}$. Moreover, since $R^{2}\left(\alpha_{k-1}\right)=$ α_{k+1} and $I\left(\alpha_{k+1}\right)=\beta_{k+2}$, we have $T_{\beta_{k+2}} \in G_{1}$. By the construction of J, the image of J to Sym_{b} is r_{3}. We note that the images of ρ_{1} and ρ_{2} to Sym_{b} are r_{1} and r_{2}. Therefore, there is the surjection from G_{1} to Sym_{b}. By Lemma 3 and 4 we see that G_{1} is equal to $\operatorname{Mod}\left(\Sigma_{g, b}\right)$.
3.3. In the case of genus 7. We assume that $g \geq 7$ and $b=2 l+1$.

We will construct the involution J^{\prime} which acts on the punctures as the involution r_{3} by the method similar to Section 3.4 of $[\mathrm{Ka}]$. We note that the action of J^{\prime} on punctures is different

Figure 4. The involution J on $\Sigma_{g, b}$.
from that of J which is constructed in Section 3.4 of [Ka].
The S_{2} and two pairs of pants have common boundary components $R^{-2} a_{1}$ and a_{3} and their union is a surface S_{3} homeomorphic to a sphere with 8 boundary components. Figure 5 shows the existence of the involution \bar{J}^{\prime} on S_{3} which extends the involution \bar{J} on S_{2}.

Let us embed S_{3} in the $\Sigma_{g, b}$ as shown on Figure 5. We note that the embedding of S_{2} is

Figure 5. The involution J^{\prime} on $\Sigma_{g, b}$.
similar to that of Section 3.1. From Figure 5 we can find the involution \tilde{J}^{\prime} of the complement of S_{3}. Let J^{\prime} be the involution obtained by gluing together \bar{J}^{\prime} and \tilde{J}^{\prime}. Moreover, from Figure 5 we find that J^{\prime} acts on the punctures as the involution r_{3}.

THEOREM 6. If $g \geq 7$ and $b=2 l+1$, the group G_{2} generated by $\rho_{1}, \rho_{2}, \rho_{3}$ and J^{\prime} is
the whole mapping class group $\operatorname{Mod}\left(\Sigma_{g, b}\right)$.
Proof. The proof is the argument similar to Section 3.4 of [Ka]. We omit the proof.
4. The subgroup generated by 2 involutions and 3 Dehn twists, which contains $\operatorname{Mod}^{0}\left(\Sigma_{g, b}\right)$

In this section we prove Lemma 4.
Let the subgroup G of $\operatorname{Mod}\left(\Sigma_{g, b}\right)$ be generated by ρ_{1}, ρ_{2} and 3 Dehn twists T_{α}, T_{β} and T_{γ} around one of the curve in each family. We will show that G contains $\operatorname{Mod}^{0}\left(\Sigma_{g, b}\right)$. Let $\delta^{\prime}, \eta^{\prime}, \delta^{\prime \prime}, \eta^{\prime \prime}, \delta_{j}, \eta_{j}(j=1, \ldots, l-1, l+1, \ldots, b-2)$ be the curves illustrated in Figure 6. In [Ge] it is shown that $\operatorname{Mod}^{0}\left(\Sigma_{g, b}\right)$ is generated by Dehn twists about the curves α_{i}-es, β_{i}-es, γ_{i}-es, $\delta^{\prime}, \delta^{\prime \prime}$ and δ_{j}-es, for $j=1, \ldots, l-1, l+1, \ldots, b-2$.

We recall that $R=\rho_{2} \rho_{1}$. By Lemma 1 and the relation (3) we see that $T_{\alpha_{i}}, T_{\beta_{i}}, T_{\gamma_{i}} \in G$ for all i.

From the action of ρ_{1} and ρ_{2} we can find that $R^{-1}\left(\delta_{j}\right)=\eta_{j-1}(l+2 \leq j \leq b-1)$ and $R^{-1}\left(\delta_{l+1}\right)=\eta^{\prime}$.

Figure 6. The curves δ_{i}-es, η_{i}-es.

Lemma 7. $\quad T_{\delta_{j}}, T_{\delta^{\prime}}, T_{\delta^{\prime \prime}} \in G(j=1, \ldots, l-1, l+1, \ldots, b-2)$.
Proof. We will prove $T_{\delta_{j}} \in G(j=l+1, \ldots, b-1)$ by induction on j and $T_{\delta^{\prime}} \in G$.
The base case, $j=b-1$, is clear because G contains $T_{\delta_{b-1}}=T_{\alpha_{1}}$. Suppose that G contains the twist $T_{\delta_{j}}$. By $R^{-1}\left(\delta_{j}\right)=\eta_{j-1}$ we have

$$
T_{\eta_{j-1}}=R^{-1} T_{\delta_{j}} R \in G
$$

Let $U \in G$ denote the product

$$
U=T_{\beta_{1}}^{-1} T_{\gamma_{1}}^{-1} T_{\beta_{2}}^{-1} \cdots T_{\beta_{g-1}}^{-1} T_{\gamma_{g-1}}^{-1} T_{\beta_{g}}^{-1} T_{\alpha_{g}}^{-1} T_{\alpha_{1}} T_{\beta_{1}} T_{\gamma_{1}} T_{\beta_{2}} \cdots T_{\beta_{g-1}} T_{\gamma_{g-1}} T_{\beta_{g}}
$$

We find that

$$
\begin{align*}
& U\left(\eta^{\prime}\right)=\delta^{\prime} \\
& U\left(\eta^{\prime \prime}\right)=\delta^{\prime \prime} \tag{7}\\
& U\left(\eta_{j}\right)=\delta_{j} \quad(j=1, \ldots, l-1, l+1, \ldots, b-2)
\end{align*}
$$

Therefore, we see that $T_{\delta_{j-1}}=U T_{\eta_{j-1}} U^{-1} \in G(j=l+2, \ldots, b-1)$. Moreover, since $R^{-1}\left(\delta_{l+1}\right)=\eta^{\prime}$ and $U\left(\eta^{\prime}\right)=\delta^{\prime}$, we have that $T_{\delta^{\prime}} \in G$.

We will prove that $T_{\delta^{\prime \prime}}, T_{\delta_{j}} \in G(j=1, \ldots, l-1)$.
By Figure 6 , we find that $\rho_{1}\left(\delta^{\prime \prime}\right)=\eta^{\prime}, \rho_{1}\left(\delta_{j}\right)=\eta_{b-1-j}(1 \leq j \leq l-1)$. Therefore, we see that $T_{\delta_{j}}=\rho_{1}^{-1} T_{\eta_{b-1-j}} \rho_{1}, T_{\delta^{\prime \prime}}=\rho_{1}^{-1} T_{\eta^{\prime}} \rho_{1} \in G$. We finished proving Lemma 7 .

COROLLARY 8. The group G contains the subgroup $\operatorname{Mod}^{0}\left(\Sigma_{g, b}\right)$.
Therefore, we can prove Lemma 4.
Acknowledgment. I would like to thank Professor Hisaaki Endo for careful readings and for many helpful suggestions and comments. And I would like to thank Hitomi Fukushima, Yeonhee Jang and Kouki Masumoto for many advices.

References

[BF] T. E. BRENDLE and B. FARB, Every mapping class group is generated by 3 torsion elements and by 6 involutions, J. Algebra 278 (2004), 187-198.
[Ge] S. GERVAIS, A finite presentation of the mapping class group of a punctured surface, Topology 40 (2001), No. 4, 703-725.
[Ka] M. Kassabov, Generating Mapping Class Groups by Involutions, arXiv:math.GT/0311455 v1 25 Nov 2003.
[Lu] N. Lu, On the mapping class groups of the closed orientable surfaces, Topology Proc. 13 (1988), 293-324.
[MP] J. MACCARTHY and A. Papadopoulos, Involutions in surface mapping class groups, Enseign. Math. 33 (1987), 275-290.

Present Address:
Department of Mathematics,
Graduate School of Science,
Osaka University, Toyonaka, OsaKa, 560-0043 Japan.
e-mail: n-monden@cr.math.sci.osaka-u.ac.jp

[^0]: Received February 14, 2010

