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Preface

In this series of papers, we are going to construct a theory of infinite
dimensional Lie groups, which will be called “regular Fréchet-Lie groups”
throughout this series. Roughly speaking a regular Fréchet-Lie group
is a Fréchet-Lie group (i.e., a Lie group modeled on a locally convex
Fréchet space) on which product integrals can be defined.

For instance, consider a continuous curve A(f) in the space M(n) of
n X n real matrices, which is naturally regarded as the Lie algebra of
the general linear group GL(n). It is well-known that the solution Z(t)
of

%Z(t)=A(t)Z(t) ., Z(0)=1I (the identity)

is given as follows: Let 4={t, ¢, ---, t,} be a division of the interval
[0, t] and let |4|=max |t;,—¢;_,|. Then,
lim T]72 exp (¢;4,—£,)A(L;)

141—0

converges, and the limit which is written as J[i{(1+A(s))ds gives the
solution Z(t). TIt¢ @+ A(s))ds is called a product integral of A(f). Remark
that for each fixed ¢, h(s, t)=expsA(t) is a smooth curve in GL(n)
satisfying

M, 0=I, 2| h(x, )=A®),

as 8=0

() h(s, t) is C" in s,
~g-}si(s, t) is continuous in (s, t) .
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It is not hard to see that lim,,._, II}= (¢4, —¢;, t;) also converges to the
same Z(t), even if we replace exp sA(t) by any other h(s, t) satisfying
above (*). _

Putting the above remark in mind, one can extend easily the concept
of product integrals to all finite dimensional Lie groups. Moreover, it
can be extended to all Banach-Lie groups, and moreover to all strong
ILB-Lie groups (cf. [9]). These facts will be proved in forthcoming
papers in this series.

Anyway, a regular Fréchet-Lie group is a Fréchet-Lie group on
which product integrals can be defined, and satisfies some nice properties
which are verified in finite dimensional Lie groups, Banach-Lie groups
and strong ILB-Lie groups. Therefore, in a regular Fréchet-Lie group
G, one can solve the equation

gzg(w:u(t)g(t) , 9(0)=g,€G

by using product integrals, where g(f) is a C* curve in G and «(t) is a
prescrived continuous curve in the Lie algebra g of G. Using this fact,
one can construct an analogous theory to that of finite dimensional Lie
groups. For instance, one can prove the followings:

(@) The structure of the Lie algebra determines the local structure
of a regular Fréchet-Lie group. Moreover, a continuous homomorphism
between two Lie algebras generates a local homomorphism between two
regular Fréchet-Lie groups.

(b) Let g(t) be a C* curve in that g(0)=e (the identity) and (d/dt)|,—.g=
weg. Then, lim, . g(t/n)* converges uniformly on each compact interval
to the one parameter subgroup exp tu gemerated by u. (The proof of (a)
and (b) will be given in forthcoming papers in this series.)

However, since general theories are sometimes very tiresome, we
would like to start this series with several examples. The most important
and interesting examples of regular Fréchet-Lie groups is the group of
all invertible Fourier integral operators of order 0 on compact manifold
N. This group is closely related to the group of the canonical trans-
formations in classical mechanics, and in a sense it is understood as a
quantized group of it (cf. the concept of quantized contact transforma-
tions in [11]).

Now, let G&#°(IN) be the group of all invertible Fourier integral
operators of order 0 over a compact manifold N. As a matter of fact,
one of main purpose of this series is to show that G °(IN) is a regular
Fréchet-Lie group. The Lie algebra of G °(N) is the space of all
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pseudo-differential operators of order 1 with real principal symbols.
There exists naturally a homomorphism @ of G5 °(N) into the group
2,8%) of all contact transformations on the unit cosphere bundle S}.
Since S} is compact, =,(S}) is a strong ILB-Lie group in the sense of
[9] or [10]. In fact, =,(S} is a regular Frécht-Lie group, and ®&:
GZ °(N)— =,(S%) is a smooth homomorphism. The kernel of @ is also
a regular Fréchet-Lie group, and in fact it is the group of all invertible
pseudo-differential operators of order 0.

There is a C~-local section A: Z,(S%) — G5 °(N) defined on a neigh-
borhood of the identity, which is sometimes called a quantization.
Obviously A\ is not unique, but the authors conjecture that )\ can not be
a local homomorphism in general. Now, let p'(N), I'.,(S%¥) be the Lie
algebras of G °(N) and =,(S%) respectively. Since @ is smooth, the
differential (d®), at the identity e is a Lie algebra homomorphism of p*(N)
onto I' ,(S}). The kernel of (d®), is the space p°(IV) of all pseudo-differential
operators of order 0. Namely, we have an exact sequence

00— P (N) — P (N) —> I'o(S5) —0 .

By (a) above, A can be a local homomorphism, if and only if the above
exact sequence splits. This problem is closely related to the second
cohomology group of I',(S%).

Next, we would like to mention about (b). Let P be a pseudo-
differential operator of order 1 with real principal symbol, i.e., P p'(N).
Let F(t) be a smooth curve in G °N) such that F(0)=0 and
(d/dt)| .~ Ft)=v"—1 P. Then by (b), lim F(¢{/n)" converges to the funda-
mental solution of the equation

—'—I‘ZI _— 1 Pl}/’t .
l! t

There are many methods to make a curve F(t), but in many cases F(¢)
is made from the one parameter group generated by the Hamiltonian
vector field on 7% given by the symbol of P. Remark that F({/n)" is
in fact a multiple integral operator. So, the faet that lim,_ .. F(¢/n)"
converges to the fundamental solution has a deep relevance to Fynmann’s
idea of path integrals.

In this series of papers, we are going to discuss these facts by using
group theoretical tools of regular Fréchet-Lie groups.

Introduction

A Fourier integral operator on R" is an operator written in the-form
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Fo@=\ | a@, 0, per=rvui)yds

by using an oscillatory integral. ¢(x, 6, y) is a non-degenerate phase
function defined on R*"XRYXR", and a(zx, 6, ¥) is called an amplitude
function. It is well-known that the above expression is not unique. We
may replace (a, §) by some other (a’, ') to get the same operator. We
can also change the number of f-variables. Even if we fix the phase
function ¢, the above expression does contain an ambiguity for the
amplitude.

To extend the above definition to a closed manifold N, we use local
coordinate systems on N, and we define a Fourier integral operator on
N as an operator which can be expressed micro-locally in the above
shape (cf. [1], [3], [6]). Therefore, the expression of a Fourier integral
operator on N contains usually a huge ambiguity. It depends on the
choice of local coordinate systems on N, on the choice of phase funec-
tions and amplitudes. To understand the covariant meanings of the
various quantities attached to the Fourier integral operators, one must
understand first of all the rule of “coordinate transformations”. How-
ever, it seems quite difficult to write down the general rule. It is also
quite complicated in the case of pseudo-differential operators. It is known
that principal symbols and subprincipal symbols have some covariant
meanings. ’

However, what we have actually in mind is an operator F' acting
on the space of the smooth functions on N, and a and ¢ for instance are
supplementary expressions when we want to compute concretely. This
situation is just like a point in a manifold. A point in a manifold has
various expressions as n-tuples of real numbers depending on the choice
of local coordinate systems.

Obviously, expressions of a Fourier integral operators contain two
sorts of ambiguities. One comes from the choice of local coordinate
patches on N, and another comes from the choice of phase function and
amplitude. Therefore, it seems to be useful to eliminate the former
ambiguities in the expression. Indeed this is a main purpose of this
paper. However, for that purpose we have to fix a Riemannian metric
on N, and we have to use normal coordinate systems. '

Let Exp, be the exponential mapping defined by the Riemannian
structure on N, and let K be a smoothing operator. Using these nota-
tions, a classical pseudo-differential operator on N can be written in the
form
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(Pu)(@)= ST‘ ST a(x; &)e 1 0y(x, Exp, X)u(Exp, X)dXds+ (Ko u)(x)

where v is a cut off function, and a(z; &) is a C~ function on the cotangent
bundle 7% having the following asymptotic expansion:

(*) a(@; &) ~as(@; E? +as_ (a5 E)rP +ag_y(ow; Eprti4 - -+,

where r=|¢| and a,(x; £)’s are C~ functions on the unit cosphere bundle
Si#. The real number g is called the order of P, and as(x; &)r* is called
the principal symbol. The feature of our pseudo-differential operator is
that all a;(z; £)»" have meanings as functions on 7% —{0}.

To write down Fourier integral operators in similar way, we need
more notations. Let ¢ be a symplectic transformation of positively
homogeneous of order one on T%—{0}. @ can be witten as o(x; &)=
(@i 8); Pa®; 8)), Po®; &) € T v Let {N(w; &)} be a suitable partition of
unity on T%—{0} by C~ functions A, of positively homogeneous of degree
0. Our Fourier integral operator F' can be written in the form

(Fou)(®) = 2 SS Ne@(Z; & X e~ Ker @O D814 X (yy ) (o, (25 £); X)dXdE
+(Kou)x) ,

where 4, is a quadratic form depending on @, and
u)'(y ; Y)=2(y, Exp, Y )u(Exp,Y) .

a(x; & X) is an amplitude function with an asymptotic expansion similar
to the above () (cf. (11) and (18)). The feature of our expression is in
the explicit appearance of symplectic transformation @, which plays of
course the same role as a phase function. The wave front set of the
distribution u— (F,u)(x) is contained in @(T%*—{0}) for every ze N (cf.
Lemma 3.2). In this sense, our operators form much narrower class than
that of [1], [5] and [6]. In their sense, if two symplectic transforma-
tions @, « satisfy @(T*—{0}) Ny (T*¥—{0})=@ for every x € N, then F,+
Fy, is a Fourier integral operator, while we exclude such cases (cf.
Remark just after (88)). However, our class is still enough to consider
the fundamental solution of a equation du/d¢=1v"—1 Pu, if P is a pseudo-
differential operator of order 1. (This will be proved from the group
theoretical view point in a forthcoming paper.)

If @ is sufficiently close to the identity, then we may put 4,=0 for
all @, hence F, can be written as

Fw)@)=\| at@; & X)e- 000y (@ (; 8), X)aXdg+(Kou)@) .



358 H. OMORI Y. MAEDA AND A. YOSHIOKA

Moreover, one can replace a(x; £; X) by some other b(x; £) which does not
contain the variable X. Therefore F, can be written as

(Fyu)@)=\blz; u(p(; )dag+ (Ko u)(a) ,
where vu is a sort of Fourier transformation of (vu)", defined by
vu(y; 77)=§Ne“‘”'”v(y, 2)u(z)dz , z=Exp, Y.

Now, consider Fourier integral operator of order 0. Then, the last
expression can be slightly modified so that it may contain no ambiguity
in expression. Let

b(a; &) ~bo(x; &) +b_y(; Eyr— +b_y(a: E)r—2+ - - -
be the asymptotic expansion of b. Then, one may regard
{2y Boy bsy by -+, K}

as a local coordinate of F,, if F, is sufficiently close to the identity in
some sence (cf. §5).

Therefore, one can give a coordinate system on a wvicinity of the
identity im the space of Fourier integral operators of order 0.

§1. Some geometrical tools and notations.

Throughout this paper, we denote by N a compact, n-dimensional
C> Riemannian manifold without boundary. By T,, T% we denote the
tangent and the cotangent bundle respectively. Fibers at x € N will be
denoted by T,, T* respectively.

Let Exp,: T,— N be the exponential mapping defined by the Rieman-
nian connection on N. For each x € N, there is >0 such that Exp,:
D,(r)— N is an into-diffeomorphism, where D,(7) is an open #-neighbor-
hood of 0 in 7T.,. The supremum of such » will be denoted by »,(x).
Since N is compact

ro=Iinf, .y ()

is still positive. We call 7, the injectivity radius of N.

Let {e, ---, e,} be a basis of T,. Then, every Xe€ T, can be written
by a linear combination X= X‘e,. The n-tuple of numbers (X, -.-, X")
will be called a linear chart on T,. Similarly, let e, ---, e* be the dual
basis of e,, - -+, e,. Then, every & € T* can be written in the form &=¢g.e'.
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(& -+, &) will be called the dual linear chart on T¥*. The natural
pairing {¢]X) of & and X is given by {(&|X)=¢,X? using a linear chart
and its dual linear chart.

If we fix a linear chart on T,, then Exp,: D,(r)— N gives a local
chart around «. So, a point X e D,(r) indicates also a point in N through
the exponential mapping. This point in N will be denoted by .,X. Thus,
y=.,X implies y=Exp, X. The above local coordinate system will be
called a normal chart around x.

We denote a point of T, by (x; X) where x is the base point of
(x; X) and Xe T,. For a point (y; Y) € Ty such that y € Exp, D,(r), there
are XeD,(r), X,e T, such that y=.,X, Y=(d Exp,);X,. We denote the
above situation by

(y; Y)=.(X, X)) .

(X, X,) will be called a normal coordinate expression of (y; Y) at ux.
The notation ., can be regarded as a mapping of D,(r)X T, into Ty.
This mapping will be called a normal, local trivialization around x. If
we give a linear chart on T,, then .,(X, X,) can be regarded as a local
coordinate system on T,. The above local coordinate system will be
called a normal chart around T,.

Similarly, a point in T3 will be denoted by (x; &), where z is the
base point and ¢e TF. For a point (y; %) e T3 such that y € Exp, D,(r),
there are X e D,(r), £ € T¥ such that y=.,X, n=(d Exp;!)¥¢. We denote
the above situation by

(y; 77)=x(X, 5) ’

and call it a normal coordinate expression of (y;7). The notation ., can
be regarded as a mapping of D,(»)X T into T%. This mapping will be
called a normal, (dual) local trivialization around x. The inverse
mapping of ., will be denoted by “*. Therefore one may denote (X, &)=
“(y; M), (X, X)=""(y; ¥Y) or X=""y, ete.

If we fix a linear chart X* ..., X" on 7T, and its dual linear chart
&, v, & on TF, then . (X, &)=. (X", ---, X", &, -+, &) can be regarded
as a local coordinate system on T%. This local coordinate system will
be called a normal canonical chart around T*. Now, suppose .,(X, X,) =
(y; Y), and . (X, &)=(y; 7). Then we have

(1) MNY)=<{7|(d Exp,)xX,>={7(d Exp.)x| X;>=<¢| X,> ,

where 7(d Exp,),=(d Exp,)57. We use this notation from time to time.
By dX, d¢ we denote the volume forms on each T,, T¥ respectively,
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i.e., letting g,; be the Riemannian metric tensor with respect to a normal
chart (X', ---, X*) around z, and g(x)=det (g,;(0)),

dX=Vg(x) AX'NdX*’N\---ANdX", dé= 1 d&é, ANd&N - - NdE, ,
and we set

1 1
X=—epdX, ==z .
d V2 e V'2r dé

Let z: T# — N be the projection. For a tangent vector ye T,.,T%,
we set

(2) ' 0 (D) =N | (A7) (gD -

Then, ¢ is a well-defined C* 1-form on T3, called the canonical 1-form.
By a normal canonical chart (X*, --., X* ¢, ---, &,) around T, the above
0 is expressed as &,dX® using the equality (1). Therefore, 2=—df is a
symplectic 2-form on Ty, which is called the canonical 2-form on T%.

Now, we consider the coordinate transformation between two different
normal charts. Suppose y=..X and suppose |Y|+|X|<#,. Then the
distance between x and .,Y is less than the injectivity radius 7, hence
., Y can be written as .,X, and Y depends smoothly on X, Xe T,. We
denote this funection by

(3) Y=S(z; X, X).

For a fixed X, S(x; *, X) is a C~ mapping of D,(r,—|X|) into T.,z=T,.
Obviously, if X=X, then S=0. Therefore S can be written as follows:

(4) S(z; X, X)=8,(z; X, X)(X—X),

where S,(x; X, X) is a linear mapping of 7, into 7,. Remark that

(5) S X, X)=25.a; X, X)[x-x=(@ Exp.)s .

Hence, S,(x; X, X) is invertible whenever |X|<7,. By Taylor’s formula,
we get

(6) Y=8(=; X, X(X—X)+Q(z; X, X)(X—X)*,

where Q(x; X, X) is a bilinear mapping of T.@7. into T,. _Note that
S,(x; X, X) and Q(x; X, X) are of C~ with respect to =, X, X. Since N
is compact, we see easily the following:
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LemMMA 1.1. [|Si(x; X, X)||, ||QGx; X, X)|| are bounded whenever | X1,
| X |=r/2.

Now, remark that Y=S(x; X, X) is the coordinate transformation
from a normal chart around x to a normal chart around y=.,X. Then,
we get the following:

Lemma 1.2. (1) Suppose y—:.,X and . (Y, Y)=.,(X, X,). Then
Y=8(x; X, X) and Y,=0S/0X)(x; X, X)X..

(2) Supposey=.X and .(Y, N)=.,(X, &). Then Y=8@: X, X) and
7080 X )(w; X, X)=¢, where 7(dS/6X)(x; X, X)=((35/6X)(x; X, X))*2.

Let (Xl’ ) X”’ &yt Su): (Yly ) Yﬁ, Ny =y 77n) be normal
canonical charts around T¥ and T respectively. We assume y=.,X and
| X|<7/2. Suppose

-a(le Tty X”, El; ) fn)—’:-y(Yl, Tty Y”’ Ny =0y 77n) -
Then, by the above lemma we see
Yi:Si(x; Xl’ ) X”, Xl, Tty X”)

5i:7]%(m; Xl’ ce v, X"" Xl, cee, X”) .

Hence, 2=dY*Adn,=dX*Adg,. Therefore
2"=dY*'N-- - AdY*AdY A+ - AdD,=dX N\ - AAX*"NdEN - - - NdE, .

Remark that if dX'A .- AdX"=CdX, then d&A--- Adg,=C*d&. Thus,
we get the following:

LemMMA 1.8. Supposey=.,X,and .Y, 9)=.,(X, &. Then, (1/(27)") Q"=
dYan=dXde. Moreover, if dY=J(x; X, X)dX, then dp=J(x; X, X) 'de.

Recall that S(x; X, X)e T, x. Hence if we fix X and vary X, then
we get a vector field. For an arbitrarily fixed X, we define S(x; X, X)

by
(7) (-.X; S(o; X, X))=.. (Y, S(x; X, X)) .

S(x; X, X’) is a normal coordinate expression of S(x; X, X) around ., X.
We define

7S 7y 0 g o
= (x; =—=Sw; X, X)|3% .
(8) X X)=-5S@ )2-x
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The above VS/6X is in fact the covariant derivative of the vector field
S(z; X, *), and (FS/6X)(x; X, X) is a linear mapping of T, into T z

LEMMA 1.4. Notations being as above, we see
oS & oy, VS v ©
e ; X’ X +——_.— ; X, X =O .
X(w ) 5 X(w )
PROOF. We use a normal coordinate expression S of S around . X.

Since S(x; X, X)=0, we get easily the desired one.

LEMMA 1.5.

o v >
oX 5% @ X Xfre=0

PrROOF. By definition of (7S/6X)|z-,, we have to take a normal chart
around x. So, let (%', ---, ¥y be a normal chart around =z, and let
x4, ---, X", (X4, ---, X*) be the coordinates of X, X respectively. Let
y@)=@'®), - - -, y*(t)) be the length-minimizing geodesic joining X and X.
Then, we see

& Sy d
S s X, X)=— t ’
(€7 ) e ‘=oy()
where S is the normal coordinate expression of S around 7,, that is,
(X, S@; X, X)=(..X; S(x; X, X)) .

Take the Taylor’s expansion of y(t) with respect to ¢ and substitute the
equation of geodesics. Then, we get

() x.x
SiS%— ...,
2!*310}2

(see [2]). Put t=1, and compute the inverted series for St*. Then, we
get

Y(t)=X*+tS—

§¢=X*-—X‘+%{ ;IGI_(X"—X")(X"——X")+ .
: e

Since { gk} =0, we see easily (3°S/0X0X )Ix—o—O This implies that

N
3% 370 X Dle==
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Let 6 be the canonical 1-form on T3, and let S} be the unit cosphere
bundle over N. The pull-back @w=1*@ by the natural inclusion 7: S} — T%
is then a C~ contact form on S}¥. We denote by <=,(S¥) the group of
all C~ contact transformations on S}. Namely, » € 2,(S%) if and only
if p*w=fw, where f is a non-vanishing C~ function depending on &.
For every &€ Z,(S%), one can extend & to a symplectic diffeomorphism
@: TH—{0}— T%—{0} by the following manner:

’ Let (x;%) be a point in S# such that e N and £cS*N. Then,
(x; rE) € T —{0} for every »>0. Suppose &(x; &) =(P,(x; &); Pi;E)). We
define @(x; r€) by

P(x; 1rE) = (cﬁl(x; 5);—:—;@(00; é?)) :
Since =7r®w on T}—{0}, we get
P*0=L *w=rw=0.
f .

By the above definition, @(x; &)= (@,(x; &); P,(x; &)) satisfies

(9) Px; 1E)=P,(%; &) , Pu(tr; 1E) =1rPy(20; &)

for every r>0. We call a diffeomorphism @ on T%—{0} to be positively
homogeneous of order 1, if @ satisfies (9). We denote by =" the group

of all symplectic diffeomorphisms on T%—{0} of positively homogeneous
of order 1.

LEMMA 1.6. 2" is isomorphic to =2,(S¥). Moreover, every ¢ € 2
satisfies p*0=40.

Proor. By the above argument, we have a monomorphism V of
Z,(8%) into =" which is defined by V(®)=¢ for any @ € =,(S¥). Thus,
we have only to show the surjectivity of V. Let @(x; &)=(@(x; &); @.(x; &))

be an element of &{". Since ||@,(x; £)||50, we define a C~ diffeomorphism
SN"—)SN by

P(x; &) = (P(x; &); Do(w; &) = (y(; &); f(; E)pula; E))

where f(z; &) =||p.(x; £)||~*. Since @ is positively homogeneous of order 1,
we see that

(Pu(; 7E); Pu(w; 7E)) = (%(w £); Wz(x E))
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As 9*2=0 and 2= —d(rw) on T§—{0}, we see
* — T ~w, 0\ '
P d(rw)—d(-f¢ w)—d(ra)).

Hence

1 P 1 Aok —
d'r/\7¢ w+rd(7¢ w)—dr/\w—f—'rda).

Therefore o*w/f=w, hence $ e Z,(S}). It follows the desired surjec-
tivity. Moreover, we see that ¢*#=6 by the previous argument.

Since =Z,(S%) is a topalogical group under the C~-topology, so is =g
by the above identification. As a matter of fact, = (S}) is a strong
ILH-Lie group (cf. [9]), (and hence it is a regular Fréchet-Lie group).
However, this fact has no direct relevance to the present paper.

Let pe 2", o(x; &)= (p:(x; &); Puw; €)). Then, @, is a C~ mapping
of T% onto N. Therefore the derivative (09,/0¢)(x; &) makes sense as a
linear mapping of T into T, ..,. However, since the base point varies,
the derivative (0p,/0¢)(x; &) has no invariant meaning. We define the
covariant derivative (Fe,/og)(w; &) as follows: Let &,(x; &') be the normal
coordinate expression of @,(x;&’) at the point ¢,(x; £). Namely, we define
P, by

nmer( X, Pola; €)= (Py(; &7); Puow; £7)) .

Then, F,/o; is defined by (Pp,/d&)(x; &) =0/0¢'Py(%; &) |er=e-
Now, remark that 7% is diffeomorphic to the unit disk bundle D}
in T%. The diffeomorphism z: Df— T% may be given by

~

(10) o(x; 608) = (w; (tan —”5)5) ,

where (x;8)e Sk, 0¢[0,1). Let Di be the closure of Df in T%, and
Dy(r,) the closed disk bundle in T, of the radius »,. Let Di@D(r,) be
the Whitney sum (fiber product). We denote by C~(Di@D,(r,) the
space of all C-valued C> functions on Di@D,(r,), and by C=(D%) the
space of all C-valued C~ functions on D#, where a function f defined on
a manifold with boundary is called to be smooth if f can be extended
smoothly to a neighborhood of this manifold.

Under the C~-topology, C=(Di@Dy(r,) is a locally convex Fréchet
space, and C~(D%) can be naturally imbedded in C=(Di@Dy(r,) as a
closed subspace. Define a diffeomorphism
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o ﬁ}'&@ﬁN(?‘o)-——‘* TzﬂGeDN(’"o)

F(w; 0, X)=(x;<tan Ezi)g, X) .

For every fe C=(Ds@Dy(ry), a(x; ¢, X)=%"*f is a C= function on T3P
Dy(7,) having the following asymptotic expansion corresponding to the
Taylor’s expansion of f at 6=1:

(11)  a(z; 7€, X)
~a(x; g, X)+a_(x; é, X)r'+ .- +a_(x; g, X)rtg...,

where >0, and a_,(x; &, X)’s are C~ functions on Si@D,(r).

We define the space i‘,’; by

~

2e={a(; § X); a(x; &, X)=T"*f, feC(D}@Dy(r.))} .

The space i% will be called the space of symbols of order 0 or the space

of amplitudes of order 0. f‘,‘é is a locally convex Fréchet space through
the identification #*. Similarly, we set

Se={alw; &); a(x; &)=7""*f; fe C~(D})} .

D¢ is a closed linear subspace of i"c.
Let #(r) be a C~ non-decreasing function on [0, «) such that p(r)=1
on [0,1] and p(r)=7 on [2, «). For any real number B, we denote
e=p(r)? 356, Se=p(r) e
Let C~(Nx N) be the space of all C-valued C~ functions on Nx N
with the C~-topology. Since N is compact, C*(Nx N) is a locally convex
Fréchet space. For every K(x, y) € C>(Nx N), it defines a linear operator

(12) (Keuya@)=| K, yyuwdy, weC(N),

where C~(N) is a Fréchet space of all C~ functions on N, and dy is the
volume element on N. An operator such as (12) is called a smoothing
operator, and a function K is called the smooth kernel of K.

A C= function v(x, ¥) on NX N will be called a cut off function, if
v(x, y) satisfies the following;

(a) O0=y(z, y)=1, »(x, y)=2r(y, ).

(b) There is ¢ such that 0<e<7, and »(x, y)=1 if po(x, y)<¢/3, where
o is the distance function on N.
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(e) v(x, ¥)=0 if o(x, y)=2¢/3.
The number ¢ will be called the breadth of v.

§2. Non-degenerate phase functions.

Let p=(p,; p,) € 2. For a function b(y;7, Y) eié, we set

(13) a(x; & X)=b(p,(x; &); Pulx; &), X) .

a(x; & X) is a C~ function on the pull-back bundle of T, by the mapping

®,: Tx—{0}— N. We denote by f‘,,‘l the space of all such functions. For
a cut off function v and w € C*(N), we set

(14) wu)(y; Y)=v@, zY)u(.,Y).

Fourier integral operators that we are going to define in this paper
are written in the form

15) (F(p, a, v)u)(x) |
=2 ST, ST N5 £)a(; &5 X)em wals D=4 (o) (o (a5 £); X)dXdE
] ¢1(23€)

where @ € &Y, aeiﬁ, {\} is a suitable partition of unity on T%, and
A./s are quadratic forms in X.
In this section, we are mainly concerned with the phase function

{py(x; &) | XD+ 6| AX) .

Especially, we discuss here how we should fix A4,(X) to make the phase
function non-degenerate.

For a fixed ye N, let .(Y*, ---, Y*, 7%, -+, 7,) be a normal canonical
chart around T*. We fix a point 7€ Ty. Let (0, ---,0,7, ---,7%,) be
the coordinate of (y;7) by the above coordinate system, i.e., (y; )=
'y(o9 Ty 0’ 771’ Tty ‘i]—n)' Set 774=v_£+C¢, and (Zly ) Zn, Cu Tty C.) can be
naturally regarded as a linear chart of T, T%. The canonical 2-form
2 on T% defines naturally a symplectic bi-linear form ¢ on T, T If
#w=UZ, T, 3=, ¢» in T, Tx», then o is given by

(16) (31, 3)=XC*Z1) —<C' Zo) .

If we change a linear chart on 7T, by 'Y*=Ai{Y*, then the dual linear
chart is changed by 'p,= B!y, such that Bf4i=4;. Therefore, the splitting
of T,7Ty% into the Z-space and the (-space does not depend on the
choice of normal canonical charts. We can naturally identify the Z-space
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by T, and the {-space by T*. Moreover, the above argument shows
that the expression of o does not depend on the choice of normal canoni-
cal charts. Let m, (resp. m;) be the projection of T, T% onto the Z-
(resp. {-)space.

Now, suppose we have a Lagrangean subspace E in T,z T%.

LEMMA 2.1. (7 (2)|72(9)) =<7V |7,(x)) Sfor every x,veE.

Proof is trivial, because F is a Lagrangean subspace, hence o(x, y)=0
for any x,pe E. (cf. (16).)

The above lemma shows that {(z.(x)|7,(9)> is a symmetric bi-linear
form on E, and if 7.(x)=0, then (7. (E)|x,(x)>=0. Let K. be the kernel
of 7;: E— Ty. Then, it is evident that =,: K,— T, is an injection. Since
N is a Riemannian manifold, one can take the orthogonal compliment F
of 7,(K;) in T,. Hence T,=F@r,(K.) and every Y e T, can be written
as Y=Y,+Y, Y, eF, Y,en,(K,). We define a quadratic form

a7 ax(Y)=|Y,|*

on T,. As a matter of course, if K,={0}, then we set az(Y)=0.
Now, we shall give coordinate expressions of =, ©, and a,. Let
Y’ ---, Y* be an orthonormal chart on T, such that =,(K,) is given by

Y'=...=Y'=0. Letw, ---,%, be the dual linear chart of Y*, -.-, Y™
Since (7. (E)|m,(K;))=0 by the above lemma, and since {(|Y)=7»,Y",
we see that = (F) is given by 7,,=---=79,=0. Obviously, az,(Y)=

S Y9)R

Let p=(®,; #.) be an element of Z¢". For a fixed (F;&)e T5—{0},
we set (¥; 7)=9&; &) =(p.(T; &); P(T; £)). Since @ is a symplectic diffeo-
morphism, (dp)zs,T*¥=FE is a Lagrangean subspace of T, T%. Thus,
one can define a quadratic form on 7, by the above manner. We denote
this quadratic form by A,5,(Y). As a matter of course, if K,={0}, then
A,7=0. Such a point (y; 7)=¢(%; &) will be called a non-degenerate point
of . We extend this quadratic form A,5, on T, to a neighborhood of
T, by the following:

(18) Ayay@'; Y)=A4,7((d Exp;"), Y") .

Now, we recall the defining equality (15) for a while. We define
?o; Y, by

Pyx; &)=, ?o

19
( )' oo X = Y; .
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Since @ is positively homogeneous of order 1 (cf. (9)), Y,=7Y. (z;¢) is
well-defined on a conic neighborhood U’ of (%; &), and X is given by

(20) X=8(y; Y, Yo(x;8) .
Using these notations, (15) can be rewritten as follows:
F(a, ¢, vVu=3,, F(\a, ®, V)u ,
(F(naa, 9, v)u)()
=| | aze-teamin(, 7, ., Vyu(, Yavee,

where

@) {a:(w; E1 Y1) =Na(2; )a(x; & X)dX/dY,
$o(%; §| Y1) ={Pu(x; &) | XD+ 4| Au(X) ,

and

X=Sy; Y, Yix;2).

There are a conic neighborhood U of (Z;%) and a neighborhood V of 0 in
T, such that a} and ¢, are well-defined C~ functions on UX V.

DEFINITION 2.2 ([6]). A function ¢(x; £|Y,) defined on an open conic
subset I in UX V such that ¢(x; 7| Y)=ré(x; £|Y,), >0, is called a non-
degenerate phase function, if for each fixed x, ¢ has no critical point in
I'" and at any point in the set C, defined by

C.={(¥, &) 3@ ¢1 70 =0}

the differentials

351 55»

are linearly independent.

Now, we go back to our situation. For a Lagrangean subspace E=
(dp)zn Ty, we have defined a quadratic form A,z (y’; Y’) around T,.
We consider the following function

(Pu; &) [ XD + 16| Aym(pi(a; 8); X) .

If we take (21) in mind, we can understand the meaning of the following:

d(ﬁé-) ce, d<—a—9-5—> (ﬁvhere m is ﬁxéd)
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PROPOSITION 2.3. Notations being as above, the function ¢ defined by
{qﬁ(x; g1 YY) =Lpu; &) | XD+ (& Aum(Pu(®; §); X)
X=8(y; Y, Yo(x;8), Yo &)=px;8),
18 non-degenerate on U'X V', where U’ is a conic neighborhood of (T;&) e
T%—{0} and V' is a meighborhood of 0 in T,.

Although the proof will be given in several lemmas below, we should
remark at first that we may prove the above lemma by using normal
coordinate expressions.

To get a normal coordinate expression around y, we set

(Pi(a; 8); X)=.,(Po(w; &), X)
(@3 £); Po(ar; £)) = (Pi(x; &), Pula; £)) .

Obviously, ¥,=%,. Since (p,(x; &)] X>=(Fu=; &)| X> (cf. (1)), the normal
coordinate expression of ¢(y; £|Y,) is given by

23 | (Pl )| X +18| Ay X)

Let S(y; Y,, Y.(x; ¢)) be the normal coordinate expression of S around
T, ie.,

(22)

(- Yol®; 8); S(y; Y, Yola; ) =.,(Yolx; &), S(y; Y3, Yolx; 2)) .
Therefore, we see
(24) X=8; Y, Yu(x;8), y=2.&% .
LEMMA 2.4. |

0
¢

PRrROOF. Since Y,= Y,(«r; ¢) implies X=0, we have only to show that

¢ |Y1—Yo(5 36) = O

i<<p2<x; 1SW; Vi, T3 ) lryFyme =0 .

The left hand side is equal to {(@,(x; §)|(VS/6Y0)(y, Y, Y.)(@0Y,/0¢)). Since
S(y, Yi(x; &), Yo(w; £)=0,
we see (cf. Lemma 1.4)

oS 7, Yo)aY0+ VS v ¥, Yo)aYo_

Y, v ¢ oY, o¢
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Thus, we have only to show that

(i | T3 Pulws ), Tulas 9 2P )=o)

On the other hand, if we put @(x; &) =., 0P (x; &) then

€’=e) = -ﬂ(z;e)(o, 0pi(w; &)

0P(x; &) _ .,,(971(:»; g), 9%@; &) s

o o0&’
Thus by Lemma 1.2 (1), we have

0p,(x; &)
&’

E’=E>

_ oS YV v a¢1(x; E’)
€’=€_—3Y1 (5 Yo, Y0) EYg

§/=¢

Therefore, we have only to show <(@,(x;&)|(08,/08)(x;&))=0. Since
(09,/08)(x; &) can be naturally identified with o¢,/0s(x; ), we may write
the left hand side as {(@.,(x; &)|(op,/0&)(x; &)).

NOW, let 'z(le ) X”’ §, * 0y Sn)’ '¢1(z:$)(‘X,—1, Ty X’”, »ély ) E,n) be
normal canonical charts around T3, T} ., respectively. Since e "
and hence *¢=6 (cf. Lemma 1.6), we see that if

{Xi=¢:(‘zl’ STty X”’ &1, * 0y En) ’
$(=¢2.¢(le Tty X“’ 51, Y En) ’

then
PINY ). oFT T ). ST
gdXi=¢, 5 X’.dX"i-& Y dé;=g;d X7 .
Therefore,
aX*t
&W—Ei
(25) é aX'i _
*og;

The second equality implies {@.(x; &)|(0op./05)(x; &)) =0.

Now, we consider at the fixed point (F;¢). Since y=¢,(%; %), and
- Yo(@; &)=@,(x; &), it is clear that Y (x; §)=0.

18 a non-singular matrix.
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Proor. Let .;( X%, ---, X" &, -+, &) and (Y%, ---, Y™, 5, -+, 7,) be
normal canonical chart around 7% and T} respectively. By the same
argument between (17) and (18), one may assume that Y* --., Y, and
hence 7,, - -+, 7, are orthonormal charts and 7 (d®);: T =T.(E) is given
by 7,4,=0, ---,7,=0. If we put

(P1; P = (P, =+, P, Py **, Porn)
(Y0 )= (Y, -+, T, 8, -+, 87
by the above normal chart, then
8(; £| V) =5..®; S w; Yy To@; ) +18| St Sity; Y, Tu(@; 0))°
Remark that YZ;£)=0 and S(y; Y,, Y,)=0 if Y,=Y¥,. Hence

0% _ 0Py, oS 0, 0 2S¢
’ + 2,1
3o, | ¢-5, 35,( S)ayk(y )+ Do, o(; f)asaY" -7,
85 oS¢
+215|Zi HLGY"(y 0’03$, Eio.
Since S(y; Y,, 0)=Y,, we see a5://0Y *(y; 0, 0)=45,°. Moreover,
°S __ 8 oY! @ B=
02,0Y," le=2, 9YOYEI =0 B,
because of Lemma 1.5. Therefore, we obtain
= 0
P | _ 0Pz §2|sl—f o ezl+D)
OYFog; Ii=F, 0% @ 5”( %4
= 0 k1) .
Note that
5 = Ey_ _ S RN D (P N,
» Yo(Z; €)) aYI oo 2%, . ;6)= 2z, Z; &) 2z, (x; ‘5) .

The last equality is simply because of =7,

Now, remark that (0%,,/08;)%;&) =0 for k=1+1 because that
w(dP)e Ty is given by 7.,=---=7,=0. By a suitable linear change
of normal chart .(X*, ...; X" &, ---, &), we may assume that

(e )= 5
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Hence the kernel K, of zn;: E— T (y=9(%&;&)) is given by (dp)smnFE’,
where E’ is the space spanned by &4, -, &. Since w;: K, — T, is in-
jective, we see m (d®)zz: E' — T, is injective. Recall that the image
.(dP) s E’ is given by X'=-.-=X'=0. Therefore, we get that

(%f—f(fv', g))lﬂsk,isn

is non-singular. It follows the non-singularity of (9%p/d Yro&,)(Z; £|0).

By the above lemma, there are a conic neighborhood U of (%;£&) in
T%—{0} and a neighborhood V of 0 in T, such that ¢(x; £|Y,) (cf. the
statement of Proposition 2.3) satisfies that 9°5/0Y,0¢ is non-singular on
Ux V. Therefore, the equation

g.?(z; LY)=0, (5C|Y)eUxV

defines for each fixed #z an n-dimensional submanifold L,, which contains
the submanifold {Y,=Y(z;{)}. Because of the non-singularity of ¢, one
may assume the following without loss of generality:

(A) For a point (z;C|Y,)e UXYV, (04/08)(z; £|Y,)=0 if and only if
Y1: ?o(z; C)

The following lemma completes the proof of Proposition 2.3:

LEMMA 2.6. On UXV, the function ¢(z;{|Y,) s a non-degenerate
phase function.

PrROOF. It is clear that ¢(z; »{|Y,)=7r¢(z; {|Y,) for every r>0. There-
fore, we have only to show that ¢ has no critical point. So, suppose
(2;£]Y,) is a critical point of ¢ with respect to {, Y,. By the above
property (A), we get Y,=Y(z;0). Hence X=S(z; Y, Yz;)=0.
Therefore,

0p_,. =
aYI(z,CIYl) 0

if and only if (®,(z; {)|(8S/0Y)(z; Yi(2; L), Yo(z; £))) =0. Note that |

oS v T
-a-_YT(z; Yo; Yo)=(d Expl);’-o ’

and we may assume without loss of generality that (d Exp,)7, is non-
singular, if U and V are sufficiently small. Therefore, ¢(z;{|Y,) is



FRECHET-LIE GROUPS 373

critical if and only if @,(2;{)=0, but this is impossible because @ is a
diffeomorphism of T%—{0} onto itself.

As an immediate conclusion from Proposition 2.8 and the above
argument we get the following:

COROLLARY 2.7. Let pe Z§. For a fized point (%;&)e TH—{0}, we
set (y; N)=@(&;§). Then, there are a conic neighborhood U of (%; &) in
T%—1{0} and a neighborhood V of 0 in T, such that the fumction ¢ defined
in Propogition 2.3 satisfies the followings:

(a) o(z; £]Y,) 28 a non-degenerate phase function on UX V.

(b) For each fixed x, (34/0¢)(x; £]Y,)=0 if and only if Y,= Yy(x; &),
where ., Yo(x; &) =2,(x; &).

§3. Fourier integral operators on a compact manifold.

Suppose we have a symplectic diffeomorphism @€ =$ and an

amplitude a(x; &; X)ef_‘,{i. By Corollary 2.7, for each point (¥;%)e S%,
there are a conic neighborhood Ugzgz of (%; &) in T%—{0} and a neighbor-
hood Vi, 7 of 0 in T, 7 such that the function ¢ defined by

d(x; &1 Y) = (py(z; O XD +|&| Apm(Pu(a; &); X)),
(26) X=8(y; Y, Yox; 8), ., Yox;8)=p(x;¢),
y=p.(T; &)

satisfies (a) and (b) in Corollary 2.7 on Ugg X V%(,, ).
Now, we set

Wz =1{(w; &) € T%—{(0}; po(:(&; &), %(w, £)) <6} .

Since @ is of order 1 (cf. (9)), Wzt is a conic neighborhood of (%; &) in

T%—{0}. We can choose d=0(%;&) so that it may satisfy that W; i c

Uiz and that the 20-neighboorhood of 0 in T, 7 is contained in Vi a).
As S} is compact, there are finite number of points {(%,;£,)} 1=sak

in S} such that T3—{0}=U, W,, where W, =W _ ""’a 0, Set
(27) d,=min, 6(Z,; &,) ,

and let {A.(x; &)hi<.<; be a partition of unity subordinate to the above
covering {W_ hz.<: such that A, (x; 78)=)\,(x; &) for every »>0. Let v_be
a cut off function of the breadth less than 4,. Putting (y.: 7.)=2&,: £.),
we set
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{m(w; &; X) =< pux; &) | XD+ A (p:(x; &); X)
A (Pi(z; 8); X)=Ay 75 P:x; 8); X)),
where
{ X=SW, Y, Yo(x;8), ., Yx;8)=p(x;¢),
ya=¢1(£a; ga) . A

Under these notations, we consider the operator written in the form (15).
To prove F'(a, @, v)u is well-defined is to prove that each

(28) (F(\a, @, v)U)()
=\ | @ oa & e 0u) (s ); X)aXag
z e3(23§)
is well-defined. To do so, we use the normal coordinate expressions
around T3 and T,,, where y,=@y(Z,; £,). Thus, set
| ?l(w; $)='ym Yo(a’; E) ’ '¢1(z;€)X=-ya Yl .

Then, (28) can be rewritten as
|, auas sl vpessaarong, B, L, Youl,, YoaYide
Ty JT,

where ¢, is defined by (26) replacing A, by A,, and

(29) {aa(x; &Y=, (x; &alx; &; X)daX/dY,

X“—‘-S(’.lla; Y, 70(93; &)

Since we may assume (x; &) € W,, @:(x; &) is always contained in a 6(Z,; £,)-
neighborhood of ®,(%,;&,) =%y, and hence |Y(x;&)|<d®,; &,). Since v=0
if |X|=0,=min,d(%,; £,), we have only to consider the points Y, e T,,
such that |Y,|<20(%,;&,). Remark that such a point is contained in
Va3 Since W, Ui, z,), the phase function ¢,(x; £|Y,) is non-degenerate

on W,XV, iz, Thus, by Theorem 1.4.1 [6], we obtain the following:

THEOREM 3.1. F(\.a, @, v) i8 well-defined by an oscillatory integral
as a continuous linear mapping of C=(N) into itself. Therefore,

F(a, ¢, v)=23.. F(\ 0, @, v)
18 an well-defined operator of C=(N) into itself.

For an arbitrarily fixed e N, u +— (Fl(a, @, v)u)(x) can be regarded
as a distribution.



FRECHET-LIE GROUPS 375

LEMMA 3.2. The wave front set (cf. 2.5 [6]) of u~ (Fl(a, @, v)u)(x) is
contained tn @(Ty—{0}).

Proor. We have only to show that the wave front set of u ~—
(F(n,a, @, v)u)(x) is contained in (W) Ne(T*—{0}). In accordance with
2.5.7 in [6], we consider the subset

09y 5¢a
e {(v, St EY)); @381 Y) e W,x V,, Lo ¢ ¥)=0} .
In a normal coordinate expression around y,, the wave front set is
contained in the above set. By the property (6) in Corollary 2.7, we
see that (9¢,/0¢)(x; £|Y,)=0 if and only if Y,=Y,(x; ). Remark that Y,=
Y,(x; &) implies X=0. Hence

a¢a — . _Q§_ o« V(e V (-
an e s =P 9| 2 s T ), Folas 20)) -

Remark that (6S/0Y,)(y.; Yo(x; &), Y(x; £)=(d Exp, )7, and hence
(32) (P 0] 25 T, Y, ¥0))=(@ Exp, )}, 2% &)

hence the right hand side of (31) is the normal coordinate expression of
@,(2; £). Namely, if we set

W(Pi(as; ), Folt; &) =(Pu(; &); Pu(x; 8))
then

Py(x; &)= Yo(x; &)
Folw; &)= aa‘;’, (@; &| T 2))

This implies the wave front set is contained in @(W,)N@(T*—{0}).

. REMARK. If FY(a, @, v) in the above lemma is the identity operator,
then the wave front set of w I~ (F(a, @, v)u)(x) is T* —{0} for every x € N.
Therefore, we see that (T —{0}) D T* — {0} and hence @(T*—{0})=T*—{0}.
Therefore @=identity, by virtue of Lemma 5.6.

LEMMA 3.3. Let v' be another cut off function of the breadth less
than o, (cf. (27)). Then

F(a’ P, ”)“F(a, P, D’)
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18 a 8smoothing operator.
PROOF. Notations being as above, we have only to show that
F(n,a, ¢, v)—F(\a, @, V')
is a smoothing operator. Now, remark
(F(nog, P, ¥v)—F(A @, P, v))u)(x)
={ | nea@; & e-stem -y (a3 09; Xraxae .

Since (V—V')(Py(®; &), -p,:0X)=0 if X is sufficiently close to 0,
{a;’(w; E1Y)=N0(; & X))@ —v)Pi(®; &), cpymirX)
X=8(p,(Z,; ga); Y, I—’o(a’; &)

vanishes on a coniec neighborhood of

— Yt . 0y —
Cu={@; 6170 € Wx Vs Zotas ¢ ¥)=0} ,
because C, is given by
(@3 &1 V(s ) 6 € TH— (O} N WX V,, .
Hence by Proposition 1.2.4 or 5 in [6], we get the desired results.

Now, suppose we have a C~ diffeomorphism + of N onto itself.
Then,  defines a symplectic diffeomorphism 4 € 2% as follows:

(33) P(@; &)=y (@); (¥)2¢) .

Therefore, the group 2 (N) of all C~ diffeomorphism on N is naturally
imbedded in the group =§’. Note that each point (y: 7)€ T%—{0} is a
non-degenerate point of + (cf. between (17) and (18)). Thus, if pe
=7y is sufficiently close to the group =7(N), then ® has no degenerate
point, and we have no need to consider the quadratic forms A_(X).

In such a situation, our Fourier integral operator (15) can be written
in the form

(34) (F(a, 2, v)u)(x)
=Sr‘ S a(@; &; X)e-<eaeoiD(yy) (o, (x; £); X)dXde .
z JTp)(2:6)

If we set 2=, ,:0X, dz=J(@,(2; &); X)dX, where dz=(27)~"*X (volume ele-
ment), and a'(x; &; X)=a(zx; & X)J(@(x; £); X)™*, then (34) is changed into
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@)  (F@, 2, vyu)@)
N Sw* SN a'(m; &5 X)e™ w20 V(o (a; &), 2)u(2)dzde ,

X=r1@:8°y

Suppose furthermore that the amplitude a’ does not contain the
variable X. (See also the next section, the variable X can be always
eliminated if ¢ is sufficiently close to the identity.) If this is the case
the above operator (85) can be written in the following simple form:

(36) (@, @, vyu)a) =  a'(z; YDulp(a; )at ,
where vu is a sort of Fourier transformation of (vu)’, defined by
(37) uly; 7))=S e X1 D(y, 2)u(2)dz .

N

The right hand side of (86) can be defined without using oscillatory
integrals, because (vu)(y; Y)=v(y, .,Y)u(.,Y) has a compact support in
Y, and hence the Fourier transform of J(y; Y)v(y, ., Y)u(.,Y) is rapidly
decreasing in 7.

If p=identity in (34), such an operator is called a pseudo-differential
operator. In this case, the variable X in the amplitude can be eliminated
by the same method as in [8]. Hence a pseudo-differential operator on
N can be written in the form

(38) (Fa, 1, @)=\  at@; oou; e .

REMARK. It is not hard to see that the symbol a(x; &) may be
recaptured modulo rapidly decreasing functions from the action of the
operator (cf. [8]). Moreover, every pseudo-differential operator in the

sense of [8] with an amplitude function aeié‘ can be written in the
above shape (38) modulo smoothing operators.

However, there is an essential difference between our operators (15)
and Fourier integral operators in the sense of [6] or [4]. Consider two
elements @, 4 € 2§ such that o(T% —{0}) Ny(T* —{0})=2 for every x € N.
Then, F(a,, @, v)+ F(a,, +, v) is a Fourier integral operator in the sense
of [6] and [6]. Our operators are contained in much narrower class than
that of [6]. However, we restrict to this narrower class from the group
theoretical view point.
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EXAMPLE. For a positive number ¢ such that 0<e<7, we denote
by S.(¢) the e-sphere whose center is the origin in the tangent space T,
at a point x of N. Let do the volume element on S,(c). The operator

(Au)(x)= S u(Exp, X)do is called the e-spherical mean on N. It is
Sp(e)
known in [12] that _7 is a Fourier integral operator of order —(n—1)/2

in the sense of [6]. However, _# is in fact the sum of two operators
of the type (15).

For simplicity we assume that ¢<r,/3 and let v be cut off function
of the breadth »,. Define symplectic diffeomorphisms

P.(x; &)= (lsgl.é) ¢_(w;$)=-,( I ;f,é)

by identifying 7, and T through the Riemannian metric. Then, in fact

-/Z:u:F(a"H Py ”)u_’—F(a—) P, p)u ’
where a. € 3" "2 More precisely, a. is given as follows: Set z=.,X
and dz=J(x; X)dX. Then

euzel@/léhbJ@; sX’)dO‘(X) .

sn—1

a.(x; &) =e 1! S

 Using the stationary phase method, we get the asymptotic expansion

@l £)~ (@MY= (@ 68| (e € )7+ Ay(e | g )
+ Aelg)

Now, assume that o ¢ Z§ is sufficiently close to the identity in the
C'-topology. Then, one may assume that @ has no degenerate point.
Using a normal chart at each xe N, we set

*(%(fv; 8); Po(x; &) =..(Xo(x; &), E(x; &) ,
(Pu; 8); X)=..(X(x; &), X) .

Since (@,(z; &)| X)) =<&(x; &)|X), our operator (85) can be rewritten as
(39) (Fla, 2, v)u)(@)
=S ) S @'(x; & X)e (o (x; £), 2)u(2)dzds ,
Ty JN
z=.¢1(,,.5,X .

Remark that §=~&(x; &) can be solved with respect to 5, hence we set
§=¢&(=; &).
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Set
T B (e zy. yv\dé
a (.’B, E]X)—‘a(x, E(w, 5)’ X)d'—g ’

and replace the variable ¢ by £. If we set ., ,.nX=.,X,, then
X=8; X, X(%;8) (cf. (T)).
Replacing X or X by S(x; Xl, Xo(x; &), (89) is changed into the form
(40) (Fla, @, v)u)(@)
=| .|, @@ & X0e TP a; s(a; B), ula)azdt .

Using the normal coordinate expression of (5) and (6), we see that

(41) X=8(; X, Xo(a; &(@; 8))
=X, — X,(x; &(c; &)+ Qxr; X, X)X, — X)) .

Recall that @ is assumed to be sufficiently close to the identity and hence
by Lemma 1.1, we may assume that ||Q(x; X, X,)| is bounded.

LEMMA 3.4. Notations and assumptions being as above,

B.(; §, X)= <§|X1_Xo> +t<§|§(x; X, Xo)(X1—"Xo)2>
X,=X(; &(x; 8))

18 a non-degenerate phase function on (T%—{0))@Dy(0,) for every t, 0
t<1.

PrOOF. It is obvious that &(x; 7&)=r&(x; &) and X (z; re)=X(z; &).
Therefore, ¢.(x; &, X,) is positively homogeneous of degree 1.

Suppose »=id. Then, X,=0 and hence ¢,(x; &, X,)=<&|X,) because
S(x; X,, 0)=X,. Therefore, ¢,(x; & X,) has no critical point on (T* —{0}))@®
D,(0,) for every xe N. Since ¢ is sufficiently close to the identity in
the C'-topology, we may assume that ¢,(x; &, X,) associated with  has
no critical point on V,@D,(d, for every x and ¢, 0<t<1, where V, is
a compact neighborhood of S*N. However, since ¢, is positively homo-
geneous of degree 1, the above fact shows that 4,(x; & X,) is a phase
function for every ¢, 0<t<1.

It is obvious that 6¢,/0E=0 on a submanifold X,=X(x, &) for every
x€ N. Compute 5°4,/060X, |y 3, Then, we get

82 ¢ <~ l A aXl aXo
06 | 1 oy(E|goX 90X\
060X, | x,=%, J Q6X1 0c >
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Since o is sufficiently close to the identity, we may assume that |£]|0.X,/68
is close to 0 uniformly. Hence 9%$,/080X, | 1,=%, i8 non-singular for every
t,0=t=1. It follows that ¢, (0<¢<1) is a non-degenerate phase funection.

LEMMA 3.5. There i3 a C~ fiber preserving diffeomorphism @ of
order 1 on T3—{0} onto itself such that putting O(x; &)= (x; O.(x; &))

(D(x; &) | X, — Xo(x; &(x; Do &)
= <g|X1"‘Xo(x; &(zx; g)» - <g] Qx; X, Xo)(Xx_Xo)2> .

Proof is seen in [6] pp. 139-140. Although his proof is given on a
conic neighborhood of a point, the same proof can be applied in our
case by virtue of the previous lemma.

Now, for simplicity we set

{ C=0y(x; &)

42 _ -
(42) X; = X3 8(z; O(w; E) = Xi(a3 0) .

Remark that X (x; {) is an expression of o(T*-—{0}) as a graph,
i.e.,
P(T2 —{0) ={..(Xo(x; £); ©); C e Tr—{0}} .
Then, operator (40) can be rewritten in the form
43)  (F(a, p, vIu)(x)
=ST» SN a(w; C, X,)e XXXy, (x; §(P (x5 £)), 2))u(z)d=zdl ,

where

ax; C, X)=a" (@ Y(z; ), Xl)g—-g .

Now, recall that z=., ;s X=.,X,. Then, dz=J(z; X,)dX,. Hence we
.may rewrite (43) as follows: :

(44) (F(a, @, vyu)(=)
={.. | a e, Xyeammson( x5 Xpaxac,

where

{ B(x; ) =< | XJ(x; Q)

“5) a(x; €, X)) =a(x; ¢, X)v(p.(x; §(D:(x; §)), ..X1)) -
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The above expression is the most familiar one of the expressions of
Fourier integral operators.

§4. Elimination of X, in the amplitude a(x; &; X,).

In this section, we consider a Fourier integral operator #%a, @, v)
written in the form (85), where aeié and @ is still assumed to be
sufficiently close to the identity in the C'-topology. Then, by the argu-
ment between (39)~(40), F(a, ®, v) can be written in the form (43). The
purpose of this section is to show the following:

PROPOSITION 4.1. There i3 b(x; &) € S8 such that
(Fla, 2, vy)@)=|  bia; e)ouip(a; )ag + Koulw) (cf. 36)),

where K is a smoothing operator.

The proof will be given in several lemmas below.

Let 6 be the breadth of the cut off function v in (85). Since the
computation in the proof of the above proposition is modulo smoothing
operators, one may replace the cut off function v by another one with
a smaller breadth by virtue of Lemma 3.3. Hence one may assume
that 6 is sufficiently small.

Now, recall the definition of §, (ef. (27)). Since @ is sufficiently
close to the identity, one may assume that §,=7,/4. (To ensure this,
consider the case @=id., in Lemma 2.5~Corollary 2.7.) Moreover, one
may assume maX.ersy—o 0T, Pi(2; £))<d, and 6§<d,. Let v(x, 2z) be a
cut off function with the breadth 65. Then it is clear that

(46) v(py(x; &), 2)vy(x; ) =2(Py(®; &), 2)

for every ¢. Therefore the operator (43) can be written in the form
1) {.. | a@; &, XoecmTimin (@, pyuz)adl (ef. (45)) .

It is not hard to see d(x; ¢, X)) e 32 if a(x; & X)e S\, Since
{ E—¢
is a C= diffeomorphism on (T*—{0))@7, for every xc N, there is

a'(x; ¢, X,)e 52 such that a'(x; &, X,— X!(x; 0))=d(w; &, X.).
Let @'(x; C, &) be the Fourier transform of a'(z;{, X,) with respect
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to X,. Evidently, @ is rapidly decreasing in &', and

a(@; ¢, X)=a'(; €, X,— Xilw; O)=|  @'(; €, gheehmmmitsionggt

Ty

Substituting this into (47) and replacing {—¢&' by {’, we get
(48) (F(a, @, vyu))

=S : S by(a; C)em NIy (w, 2)u(2)23C"

Tz JN

z=.,X,, where

(49) bl(a;; C’)ZST, &'(w; C’+5ly él)ei(c']X(‘)(z:C’+€1)—X6(x;:’))d51 .

x

Remark that if &'=0, then ' |X/(x;l +&)—X/(x;¢")>=0. Hence, we
can write

(50) X (o5 & +8D)— X(2; &) =<g' | Aw; &, T)) -

Since

@'(x; ' +&, &)= ST a'(x; {'+¢&', Xy)e €1 ™4X, ,

z

we have

(51) b,(x; C’)IS . S a'(w; ' +&, Xo+ Ax; &, {)e "1 *va X g,

Ty JT,

by replacing X,— A(x; &', ') by X,.

LEMMA 4.2. Notations and assumptions being as above, b,(x; ")
defined by (51) ts contained in >2.

Proor. By Taylor’s formula,
a'(x; T+ &, Xu+ Alx; &, 1)
= Sliax (5 O+, A3 &, ODXS+ Ry

Hence, we get
b(3 ) = S cx (D303 O, Aw; 0, O+ || Rie e maxag

where D¢=Dg---Dg», D;,=—1"—10/d¢;.
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Recall the definition of A (ef. (50)). Then we see A(x; 0, )=
' (0X5/0C")(x; £')) =0 because X(x; ') gives a Lagrangean submanifold
and X;(x; {') is positively homogeneous of degree 0. Therefore, it is easy
to see that

Dga (x; £, 0) e 1=t
and hence b,(x; (') e 32,

By the above lemma, we have only to consider the operator written
in the form (48) with amplitude b,(x; £) € 332. Reecall the fiber preserving
diffeomorphism @: T% — {0} — T%— {0} of order 1 defined in Lemma 3.5. Set
D(x; &)= (w; Po(w; §)) and by(w; &)=b,(O(x; &))dC’/dE. Then (48) is changed
into

(52) (F(a, @, v)u)(x)

ZS S by(x; E)e O Xi=X5@ w0y, (3 2)u(z)dzdf ,

by putting C’=¢2(x; 8.
Recall (42) and (41). Then, we obtain
(53) (F(a, P, vyu)(@)
——-SS by(x; g)e‘“?‘§‘”“X1'fo(”‘f‘_“‘?’”vl(x, 2)u(z)dzag ,
z=..X .

Note that the wave front set of w-— (F(a, ®, v)u)(x) is contained in
P(T7—{0}) (cf. Lemma 38.2), and in fact this is given by

{o(Xo(®; &(; B), &); Ee T —{0}} .

Since o is sufficiently close to the identity, @(x; &) has a normal coordinate
expression around x € N, that is,

P(@; &)= (Pu(x; &); Pol; 8)) = ..(Pi(w; &), Pol; §)) .
Hence, putting £=&,(x; ¢), we get &,(x; &)=X,(x; &). Set
X=8(@; X, X\(x; ) ,
and (X, (®; &), X)=(.,X,(x; &); X). Then 2=.p =X, and (58) can be

rewritten as

SS b(w; S)e_iwz(ms)]mul(x, z)u(z)dzdé , z:-sol(mze)X ,
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where

b(x; &) =b,(x; &(x; d€
(x; &) =by(x; £(x; &)) o

Recall (46). If we replace y,(x, z) by v(e,(x; &), 2), then the difference of
operators is a smoothing operator by virtue of Lemma 3.3. Hence, we
obtain

(F(a, p, v)u)(x)
= SS b(w; §)e~ 2= Oy(p (x; &), 2)u(2)dzds + (K o u)(x)

={ . b opute@; o)+ Eow@)
where K is a smoothing operator.

§5. Elimination of the ambiguities in expressions.

In this section, we consider operators F(a, @, v) written in the form
(15) with amplitude functions of order 0, i.e., aef‘,‘;&.

DEFINITION 5.1. An operator F:C>(N)—C=(N) will be called a

Fourier integral operator of order 0, if there are p e 2ZY¥, aef‘,‘; and
a smoothing operator K, such that

Fu=F(a, @, VVu+K,ou, ucC°(N) (cf. (15)).

By arguments in the previous section, there is a neighborhood U,
of identity e¢ in =¥ in the C'-topology (cf. Lemma 1.6) such that if
@ e U,, then F(a, @, v) defined by (15) can be written in the form

(Fla, 2, Yu)@) |
=ST‘ SNbl(x; e)e-i(5111—16(33€))v1(x, Z)u(Z)dsz , Z=.3X1 ,

(cf. (48)),
or

= ST. b(x; &)vu(p(x; £))de+ K,ou (Proposition 4.1) .

Therefore, if @€ U,, a Fourier integral operator of order 0 can be
written in the following form:

(54) Fu)@)=| , b@; eoulp(e; )as+(K - u)@) ,
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where b(x; &) € 3¢ and K is a smoothing operator.

DEFINITION 5.2. A Fourier integral operator F is called to be in «
vicinity of the identity, if @ in the above definition is contained in U,
and b(z; 3) in the expression (54) never vanishes.

PROPOSITION 5.3. Let F be a Fourier integral operator of order 0

contained in a vicinity of the identity. Suppose there are two expres-
sions of F;

(Fu)@)=|_ b@; ou(p(e; )dé + (Ko u)(a)
=, ot OPuCH@; ae+ (& @),

where b, ce30,p, ve U, and K, K' are smoothing operators. Then,
P=+ and there is a rapidly decreasing function h(x; g) such that
b(z; &) =c(x; &)+ h(z; &).

The above proposition will be proved in several lemmas below.
By the same argument between (39) and (43), the former expression
of F' can be changed into the form

(55) (Fu)(x)
= S . SN b,(x; &)e~*¢ITi—Totmitny, (g, 2)u(z)dzdé + (Ko u)(x) ,

by using (46) and (47). Here, we should remark that if b(x; &) does not

vanish then so does b,(x; ¢). Similarly the second expression is changed
into

(56) (Fu)(x)
= L SN ci(x; §)e™ EIT1=Y o=y, (i, 2)u(2)dzde + (K, o u)(x) ,

where Y,, Y, are corresponding quantities to X,, X, defined by (48)

replacing @ by . Similarly, ¢, is defined by the same manner as b, by
(565).

Let L(w; X') (resp. M(x; X’)) be the Fourier transform of

by(x; §)e* 1 X5 (resp. ¢ (x; £)e* €\ ¥5t=0%) ag a distribution. By (55) and (56),
we see

57) SN Lw; Xwi(x, 2)u(z)dz+ SN K, 2)u(z)dz

=§N M(z; You(, z)u(z)dz+SN K'(x, 2)u(z)dz ,
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z2=.,X,=.,Y,.

Therefore, we get

(568) L(x; * 2)v,(x, 2)+ Kz, 2)=M(x; *.2)v,(x, 2)+ K'(x, 2) .

Note that the singular support (cf. [6]) of the distribution % (Fu)(x)
is contained in w@(T*—{0}) Ny (T*—{0}), where =: Tx— N is the natural
projection. Remark that v,(x, 2z) is so chosen that it may identically
equal 1 on a neighborhood of the above singular support for each x € N.
Therefore, we obtain the following:

LEMMA 5.4. Notations and assumptions being as above, L(x; X')—
M(x; X') (X'=="2) is a smooth function on T,. Hence,

bl(x; e)ei(flx()(m:e))_cl(x; E)ei@lYé(z:E))
18 rapidly decreasing function in &.

PrROOF. The first part is obvious, for L(x; X')— M(x; X') is a smooth
function on a neighborhood of the singular support of the operator. To
prove the second part is to prove that L(x; X')—M(x; X’) is rapidly
decreasing in X’. It is enough to show that

: 4] aﬂ . " __
,EE}” X a_X'ﬁL(x’ X)=0,

for every multi-indices «, B, because once we get above, then we get
the same result for M by the same computation.
Since | X"* || X' |'“<| X|]* if Av=|a|, we have only to prove

lim | X7} { G8)ba; e-ev-rangg =0,
|X!|—oo ‘

for A>|Bl+n+1. Set t=|g|, £=¢/|¢|, s=|X'|, Z=X'/|X'|. What we
have to show is

lim s Sw S i (18)Pb(x; t@tlBl+n—le——itc(EAlZ——(l/a)X(’)(m'.fA))dtd;f=0 .
0 SyN

8—00

For each fixed Ze S,N, we devide S*N into domains
E(Z)={fe SIN: |<7|Z)|<2/3},
E(Z)={eS:N; || Z>|>1/3} .

For a sufficiently large s, one may assume that <£|Z—(1/s)X/(x;€)) has
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no critical point in E)(Z). Hence by the stationary phase method, we
have

lim s* sw S | :c(é)(ié)ﬁb(x; té\)tw+u_1e—ita<?(z_(1/s)Xé(a::?»dé‘dt=0 ,
0 JELZD

8—00

where k(8) is a cut off function such that suppxCEXZ) and k=1 on
SyN—FE.Z). Thus, we have only to consider on E.(Z). Remark that
for a sufficiently large s, we may assume that | €|Z—(1/s) X/ (x; &) |>1/6.
Hence, we have only to show

 L=lim IR GEERS e &) =11 — )68 b(a; 1)
SzN S

8—00 ~—0Co

< e_m<e‘|z—(1/a)xé(z:e»dé’dt

—1i * 18l +n—1(s & L d N 18\, —its1z— /e xiasby 4 2
=lim |\ t (#&)*(1—k)| — =) b(x; t&)e olFacdt
AN 1 dt

8—0o0 —00
=0 .

Remark that (—1id/dt)*b(x; t€) € 3.:%. Hence, the above integral exists for
every A, @ such that A>|gB|+n+1. Replace A by A\’ such that A’>\ and
we see I, must be 0.

Since F' is in a vicinity of the identity, we may assume that b(x; &)
and hence b,(x;£) does not vanish. Note that if h(x; &) is rapidly
decreasing in £, then so is h(x; £)e—*¢1¥i=¢>  Hence,

(59) e«s|x6u-.e>>—t<5|Y5(w=6>>=_cﬁ;_$_>+f(x; 8,
b,(x; &)

where f is a rapidly decreasing function in &. Remark that ¢,/b, € Je.
Differentiate both sides by ¢ and take the limit |&]|— . Then, we
obtain

(60) El Xi(x; 8)) =<&| Yo(a; &)
Hencé, by (42) and (54), we get the following:

LEMMA 5.5. @(T*—{0})=+(T*—{0}) for every xe€ N. Moreover, by
(60), we get that b,—c, 18 rapidly decreasing in &.

Proor. It is trivial because
P(Ty —{0) ={..(Xo(x; &), §); £ TF—{0}} .
LEMMA 5.6. Suppose @, € ZP satisfy @(T*—{0})=(T*—{0}) for
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every x € N. Then @=q.

PrROOF. Set ¥'=qrop~'. Then, ¥: Ty —{0}— T%—{0} is a fibre preserv-
ing symplectic transformation of order 1. Apply the normal chart ex-
pression of ¥ of (25). Since ¥(x; &)=(x; ¥.(x; &), we see 0X}[0X{=0% in
(25). Therefore, &;=¢,. This implies ¥,(x; &)=¢.

Recall the argument from (52) to the last line of the previous section.
We obtain that b—¢ is a rapidly decreaisng function in £. This implies
the proof of Proposition 5.3.

Let F' be a Fourier integral operator of order 0 contained in a vicinity
of identity. By Proposition 5.3, we can find a symplectic transforma-
tion pe ZY. @ will be called a phase transformation of F. Moreover,
the asymptotic expansion of b(zx; &);

b(x; &) ~bo(; &) +b_(a; E)r~' +b_y(x; Eyr—2+ - - -

is uniquely determined by F.
Now, let C=(S¥)~ be the space of all series

B:(bo’ b—u b_z, <., b_k, - )

of C~-functions on S}G. Asymptotic expansions give a linear mapping «
of D% into C~(S}¥)~. However, it is already known the following.

LEMMA 5.7. There is a mapping (not necessarily linear) B of C=(S¥)>
into D¢ such that ag=1identity.

PrOOF. Remark that 3¢ is canonically isomorphic to the space
C~(D}%) and the asymptotic expansions correspond to Taylor’s expansion
at =1 (cf. (11)). Therefore, this lemma can be proved by the same
technique as [7] p. 38. See, also [8] p. 153.

Now, suppose F' is written as

Fo@)= b i )+ K’ cu)@) .
Note that the asymptotic expansion of b is uniquely determined by F.

Hence, «a(b) is determined by F. Thus, remarking that pa(b)—b is
rapidly decreasing in ¢, we get a unique expression of F.

(61) (Fu)@) =, Ba®)ulp(; )¢+ (Ko u)w) .

Thus, we have the following theorem:
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THEOREM 5.8. A wicinity of the identity in the space of Fourier
integral operators of order 0 is coordinatized by (@, a(d), K).

REMARK. The condition that b(x; £)#0 can be easily replaced by
bo(x; £)#0, because this is the zeroth order term in the corresponding
Taylor expansion at =1 (cf. (11)).

Let U, be the neighborhood defined in the first part of this section,
and let 4 be the subset in C=(S¥)~ such that b,(x; &) does not vanish.
For every point (@, B, K) in U,Xx AXC*(NX N), we can define a Fourier
integral operator F' of order 0 by

(Fu@=| 8B g+ (Ko u)w) .

By the above argument, we see that ¢ and B are uniquely determined
by F. Therefore, so does K. We denote the above F by ¥(®, B, K).
¥ is naturally regarded as a mapping of U,xAXC*(NXN) onto a
vicinity of the identity in the space of Fourier integral operators of
order 0. Evidently, ¥ is one-to-one.

The above mapping ¥ will give in near future a local coordinate
system at the identity of the group of all invertible Fourier integral
operators of order 0.
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