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Properties of Minimal Charts and Their Applications III
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Abstract. Charts are oriented labeled graphs in a disk which correspond to surface braids. C-moves are local
modifications of charts in a disk, which induces an ambient isotopy between the closures of the corresponding two
surface braids. A chart is minimal if its complexity is minimal among the charts which are modified from the chart
by C-moves. We investigate a disk whose boundary consists of edges of the same label, called a k-angled disk, for a
minimal chart. In this paper we investigate 2-angled disks and 3-angled disks containing at most one white vertex in
their interiors for a minimal chart.

1. Introduction

Kamada introduced a method to describe surface braids as oriented labeled graphs in a
disk, called charts ([2],[3],[4]) (see Section 2 for the definition of charts). In a chart there are
three kinds of vertices; white vertices, crossings and black vertices. Kamada also introduced
C-moves which are local modifications of charts in a disk. A C-move between two charts
induces an ambient isotopy between the closures of the corresponding two surface braids.
Two charts are said to be C-move equivalent if there exists a finite sequence of C-moves
which modifies one of the two charts to the other.

In this paper, we investigate properties of minimal charts which we need to prove that
there is no minimal chart with exactly seven white vertices. In particular we investigate a disk
whose boundary consists of edges of the same label, called a k-angled disk.

Let Γ be a chart. For each label m, we denote by Γm the ‘subgraph’ of Γ consisting of
edges of label m and their vertices. In this paper,

crossings are vertices of Γ but we do not consider crossings as vertices of Γm. The
vertices of Γm are white vertices and black vertices.

An edge of Γm is the closure of a connected component of the set obtained by taking out all
white vertices from Γm.

Let Γ be a chart. If an object consists of some edges of Γ , arcs in edges of Γ and arcs
around white vertices, then the object is called a pseudo chart.
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FIGURE 1. C-moves keeping thicken figures fixed.

Let Γ and Γ ′ be C-move equivalent charts. Suppose that a pseudo chart X of Γ is also
a pseudo chart of Γ ′. Then we say that Γ is modified to Γ ′ by C-moves keeping X fixed. In
Figure 1, we give examples of C-moves keeping pseudo charts fixed.

In this paper for a set X we denote the interior of X, the boundary of X and the closure
of X by Int X, ∂X and Cl(X) respectively.

Let Γ be a chart. Let D be a disk. If ∂D consists of k edges of the subgraph Γm, then D

is called a k-angled disk of Γm. Let N be a boundary collar of D, i.e. a regular neighborhood
of ∂D in D. If (N − ∂D) ∩ Γm consists of s arcs, then D is called a k-angled disk with s

feelers. An edge of Γm is called a feeler of the k-angled disk D if the edge intersects N − ∂D.
Let D be a disk. Let

w(D) = the number of white vertices in Int D ,
c(D) = the number of crossings on ∂D .

Let D be a k-angled disk of Γm for a minimal chart Γ . The pair of integers (w(D), c(D))

is called the local complexity with respect to D, denoted by �c(D; Γ ). Let S be the set of all
minimal charts each of which can be moved from Γ by C-moves in a regular neighborhood
of D keeping ∂D fixed. The chart Γ is said to be locally minimal with respect to D if its
local complexity with respect to D is minimal among the charts in S with respect to the
lexicographic order.

Let Γ be a chart, D a k-angled disk of Γm, and G a pseudo chart with ∂D ⊂ G. Let
r : D → D be a reflection of D, and G∗ the pseudo chart obtained from G by changing the
orientations of all of the edges. Then the set {G,G∗, r(G), r(G∗)} is called the RO-family of
the pseudo chart G.

The followings are main results in this paper:

THEOREM 1.1. Let Γ be a minimal chart. Let D be a 2-angled disk of Γm with at
most one feeler such that Γ is locally minimal with respect to D. If w(D) ≤ 1, then a regular
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FIGURE 2. The 2-angled disk (c) has one feeler, the others do not have any feelers.

neighborhood of D contains an element in the RO-families of the five pseudo charts as shown
in Figure 2.

Let Γ be a chart, and D a k-angled disk of Γm. Suppose that for any edge e of Γm if
e ∩ Int D �= ∅ and e ∩ ∂D �= ∅, then the edge e is a terminal edge. We say that D is a special
k-angled disk. Note that for a special k-angled disk D, any feeler of D is a terminal edge.

THEOREM 1.2. Let Γ be a minimal chart. Let D be a special 3-angled disk of Γm

such that Γ is locally minimal with respect to D. If w(D) ≤ 1, then a regular neighborhood
of D contains an element in the RO-families of the eight pseudo charts as shown in Figure 3.

This paper is organized as follows. In Section 2, we give notations and definitions.
In Section 3, we prove Theorem 1.1. In Section 4, we investigate 3-angled disks without
feelers. In Section 5, we prove Theorem 1.2. In Section 6, we investigate a closed edge of Γm

containing a crossing but not containing any white vertices, called a ring.

2. Preliminaries

In this section, we define charts and notations.
Let n be a positive integer. An n-chart is an oriented labeled graph in a disk, which may

be empty or have closed edges without vertices, called hoops, satisfying the following four
conditions:
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FIGURE 3. The 3-angled disks (g) and (h) have one feeler, the others do not have any feelers.

FIGURE 4

(1) Every vertex has degree 1, 4, or 6.
(2) The labels of edges are in {1, 2, . . . , n − 1}.
(3) In a small neighborhood of each vertex of degree 6, there are six short arcs, three

consecutive arcs are oriented inward and the other three are outward, and these six
are labeled i and i + 1 alternately for some i, where the orientation and the label
of each arc are inherited from the edge containing the arc.

(4) For each vertex of degree 4, diagonal edges have the same label and are oriented
coherently, and the labels i and j of the diagonals satisfy |i − j | > 1.

A vertex of degree 1, 4, and 6 is called a black vertex, a crossing, and a white vertex respec-
tively (see Figure 4).

Among six short arcs in a small neighborhood of a white vertex, a center arc of each
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FIGURE 5. For the C-III-1 move, the edge containing the black vertex does not contain
a middle arc in the left figure.

three consecutive arcs oriented inward or outward is called a middle arc at the white vertex
(see Figure 4). There are two middle arcs in a small neighborhood of each white vertex.

C-moves are local modification of charts in a disk as shown in Figure 5 (see [1], [4]
for the precise definition). Kamada originally defined CI-moves as follows (C-I-moves are
special cases of CI-moves): A chart Γ is obtained from a chart Γ ′ by a CI-move, if there
exists a disk D such that

(1) the two charts Γ and Γ ′ intersect the boundary of D transversely or do not intersect
the boundary of D,

(2) Γ ∩ Dc = Γ ′ ∩ Dc, and
(3) neither Γ ∩ D nor Γ ′ ∩ D contains a black vertex,

where (· · · )c is the complement of (· · · ).
Let Γ be a chart. An edge of Γ or Γm is called a free edge if it has two black vertices.

An edge of Γ or Γm is called a terminal edge if it has a white vertex and a black vertex. A
closed edge of Γ or Γm is called a loop if it has only one white vertex. Note that free edges,
terminal edges and loops may contain crossings of Γ .

For each chart Γ , let w(Γ ) and f (Γ ) be the number of white vertices, and the number of
free edges respectively. The pair (w(Γ ),−f (Γ )) is called the complexity of the chart. A chart
is called a minimal chart if its complexity is minimal among the charts C-move equivalent to
the chart with respect to the lexicographic order of pairs of integers.

The following lemma, we showed the difference of a chart in a disk and in a 2-sphere.
This lemma follows from that there exists a natural one-to-one correspondence between
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{charts in S2}/C-moves and {charts in D2}/C-moves, conjugations ([4, Chapter 23 and Chap-
ter 25]).

LEMMA 2.1 ([5, Lemma 2.1]). Let Γ and Γ ′ be charts in a disk D. Suppose that Γ

is ambient isotopic to Γ ′ in the one point compactification of the open disk Int D, i.e. the

2-sphere S2. Then there exist hoops C1, C2, . . . , Ck in Int D such that

(1) the chart Γ is obtained from Γ ′ ∪ (
⋃k

i=1 Ci) by C-moves in the disk D,
(2) the chart Γ ′ and hoops C1, C2, . . . , Ck are mutually disjoint, and
(3) each hoop Ci bounds a disk containing the chart Γ ′ in the disk D.

Moreover the chart Γ is minimal if and only if Γ ′ is minimal. �

Lemma 2.1 says that we can move the point at infinity in S2 to a complementary domain
of the chart. To make the argument simple, we assume that the charts lie on the 2-sphere
instead of the disk. In this paper,

all charts are contained in the 2-sphere S2.

We have the special point in the 2-sphere S2, called the point at infinity, denoted by ∞. In this
paper, all charts are contained in a disk such that the disk does not contain the point at infinity
∞.

A hoop is a closed edge of a chart Γ without vertices (hence without crossings, neither).
A ring is a closed edge of Γm containing a crossing but not containing any white vertices. A
hoop is said to be simple if one of complementary domains of the hoop does not contain any
white vertices.

As shown in [5], we assume that all minimal charts Γ satisfy the following six condi-
tions:

ASSUMPTION 1. No terminal edge of Γm contains a crossing. Hence any terminal
edge of Γm is a terminal edge of Γ and any terminal edge of Γm contains a middle arc.

ASSUMPTION 2. No free edge of Γm contains a crossing. Hence any free edge of Γm

is a free edge of Γ .

ASSUMPTION 3. All free edges and simple hoops in Γ are moved into a small neigh-
borhood U∞ of the point at infinity ∞.

ASSUMPTION 4. Each complementary domain of any ring must contain at least one
white vertex.

ASSUMPTION 5. Hence we assume that the subgraph obtained from Γ by omitting
free edges and simple hoops does not meet the set U∞. Also we assume that Γ does not
contain free edges nor simple hoops, otherwise mentioned. Therefore we can assume that if
an edge of Γm contains a black vertex, then it is not a free edge but a terminal edge and that
each complementary domain of any hoops and rings of Γ contains a white vertex, otherwise
mentioned.
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ASSUMPTION 6. The point at infinity ∞ is moved in any complementary domain of
Γ .

NOTATION. We use the following notation:
In our argument, we often need a name for an unnamed edge by using a given edge and a

given white vertex. For the convenience, we use the following naming: Let e′, ei, e
′′ be three

consecutive edges containing a white vertex wj . Here, the two edges e′ and e′′ are unnamed
edges. There are six arcs in a neighborhood U of the white vertex wj . If the three arcs e′ ∩U ,
ei ∩ U , e′′ ∩ U lie anticlockwise around the white vertex wj in this order, then e′ and e′′ are
denoted by aij and bij respectively (see Figure 6). There is a possibility aij = bij if they are
contained in a loop.

Let α be a short arc of Γ in a small neighborhood of a vertex v with v ∈ ∂α. If the arc α

is oriented to v, then α is called an inward arc, and otherwise α is called an outward arc.
Let Γ be an n-chart. Let F be a closed domain with ∂F ⊂ Γm−1 ∪ Γm ∪ Γm+1 for

some integer m, where Γ0 = ∅ and Γn = ∅. By the condition (3) for charts, in a small
neighborhood of each white vertex, there are three inward arcs and three outward arcs. Also
in a small neighborhood of each black vertex, there exists only one inward arc or one outward
arc. We often use the following fact, when we fix (inward or outward) arcs near white vertices
and black vertices:

The number of inward arcs contained in F ∩Γm is equal to the number of outward
arcs in F ∩ Γm.

When we use this fact, we say that we use IO-Calculation with respect to Γm in F . For

FIGURE 6

FIGURE 7
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example, in a chart Γ , consider the pseudo chart as shown in Figure 7. Let D be the disk
whose boundary is contained in Γm+1 as shown in Figure 7. Suppose that Int D contains
neither white vertices nor other black vertices. Then we have m′ = m. For, if m′ �= m, then
the number of inward arcs in D ∩ Γm is zero, but the number of outward arcs in D ∩ Γm is
two. This is a contradiction. Instead of the above argument, we say that

we have m′ = m by IO-Calculation with respect to Γm in D.

3. 2-angled disks

In this section we give a proof of Theorem 1.1.

LEMMA 3.1 ([6, Corollary 5.8]). Let Γ be a minimal chart. Let D be a 2-angled disk
of Γm with at most one feeler. If w(D) = 0, then a regular neighborhood of D contains an
element of the RO-families of the two pseudo charts as shown in Figure 2a and b. �

LEMMA 3.2 ([6, Lemma 5.6 and 5.7]). Let Γ be a minimal chart. Let D be a 2-
angled disk of Γm with one feeler. Then w(D) ≥ 1. If w(D) = 1, then a regular neighborhood
of D contains an element of the RO-family of the pseudo chart as shown in Figure 2c. �

LEMMA 3.3 ([6, Lemma 6.1]). Let Γ be a minimal chart. Let G be a connected com-
ponent of Γm containing a white vertex. Then G contains at least two white vertices. �

Let α be an arc, and p, q points in α. We denote by α[p, q] the subarc of α whose end
points are p and q .

Let Γ be a chart. Let α be an arc in an edge of Γm, and w a white vertex with w �∈ α.
Suppose that there exists an arc β such that

(1) its end points are the white vertex w and an interior point p of the arc α, and
(2) the arc β is contained in Γ , or Γ ∩ β consists of at most finitely many points.

Then we say that the white vertex w connects with the point p of α by the arc β.

LEMMA 3.4 ([5, Lemma 4.2]) (Shifting Lemma). Let Γ be a chart and α an arc in
an edge of Γm. Let w be a white vertex of Γk ∩ Γh where h = k + ε, ε ∈ {+1,−1}. Suppose
that the white vertex w connects with a point r of the arc α by an arc in an edge e of Γk .
Suppose that one of the following two conditions is satisfied:

(1) h > k > m.
(2) h < k < m.

Then for any neighborhood V of the arc e[w, r] we can shift the white vertex w to e − e[w, r]
along the edge e by C-I-R2 moves, C-I-R3 moves and C-I-R4 moves in V keeping

⋃
i<0 Γk+iε

fixed (see Figure 8). �

LEMMA 3.5. Let Γ be a minimal chart. Let D be a disk with w(D) = 1 which is the
closure of a complementary domain of Γm. Let w be the white vertex in Int D. If any edge
containing w does not contain any white vertex in ∂D, then in any regular neighborhood of
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FIGURE 8. Lemma 3.4 Case (1): k > m and ε = +1.

FIGURE 9

D we can shift the white vertex w to S2 − D by C-moves keeping ∂D fixed without increasing
the complexity of Γ .

PROOF. Let k be the label with w ∈ Γk ∩ Γk+1. If any edge of Γk containing w does
not intersect ∂D, then the connected component of Γk containing w contains only one white
vertex w. This contradicts Lemma 3.3. Hence there exists an edge of Γk containing w and
intersecting ∂D. Thus k �= m.

Similarly there exists an edge of Γk+1 containing w and intersecting ∂D. Thus k+1 �= m.
Hence k + 1 > k > m or k < k + 1 < m. By Shifting Lemma (Lemma 3.4), we can

shift the white vertex w to the exterior of the disk D. �
Let Γ be a chart. Let � be a loop of label m, and w the white vertex in �. Let e be the

edge of Γm with w ∈ e and e �= �. Then the loop � bounds two disks on the 2-sphere. One of
the two disks does not contain the edge e. The disk is called the associated disk of the loop �

(see Figure 9).

LEMMA 3.6 ([6, Lemma 4.2]). Let Γ be a minimal chart with a loop � of label m.
Then the associated disk D of the loop � contains at least two white vertices in its interior.
Hence w(D) ≥ 2. �

Let D be a 2-angled disk of Γm without feelers. Then a regular neighborhood of D

contains an element of the RO-families of the three pseudo charts as shown in Figure 10.

LEMMA 3.7. Let Γ be a minimal chart. Let D be a 2-angled disk of Γm of type
(0−a) as shown in Figure 10(0−a) such that Γ is locally minimal with respect to D. Then
w(D) �= 1.
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FIGURE 10. The white vertex w1 is in Γm ∩ Γm+ε and the white vertex w2 is in Γm ∩
Γm+δ where ε, δ ∈ {+1,−1}.

PROOF. Suppose w(D) = 1. Let w be the white vertex in IntD. We use the notations
as shown in Figure 10(0−a).

We shall show that any edge containing w contains neither w1 nor w2. If w ∈ e1 ∩ e2,
then there exists a terminal edge of Γm+ε containing w but not containing a middle arc at w.
This contradicts Assumption 1. Hence w �∈ e1 ∩ e2.

If w ∈ e1 or w ∈ e2, then w �∈ e1 ∩e2 implies that there exists a loop containing w whose
associated disk does not contain any white vertices in its interior. This contradicts Lemma 3.6.
Hence w �∈ e1 and w �∈ e2. Therefore any edge containing w contains neither w1 nor w2.

Since any edge containing w does not contain any white vertex in ∂D, by Lemma 3.5 we
can shift the white vertex w to the exterior of the disk D. This contradict the fact that Γ is
locally minimal with respect to D. Hence w(D) �= 1. �

LEMMA 3.8 ([6, Lemma 5.3]). Let Γ be a minimal chart. Let D be a 2-angled disk
of Γm of type (0−b) as shown in Figure 10(0−b). Then w(D) ≥ 1. If w(D) = 1, then a
regular neighborhood of D contains an element in the RO-families of the two pseudo charts
as shown in Figure 2d and e. �

LEMMA 3.9 ([6, Lemma 5.4]). Let Γ be a minimal chart. Let D be a 2-angled disk
of Γm of type (0−c) as shown in Figure 10(0−c). Then w(D) ≥ 2. �

PROOF OF THEOREM 1.1. Let D be a 2-angled disk of Γm with at most one feeler. If
w(D) = 0, then we have the desired result from Lemma 3.1.

Suppose w(D) = 1. If D has one feeler, then we have the desired result from Lemma 3.2.
If D does not have any feelers, then a regular neighborhood of D contains an element of

the RO-families of the three pseudo charts as shown in Figure 10. If D is of type (0−a), then
w(D) �= 1 from Lemma 3.7. This contradicts the fact w(D) = 1. Hence D is not of type
(0−a). If D is of type (0−b), then we have the desired result from Lemma 3.8. If D is of type
(0−c), then w(D) ≥ 2 from Lemma 3.9. This contradicts the fact w(D) = 1. Hence D is not
of type (0−c). Therefore we complete the proof of the first theorem (Theorem 1.1). �

4. 3-angled disks

In our argument we often construct a chart Γ . On the construction of a chart Γ , for a
white vertex w, among the three edges of Γm containing w, if we have specified two edges
and if the last edge of Γm containing w contains a black vertex (see Figure 11a and b), then



PROPERTIES OF MINIMAL CHARTS 383

FIGURE 11

FIGURE 12

FIGURE 13

we remove the edge containing the black vertex and put a black dot at the center of the white
vertex as shown in Figure 11c.

For example, the graph as shown in Figure 12a means one of the four graphs as shown
in Figure 12b.

LEMMA 4.1 ([6, Lemma 6.2]). Let Γ be a minimal chart. Let G be a connected com-
ponent of Γm containing a white vertex. If G contains at most three white vertices, then it is
one of six subgraphs as shown in Figure 13. �

We call the subgraphs (a) and (c) in Figure 13 a θ -curve and an oval respectively.
Now a special k-angled disk is a k-angled disk of Γm such that any feeler is a terminal

edge where a feeler is an edge of Γm intersecting ∂D and Int D.

LEMMA 4.2. Let Γ be a minimal chart. Let D be a special 3-angled disk of Γm. Then
a regular neighborhood of D contains an element in the RO-families of the four pseudo charts
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FIGURE 14. The white vertex wi (i =1,2,3) is in Γm ∩ Γm+εi
where εi ∈ {+1,−1}.

as shown in Figure 14.

PROOF. If D has three feelers, then the union of ∂D and the three feelers is a connected
component of Γm. This component contains exactly three white vertices and three black
vertices. This contradicts Lemma 4.1. Hence D has at most two feelers.

Suppose that D does not have any feelers. If necessary we take a reflection of D, we
can assume that two of the three edges in ∂D are oriented anticlockwise. Hence we have two
3-angled disks as shown in Figure 14(0−a) and (0−b).

If D has a feeler, then we have the two 3-angled disks as shown in Figure 14(1−a) and
(2−a). �

LEMMA 4.3. Let Γ be a minimal chart. Let D be a 3-angled disk of type (0−a) of Γm

as shown in Figure 14(0−a). If w(D) = 0, then a regular neighborhood of D contains an
element of RO-families of the two pseudo charts as shown in Figure 3a and b.

PROOF. We use the notations as shown in Figure 14(0−a). Since the edge e1 of Γm+ε1

does not contain a middle arc at w1, it is not a terminal edge by Assumption 1. Hence w(D) =
0 implies that (1) e1 = e2 or (2) e1 = e3. When we change the orientations of all of the edges
and we take a reflection of D, the case (1) changes the case (2). So we examine the case (1).

Since w(D) = 0, the edge e3 is a terminal edge. If ε1 �= ε3, then ε3 = −ε1 and we have
the pseudo chart as shown in Figure 3a where we put ε = ε1 = ε2.

Now suppose ε1 = ε3. Put ε = ε1 = ε2 = ε3. If there does not exist an edge of Γm+2ε

in the disk D intersecting each of the edges e and e′, then there exists a simple arc α in D

connecting the black vertex of e3 and a point of e1 with Int(α) ∩ (Γm ∪ Γm+ε ∪ Γm+2ε) = ∅.
Applying C-II moves for the edge e3 along the arc α, we can elongate the edge e3 so that the
black vertex in e3 situates near the edge e1. Apply a C-I-M2 move between the terminal edge
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e3 and the edge e1. Then we obtain a new terminal edge containing the white vertex w1 but
not containing a middle arc at the white vertex w1. This contradicts Assumption 1. Therefore
there exists an edge of Γm+2ε in the disk D intersecting each of e and e′. Hence we have the
pseudo chart as shown in Figure 3b. �

LEMMA 4.4. Let Γ be a minimal chart. Let D be a 3-angled disk of type (0−a) of Γm

as shown in Figure 14(0−a) such that Γ is locally minimal with respect to D. If w(D) = 1,
then a regular neighborhood of D contains an element in the RO-families of the three pseudo
charts as shown in Figure 3c, d and e.

PROOF. We use the notations as shown in Figure 14(0−a). Let w be the white vertex in
Int D. There are three cases: (1) w ∈ Γm, (2) w �∈ Γm−1 ∪Γm ∪Γm+1, (3) w ∈ Γm−1 ∪Γm+1.

For the case (1), the connected component of Γm containing w contains only one white
vertex. This contradicts Lemma 3.3. Hence the case (1) does not occur.

For the case (2), since any white vertex in ∂D contains Γm−1 ∪ Γm ∪ Γm+1, any edge
containing w does not contain any white vertex in ∂D. By Lemma 3.5, we can shift the white

vertex w to S2 − D by C-moves keeping ∂D fixed. This contradict the fact that Γ is locally
minimal with respect to D. Hence the case (2) does not occur.

For the case (3), if there exists a loop of containing w, by Lemma 3.6 we have w(D) ≥ 2.
This contradicts the fact w(D) = 1. Hence there exists no loop of containing w. Since the
edge e1 does not contain a middle arc at w1, it is not a terminal edge by Assumption 1. Hence
w ∈ e1. Put ε = ε1. Then w ∈ Γm+ε . Since there exist two edges of Γm+ε containing w

but not containing middle arcs at w, there exists an edge e′′ of Γm+ε with ∂e′′ = {w,w2} or
∂e′′ = {w,w3}. Without loss of generality we can assume ∂e′′ = {w,w2}. Since w ∈ Γm+ε

and the case (1) does not occur, we have w ∈ Γm+2ε. Hence we have the three pseudo charts
as shown in Figure 3c, d and e. �

LEMMA 4.5. Let Γ be a minimal chart. Let D be a 3-angled disk of Γm of type (0−b)

as shown in Figure 14(0−b). Then w(D) ≥ 1. If w(D) = 1, then a regular neighborhood of
D contains the pseudo chart as shown in Figure 3f.

PROOF. We use the notations as shown in Figure 14(0−b).
Since the edge ei (i = 1, 2, 3) does not contain a middle arc at wi , by Assumption 1 the

edge ei is not a terminal edge. By IO-Calculation with respect to Γm±1 in D, there exists a
white vertex in Int D, say w. Hence w(D) ≥ 1.

Suppose w(D) = 1. We shall show w ∈ e1. If w �∈ e1, then e1 = e2 or e1 = e3. There
exists a loop containing w in D whose associated disk does not contain any white vertices in
its interior. This contradicts Lemma 3.6. Hence w ∈ e1. Similarly we have w ∈ e2 ∩ e3.

The three edges e1, e2 and e3 divide the disk D into three disks. Put ε = ε1. We shall
show w ∈ Γm+2ε. Since w ∈ Γm+ε, we have w ∈ Γm or w ∈ Γm+2ε . If w ∈ Γm, then
the connected component of Γm containing w contains only one white vertex w. This con-
tradicts Lemma 3.3. Hence w ∈ Γm+2ε. Therefore we have the pseudo chart as shown in
Figure 3f. �
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5. Special 3-angled disks with feelers

In this section we give a proof of Theorem 1.2.
Let Γ be a chart. Let D be a disk such that ∂D consists of an edge e1 of Γm and an edge

e2 of Γm+1 and that any edge containing a white vertex in e1 does not intersect the open disk
Int D. Let w1 and w2 be the white vertices in e1. If the disk D satisfies one of the following
conditions, then D is called a lens of type (m,m + 1) (see Figure 15):

(1) Neither e1 nor e2 contains a middle arc.
(2) One of the two edges e1 and e2 contains middle arcs at both white vertices w1 and

w2.

LEMMA 5.1 ([5, Theorem 1.1]). Let Γ be a minimal chart. Then there exist at least
three white vertices in the interior of any lens. �

LEMMA 5.2. Let Γ be a minimal chart. Let D be a special 3-angled disk of Γm with
one feeler. Then w(D) ≥ 1. If w(D) = 1, then a regular neighborhood of D contains an
element in the RO-families one of the two pseudo charts as shown in Figure 3g and h.

PROOF. By Lemma 4.2, the disk D contains the pseudo chart as shown in Fig-
ure 14(1−a). We use the notations as shown in Figure 14(1−a).

Since neither a33 nor b33 contains a middle arc at w3, by Assumption 1 neither a33 nor
b33 is a terminal edge. Put ε = ε3. By IO-Calculation with respect to Γm+ε in D, there exists
a white vertex of Γm+ε in Int D, say w. Hence w(D) ≥ 1.

Suppose w(D) = 1. If w �∈ a33, then a33 = e1. The edge e1 divides D into two disks.
Let D′ be one of the two disks contains the edge b33. Since the edge b33 is not a terminal
edge, we have w ∈ D′ and D′ contains a loop of label m + ε containing w whose associated
disk does not contain any white vertices in its interior. This contradicts Lemma 3.6. Hence
w ∈ a33.

If w �∈ b33, then b33 = e1. The e ∪ b33 bounds a lens D′ in D with w(D′) ≤ 1. This
contradicts Lemma 5.1. Hence w ∈ b33.

The set a33 ∪ b33 bounds a 2-angled disk D1 of Γm+ε with w(D1) = 0. Since D1 has
at most one feeler, by Theorem 1.1 a regular neighborhood N(D1) of D1 contains one of the
two pseudo charts as shown in Figure 2a and b.

FIGURE 15
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Since w ∈ Γm+ε , we have w ∈ Γm or w ∈ Γm+2ε. By IO-Calculation with respect to
Γm in Cl(D − D1), we have w ∈ Γm+2ε. Hence N(D1) contains the pseudo chart as shown
in Figure 2a. Therefore we have the two pseudo charts as shown in Figure 3g and h. �

LEMMA 5.3. Let Γ be a minimal chart. Let D be a special 3-angled disk of Γm with
two feelers. Then w(D) ≥ 2.

PROOF. We use a contradiction. Suppose that w(D) ≤ 1. By Lemma 4.2, the disk
D contains the pseudo chart as shown in Figure 14(2−a). We use the notations as shown in
Figure 14(2−a). If necessary we change the orientations of all of the edges and we take a
reflection of D, we can assume that the edge e1 contains an inward arc at w1.

Since none of the five edges e1, a22, b22, a33, b33 contain middle arcs at
w1, w2, w2, w3, w3 respectively, by Assumption 1 none of these edges are terminal
edges. By IO-Calculation with respect to Γm±1 in D, we have w(D) ≥ 1. Thus w(D) = 1.
Let w be the white vertex in Int D.

If a33 = b22 or b33 = e1, then there exists a lens D′ in D. By Lemma 5.1, w(D′) ≥ 3.
Hence w(D) ≥ 3. This contradicts the fact w(D) = 1. Hence we have a33 �= b22 and
b33 �= e1.

If e1 = a33, then e1 splits D into two disks, say D1 and D2. By IO-Calculation with
respect to Γm±1 in D1 and D2, we have w(D1) ≥ 1 and w(D2) ≥ 1. Thus w(D) ≥ 2. This
contradicts the fact w(D) = 1. Hence we have e1 �= a33. Now e1 �= a33 and e1 �= b33 imply
w ∈ e1.

If a33 = a22, then w(D) ≥ 2 by a similar way as above. Hence we have a33 �= a22. Now
a33 �= a22 and a33 �= b22 imply that the edge a33 contains a white vertex w′ different from
w1, w2 and w3. If w �= w′ then w(D) ≥ 2. This contradicts the fact w(D) = 1. Hence we
have w = w′ and w ∈ a33.

Since w ∈ e1 ∩ a33, the arc e1 ∪ a33 splits D into two disks. Let D3 be one of the
two disks containing the edge e2. By IO-Calculation with respect to Γm±1 in D3, we have
w(D3) ≥ 1. Therefore w(D) ≥ 2. �

PROOF OF THEOREM 1.2. Let D be a special 3-angled disk of Γm with w(D) ≤ 1. By
Lemma 4.2, a regular neighborhood of D contains an element in the RO-families of the four
pseudo charts as shown in Figure 14.

If D is of type (0−a), then we have the desired result from Lemma 4.3 and 4.4. If D

is of type (0−b), then we have the desired result from Lemma 4.5. If D is of type (1−a),
i.e. D has one feeler, then we have the desired result from Lemma 5.2. If D is of type
(2−a), i.e. D has two feelers, then w(D) ≥ 2 from Lemma 5.3. This contradicts the fact
w(D) ≤ 1. Hence D is not of type (2−a). Therefore we complete the proof of the second
theorem (Theorem 1.2). �
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6. Rings

In this section we investigate a ring such that one of the complementary domains of the
ring contains two white vertices.

LEMMA 6.1. Let Γ be a minimal chart. Let C be a ring or a non simple hoop, and
D a disk with ∂D = C. If w(D) = 1, then Γ is C-move equivalent to the minimal chart
Cl(Γ − C).

PROOF. Let w be the white vertex in the disk D. Since the curve C does not contain
any white vertices, any edge containing w does not contain any white vertices in C. By
Lemma 3.5 we can shift the white vertex w to the exterior of the disk D without increasing
the number of rings and hoops.

Now D does not contain any white vertices. By Assumption 3 we can assume that D

does not contain any free edges. Hence we can assume that D does not contain any black
vertices. By a CI-move, Γ is C-move equivalent to Cl(Γ − C). �

Let Γ be a chart, and D a disk. Let α be a simple arc in ∂D. We call a simple arc γ in
an edge of Γk a (D, α)-arc of label k provided that ∂γ ⊂ Int α and Int γ ⊂ Int D. If there is
no (D, α)-arc in Γ , then the chart Γ is said to be (D, α)-arc free.

Let Γ be a chart and D a disk. Let α be a simple arc in ∂D. For each k = 1, 2, . . . , let
Σk be the pseudo chart which consists of all arcs in D ∩ Γk intersecting the set Cl(∂D − α).
Let Σα = ⋃

k Σk .

LEMMA 6.2 ([5, Lemma 3.2]) (Disk Lemma). Let Γ be a minimal chart and D a
disk. Let α be a simple arc in ∂D. Suppose that the interior of α contains neither white
vertices, isolated points of D ∩ Γ , nor arcs of D ∩ Γ . If Int D does not contain white ver-
tices of Γ , then for any neighborhood V of α, there exists a (D, α)-arc free minimal chart Γ ′
obtained from the chart Γ by C-moves in V ∪ D keeping Σα fixed (see Figure 16). �

LEMMA 6.3 ([6, Lemma 6.7]). Let Γ be a minimal chart. Let D be a 2-angled disk
of Γm with two feelers such that ∂D is contained in an oval of Γm. Then w(D) ≥ 2. �

Let Γ be a chart. We consider the closure of a complementary domain of a ring or a
hoop of Γm as a 0-angled disk.

FIGURE 16. The disk D is a shaded area.
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FIGURE 17

LEMMA 6.4. Let Γ be a minimal chart. Let C be a ring or a non simple hoop of Γm.
Let D be a disk with ∂D = C such that Γ is locally minimal with respect to D where the disk
D may contain the point at infinity ∞. Suppose w(D) ≤ 2 and D contains a white vertex
of Γm+ε (ε ∈ {+1,−1}). If necessary we modify Γ by C-moves in a regular neighborhood
N(D) of D keeping ∂D fixed, then N(D) contains the pseudo chart as shown in Figure 17.

PROOF. We shall prove our lemma by four steps.
Step 1. We shall show that there does not exist any loop in D.
Suppose that D contains a loop. Then the associated disk of the loop contains at least

two white vertices in its interior by Lemma 3.6, and the loop contains one white vertex. Thus
we have w(D) ≥ 3. This is a contradiction. Hence there does not exist any loop in D.

Step 2. We shall show that D contains an oval of type 1 of Γm+ε (see Figure 12b).
Now C ⊂ Γm implies that D ∩ Γm+ε consists of connected components of Γm+ε. Since

D does not contain any loop and since w(D) ≤ 2, the disk D contains a θ -curve or an oval of
Γm+ε by Lemma 4.1.

If D contains a θ -curve of Γm+ε , then there exists a 2-angled disk D′ of Γm+ε without
feelers whose boundary is oriented clockwise or anticlockwise. Thus by Theorem 1.1, the
disk D contains one of the two pseudo charts as shown in Figure 2d and e. Hence w(D′) ≥ 1.
Hence w(D) ≥ 3. This contradicts the fact that w(D) ≤ 2. Hence D contains an oval of
Γm+ε .

We shall show that the oval is of type 1. If the oval is of type 2 or 3, then D contains a
2-angled disk with one feeler. By Theorem 1.1, the 2-angled disk contains the pseudo chart
as shown in Figure 2c. Hence w(D) ≥ 3. This contradicts the fact w(D) ≤ 2. If the oval is
of type 4, then D contains a 2-angled disk with two feelers. By Lemma 6.3, the 2-angled disk
contains at least two white vertices in its interior. Hence w(D) ≥ 4. This contradicts the fact
w(D) ≤ 2. Therefore the oval is of type 1.

Step 3. We use the notations as shown in Figure 18a. We shall show that all of the
four edges a11, b11, a22 and b22 are edges of Γm+2ε and intersect ∂D.
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FIGURE 18

Now the two white vertices w1 and w2 are in Γm+ε ∩ D, and e1 and e2 are the terminal
edges of Γm+ε with w1 ∈ e1 and w2 ∈ e2. Since none of the four edges a11, b11, a22 and b22

contain middle arcs at w1, w1, w2 and w2 respectively, none of them are terminal edges.
We shall show a11∩∂D �= ∅. Suppose a11∩∂D = ∅. There are two cases: (1) a11 = a22,

(2) a11 = b22. For the case (1), we have a contradiction by IO-Calculation with respect to Γm

or Γm+2ε in a disk bounded by a11 ∪ e or a11 ∪ e′. Hence the case (1) does not occur. For
the case (2), if e′ ∪ a11 bounds a lens E with w(E) = 0, then this contradicts Lemma 5.1. If
e′ ∪ a11 bounds a disk containing the terminal edges e1 and e2, then b11 = a22. Thus we have
a lens bounded by e ∪ b11. We have the same contradiction as above. Hence the case (2) does
not occur. Hence a11 ∩ ∂D �= ∅.

Similarly we can show that all of the three edges b11, a22 and b22 intersect ∂D.
Since wi ∈ Γm+ε for i = 1, 2, we have wi ∈ Γm or wi ∈ Γm+2ε. Hence a11, b11, a22

and b22 are edges of Γm or Γm+2ε. Since all of the four edges intersect ∂D, ∂D ⊂ Γm implies
that all of them are edges of Γm+2ε.

Step 4. Let αi (resp. βi ) be the connected component of aii ∩ D (resp. bii ∩ D) con-
taining wi (see Figure 18b). Let D′ be the 2-angled disk of Γm+ε without feelers in D. The
set α1 ∪ α2 ∪ β1 ∪ β2 separates the disk D into three disks. One contains the 2-angled disk
D′, say E. The boundary ∂D′ separates the disk E into three disks E1,D

′ and E2. Without
loss of generality we can assume e ⊂ E1 and e′ ⊂ E2.

Applying Disk Lemma (Lemma 6.2) for regular neighborhoods of E1 and E2, we can
assume that Γ is (E1, e)-arc free and (E2, e

′)-arc free.
Since the oval of Γm+ε is of type 1, by Theorem 1.1 we assume that there are two proper

arcs �′
1 and �′

2 in D′ of label m + 3ε each of which intersects both of the two edges e and

e′ (see Figure 2b). Since Γ is (E1, e)-arc free and (E2, e
′)-arc free, for each i = 1, 2, �′

i is
contained in a proper arc �i in D such that �i is contained in an edge of Γm+3ε, and each of
�i ∩ E1, �i ∩ D′ = �′

i and �i ∩ E2 is a proper arc. Therefore we have the pseudo chart as
shown in Figure 17. �

LEMMA 6.5 ([2, Theorem 6]). Any 3-chart is C-move equivalent to a chart without
white vertices. �
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FIGURE 19. Lemma 6.6, Case (1) k > s > m.

LEMMA 6.6 ([5, Corollary 4.5]) (Shifting Lemma). Let Γ be a chart and α an arc in
an edge of Γm. Let w be a white vertex of Γk∩Γh where h = k+ε, ε ∈ {+1,−1}. Suppose that
the white vertex w connects with a point r of the arc α by an arc β such that Int β intersects
Γ transversely. Further suppose that one of the following two conditions is satisfied:

(1) h > k > m and Γs ∩ β[w, r] = ∅ for some integer s with k > s > m.
(2) h < k < m and Γs ∩ β[w, r] = ∅ for some integer s with k < s < m.

Then for any neighborhood V of the arc β[w, r] we can shift the white vertex w to the other
side of the arc α along the arc β by C-I-R2 moves, C-I-R3 moves and C-I-R4 moves in V

keeping
⋃

i≤0 Γs+iε fixed (see Figure 19). �

A chart Γ is of type (m; n1, n2, . . . , nk) or of type (n1, n2, . . . , nk) briefly if it satisfies
the following three conditions:

(1) For each i = 1, 2, . . . , k, the chart Γ contains exactly ni white vertices in Γm+i−1∩
Γm+i .

(2) If i < 0 or i > k, then Γm+i does not contain any white vertices.
(3) Both of the two subgraphs Γm and Γm+k contain at least one white vertex.

LEMMA 6.7. Let Γ be a minimal chart of type (m; n1). Then there exists a ring or a
non simple hoop of label m − 1 or m + 2.

PROOF. By the condition (3) for the definition of type for charts, we have n1 > 0.
Suppose that there do not exist any rings nor non simple hoops of Γm−1 and Γm+2. By

Assumption 5, Γ does not contain any free edges nor simple hoops. Hence we have Γm−1 = ∅
and Γm+2 = ∅.

Let S be the set of all minimal chart Γ ′ of type (m; n1) C-move equivalent to Γ such that
Γ ′

m−1∪Γ ′
m+2 = ∅. For each Γ ′ ∈ S, let n(Γ ′) be the number of all rings and non simple hoops

in Cl(Γ ′ − (Γ ′
m ∪ Γ ′

m+1)). Let Γ ∗ be a minimal chart with n(Γ ∗) = min{n(Γ ′) | Γ ′ ∈ S}.
We shall show n(Γ ∗) = 0.

Suppose n(Γ ∗) > 0. Let C be a hoop or a ring of Γ ∗
k with k �= m,m + 1, and D the

disk with ∂D = C and D � ∞. Since k �= m,m + 1 and since Γ ∗
m−1 = Γ ∗

m+2 = ∅, we have
m − 1 > k or m + 2 < k.

Suppose that D contains a white vertex w. Since Γ ∗ is of type (m; n1), we have w ∈
Γ ∗

m ∩ Γ ∗
m+1. Let β be an arc in D connecting a point in C and the white vertex w such that

Int β intersects Γ ∗ transversely. Since Γ ∗
m−1 = Γ ∗

m+2 = ∅, we have (Γ ∗
m−1 ∪ Γ ∗

m+2) ∩ β = ∅.
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If m−1 > k, then m+1 > m > k and Γ ∗
m−1 ∩β = ∅. If m+2 < k, then m < m+1 < k

and Γ ∗
m+2∩β = ∅. By Shifting Lemma (Lemma 6.6) we can shift the white vertex w to S2−D

along the arc β by C-I-R2 moves, C-I-R3 moves and C-I-R4 moves.
Hence the number of white vertices in D can be reduced without increasing the number

n(Γ ∗). By induction, we can assume that D does not contain any white vertices. By As-
sumption 3, the disk D does not contain any free edges. Since D does not contain any white
vertices nor free edges, we can assume that D does not contain any black vertices. Hence Γ ∗
is C-move equivalent to Cl(Γ ∗ − C) by a CI-move. Hence the number n(Γ ∗) is reduced.
This contradicts the minimality of n(Γ ∗). Hence n(Γ ∗) = 0.

Therefore we have Γ ∗ = Γ ∗
m ∪ Γ ∗

m+1. Since Γ ∗ is like a 3-chart, the chart is C-move

equivalent to a chart without white vertices by Lemma 6.5. This contradicts the fact that Γ ∗
is a minimal chart with n1 > 0. Therefore there exists a ring or a non simple hoop of Γm−1 or
Γm+2. �
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