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Abstract. Chan ([2], [3]) considered some continued fraction expansions related to random Fibonacci-type
sequences. A Wirsing-type approach to the Perron-Frobenius operator of the associated transformation under its
invariant measure allows us to study the optimality of the convergence rate. Actually, we obtain upper and lower
bounds of the convergence rate which provide a near-optimal solution to the Gauss-Kuzmin-Lévy problem.

1. Introduction

Let x ∈ [0, 1) and let k be a fixed integer greater than or equal to 2. Chan [3] proved that
x can be written as

x = k−a1

1 + (k − 1)k−a2

1 + (k − 1)k−a3

1 + · · ·

= [a1, a2, . . . ]k , (1)

where the “digits” am = am(x) are natural integers. This expansion is a generalization of the
infinite expansion

2−a1

1 + 2−a2

1 + · · ·
= [a1, a2, . . . ]2 . (2)

The case k = 2 was first studied in [1] and [2] and it was motivated by the work of
Viswanath [14] on random Fibonacci sequences. Chan [3] considered the random Fibonacci-
type sequences, {Qm}, defined by Q−1 = 0, Q0 = 1, a0(x) = 0, and

Qm(x) = kam(x)Qm−1(x) + (k − 1)kam−1(x)Qm−2(x) , m ≥ 1 ,

for all x = [a1, a2, . . . ]k ∈ [0, 1).
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Chan [3] has also studied the transformation underlying the continued fraction expansion
(1). Precisely, he defined the interval map Tk : [0, 1) → [0, 1) by Tk0 = 0 and Tkx =
Tk[a1, a2, a3, . . . ]k = [a2, a3, a4, . . . ]k for x �= 0. One can think of Tk as a shift map, as it
shifts the digits of x. There is another way to define Tk for x �= 0. With �·� denoting the floor
function, set

a(x) =
⌊

log(x−1)

log k

⌋
, x �= 0 .

Then we have

Tk(x) = 1

k − 1

(
k−a(x)

x
− 1

)
, x �= 0 . (3)

To get [3], observe that x = k−a(x)

1+(k−1)Tkx
.

The ergodic properties of these transformations have been studied in [3]. Actually, Chan
has obtained the explicit form of the invariant probability density for Tk , k ≥ 3. It should
be said that, given an interval map, in general, it is difficult to obtain the explicit form of its
invariant probability density; for some non-trivial examples, see, e.g., [4], [10] and [12]. In
[3], it was proved that Tk is ergodic with respect to the measure νk defined by

νk(A) = ck

∫
A

dx

((k − 1)x + 1)((k − 1)x + k)
, A ∈ BI , (4)

where BI is the σ -algebra of Borel subsets of the unit interval I = [0, 1]. Here, the normal-
ization constant

ck = (k − 1)2/ log(k2/(2k − 1))

is chosen so that νk(I) = 1.

Let us note that νk is Tk-invariant, that is, νk(T
−1
k (A)) = νk(A) for any A ∈ BI .

It should be stressed that the ergodic theorem (see [5], [9] and [11]) does not yield rates
of convergence for mixing properties, so that a Gauss-Kuzmin theorem is needed.

Following the treatment in the case of the regular continued fraction (see [7]), the Gauss-
Kuzmin-Lévy problem for the transformation Tk , k ≥ 3, can be approached in terms of the
associated Perron-Frobenius operator.

The outline of this paper is as follows. In Section 2 we derive this ope-rator under
different probability measures on BI . We focus our study on the Perron-Frobenius operator of
Tk under the invariant measure νk induced by the limit distribution function. Let us recall that
using well-known general results (see Iosifescu and Grigorescu ([6], pp. 202 and 262–266)),
we can derive the asymptotic behaviour of this operator. In Section 3, we use a Wirsing-type
approach (see [15]) to get close to the optimal convergence rate. The strategy is to restrict the
domain of the Perron-Frobenius operator of Tk under its invariant measure νk to the Banach
space of functions which have a continuous derivative on I . Actually, in Theorem 1 of Section
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3, we obtain upper and lower bounds of convergence rate, respectively O(wn
k ) and O(vn

k ) as
n → ∞, with k ≥ 3, which provide a near-optimal solution to the Gauss-Kuzmin-Lévy
problem. The last section collects some concluding remarks.

2. The associated Perron-Frobenius operator

Let µ be a probability measure on BI such that µ(T −1
k (A)) = 0 whenever µ(A) = 0,

A ∈ BI , where Tk is defined in (3). In particular, this condition is satisfied if Tk is µ-

preserving, that is, µT −1
k = µ. It is known, see [7, Section 2.1], that the Perron-Frobenius

operator Pµ of Tk under µ is defined as the bounded linear operator on L1
µ = {f : I →

C| ∫
I
|f |dµ < ∞} which takes f ∈ L1

µ into Pµf ∈ L1
µ with

∫
A

Pµf dµ =
∫

T −1
k (A)

f dµ , A ∈ BI .

In particular, the Perron-Frobenius operator Pλ of Tk under the Lebesgue measure λ is given
by

Pλ(x) = d

dx

∫
T −1

k ([0,x])
f dλ a.e. in I .

PROPOSITION 1. The Perron-Frobenius operator Pνk = Uk of Tk under νk is given
a.e. in I by the equation

Ukf (x) =
∑
i∈N

pi
k(x)f (ui

k(x)) , f ∈ L1
νk

, k ∈ N , k ≥ 2 , (5)

where

pi
k(x) = γ i+1(k − 1)((k − 1)x + 1)((k − 1)x + k)

((k − 1)x + (k − 1)γ i + 1)((k − 1)x + (k − 1)γ i+1 + 1)
,

ui
k(x) = γ i

(k − 1)x + 1
, i ∈ N , x ∈ I ,

(6)

with γ = 1/k.

PROOF. Let T i
k : Ii → I denote the restriction of Tk to the interval Ii = (k−i−1, k−i ],

i ∈ N, that is,

T i
k (u) = 1

k − 1

(
k−i

u
− 1

)
, u ∈ Ii .

For any f ∈ L1
νk

and any A ∈ BI we have∫
T −1

k (A)

f dνk =
∑
i∈N

∫
T −1

k (A∩Ii )

f dνk =
∑
i∈N

∫
(T i

k )−1(A)

f dνk . (7)
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For any i ∈ N, by the change of variable

x = (T i
k )−1(y) = k−i

(k − 1)y + 1

we successively get∫
(T i

k )−1(A)

f dνk = ck

∫
(T i

k )−1(A)

f (x)
dx

((k − 1)x + 1)((k − 1)x + k)

=
∫

A

f

(
k−i

(k − 1)y + 1

)

× k−i (k − 1)((k − 1)y + 1)((k − 1)y + k)

((k − 1)y + (k − 1)k−i + 1)(k((k − 1)y + 1) + (k − 1)k−i)
νk(dy)

=
∫

A

f (ui
k(y))pi

k(y)νk(dy) .

(8)

Now, (5) follows from (7) and (8). �

PROPOSITION 2. Let µ be a probability measure on BI . Assume that µ 	 λ and let
h = dµ/dλ. Then

µ(T −n
k (A)) =

∫
A

Un
k fk(x)

((k − 1)x + 1)((k − 1)x + k)
dx (9)

for any n ∈ N, k ∈ N, k ≥ 2 and A ∈ BI , where

fk(x) = ((k − 1)x + 1)((k − 1)x + k)h(x) , x ∈ I .

PROOF. For n = 0, equation (9) reduces to

µ(A) =
∫

A

h(x)dx , A ∈ BI ,

which is obviously true. Assume that (9) holds for some n ∈ N. Then

µ(T
−(n+1)
k (A)) = µ(T −n

k (T −1
k (A))

=
∫

T −1
k (A)

Un
k fk(x)

((k − 1)x + 1)((k − 1)x + k)
dx = 1

ck

∫
T −1

k (A)

Un
k fkd(νk) .

By the very definition of the Perron-Frobenius operator Uk we have∫
T −1

k (A)

Un
k fkdνk =

∫
A

Un+1
k fkdνk .
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Therefore,

µ(T
−(n+1)
k (A)) = 1

ck

∫
A

Un+1
k fkdνk =

∫
A

Un+1
k fk(x)dx

((k − 1)x + 1)((k − 1)x + k)

and the proof is complete. �

3. A Wirsing-type approach

Let µ be a probability measure on BI such that µ 	 λ. For any n ∈ N put

Fn
k (x) = µ(T n

k < x) , x ∈ I ,

where T 0
k is the identity map. As (T n

k < x) = T −n
k ((0, x)), by Proposition 2 we have

Fn
k (x) =

∫ x

0

Un
k f 0

k (u)

((k − 1)u + 1)((k − 1)u + k)
du , (10)

with f 0
k (x) = ((k − 1)x + 1)((k − 1)x + k)(F 0)′(x), x ∈ I , where (F 0)′ = dµ/dλ.

In this section we will assume that (F 0)′ ∈ C1(I). So, we study the behaviour of Un
k as

n → ∞, assuming that the domain of Uk is C1(I), the collection of all functions f : I → C
which have a continuous derivative.

Let f ∈ C1(I). Then the series (5) can be differentiated term-by-term, since the series

of derivatives is uniformly convergent. Putting ∆i = γ i − γ 2i , i ∈ N, we get

pi
k(x) = (k − 1)

[
γ i+1 + ∆i

(k − 1)x + (k − 1)γ i + 1

− ∆i+1

(k − 1)x + (k − 1)γ i+1 + 1

]
,

(Ukf )′(x) =
∑
i∈N

[
(pi

k)
′(x)f (ui

k(x)) − pi
k(x)

γ i(k − 1)

((k − 1)x + 1)2
f ′(ui

k(x))

]

= (k − 1)
∑
i∈N

[
(k − 1)

(
∆i + 1

((k − 1)x + (k − 1)γ i+1 + 1)2

− ∆i

((k − 1)x + (k − 1)γ i + 1)2

)
f (ui

k(x))

− pi
k(x)

γ i

((k − 1)x + 1)2 f ′(ui
k(x))

]
(11)

= −(k − 1)
∑
i∈N

[
(k − 1)∆i+1

((k − 1)x + (k − 1)γ i+1 + 1)2
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×
(

f

(
γ i+1

(k − 1)x + 1

)
− f

(
γ i

(k − 1)x + 1

))

+ pi
k(x)

γ i

((k − 1)x + 1)2 f ′(ui
k(x))

]
, x ∈ I .

Thus, we can write

(Ukf )′(x) = −Vkf
′ , f ∈ C1(I) ,

where Vk : C(I) → C(I) is defined by

Vkg(x) =
∑
i∈N

(
(k − 1)2∆i+1

((k − 1)x + (k − 1)γ i+1 + 1)2

∫ γ i+1

(k−1)x+1

γ i

(k−1)x+1

g(u)du

+ pi
k(x)

γ i(k − 1)

((k − 1)x + 1)2 g
(

γ i

(k − 1)x + 1

))
, g ∈ C(I) , x ∈ I .

Clearly,

(Un
k f )′ = (−1)nV n

k f ′ , n ∈ N+ , f ∈ C1(I) . (12)

We are going to show that V n
k takes certain functions into functions with very small

values when n ∈ N+ is large.

PROPOSITION 3. There are positive constants vk < wk < 1 and a real-valued func-
tion ϕk ∈ C(I) such that

vkϕk ≤ Vkϕk ≤ wkϕk , k ∈ N , k ≥ 2 .

PROOF. Let hk : R+ → R, with k ∈ N, k ≥ 2, be a continuous bounded function such
that lim

x→∞ hk(x) < ∞. We look for a function gk : (0, 1] → R such that Ukgk = hk , assuming

that the equation

Ukgk(x) =
∑
i∈N

pi
k(x)gk

(
γ i

(k − 1)x + 1

)
= hk(x) (13)

holds for x ∈ R+. Then (13) yields

hk(x)

(k − 1)x + k
− hk(kx + 1)

k(k − 1)x + 2k − 1

= (k − 1)((k − 1)x + 1)

((k − 1)x + k)(k(k − 1)x + 2k − 1)
gk

(
1

(k − 1)x + 1

)
, x ∈ R+ .

Hence

gk(u) = 1

k − 1

[(
k

(
1

u
− 1

)
+ 2k − 1

)
hk

(
1

k − 1

(
1

u
− 1

))
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−
(

1

u
+ k − 1

)
hk

(
k

k − 1

(
1

u
− 1

)
+ 1

)]
, u ∈ (0, 1] ,

and we indeed have Ukgk = hk since

Ukgk(x) =
∑
i∈N

pi
k(x)γ i

(k − 1)((k − 1)x + 1)

×
[(

k

(
(k − 1)x + 1

γ i
− 1

)
+ 2k − 1

)
hk

(
1

k − 1

(
(k − 1)x + 1

γ i
− 1

))

−
(

(k − 1)x + 1

γ i
+ k − 1

)
hk

(
k

k − 1

(
(k − 1)x + 1

γ i
− 1

)
+ 1

)]

= (k − 1)x + k

k

∑
i∈N

γ 2i

((k − 1)x + (k − 1)γ i + 1)((k − 1)x + (k − 1)γ i+1 + 1)

×
[(

(k − 1)x + 1

γ i+1
+ k − 1

)
hk

(
1

k − 1

(
(k − 1)x + 1

γ i
− 1

))

−
(

(k − 1)x + 1

γ i
+ k − 1

)
hk

(
1

k − 1

(
(k − 1)x + 1

γ i+1 − 1

))]

= hk(x) , x ∈ R+ .

In particular, for any fixed ak ∈ I we consider the function hak : R+ → R defined by

hak (x) = 1

ekx + ak + 1
, x ∈ R+ ,

where the coefficient ek will be specified later. By the above, the function gak : (0, 1] → R
defined as

gak (x) = x

k − 1

[(
k

(
1

x
− 1

)
+ 2k − 1

)
hak

(
1

k − 1

(
1

x
− 1

))

−
(

1

x
+ k − 1

)
hak

(
k

k − 1

(
1

x
− 1

)
+ 1

)]

= (k − 1)
[(k − 1)(ak + 1) + (k − 2)ek]x2 + (k + 1)ekx

[((k − 1)(ak + 1) − ek)x + ek][((k − 1)(ek + ak + 1) − kek)x + kek] ,

x ∈ (0, 1] ,

satisfies

Ukgak (x) = hak (x) , x ∈ I .

Setting

ϕak (x) = g ′
ak

(x) = (k − 1)e2
k
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× (k2 − 1)[(k − 1)(ak + 1) − ek]x2 + 2k[(k − 1)(ak + 1) + (k − 2)ek]x + k(k + 1)ek

[((k − 1)(ak + 1) − ek)x + ek]2[((k − 1)(ek + ak + 1) − kek)x + kek]2

we have

Vkϕak (x) = −(Ukgak )
′(x) = ek

(ekx + ak + 1)2 , x ∈ I .

We choose ak by asking that

(ϕak/Vkϕak)(0) = (ϕak/Vkϕak)(1) .

Since

(ϕak/Vkϕak )(0) = (k2 − 1)(ak + 1)2

ke2
k

and

(ϕak/Vkϕak)(1) = ek

(k − 1)2(ak + 1)2
[(k2 + 2k − 1)(ak + 1) + (2k − 1)ek] ,

this amounts to the equation

Ek(ak) = (k + 1)(k − 1)3(ak + 1)4 − k(k2 + 2k − 1)e3
k(ak + 1) − k(2k − 1)e4

k = 0 .

We choose the coefficient ek such that the equation Ek(x) = 0, x ∈ I , yields a unique
solution ak ∈ I . Asking that

Ek(0) < 0, Ek(1) > 0 , and
dEk

dak

> 0 , k ≥ 3 ,

we may take ek = 3
√

k. For this unique acceptable solution ak ∈ I , the function ϕak/V ϕak

attains its maximum equal to (k2−1)(ak+1)2

ke2
k

at x = 0 and x = 1, and has a minimum m(ak) =
(ϕak/V ϕak )(x

k
min) > 1. It follows that for ϕk = ϕak we have

ke2
kϕk

(k2 − 1)(ak + 1)2
≤ Vkϕk ≤ ϕk

m(ak)
,

that is, vkϕk ≤ Vkϕk ≤ wkϕk , where

vk = ke2
k

(k2 − 1)(ak + 1)2 and wk = 1

m(ak)
.

�

COROLLARY 1. Let f 0
k ∈ C1(I) such that (f 0

k )′ > 0. Put αk = min
x∈I

ϕk(x)/(f 0
k )′(x)

and βk = max
x∈I

ϕk(x)/(f 0
k )′(x). Then

αk

βk

vn
k (f 0

k )′ ≤ V n
k (f 0

k )′ ≤ βk

αk

wn
k (f 0

k )′ , n ∈ N+ . (14)
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PROOF. Since Vk is a positive operator, we have

vn
k ϕk ≤ V n

k ϕk ≤ wn
kϕk , n ∈ N+ .

Noting that αk(f
0
k )′ ≤ ϕk ≤ βk(f

0
k )′, we can write

αk

βk

vn
k (f 0

k )′ ≤ 1

βk

vn
k ϕk ≤ 1

βk

V n
k ϕk ≤ V n

k (f 0
k )′ ≤ 1

αk

V n
k ϕk ≤

≤ 1

αk

wn
kϕk ≤ βk

αk

wn
k (f 0

k )′, n ∈ N+ ,

which shows that (14) holds. �

THEOREM 1 (Near-optimal solution to Gauss-Kuzmin-Lévy problem). Let f 0
k ∈

C1(I) such that (f 0
k )′ > 0 and let µ be a probability measure on BI such that µ 	 λ.

For any n ∈ N+ and x ∈ I we have

kαk min
x∈I

(f 0
k )′(x)

2βkc
2
k

vn
k Gk(x)(1 − Gk(x))

≤ |µ(T n
k < x) − Gk(x)| ≤

k(2k − 1)βk max
x∈I

(f 0
k )′(x)

2αkc
2
k

wn
kGk(x)(1 − Gk(x))

where αk , βk, vk and wk are defined in Proposition 3 and Corollary 1, and

Gk(x) = ck

(k − 1)2
log

(
k((k − 1)x + 1)

(k − 1)x + k

)
.

PROOF. For any n ∈ N and x ∈ I set dn(Gk(x)) = µ(T n
k < x)−Gk(x). Then by (10)

we have

dn(Gk(x)) =
∫ x

0

Un
k f 0

k (u)

((k − 1)u + 1)((k − 1)u + k)
du − Gk(x) .

Differentiating twice with respect to x yields

d ′
n(G(x))

ck

((k − 1)x + 1)((k − 1)x + k)
= Un

k f 0
k (x)

((k − 1)x + 1)((k − 1)x + k)

− ck

((k − 1)x + 1)((k − 1)x + k)
,

(Un
k f 0

k (x))′ = c2
k

d ′′
n(Gk(x))

((k − 1)x + 1)((k − 1)x + k)
, n ∈ N , x ∈ I .
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Hence by (12) we have

d ′′
n(Gk(x)) = (−1)n((k − 1)x + 1)((k − 1)x + k)

c2
k

V n
k (f 0

k )′(x) , n ∈ N , x ∈ I .

Since dn(0) = dn(1) = 0, a well-known interpolation formula yields

dn(x) = −x(1 − x)

2
d ′′
n(θ) , n ∈ N , x ∈ I ,

for a suitable θ = θ(n, x) ∈ I . Therefore

µ(T n
k < x) − Gk(x)

= (−1)n+1

c2
k

((k − 1)θk + 1)((k − 1)θk + k)V n
k (f 0

k )′(θk)
Gk(x)(1 − Gk(x))

2

for any n ∈ N and x ∈ I , and another suitable θk = θk(n, x) ∈ I . The result stated follows
now from Corollary 1. �

4. Final remarks

Let us consider the case k = 3. The equation E3(x) = 0, with e3 = 3
√

3 = 1.44224957,
has as unique acceptable solution a = a3 = 0.722946965. For this value of a the function
ϕa/V ϕa attains its maximum equal to 3.805675163 at x = 0 and x = 1, and has a minimum
m(a) = (ϕa/V ϕa)(0.023133079) = 3.77804431. It follows that upper and lower bounds of
the convergence rate are respectively O(wn

3 ) and O(vn
3 ) as n → ∞, with v3 > 0.262765464

and w3 < 0.264687208.
Finally, let us consider the case k = 5. The equation E5(x) = 0, with e5 = 3

√
5 =

1.709975947, has as unique acceptable solution a = a5 = 0.428487617. For this value of
a the function ϕa/V ϕa attains its maximum equal to 3.349763881 at x = 0 and x = 1 and
has a minimum m(a) = (ϕa/V ϕa)(0.008438422) = 3.31939294. It follows that upper and
lower bounds of the convergence rate are respectively O(wn

5) and O(vn
5 ) as n → ∞, with

v5 > 0.298528504 and w5 < 0.301259904.
To conclude, the determination of the exact convergence rate remains an open question.

We may derive it using the same strategy as in [8] and [13] for the case k = 2.
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