Estimates of the Eigenvalues of Hill's Operator with Distributional Coefficients

Masashi KATO
Tokyo Metropolitan University
(Communicated by K. Shinoda)

Abstract. We give an optimal upper bound for the eigenvalues of the Hill operator with a distributional coefficient.

1. Introduction

In this paper, we consider the eigenvalues of the Hill operator which is formally expressed as

$$
H=-\frac{d^{2}}{d x^{2}}+q^{\prime}(x) \quad \text { in } \mathcal{H}=L^{2}((0, \pi))
$$

where $q \in L^{2}((0, \pi))$ is a real-valued function. We recall the precise definition of this operator from [1]. We define a symmetric quadratic form a in \mathcal{H} by

$$
\begin{gathered}
a(\varphi, \psi)=\int_{0}^{\pi} \varphi^{\prime}(x) \overline{\psi^{\prime}(x)} d x-\int_{0}^{\pi} q(x) \varphi^{\prime}(x) \overline{\psi(x)} d x-\int_{0}^{\pi} q(x) \varphi(x) \overline{\psi^{\prime}(x)} d x, \\
Q(a)=\left\{y \in H^{1}((0, \pi)) \mid y(0)=y(\pi)\right\} .
\end{gathered}
$$

It is useful to note that if $q^{\prime} \in L^{2}((0, \pi))$, then

$$
a(\varphi, \psi)=\left(-\varphi^{\prime \prime}+q^{\prime} \varphi, \psi\right)_{\mathcal{H}} \quad \text { for } \varphi, \psi \in C_{0}^{\infty}((0, \pi))
$$

We also note that there exists a constant $b>0$ such that

$$
\left.\left|a(\varphi, \varphi)-\int_{0}^{\pi}\right| \varphi^{\prime}(x)\right|^{2} d x \left\lvert\, \leq \frac{1}{2}\left\|\varphi^{\prime}\right\|_{\mathcal{H}}^{2}+b\|\varphi\|_{\mathcal{H}}^{2} \quad\right. \text { for every } \varphi \in Q(a)
$$

see [1, formula (2.12)]. This combined with the KLMN theorem (see e.g., [4, Theorem X.17]) implies that there is a unique self-adjoint operator H in \mathcal{H} for which

$$
a(\varphi, \psi)=(H \varphi, \psi)_{\mathcal{H}}
$$

Received April 3, 2009; revised October 2, 2009
for any $\varphi \in \operatorname{Dom}(H)$ and $\psi \in Q(a)$. The spectrum of H is discrete. For non-negative integers j, let λ_{j} stand for the $(j+1)$ th eigenvalue of H counted with multiplicity.

Our main result is now stated as follows, which we prove in Section 2.
Theorem. Let n be a non-negative integer. Suppose that

$$
\int_{0}^{\pi} q(x) e^{2 i k x} d x=0 \quad \text { for } \quad k=0,1,2, \ldots, 2 n
$$

Then we have

$$
\lambda_{2 n} \leq 4 n^{2}
$$

and the equality sign holds if and only if q is identically equal to 0 .
We describe the background to our work here. In [2], Blumenson proved the above theorem in the case where $q \in C^{2}([0, \pi])$. His proof largely relies on the reduction of the Hill equation to the Riccati equation. It seems that such a method is not applicable to our problem, since the potential is distributional. In order to eliminate this difficulty, we use an abstract method; our proof is based on the min-max principle with suitably chosen trial functions (see (2.2), (2.3) and (2.4)). It is worth mentioning that our result considerably extends that of Blumenson.

2. Proof of Theorem

Let $g_{j}, j \in \mathbf{Z}$, be the Fourier coefficients of q :

$$
q(x)=\sum_{j=-\infty}^{\infty} g_{j} e^{2 i j x}
$$

Since q is real-valued, we have $g_{j}=\overline{g_{-j}}$. For $k \in \mathbf{Z}$, we define

$$
\varphi_{k}(x)=\frac{1}{\sqrt{\pi}} e^{2 i k x}
$$

We note that $\left\{\varphi_{k}\right\}_{k \in \mathbf{Z}}$ is a complete orthonormal system of \mathcal{H}.
First, we prove the assertion for $n=0$. By the min-max principle (see e.g., [3, Theorem 4.5.1]), we have

$$
\lambda_{0} \leq a\left(\varphi_{0}, \varphi_{0}\right)=0
$$

Let us show that $\lambda_{0}<0$ if q is not identically equal to 0 . Suppose that q is not identically equal to 0 . Then, there exists $l \in \mathbf{N}$ such that $g_{l} \neq 0$. Let $\tilde{q}: \mathbf{R} \rightarrow \mathbf{R}$ be the periodic extension of q. We note that λ_{j} is invariant under the substitution of the potential $q(\cdot) \mapsto \tilde{q}(\cdot+t), t \in \mathbf{R}$. Thus, we may assume without any loss of generality that $\operatorname{Im} g_{l} \neq 0$. For $\varepsilon \in \mathbf{R} \backslash\{0\}$, we define

$$
\psi_{\varepsilon}=\frac{1}{\sqrt{\left(1+\varepsilon^{2}\right) \pi}}\left(1+\varepsilon e^{2 i l x}\right)
$$

Then, $\left\|\psi_{\varepsilon}\right\|_{\mathcal{H}}=1$, and

$$
a\left(\psi_{\varepsilon}, \psi_{\varepsilon}\right)=\frac{4}{1+\varepsilon^{2}}\left[l\left(\operatorname{Im} g_{l}\right) \varepsilon+l^{2} \varepsilon^{2}\right] .
$$

Therefore $a\left(\psi_{\varepsilon}, \psi_{\varepsilon}\right)<0$, provided $\varepsilon \operatorname{Im} g_{l}<0$ and $|\varepsilon|$ is sufficiently small. This combined with the min-max principle implies that $\lambda_{0}<0$. So, we have the assertion for $n=0$.

Next, we prove the assertion for $n \in \mathbf{N}$. By assumption, we have $g_{j}=0$ for $j=$ $0,1,2, \ldots, 2 n$, from which

$$
\begin{equation*}
a\left(\varphi_{k}, \varphi_{m}\right)=4 k^{2} \delta_{k, m} \quad \text { for } \quad|k| \leq n \quad \text { and } \quad|m| \leq n, \tag{2.1}
\end{equation*}
$$

where $\delta_{k, m}$ is Kronecker's symbol. Combining this with the min-max principle, we get $\lambda_{2 n} \leq$ $4 n^{2}$.

Suppose that q is not identically equal to 0 . Let us show that $\lambda_{2 n}<4 n^{2}$. Let l be the smallest positive integer such that $g_{n+l} \neq 0$. We may assume, as above, that $\operatorname{Im} g_{n+l} \neq 0$. For $\varepsilon \in \mathbf{R} \backslash\{0\}$, we define

$$
\begin{align*}
\psi_{n}(x) & =\frac{1}{\sqrt{\left(1+\varepsilon^{2}\right) \pi}}\left(e^{2 i n x}+\varepsilon e^{-2 i l x}\right) \tag{2.2}\\
\psi_{-n}(x) & =\frac{1}{\sqrt{\left(1+\varepsilon^{2}\right) \pi}}\left(e^{-2 i n x}+\varepsilon e^{2 i l x}\right) \tag{2.3}
\end{align*}
$$

We also put

$$
\begin{equation*}
\psi_{j}=\varphi_{j} \quad \text { for } \quad|j| \leq n-1 \tag{2.4}
\end{equation*}
$$

We note that $\left\{\psi_{j}\right\}_{j=-n}^{n}$ is an orthonormal system of \mathcal{H}. We get

$$
\begin{align*}
a\left(\psi_{n}, \psi_{n}\right) & =\frac{1}{1+\varepsilon^{2}}\left(4 n^{2}+4 l^{2} \varepsilon^{2}+4(n+l) \varepsilon \operatorname{Im} g_{-n-l}\right) \tag{2.5}\\
& =a\left(\psi_{-n}, \psi_{-n}\right)
\end{align*}
$$

and

$$
\begin{align*}
a\left(\psi_{n}, \psi_{-n}\right) & =\frac{4 i l \varepsilon^{2}}{1+\varepsilon^{2}} g_{2 l} \tag{2.6}\\
& =\frac{a\left(\psi_{-n}, \psi_{n}\right)}{}
\end{align*}
$$

For $m=-n+1,-n+2, \ldots, n-2, n-1$, we obtain

$$
\begin{align*}
a\left(\psi_{n}, \psi_{m}\right) & =\frac{-1}{\pi \sqrt{1+\varepsilon^{2}}} \int_{0}^{\pi} q(x)\left[2 i(n-m) e^{2 i(n-m) x}-2 i(l+m) e^{-2 i(l+m) x}\right] d x \tag{2.7}\\
& =0
\end{align*}
$$

$$
\begin{align*}
a\left(\psi_{-n}, \psi_{m}\right) & =\frac{1}{\pi \sqrt{1+\varepsilon^{2}}} \int_{0}^{\pi} q(x)\left[2 i(n+m) e^{-2 i(n+m) x}-2 i(l-m) e^{2 i(l-m) x} d x\right. \tag{2.8}\\
& =0
\end{align*}
$$

since $|n \pm m| \leq 2 n-1$ and $|l \pm m| \leq n+l-1$. Now we put $a_{n}=a\left(\psi_{n}, \psi_{n}\right), b_{n}=a\left(\psi_{n}, \psi_{-n}\right)$. Let

$$
A=\left(a\left(\psi_{m}, \psi_{k}\right)\right)_{\substack{-n \leq m \leq n \\-n \leq k \leq n}}
$$

It follows from (2.1), (2.7) and (2.8) that

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =-\left(\left(a_{n}-\lambda\right)^{2}-\left|b_{n}\right|^{2}\right) \lambda \prod_{j=1}^{n-1}\left(4 j^{2}-\lambda\right)^{2} \\
& =-\left(a_{n}+\left|b_{n}\right|-\lambda\right)\left(a_{n}-\left|b_{n}\right|-\lambda\right) \lambda \prod_{j=1}^{n-1}\left(4 j^{2}-\lambda\right)^{2},
\end{aligned}
$$

where I is the $(2 n+1) \times(2 n+1)$ identity matrix. Combining this with (2.5) and (2.6), we infer that the largest eigenvalue of A is given by $a_{n}+\left|b_{n}\right|$ when $|\varepsilon|$ is sufficiently small. Noticing $\left|b_{n}\right|=\mathrm{O}\left(\varepsilon^{2}\right)$ as $\varepsilon \rightarrow 0$, we have $a_{n}+\left|b_{n}\right|<4 n^{2}$, provided $\varepsilon \operatorname{Im} g_{-n-l}<0$ and $|\varepsilon|$ is sufficiently small. This together with the min-max principle implies that $\lambda_{2 n}<4 n^{2}$, which concludes the proof.

References

[1] E. Korotyaev, Characterization of the Spectrum of Schrödinger Operators with Periodic Distributions, Int. Math. Res. Not. 37 (2003), 2019-2031.
[2] L. Blumenson, On the Eigenvalues of Hill's Equation, Comm. Pure Appl. Math. 16 (1963), 261-266.
[3] E. B. Davies, Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics 42, Cambridge Univ. Press, Cambridge, 1995.
[4] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness, Academic Press, San Diego, 1975.

Present Address:

Department of System Consulting,
Media Seek,
Minami-Azabu, Minato-ku, Tokyo, 106-0047 Japan.
e-mail: sep6th-oguricap@sky.sannet.ne.jp

