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Abstract. We give an optimal upper bound for the eigenvalues of the Hill operator with a distributional coef-
ficient.

1. Introduction

In this paper, we consider the eigenvalues of the Hill operator which is formally ex-
pressed as

H = − d2

dx2
+ q ′(x) in H = L2((0, π)) ,

where q ∈ L2((0, π)) is a real-valued function. We recall the precise definition of this opera-
tor from [1]. We define a symmetric quadratic form a in H by

a(ϕ,ψ) =
∫ π

0
ϕ′(x)ψ ′(x) dx −

∫ π

0
q(x)ϕ′(x)ψ(x) dx −

∫ π

0
q(x)ϕ(x)ψ ′(x) dx ,

Q(a) = {y ∈ H 1((0, π)) | y(0) = y(π)} .
It is useful to note that if q ′ ∈ L2((0, π)), then

a(ϕ,ψ) = (−ϕ′′ + q ′ϕ,ψ)H for ϕ,ψ ∈ C∞
0 ((0, π)) .

We also note that there exists a constant b > 0 such that∣∣∣∣a(ϕ, ϕ)−
∫ π

0
|ϕ′(x)|2 dx

∣∣∣∣ ≤ 1

2
‖ϕ′‖2

H + b‖ϕ‖2
H for every ϕ ∈ Q(a) ,

see [1, formula (2.12)]. This combined with the KLMN theorem (see e.g., [4, Theorem X.17])
implies that there is a unique self-adjoint operator H in H for which

a(ϕ,ψ) = (Hϕ,ψ)H
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for any ϕ ∈ Dom(H) and ψ ∈ Q(a). The spectrum of H is discrete. For non-negative
integers j , let λj stand for the (j + 1)th eigenvalue of H counted with multiplicity.

Our main result is now stated as follows, which we prove in Section 2.
THEOREM. Let n be a non-negative integer. Suppose that

∫ π

0
q(x)e2ikxdx = 0 f or k = 0, 1, 2, . . . , 2n .

Then we have

λ2n ≤ 4n2,

and the equality sign holds if and only if q is identically equal to 0.
We describe the background to our work here. In [2], Blumenson proved the above

theorem in the case where q ∈ C2([0, π]). His proof largely relies on the reduction of the Hill
equation to the Riccati equation. It seems that such a method is not applicable to our problem,
since the potential is distributional. In order to eliminate this difficulty, we use an abstract
method; our proof is based on the min-max principle with suitably chosen trial functions (see
(2.2), (2.3) and (2.4)). It is worth mentioning that our result considerably extends that of
Blumenson.

2. Proof of Theorem

Let gj , j ∈ Z, be the Fourier coefficients of q:

q(x) =
∞∑

j=−∞
gj e2ijx .

Since q is real-valued, we have gj = g−j . For k ∈ Z, we define

ϕk(x) = 1√
π
e2ikx .

We note that {ϕk}k∈Z is a complete orthonormal system of H.
First, we prove the assertion for n = 0. By the min-max principle (see e.g., [3, Theorem

4.5.1]), we have

λ0 ≤ a(ϕ0, ϕ0) = 0 .

Let us show that λ0 < 0 if q is not identically equal to 0. Suppose that q is not identically
equal to 0. Then, there exists l ∈ N such that gl �= 0. Let q̃ : R → R be the periodic extension
of q . We note that λj is invariant under the substitution of the potential q(·) 	→ q̃(·+t), t ∈ R.
Thus, we may assume without any loss of generality that Im gl �= 0. For ε ∈ R\{0}, we define

ψε = 1√
(1 + ε2)π

(1 + εe2ilx) .
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Then, ‖ψε‖H = 1, and

a(ψε,ψε) = 4

1 + ε2 [l(Im gl )ε + l2ε2] .

Therefore a(ψε,ψε) < 0, provided εIm gl < 0 and |ε| is sufficiently small. This combined
with the min-max principle implies that λ0 < 0. So, we have the assertion for n = 0.

Next, we prove the assertion for n ∈ N. By assumption, we have gj = 0 for j =
0, 1, 2, . . . , 2n, from which

a(ϕk, ϕm) = 4k2δk,m for |k| ≤ n and |m| ≤ n , (2.1)

where δk,m is Kronecker’s symbol. Combining this with the min-max principle, we get λ2n ≤
4n2.

Suppose that q is not identically equal to 0. Let us show that λ2n < 4n2. Let l be the
smallest positive integer such that gn+l �= 0. We may assume, as above, that Im gn+l �= 0. For
ε ∈ R \ {0}, we define

ψn(x) = 1√
(1 + ε2)π

(e2inx + εe−2ilx) , (2.2)

ψ−n(x) = 1√
(1 + ε2)π

(e−2inx + εe2ilx) . (2.3)

We also put

ψj = ϕj for |j | ≤ n− 1 . (2.4)

We note that {ψj }nj=−n is an orthonormal system of H. We get

a(ψn,ψn) = 1

1 + ε2
(4n2 + 4l2ε2 + 4(n+ l)ε Im g−n−l )

= a(ψ−n, ψ−n)
(2.5)

and

a(ψn,ψ−n) = 4ilε2

1 + ε2 g2l

= a(ψ−n, ψn) .
(2.6)

For m = −n+ 1,−n+ 2, . . . , n− 2, n− 1, we obtain

a(ψn,ψm) = −1

π
√

1 + ε2

∫ π

0
q(x)[2i(n−m)e2i(n−m)x − 2i(l +m)e−2i(l+m)x]dx

= 0 ,

(2.7)
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a(ψ−n, ψm) = 1

π
√

1 + ε2

∫ π

0
q(x)[2i(n+m)e−2i(n+m)x − 2i(l −m)e2i(l−m)xdx

= 0 ,

(2.8)

since |n±m| ≤ 2n−1 and |l±m| ≤ n+l−1. Now we put an = a(ψn,ψn), bn = a(ψn,ψ−n).
Let

A = (a(ψm,ψk))−n≤m≤n
−n≤k≤n

.

It follows from (2.1), (2.7) and (2.8) that

det(A− λI)= −((an − λ)2 − |bn|2)λ
n−1∏
j=1

(4j2 − λ)2

= −(an + |bn| − λ)(an − |bn| − λ)λ

n−1∏
j=1

(4j2 − λ)2 ,

where I is the (2n + 1) × (2n + 1) identity matrix. Combining this with (2.5) and (2.6),
we infer that the largest eigenvalue of A is given by an + |bn| when |ε| is sufficiently small.

Noticing |bn| =O(ε2) as ε → 0, we have an + |bn| < 4n2, provided εImg−n−l < 0 and |ε|
is sufficiently small. This together with the min-max principle implies that λ2n < 4n2, which
concludes the proof.
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