On the Cartier Duality of Certain Finite Group Schemes of Order p^{n}

Michio AMANO

Chuo University

(Communicated by S. Miyoshi)

Abstract

In this paper we study the Cartier duality of certain finite subgroup schemes of $\mathcal{G}^{(\lambda)}$ in positive characteristic, where $\mathcal{G}^{(\lambda)}$ denotes the form of \mathbf{G}_{m} determined by λ. To establish the Cartier duality of these group schemes, we use certain deformations of Artin-Hasse exponential series.

1. Introduction

Throughout the paper, p denotes a prime number. Let A be a commutative ring with unit element and λ an element of A. T. Sekiguchi, F. Oort and N. Suwa [3] have introduced a group scheme $\mathcal{G}^{(\lambda)}=\operatorname{Spec} A[X, 1 /(1+\lambda X)]$ over A, which is a deformation of the additive group scheme \mathbf{G}_{a} (in the case $\lambda=0$) to the multiplicative group scheme \mathbf{G}_{m} (in the case $\lambda \in A^{*}$). (We recall the group structure of $\mathcal{G}^{(\lambda)}$ in section 3 below.) The group scheme $\mathcal{G}^{(\lambda)}$ is useful for studying the deformation of Artin-Schreier theory to Kummer theory. More precisely the following surjective homomorphism

$$
\psi: \mathcal{G}^{(\lambda)} \rightarrow \mathcal{G}^{\left(\lambda^{p}\right)} ; x \mapsto \lambda^{-p}\left((1+\lambda x)^{p}-1\right)
$$

plays a key role in the unified Kummer-Artin-Schreier theory.
If A is of characteristic p, then $\psi(x)=x^{p}$. Put $N=\operatorname{Ker} \psi$. Let $F: \mathbf{G}_{a, A} \rightarrow \mathbf{G}_{a, A}$ be the Frobenius endomorphism. Y. Tsuno [6] showed the following:

Theorem 1 ([6]). Assume that A is of characteristic p. Then the Cartier dual of N is canonically isomorphic to $\operatorname{Ker}\left[F-\lambda^{p-1}: \mathbf{G}_{a, A} \rightarrow \mathbf{G}_{a, A}\right]$.

Our purpose in this paper is to generalize Tsuno's theorem as follows. For a group scheme G, let \widehat{G} be the formal completion along the zero section. The homomorphism ψ induces the natural homomorphism $\psi: \widehat{\mathcal{G}}^{(\lambda)} \rightarrow \widehat{\mathcal{G}}^{\left(\lambda^{p}\right)}$. Let l be a positive integer. We consider the following surjective homomorphism

$$
\psi^{(l)}: \widehat{\mathcal{G}}^{(\lambda)} \rightarrow \widehat{\mathcal{G}}^{\left(\lambda p^{p}\right)} ; x \mapsto \lambda^{-p^{l}}\left((1+\lambda x)^{p^{l}}-1\right)
$$

which is clearly a generalization of $\psi: \widehat{\mathcal{G}}^{(\lambda)} \rightarrow \widehat{\mathcal{G}}^{\left(\lambda^{p}\right)}$. If A is of characteristic p, then $\psi^{(l)}(x)=x^{p^{l}}$. Set $N_{l}=\operatorname{Ker} \psi^{(l)}$. The essential point in our argument is that the formal scheme N_{l} is nothing but the finite subgroup scheme Spec $A[X] /\left(X^{p^{l}}\right)$ of $\mathcal{G}^{(\lambda)}$. Let $W_{l, A}$ be the Witt ring scheme of length l over A. Let $F: W_{l, A} \rightarrow W_{l, A}$ be the Frobenius endomorphism of $W_{l, A}$ and [$\left.\lambda\right]: W_{l, A} \rightarrow W_{l, A}$ the Teichmüller lifting of $\lambda \in A$. Set $F^{(\lambda)}=F-\left[\lambda^{p-1}\right]$. (We analogously define an endomorphism $F^{(\lambda)}: W_{A} \rightarrow W_{A}$.) Then the result of this paper is the following:

TheOrem 2. Assume that A is of characteristic p. Then the Cartier dual of N_{l} is canonically isomorphic to $\operatorname{Ker}\left[F^{(\lambda)}: W_{l, A} \rightarrow W_{l, A}\right]$.

The case $l=1$ of Theorem 2 is nothing but Tsuno's Theorem 1. Tsuno proved his theorem by skillful calculations. Our proof is different from Tsuno's proof even in the case $l=1$. To prove Theorem 2, we make use of the deformations of Artin-Hasse exponential series introduced by Sekiguchi and Suwa [4] and a duality between $\operatorname{Ker}\left[F^{(\lambda)}: W(A) \rightarrow W(A)\right]$ with $\widehat{\mathcal{G}}^{(\lambda)}$ proved by them [Ibid.].

The contents of this paper is as follows. The next two sections are devoted to the definitions and the some reviews of properties of the Witt scheme and the deformation $E_{p}(\boldsymbol{v}, \lambda ; x)$ of Artin-Hasse exponential series $\left(\boldsymbol{v} \in W(A), x \in \widehat{\mathcal{G}}^{(\lambda)}\right)$. In section 4 we give a proof of Theorem 2.

Notation

$$
\begin{aligned}
& \mathbf{G}_{a, A}: \text { additive group scheme over } A \\
& \mathbf{G}_{m, A}: \text { multiplicative group scheme over } A \\
& W_{n, A}: \text { group scheme of Witt vectors of length } n \text { over } A \\
& W_{A}: \text { group scheme of Witt vectors over } A \\
& \widehat{\mathbf{G}}_{m, A}: \text { multiplicative formal group scheme over } A \\
& F: \text { Frobenius endomorphism of } W_{A} \\
& V: \text { Verschiebung endomorphism of } W_{A} \\
& R_{n}: \text { restriction homomorphism of } W_{A} \text { to } W_{n, A} \\
& {[\lambda]: } \text { Teichmüller lifting }(\lambda, 0,0, \ldots) \in W(A) \text { of } \lambda \in A \\
& F^{(\lambda)}:=F-\left[\lambda^{p-1}\right] \\
& W(A)^{F^{(\lambda)}}:=\operatorname{Ker}\left[F^{(\lambda)}: W(A) \rightarrow W(A)\right] \\
& W(A) / F^{(\lambda)}:=\operatorname{Coker}\left[F^{(\lambda)}: W(A) \rightarrow W(A)\right]
\end{aligned}
$$

2. Witt vectors

In this short section we recall necessary facts on Witt vectors for this paper. For details, see [1, Chap. V] or [2, Chap. III].
2.1. Let $\mathbf{X}=\left(X_{0}, X_{1}, \ldots\right)$ be a sequence of variables. For each $n \geq 0$, we denote by $\Phi_{n}(\mathbf{X})=\Phi_{n}\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ the Witt polynomial

$$
\Phi_{n}(\mathbf{X})=X_{0}^{p^{n}}+p X_{1}^{p^{n-1}}+\cdots+p^{n} X_{n}
$$

in $\mathbf{Z}[\mathbf{X}]=\mathbf{Z}\left[X_{0}, X_{1}, \ldots\right]$. Let $W_{n, \mathbf{Z}}=\operatorname{Spec} \mathbf{Z}\left[X_{0}, X_{1}, \ldots, X_{n-1}\right]$ be the n-dimensional affine space over \mathbf{Z}. We define a morphism $\Phi^{(n)}$ by

$$
\Phi^{(n)}: W_{n, \mathbf{Z}} \rightarrow \mathbf{A}_{\mathbf{Z}}^{n} ; \boldsymbol{x} \mapsto\left(\Phi_{0}(\boldsymbol{x}), \Phi_{1}(\boldsymbol{x}), \ldots, \Phi_{n-1}(\boldsymbol{x})\right),
$$

where $\mathbf{A}_{\mathbf{Z}}^{n}$ is usual n-dimensional affine space over \mathbf{Z}. We call $\Phi^{(n)}$ the phantom map. The scheme $\mathbf{A}_{\mathbf{Z}}^{n}$ has a natural ring scheme structure. It is well-known that $W_{n, \mathbf{Z}}$ has a unique commutative ring scheme structure over \mathbf{Z} such that the phantom $\operatorname{map} \Phi^{(n)}$ is a homomorphism of commutative ring schemes over \mathbf{Z}. Then the points of $W_{n, \mathbf{Z}}$ are called Witt vectors of length n over \mathbf{Z}.
2.2. The Verschiebung homomorphism V is defined by

$$
V: W(A) \rightarrow W(A) ; \boldsymbol{x}=\left(x_{0}, x_{1}, \ldots\right) \mapsto \boldsymbol{x}^{\prime}=\left(0, x_{0}, x_{1}, \ldots\right) .
$$

The restriction homomorphism R_{n} is defined by

$$
R_{n}: W(A) \rightarrow W_{n}(A) ; \boldsymbol{x}=\left(x_{0}, x_{1}, \ldots\right) \mapsto \boldsymbol{x}_{n}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) .
$$

We define a morphism $F: W_{n}(A) \rightarrow W_{n-1}(A)$ by

$$
\Phi_{i}(F \boldsymbol{x})=\Phi_{i+1}(\boldsymbol{x})
$$

for $\boldsymbol{x} \in W_{n}(A)$. If A is of characteristic p, F is nothing but the usual Frobenius endomorphism. For $\lambda \in A,[\lambda]$ denotes the Teichmüller lifting $[\lambda]=(\lambda, 0,0, \ldots) \in W(A)$ and $F^{(\lambda)}$ denotes the endomorphism $F-\left[\lambda^{p-1}\right]$ of $W(A)$.

For $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots\right) \in W(A)$, we also define a morphism $T_{\boldsymbol{a}}: W(A) \rightarrow W(A)$ by

$$
\Phi_{n}\left(T_{a} \boldsymbol{x}\right)=a_{0} p^{n} \Phi_{n}(\boldsymbol{x})+p a_{1}{ }^{p^{n-1}} \Phi_{n-1}(\boldsymbol{x})+\cdots+p^{n} a_{n} \Phi_{0}(\boldsymbol{x})
$$

for $\boldsymbol{x} \in W(A)$. Then it is known that this morphism has the equality $T_{a}=\sum_{k \geq 0} V^{k} \cdot\left[a_{k}\right]$. (cf. [5, Chap. 4, p. 20])

3. Deformed Artin-Hasse exponential series

In this short section we recall necessary facts on the deformed Artin-Hasse exponential series for this paper.
3.1. Let A be a ring and λ an element of A. Put $\mathcal{G}^{(\lambda)}=\operatorname{Spec} A[X, 1 /(1+\lambda X)]$. We define a morphism $\alpha^{(\lambda)}$ by

$$
\alpha^{(\lambda)}: \mathcal{G}^{(\lambda)} \rightarrow \mathbf{G}_{m, A} ; x \mapsto 1+\lambda x .
$$

It is well-known that $\mathcal{G}^{(\lambda)}$ has a unique group scheme structure such that the morphism $\alpha^{(\lambda)}$ is a homomorphism over A. Then the group scheme structure of $\mathcal{G}^{(\lambda)}$ is given as follows:

$$
\begin{aligned}
\text { multiplication: } X & \mapsto X \otimes 1+1 \otimes X+\lambda X \otimes X, \\
\text { unit: } X & \mapsto 0 \\
\text { inverse: } X & \mapsto-X /(1+\lambda X) .
\end{aligned}
$$

If λ is invertible in $A, \alpha^{(\lambda)}$ is an A-isomorphism. On the other hand, if $\lambda=0, \mathcal{G}^{(\lambda)}$ is nothing but the additive group scheme $\mathbf{G}_{a, A}$.
3.2. The Artin-Hasse exponential series $E_{p}(X)$ is given by

$$
E_{p}(X)=\exp \left(\sum_{r \geq 0} \frac{X^{p^{r}}}{p^{r}}\right) \in \mathbf{Z}_{(p)}[[X]]
$$

We define a formal power series $E_{p}(U, \Lambda ; X)$ in $\mathbf{Q}[U, \Lambda][[X]]$ by

$$
\left.\left.E_{p}(U, \Lambda ; X)=(1+\Lambda X)^{\frac{U}{\Lambda}} \prod_{k=1}^{\infty}\left(1+\Lambda^{p^{k}} X^{p^{k}}\right)\right)^{\frac{1}{p^{k}}\left(\left(\frac{U}{\Lambda}\right) p^{p^{k}}-\left(\frac{U}{\Lambda}\right)\right)^{p^{k-1}}}\right)
$$

As in [4, Corollary 2.5] or [5, Lemma 4.8], we see that this formal power series $E_{p}(U, \Lambda ; X)$ is integral over $\mathbf{Z}_{(p)}$. Note that $E_{p}(1,0 ; X)=E_{p}(X)$.

Let A be a $\mathbf{Z}_{(p)}$-algebra. Let $\lambda \in A$ and $\boldsymbol{v}=\left(v_{0}, v_{1}, \ldots\right) \in W(A)$. We define a formal power series $E_{p}(\boldsymbol{v}, \lambda ; X)$ in $A[[X]]$ by

$$
\begin{aligned}
E_{p}(\boldsymbol{v}, \lambda ; X) & =\prod_{k=0}^{\infty} E_{p}\left(v_{k}, \lambda^{p^{k}} ; X^{p^{k}}\right) \\
& =(1+\lambda X)^{\frac{v_{0}}{\lambda}} \prod_{k=1}^{\infty}\left(1+\lambda^{p^{k}} X^{p^{k}}\right) p^{\frac{1}{p^{k} p^{p^{k}}} \Phi_{k-1}\left(F^{(\lambda)} \boldsymbol{v}\right)} .
\end{aligned}
$$

Moreover we define a formal power series $F_{p}(v, \lambda ; X, Y)$ as follows:

$$
F_{p}(\boldsymbol{v}, \lambda ; X, Y)=\prod_{k=1}^{\infty}\left(\frac{\left(1+\lambda \lambda^{p^{k}} X^{p^{k}}\right)\left(1+\lambda^{p^{k}} Y^{p^{k}}\right)}{1+\lambda p^{k}(X+Y+\lambda X Y)^{p^{k}}}\right)^{\frac{1}{p^{k} \lambda p^{k}} \Phi_{k-1}(\boldsymbol{v})}
$$

As in [4, Lemma 2.16] or [5, Lemma 4.9], we see that the formal power series $F_{p}(\boldsymbol{v}, \lambda ; X, Y)$ is integral over $\mathbf{Z}_{(p)}$. For the formal power series $F_{p}\left(F^{(\lambda)} \boldsymbol{v}, \lambda ; X, Y\right)$, we have the following equalities:

$$
\begin{aligned}
F_{p}\left(F^{(\lambda)} \boldsymbol{v}, \lambda ; X, Y\right) & =\prod_{k=1}^{\infty}\left(\frac{\left(1+\lambda^{p^{k}} X^{p^{k}}\right)\left(1+\lambda^{p^{k}} Y^{p^{k}}\right)}{1+\lambda p^{k}(X+Y+\lambda X Y) p^{p^{k}}}\right) \\
& =\frac{E_{p}(\boldsymbol{v}, \lambda ; X) E_{p}(\boldsymbol{v}, \lambda ; Y)}{E_{p}(\boldsymbol{v}, \lambda ; X+Y+\lambda X Y)}
\end{aligned}
$$

We put $[p] E_{p}(\boldsymbol{v}, \lambda ; X)=E_{p}([p] \boldsymbol{v}, \lambda ; X)$, and we define a new formal power series $\widetilde{E}\left(\boldsymbol{w}, \lambda_{2} ; E\right)$ as follows:

$$
\widetilde{E}\left(\boldsymbol{w}, \lambda_{2} ; E\right)=E^{\frac{w_{0}}{\lambda_{2}}} \prod_{r=1}^{\infty}\left([p]^{r} E\right)^{\frac{1}{p^{r} \lambda_{2} p^{r}} \Phi_{r-1}\left(F^{\left(\lambda_{2}\right)} \boldsymbol{w}\right)}
$$

where $E=E_{p}\left(\boldsymbol{v}, \lambda_{1} ; X\right)$. Then it is known that the formal power series $\widetilde{E}\left(\boldsymbol{w}, \lambda_{2} ; E\right)$ has the equality $\widetilde{E}\left(\boldsymbol{w}, \lambda_{2} ; E\right)=E_{p}\left(T_{\boldsymbol{v}} \boldsymbol{w}, \lambda_{1} ; X\right)$. (cf. [5, Chap. 4, p. 26])

4. Proof of Theorem 2

In this section we give a proof of Theorem 2.
Suppose that A is a ring of characteristic p and λ is an element of A. Let $\mathcal{G}^{(\lambda)}$ be the group scheme defined in section 3 and $\widehat{\mathcal{G}}^{(\lambda)}$ the formal completion of $\mathcal{G}^{(\lambda)}$ along the zero section. We consider the following homomorphism:

$$
\psi^{(l)}: \widehat{\mathcal{G}}^{(\lambda)} \rightarrow \widehat{\mathcal{G}}^{\left(\lambda^{p^{l}}\right)} ; x \mapsto \lambda^{-p^{l}}\left((1+\lambda x)^{p^{l}}-1\right) .
$$

For the kernel of the homomorphism $\psi^{(l)}$, we have

$$
N_{l}=\operatorname{Ker} \psi^{(l)}=\operatorname{Spf} A[[X]] /\left(X^{p^{l}}\right)=\operatorname{Spec} A[X] /\left(X^{p^{l}}\right) .
$$

Note that this is a finite subgroup scheme of order p^{l} of $\mathcal{G}^{(\lambda)}$. The following exact sequence is induced by the homomorphism $\psi^{(l)}$

$$
\begin{equation*}
0 \longrightarrow N_{l} \xrightarrow{\iota} \widehat{\mathcal{G}}^{(\lambda)} \xrightarrow{\psi^{(l)}} \widehat{\mathcal{G}}^{\left(\lambda^{l}\right)} \longrightarrow 0 \tag{1}
\end{equation*}
$$

where ι is a canonical inclusion. This exact sequence (1) deduces the following long exact sequence:

$$
\begin{align*}
& 0 \operatorname{Hom}\left(\widehat{\mathcal{G}}^{\left(\lambda p^{l}\right)}, \widehat{\mathbf{G}}_{m, A}\right) \xrightarrow{\left(\psi^{(l)}\right)^{*}} \operatorname{Hom}\left(\widehat{\mathcal{G}}^{(\lambda)}, \widehat{\mathbf{G}}_{m, A}\right) \xrightarrow{(\imath)^{*}} \operatorname{Hom}\left(N_{l}, \widehat{\mathbf{G}}_{m, A}\right) \tag{2}\\
& \xrightarrow{\partial} \operatorname{Ext}^{1}\left(\widehat{\mathcal{G}}^{\left(\lambda^{p^{l}}\right)}, \widehat{\mathbf{G}}_{m, A}\right) \xrightarrow{\left(\psi^{(l)}\right)^{*}} \operatorname{Ext}^{1}\left(\widehat{\mathcal{G}}^{(\lambda)}, \widehat{\mathbf{G}}_{m, A}\right) \longrightarrow \quad \ldots
\end{align*}
$$

On the other hand, as in [4, Theorem 2.19.1.] or the case $n=1$ of [5, Theorem 5.1.], the following morphisms are isomorphic:

$$
\begin{align*}
& W(A)^{F^{(\lambda)}} \rightarrow \operatorname{Hom}\left(\widehat{\mathcal{G}}^{(\lambda)}, \widehat{\mathbf{G}}_{m, A}\right) ; \boldsymbol{v} \mapsto E_{p}(\boldsymbol{v}, \lambda ; x) \tag{3}\\
& W(A) / F^{(\lambda)} \rightarrow H_{0}^{2}\left(\widehat{\mathcal{G}}^{(\lambda)}, \widehat{\mathbf{G}}_{m, A}\right) ; \boldsymbol{w} \mapsto F_{p}(\boldsymbol{w}, \lambda ; x, y) . \tag{4}
\end{align*}
$$

Here $H_{0}^{2}(G, H)$ denotes the Hochschild cohomology group consisting of symmetric 2cocycles of G with coefficients in H for formal group schemes G and H. (c.f. [1, Chap. II. 3 and Chap. III.6])

We consider the following diagram:

The exactness of the horizontal sequences are obvious. By the well-known elementary properties on F, V and $[\lambda]$, we have $F^{(\lambda)} \circ V^{l}=V^{l} \circ F^{\left(\lambda^{p^{l}}\right)}$. Therefore, by the snake lemma for this diagram, we have the following exact sequence:

$$
\begin{align*}
& 0 \longrightarrow W(A)^{F^{\left(\lambda^{p^{l}}\right)}} \xrightarrow{V^{l}} W(A)^{F^{(\lambda)}} \xrightarrow{R_{l}} W_{l}(A)^{F^{(\lambda)}} \tag{5}\\
& \xrightarrow{\partial} W(A) / F^{\left(\lambda^{p^{l}}\right)} \xrightarrow{V^{l}} W(A) / F^{(\lambda)} \xrightarrow{R_{l}} W_{l}(A) / F^{(\lambda)} \longrightarrow 0 .
\end{align*}
$$

Now, by combining the exact sequences (2), (5) and the isomorphisms (3), (4), we have the following diagram:
(6)

where ϕ is the following homomorphism induced from the exact sequence (1) and the isomorphism (3):

$$
\phi: W_{l}(A)^{F^{(\lambda)}} \rightarrow \operatorname{Hom}\left(N_{l}, \widehat{\mathbf{G}}_{m, A}\right) ; \boldsymbol{v}_{l} \mapsto E_{p}\left(\boldsymbol{v}_{l}, \lambda ; x\right) .
$$

We remark that ϕ_{1} and ϕ_{2} are isomorphisms, and that ϕ_{3} and ϕ_{4} are injective but may be not isomorphisms since $H_{0}^{2}\left(\widehat{\mathcal{G}}^{(\lambda)}, \widehat{\mathbf{G}}_{m, A}\right) \varsubsetneqq \operatorname{Ext}^{1}\left(\widehat{\mathcal{G}}^{(\lambda)}, \widehat{\mathbf{G}}_{m, A}\right)$ in general. But we can replace the groups of extensions with Hochschild cohomology groups in the diagram (6), since we have $\operatorname{Im} \partial \subseteq \operatorname{Im} \phi_{3}$ and $\operatorname{Im}\left(\psi^{(l)}\right)^{*} \subseteq \operatorname{Im} \phi_{4}$. Thus we get the following diagram whose each row
is exact and all vertical morphisms are isomorphisms except ϕ :

$$
\begin{aligned}
& \operatorname{Hom}\left(\widehat{\mathcal{G}}^{\left(\lambda^{p^{l}}\right)}, \widehat{\mathbf{G}}_{m, A}\right) \xrightarrow{\left(\psi^{(l)}\right)^{*}} \operatorname{Hom}\left(\widehat{\mathcal{G}}^{(\lambda)}, \widehat{\mathbf{G}}_{m, A}\right) \xrightarrow{(\iota)^{*}} \operatorname{Hom}\left(N_{l}, \widehat{\mathbf{G}}_{m, A}\right) \\
& \phi_{1} \uparrow \quad \phi_{2} \uparrow \quad \phi \uparrow
\end{aligned}
$$

$$
\begin{align*}
& \xrightarrow{\partial} H_{0}^{2}\left(\widehat{\mathcal{G}}^{\left(\lambda^{p}\right)}, \widehat{\mathbf{G}}_{m, A}\right) \xrightarrow{\left(\psi^{(\lambda)}\right)^{*}} H_{0}^{2}\left(\widehat{\mathcal{G}}^{(\lambda)}, \widehat{\mathbf{G}}_{m, A}\right) \tag{7}\\
& \phi_{3} \uparrow \quad \phi_{4} \uparrow \\
& \xrightarrow{\partial} W(A) / F^{\left(\lambda^{p^{l}}\right)} \quad \xrightarrow{V^{l}} \quad W(A) / F^{(\lambda)} .
\end{align*}
$$

If the diagram (7) is commutative, then the five lemma shows that ϕ is isomorphism, ie., $W_{l}(A)^{F^{(\lambda)}} \simeq \operatorname{Hom}\left(N_{l}, \widehat{\mathbf{G}}_{m, A}\right)$. Since $\operatorname{Hom}\left(N_{l}, \widehat{\mathbf{G}}_{m, A}\right) \simeq \operatorname{Hom}\left(N_{l}, \mathbf{G}_{m, A}\right)$ and the Cartier duals are characterized by the character groups, we obtain the Theorem 2. Therefore it is sufficient to prove that the diagram (7) is commutative.

Lemma 1. $\left(\psi^{(l)}\right)^{*} \circ \phi_{1}=\phi_{2} \circ V^{l}$.
Proof. By the definition and the results stated in [5, Proposition 4.11.], we have the following equalities for $\boldsymbol{v} \in W(A)^{F^{\left(p^{p}\right)}}$:

$$
\begin{aligned}
& E_{p}\left(\boldsymbol{v}, \lambda^{p^{l}} ; \psi^{(l)}(x)\right)=E_{p}\left(\boldsymbol{v}, \lambda^{p^{l}} ; \lambda^{-p^{l}}\left((1+\lambda x)^{p^{l}}-1\right)\right) \\
&=E_{p}\left(\boldsymbol{v}, \lambda^{p^{l}} ; \lambda^{-p^{l}}\left(E_{p}([\lambda], \lambda ; x)^{p^{l}}-1\right)\right) \\
&=\widetilde{E}_{p}\left(\boldsymbol{v}, \lambda^{p^{l}} ; E_{p}\left(p^{l}[\lambda], \lambda ; x\right)\right) \cdot G_{p}\left(F^{\left(\lambda^{p^{l}}\right)} \boldsymbol{v}, \lambda^{p^{l}} ; E_{p}\left(p^{l}[\lambda], \lambda ; x\right)\right) \\
&=E_{p}\left(T_{\lambda^{-p^{l}}} p^{l}[\lambda]\right. \\
&\boldsymbol{v}, \lambda ; x)
\end{aligned}
$$

Since the third equality is always true for variables, v, λ and x as in [5, Chap.4, p.29], the above last equality is true for any element (even nilpotent) $\lambda \in A$. Thus we must show the equality of $V^{l}=T_{\lambda-p^{l}{ }^{l}[\lambda]}$ in our case.

In order to show the equality, by Lemma 4.2 of [5], it is sufficient that we prove the equality $\lambda^{-p^{l}} p^{l}[\lambda]=(0, \ldots, 0,1,0, \ldots)$: all component is 0 except the l-th component 1. By the phantom map we can calculate $p^{l}[\lambda]=\left(x_{0}, x_{1}, \ldots\right)$ as follows. By the equality $\Phi_{i}\left(p^{l}[\lambda]\right)=\Phi_{i}\left(x_{0}, x_{1}, \ldots\right)$ for each i (where Φ_{i} is the Witt polynomial) we have the following equalities:

$$
x_{i}=p^{-i}\left(p^{l} \lambda^{p^{i}}-x_{0}^{p^{i}}-p x_{1}^{p^{i-1}}-\cdots-p^{i-1} x_{i-1}^{p}\right)=p^{-i}\left(p^{l} \lambda^{p^{i}}-\sum_{j=0}^{i-1} p^{j} x_{j}^{p^{i-j}}\right)
$$

We claim the following

$$
x_{i} \equiv \begin{cases}0(\bmod p) & \text { if } i \neq l \\ \lambda^{p^{l}}(\bmod p) & \text { if } i=l\end{cases}
$$

We show the claim by induction on i. If $i=0$, then it is obvious. Now assume that we have the following congruencies for $j<i$:

$$
x_{j} \equiv \begin{cases}0(\bmod p) & \text { if } j \neq l \\ \lambda^{p^{l}}(\bmod p) & \text { if } j=l\end{cases}
$$

If $l<i$, we see the following equalities:

$$
x_{i}=p^{-i}\left(p^{l} \lambda^{p^{i}}-\sum_{j=0}^{i-1} p^{j} x_{j}^{p^{i-j}}\right)=p^{-i}\left(p^{l} \lambda^{p^{i}}-p^{l} x_{l}^{p^{i-l}}-\sum_{\substack{j=0 \\ j \neq l}}^{i-1} p^{j} x_{j}^{p^{i-j}}\right)
$$

The assumption of the induction gives the following congruencies:

$$
p^{j} x_{j}^{p^{i-j}} \equiv \begin{cases}0 \quad\left(\bmod p^{i+1}\right) & \text { if } j \neq l \\ p^{j} \lambda^{p^{i}} \quad\left(\bmod p^{i+1}\right) & \text { if } j=l\end{cases}
$$

Therefore we obtain the congruence $x_{i} \equiv 0(\bmod p)$. In the case of $i \leq l$, it is similarly verified. Consequently we have the claim. Hence we obtain the equalities:

$$
\lambda^{-p^{l}} p^{l}[\lambda]=(0, \ldots, 0,1,0, \ldots) \quad \text { and } \quad T_{\lambda-p^{l} p^{l}[\lambda]}=V^{l}
$$

Lemma 2. ($\iota)^{*} \circ \phi_{2}=\phi \circ R_{l}$.
Proof. This follows from the definitions of ϕ and ($\iota)^{*}$.
Lemma 3. $\partial \circ \phi=\phi_{3} \circ \partial$.
PROOF. We can calculate $\partial E_{p}\left(\boldsymbol{v}_{l}, \lambda ; x\right)\left(\boldsymbol{v}_{l} \in W_{l}(A)^{F^{(\lambda)}}\right)$ by the direct product $\widehat{\mathbf{G}}_{m, A} \times$ $\widehat{\mathcal{G}}^{\left(\lambda^{p^{l}}\right)}$ such that the following diagram is commutative:

We choose an inverse image \boldsymbol{w} of \boldsymbol{v}_{l} for the homomorphism $R_{l}: W(A) \rightarrow W_{l}(A)$. By the commutativity of the diagram (8), φ should be given by:

$$
\varphi: \widehat{\mathcal{G}}^{(\lambda)} \rightarrow \widehat{\mathbf{G}}_{m, A} \times \widehat{\mathcal{G}}^{\left(\lambda^{p^{l}}\right)} ; x \mapsto\left(E_{p}(\boldsymbol{w}, \lambda ; x), \psi^{(l)}(x)\right)
$$

(Note that $E_{p}\left(\boldsymbol{v}_{l}, \lambda ; x\right): \widehat{\mathcal{G}}^{(\lambda)} \rightarrow \widehat{\mathbf{G}}_{m, A}$ is not a homomorphism.) We endow $\widehat{\mathbf{G}}_{m, A} \times \widehat{\mathcal{G}}^{\left(\lambda p^{p}\right)}$ with a group scheme structure such that $\varphi: \widehat{\mathcal{G}}^{(\lambda)} \rightarrow \widehat{\mathbf{G}}_{m, A} \times \widehat{\mathcal{G}}^{\left(\lambda^{p^{l}}\right)}$ is a homomorphism. i.e., the following equality should be satisfied:

$$
\varphi\left(x_{1} x_{2}\right)=\varphi\left(x_{1}\right) \cdot \varphi\left(x_{2}\right) \quad\left(x_{1}, x_{2} \in \widehat{\mathcal{G}}^{(\lambda)}\right),
$$

where

$$
\begin{aligned}
\varphi\left(x_{1} x_{2}\right) & =\left(E_{p}\left(\boldsymbol{w}, \lambda ; x_{1}+x_{2}+\lambda x_{1} x_{2}\right), \psi^{(l)}\left(x_{1} x_{2}\right)\right), \\
\varphi\left(x_{1}\right) \cdot \varphi\left(x_{2}\right) & =\left(E_{p}\left(\boldsymbol{w}, \lambda ; x_{1}\right), \psi^{(l)}\left(x_{1}\right)\right) \cdot\left(E_{p}\left(\boldsymbol{w}, \lambda ; x_{2}\right), \psi^{(l)}\left(x_{2}\right)\right)
\end{aligned}
$$

For elements $\left(t_{1}, y_{1}\right)$ and $\left(t_{2}, y_{2}\right)$ of $\widehat{\mathbf{G}}_{m, A} \times \widehat{\mathcal{G}}^{\left(\lambda p^{p}\right)}$, we choose x_{1} and x_{2} in the inverse images of y_{1} and y_{2} for the homomorphism $\psi^{(l)}$, respectively. Then the group structure of $\widehat{\mathbf{G}}_{m, A} \times$ $\widehat{\mathcal{G}}^{\left(\lambda^{p^{l}}\right)}$ should be given by

$$
\left(t_{1}, y_{1}\right) \cdot\left(t_{2}, y_{2}\right)=\left(t_{1} t_{2} \cdot \frac{E_{p}\left(\boldsymbol{w}, \lambda ; x_{1}+x_{2}+\lambda x_{1} x_{2}\right)}{E_{p}\left(\boldsymbol{w}, \lambda ; x_{1}\right) \cdot E_{p}\left(\boldsymbol{w}, \lambda ; x_{2}\right)}, y_{1}+y_{2}+\lambda^{p^{l}} y_{1} y_{2}\right) .
$$

Hence the boundary map ∂ should be given by the following formal power series:

$$
\begin{aligned}
F_{p}\left(F^{(\lambda)} \boldsymbol{w}, \lambda ; x_{1}, x_{2}\right) & =\frac{E_{p}\left(\boldsymbol{w}, \lambda ; x_{1}\right) \cdot E_{p}\left(\boldsymbol{w}, \lambda ; x_{2}\right)}{E_{p}\left(\boldsymbol{w}, \lambda ; x_{1}+x_{2}+\lambda x_{1} x_{2}\right)} \\
& =\prod_{k=1}^{\infty}\left(\frac{\left(1+\lambda \lambda^{k} x_{1} p^{k}\right)\left(1+\lambda \lambda^{p^{k}} x_{2} p^{k}\right)}{1+\lambda p^{k}\left(x_{1}+x_{2}+\lambda x_{1} x_{2}\right)^{p^{k}}}\right)^{\frac{1}{p^{k} \lambda^{k}} \Phi_{k-1}\left(F^{(\lambda)} \boldsymbol{w}\right)}
\end{aligned}
$$

To prove the equality of Lemma 3, we must show the following equality of the formal power series:

$$
F_{p}\left(F^{(\lambda)} \boldsymbol{w}, \lambda ; x_{1}, x_{2}\right) \equiv F_{p}\left(z, \lambda^{p^{l}} ; \psi^{(l)}\left(x_{1}\right), \psi^{(l)}\left(x_{2}\right)\right)(\bmod p),
$$

where z is an inverse image of the boundary $\partial \boldsymbol{v}_{l}$ for $W(A) \rightarrow W(A) / F^{\left(\lambda^{p^{l}}\right)}$. This equality is proved as follows:

$$
\begin{aligned}
& F_{p}\left(F^{(\lambda)} \boldsymbol{w}, \lambda ; x_{1}, x_{2}\right)=F_{p}\left(V^{l} z, \lambda ; x_{1}, x_{2}\right) \\
&=\prod_{k=1}^{\infty}\left(\frac{\left(1+\lambda \lambda^{p^{k}} x_{1} p^{k}\right)\left(1+\lambda p^{k} x_{2} p^{k}\right)}{1+\lambda p^{k}\left(x_{1}+x_{2}+\lambda x_{1} x_{2}\right)^{p^{k}}}\right)^{\frac{1}{p^{k \lambda p^{k}}} \Phi_{k-1}\left(V^{l} z\right)} \\
&=\prod_{r=1}^{\infty}\left(\frac{\left(1+\lambda^{p^{l+r}} x_{1} p^{l+r}\right)\left(1+\lambda^{p^{l+r}} x_{2} p^{l+r}\right)}{1+\lambda^{p^{l+r}}\left(x_{1}+x_{2}+\lambda x_{1} x_{2}\right)^{p^{l+r}}}\right)^{\frac{1}{p^{r} \lambda p^{r+l}} \Phi_{r-1}(z)} \\
& \equiv \prod_{r=1}^{\infty}\left(\frac{\left(1+\lambda \lambda^{p^{l+r}} x_{1}^{p^{l+r}}\right)\left(1+\lambda^{p^{l+r}} x_{2} p^{l+r}\right)}{1+\lambda p^{l+r}\left(x_{1}^{p^{l}}+x_{2}^{p^{l}}+\lambda p^{p^{l}} x_{1}^{p^{l}} x_{2}^{p^{l}}\right)^{p^{r}}}\right)^{\frac{1}{p^{r} \lambda^{p^{r+l}} \Phi_{r-1}(z)} \quad(\bmod p)}
\end{aligned}
$$

$$
=F_{p}\left(z, \lambda^{p^{l}} ; x_{1}^{p^{l}}, x_{2}^{p^{l}}\right)=F_{p}\left(z, \lambda^{p^{l}} ; \psi^{(l)}\left(x_{1}\right), \psi^{(l)}\left(x_{2}\right)\right) .
$$

Lemma 4. $\left(\psi^{(l)}\right)^{*} \circ \phi_{3}=\phi_{4} \circ V^{l}$.
Proof. We can calculate $\left(\psi^{(l)}\right)^{*} F_{p}\left(v, \lambda ; x_{1}, x_{2}\right)\left(v \in W(A) / F^{\left(\lambda^{l}\right)}\right)$ by the direct product $\widehat{\mathbf{G}}_{m, A} \times \widehat{\mathcal{G}}^{(\lambda)}$ such that the following diagram is commutative:
(9)

$$
\begin{aligned}
0 \longrightarrow \widehat{\mathbf{G}}_{m, A} \longrightarrow \widehat{\mathbf{G}}_{m, A} \times \widehat{\mathcal{G}}^{(\lambda)} \longrightarrow \widehat{\mathcal{G}}^{(\lambda)} \longrightarrow 0 \\
\| \downarrow \\
\| \longrightarrow \widehat{\mathbf{G}}_{m, A} \longrightarrow \widehat{\mathbf{G}}_{m, A} \times \widehat{\mathcal{G}}^{\left(\lambda^{p^{l}}\right)} \longrightarrow \widehat{\mathcal{G}}^{\left(\lambda^{p^{l}}\right)} \longrightarrow 0 .
\end{aligned}
$$

By the commutativity of the diagram (9), Ψ should be given by

$$
\Psi: \widehat{\mathbf{G}}_{m, A} \times \widehat{\mathcal{G}}^{(\lambda)} \rightarrow \widehat{\mathbf{G}}_{m, A} \times \widehat{\mathcal{G}}^{\left(\lambda p^{l}\right)} ;(t, x) \mapsto\left(t, \psi^{(l)}(x)\right) .
$$

We endow $\widehat{\mathbf{G}}_{m, A} \times \widehat{\mathcal{G}}^{(\lambda)}$ with a group scheme structure such that Ψ is a homomorphism. For local sections $\left(t_{1}, x_{1}\right)$ and $\left(t_{2}, x_{2}\right)$ in $\widehat{\mathbf{G}}_{m, A} \times \widehat{\mathcal{G}}^{(\lambda)}$, suppose that the product $\left(t_{1}, x_{1}\right) \cdot\left(t_{2}, x_{2}\right)$ is written as $\left(t_{1}, x_{1}\right) \cdot\left(t_{2}, x_{2}\right)=\left(t_{1} t_{2} G\left(x_{1}, x_{2}\right), x_{1} \cdot x_{2}\right)$, where $G\left(x_{1}, x_{2}\right)$ is a cocycle on $\widehat{\mathbf{G}}_{m, A} \times \widehat{\mathcal{G}}^{(\lambda)}$. Then we have

$$
\begin{aligned}
\Psi\left(t_{1}, x_{1}\right) \cdot \Psi\left(t_{2}, x_{2}\right) & =\left(t_{1}, \psi^{(l)}\left(x_{1}\right)\right) \cdot\left(t_{2}, \psi^{(l)}\left(x_{2}\right)\right) \\
& =\left(t_{1} t_{2} F_{p}\left(\boldsymbol{v}, \lambda^{p^{l}} ; \psi^{(l)}\left(x_{1}\right), \psi^{(l)}\left(x_{2}\right)\right), \psi^{(l)}\left(x_{1}\right) \cdot \psi^{(l)}\left(x_{2}\right)\right),
\end{aligned}
$$

on the other hand, we have

$$
\Psi\left(\left(t_{1}, x_{1}\right) \cdot\left(t_{2}, x_{2}\right)\right)=\Psi\left(t_{1} t_{2} G\left(x_{1}, x_{2}\right), x_{1} \cdot x_{2}\right)=\left(t_{1} t_{2} G\left(x_{1}, x_{2}\right), \psi^{(l)}\left(x_{1}\right) \cdot \psi^{(l)}\left(x_{2}\right)\right) .
$$

Hence, in order for Ψ to be a homomorphism, the following equality is necessary:

$$
G\left(x_{1}, x_{2}\right)=F_{p}\left(\boldsymbol{v}, \lambda^{p^{l}} ; \psi^{(l)}\left(x_{1}\right), \psi^{(l)}\left(x_{2}\right)\right)
$$

To prove the equality of Lemma 4, we must show the following equality:

$$
F_{p}\left(\boldsymbol{v}, \lambda^{p^{l}} ; \psi^{(l)}\left(x_{1}\right), \psi^{(l)}\left(x_{2}\right)\right)=F_{p}\left(V^{l} \boldsymbol{v}, \lambda ; x_{1}, x_{2}\right)
$$

but this equality has been already proved in Lemma 3.
These lemmas show that the diagram (7) is commutative. Hence we obtain the Theorem 2.

Acknowledgment. The author expresses gratitude to Professor Tsutomu Sekiguchi for his kind advice, suggestions and his careful reading of the manuscript. He is grateful to Professor Fumiyuki Momose for his warm encouragement. Furthermore he is grateful to the referee for his careful reading and his advice to improve the presentation. Finally he thanks Nobuhiro Aki, Takashi Kondo and Yuji Tsuno for stimulative conversations.

References

[1] M. Demazure and P. Gabriel, Groupes algébriques, Tome 1, Masson-North-Holland, Paris Amsterdam, 1970.
[2] M. Hazewinkel, Formal groups and applications, Academic Press, New York, 1978.
[3] T. Sekiguchi, F. Oort and N. Suwa, On the deformation of Artin-Schreier to Kummer, École Norm. Sup. (4) 22 (1989), 345-375.
[4] T. SEkiguchi and N. Suwa, A note on extensions of algebraic and formal groups IV, Tohoku Math. J. 53 (2001), 203-240.
[5] T. SEKIGUCHI and N. Suwa, On the unified Kummer-Artin-Schreier-Witt theory, Prépublication No. 111, Université de Bordeaux (1999).
[6] Y. Tsuno, Deformations of the Kummer Sequence, Preprint series, CHUO MATH No. 82 (2008).

Present Address:
Department of Mathematics, Faculty of Science and Engineering,
Chuo University,
1-13-27, Kasuga, Bunkyo-Ku, TOKyo, 112-8551 Japan.
e-mail: s87202@gug.math.chuo-u.ac.jp

