On Linear Integro-Differential Equations in a Banach Space

Kunio TSURUTA

Tokyo Metropolitan Junior College of Commerce
(Communicated by H. Sunouchi)

Introduction

In this paper we study a linear Volterra integro-differential equation of the form

$$
\begin{equation*}
\frac{d}{d t} u(t)=A u(t)+\int_{0}^{t} B(t-s) u(s) d s+f(t) \quad \text { for } \quad t>0, u(0)=x \tag{E}
\end{equation*}
$$

in a Banach space X with norm \|•\|. Here $f: R_{+}=[0, \infty) \rightarrow X$ is continuous and A is the infinitesimal generator of a semi-group of class (C_{0}) on X. For each $t \in R_{+} B(t)$ is a (in general unbounded) linear operator with domain dense in X. Let $B(X)$ denote the set of all bounded linear operators from X into itself.

It is well known [2] that on a finite dimensional space $X=R^{n}$ (the n-dimensional space of column vectors with the usual norm $|\cdot|$),

$$
\begin{equation*}
u(t)=U(t) x+\int_{0}^{t} U(t-s) f(s) d s \quad \text { for } \quad t>0 \tag{0.1}
\end{equation*}
$$

is a unique solution of (E) for $x \in X$. In this case A and $B(t)$ are $n \times n$ matrices, $B(t)$ is a locally integrable function on R_{+}and the $n \times n$ matrix function $U(t)$ is the solution of the equation

$$
\begin{aligned}
\frac{d}{d t} U(t) & =A U(t)+\int_{0}^{t} B(t-s) U(s) d s=U(t) A+\int_{0}^{t} U(t-s) B(s) d s \quad \text { for } t>0, \\
U(0) & =I \text { (the identity matrix). }
\end{aligned}
$$

In a general Banach space X, it is also known [5, 12] that if $\{B(t)$; $\left.t \in R_{+}\right\}$is in $B(X)$ and $B(t) x: R_{+} \rightarrow X$ is continuous for each $x \in X$, then there exists a one-parameter family $\left\{U(t) ; t \in R_{+}\right\}$in $B(X)$ which satisfies the following two equations

[^0]$\left(\mathrm{U}_{1}\right) \frac{d}{d t} U(t) x=A U(t) x+\int_{0}^{t} B(t-s) U(s) x d s \quad$ for $\quad t>0, U(0) x=x \in D(A)$,
and
$\left(\mathrm{U}_{2}\right) \frac{d}{d t} U(t) x=U(t) A x+\int_{0}^{t} U(t-s) B(s) x d s \quad$ for $\quad t>0, U(0) x=x \in D(A)$,
and the function u given by (0.1) gives the unique solution of (E) for $x \in D(A)$ and f strongly continuously differentiable on R_{+}.

Our purpose of this paper is to generalize the results in [2], [5] and [12] to the case in which $\left\{B(t) ; t \in R_{+}\right\}$is not necessarily in $B(X)$. The paper is organized as follows. In section 1 we construct a one-parameter family $\left\{U_{T}(t) ; t \in R_{+}\right\}$in $B(X)$ satisfying certain integral equation in X by using "successive approximations" method which has been used for perturbation theory of semi-group generators by Miyadera [8, 9] and Voigt [13], and for Volterra integro-differential equations in a Banach space by the author [12]. In section 2 we give some sufficient conditions on $B(t)$ under which $U_{T}(t)$ satisfies $\left(U_{2}\right)$ for $x \in D$, where D is a dense linear subset of X. In section 3 an existence and uniqueness theorem is obtained for (E) under appropriate conditions which also guarantee that $U_{T}(t)$ satisfies $\left(\mathrm{U}_{1}\right)$ and $\left(\mathrm{U}_{2}\right)$ for $x \in D$. Further in section 3 "the variation of constants" formula of the form (0.1) is obtained. Our results in section 3 will partly correspond to Miller's theorem [6] which has been obtained by studies of well-posedness of Volterra integro-differential equations in a Banach space.

For results on linear Volterra integro-differential equations in a Hilbert space see Hannsgen [3, 4].

Let I be a subinterval of $R=(-\infty, \infty)$. As usual $L^{1}(I)$ will denote the Lebesgue space of all extended real-valued measurable functions $g: I \rightarrow \bar{R}$ such that $\int_{I}|g(t)| d t<\infty$, where \bar{R} denotes the set of all extended real numbers. $L_{\text {ioc }}^{1}\left(R_{+}\right)$will denote the set of all \bar{R}-valued functions g which are locally of class $L^{1}\left(R_{+}\right)$; that is $\int_{0}^{T}|g(t)| d t<\infty$ for every $T>0$. $C(I)$ will denote the set of all real-valued continuous functions $g: I \rightarrow R$ and $C^{1}(I)$ will denote the set of all real-valued continuously differentiable functions $g: I \rightarrow R . \quad L^{1}(I ; X)$ will denote the set of all $g: I \rightarrow X$ such that g is Bochner integrable on $I . \quad L_{\text {ioc }}^{1}\left(R_{+} ; X\right)$ will denote the set of all X valued functions g which are locally of class $L^{1}\left(R_{+} ; X\right) . \quad C(I ; X)$ will denote the set of all X-valued continuous functions $g: I \rightarrow X$ and $C^{1}(I ; X)$ will denote the set of all X-valued strongly continuously differentiable functions $g: I \rightarrow X$.
§1. We begin with the integral equation of the form

$$
\begin{equation*}
U(t) x=V(t) x+\int_{0}^{t} U(t-s) F(s) x d s \quad \text { for } \quad t>0 \tag{1.1}
\end{equation*}
$$

where V and F are given operator-valued functions. We now introduce a class of linear operators.

Definition 1.1. A one-parameter family of linear operators $F(t)$ defined on a dense linear isubset D of X for each $t \in R_{+}$is said to be of class ($F(\cdot)$) if
(F_{1}) $\quad F(t) x \in L_{\mathrm{loc}}^{1}\left(R_{+} ; X\right)$ for each $x \in D$,
(F_{2}) for any $t \in R_{+}$

$$
\sup \left\{\int_{0}^{t}\|F(s) x\| d s ; x \in D,\|x\| \leqq 1\right\}<\infty
$$

Remark 1.2. Each of the following conditions is equivalent to $\left(\mathrm{F}_{2}\right)$.
(F_{3}) For some $\lambda \in R$ and any $t \in R_{+}$

$$
\begin{equation*}
\sup \left\{\int_{0}^{t} \exp (-\lambda s)\|F(s) x\| d s ; x \in D,\|x\| \leqq 1\right\}<\infty \tag{*}
\end{equation*}
$$

(F_{4}) For any $\lambda \in R$ and $t \in R_{+}$(*) holds. *
If $\left\{\boldsymbol{F}(t) ; t \in R_{+}\right\}$belongs to $(\boldsymbol{F}(\cdot))$, we define

$$
L_{\lambda}(t)=\sup \left\{\int_{0}^{t} \exp (-\lambda s)\|F(s) x\| d s ; x \in D,\|x\| \leqq 1\right\}
$$

for any $\lambda \in R$ and $t \in R_{+}$.
Our first result is the following proposition. The proof of the result uses the same techniques as those used in [9] and [12].

Proposition 1.3. Let $\left\{F(t) ; t \in R_{+}\right\}$be of class $(F(\cdot))$. Suppose that there exist constants $0<t_{0} \leqq \infty$ and $\lambda \in R$ such that $L_{\lambda}\left(t_{0}\right)<1$. Then for each strongly continuous family $\left\{V(t) ; t \in R_{+}\right\}$in $B(X)$ satisfying

$$
\begin{equation*}
\|V(t)\| \leqq M_{0} \exp (\lambda t) \quad \text { for } \quad t \in R^{+} \quad \text { and some } \quad M_{0}>0 \tag{1.2}
\end{equation*}
$$

there exists a one-parameter family $\left\{U_{V}(t) ; t \in R_{+}\right\}$in $B(X)$ with the properties:
(i) $U_{V}(t)$ is strongly continuous on R_{+},
(ii) for each $x \in D U_{V}(t) x$ satisfies the integral equation (1.1), and
(iii) there exists a nondecreasing function $M(t)$ defined on R_{+}such that

$$
\left\|U_{V}(t)\right\| \leqq M(t) \exp (\lambda t) \quad \text { for } \quad t \in R_{+}
$$

In particular if $t_{0}=\infty$ we have $\left\|U_{V}(t)\right\| \leqq M_{0}\left(1-L_{\lambda}(\infty)\right)^{-1} \exp (\lambda t)$ for $t \in R_{+}$.
To prove this proposition we use the following lemma.
Lemma 1.4. Let $\left\{U(t) ; t \in R_{+}\right\}$be in $B(X)$ and $U(t) x \in C\left(R_{+} ; X\right)$ for each $x \in X$. If $f \in L_{10 c}^{1}\left(R_{+} ; X\right)$, then as a function of $s, U(t-8) f(s) \in$ $L^{1}([0, t] ; X)$ for $t>0$. Further if we define $g(t)=\int_{0}^{t} U(t-s) f(s) d s$ for $t>0$, and $g(0)=0$, then $g \in C\left(R_{+} ; X\right)$.

The proof of Lemma 1.4 can be carried out by standard arguments, and let us note that under the condition of Proposition 1.3 the equality $U_{V}(0)=V(0)$ holds, if $\left\{U_{V}(t) ; t \in R_{+}\right\}$exists, since Lemma 1.4 implies $\lim _{t \downarrow 0} \int_{0}^{t} U_{V}(t-s) F(s) x d s=0$ and D is dense.

Proof of Proposition 1.3. Fix $T>0$. It follows from the definition of $L_{\lambda}(t)$ that $L_{\lambda}(t) \leqq L_{\lambda}\left(t_{0}\right)<1$ whenever $0<t \leqq t_{0}$. Therefore we can choose some $0<t_{1} \leqq T$ such that $t_{1} \leqq t_{0}$ and $L_{\lambda}\left(t_{1}\right)<1$. In fact if $t_{0}=\infty$ or $T<t_{0}$ we can set $t_{1}=T$ and if $T \geqq t_{0}$ we can set $t_{1}=t_{0}$. Let $\left\{V(t) ; t \in R_{+}\right\}$be a family in $B(X)$ and $V(t) x \in C\left(R_{+} ; X\right)$ for each $x \in X$ with the estimate (1.2). Then

$$
\begin{equation*}
\|V(t) x\| \leqq M_{0} \exp (\lambda t)\|x\| \quad \text { for every } \quad x \in X \quad \text { and } \quad t>\left[0, t_{1}\right] \tag{1.3}
\end{equation*}
$$

For each nonnegative integer n and $t \in\left[0, t_{1}\right]$ we define a bounded linear operator $U_{n}(t)$ on D as follows: for $x \in D$

$$
\begin{align*}
U_{0}(t) x=V(t) x, & U_{n}(t) x=\int_{0}^{t} \bar{U}_{n-1}(t-s) F(s) x d s \quad \text { for } \quad t \in\left(0, t_{1}\right] \tag{1.4}\\
\text { and } & U_{n}(0) x=0 \quad \text { for } \quad n=1,2, \cdots,
\end{align*}
$$

where $\bar{U}_{n-1}(t)$ denotes the extension of $U_{n-1}(t)$ onto X. To observe that $U_{n}(t)$ are well defined and bounded on D, we show that for every n and $\left.x \in D, U_{n}(t) x \in C\left(0, t_{1}\right] ; X\right)$ and

$$
\begin{equation*}
\left\|U_{n}(t) x\right\| \leqq M_{0}\left(L_{\lambda}\left(t_{1}\right)\right)^{n} \exp (\lambda t)\|x\| \quad \text { for } \quad t \in\left[0, t_{1}\right] \tag{1.5}
\end{equation*}
$$

By $\left(F_{1}\right)$, (1.4) and Lemma 1.4 it follows that for $t \in\left(0, t_{1}\right]$

$$
U_{1}(t) x=\int_{0}^{t} \bar{U}_{0}(t-s) F(s) x d s \quad \text { and } \quad U_{1}(0) x=0
$$

are well defined and $U_{1}(t) x \in C\left(\left[0, t_{1}\right] ; X\right)$ for $x \in D$. Moreover, by (1.3) and the definition of $L_{\lambda}\left(t_{1}\right)$ one has

$$
\begin{aligned}
\left\|U_{1}(t) x\right\| & \leqq M_{0} \exp (\lambda t) \int_{0}^{t} \exp (-\lambda s)\|F(s) x\| d s \\
& \leqq M_{0} \exp (\lambda t) L_{\lambda}\left(t_{1}\right)\|x\| \quad \text { for } \quad t \in\left(0, t_{1}\right]
\end{aligned}
$$

and hence $\left\|U_{1}(t) x\right\| \leqq M_{0} L_{\lambda}\left(t_{1}\right) \exp (\lambda t)\|x\|$ for $t \in\left[0, t_{1}\right]$. Since D is dense in $X, U_{1}(t)$ can be extended onto X. Now we see by induction that $U_{n}(t)$ is well defined and $U_{n}(t) x \in C\left(\left[0, t_{1}\right] ; X\right)$ for $x \in D$, and (1.5) holds. Consequently it follows that for every $n \bar{U}_{n}(t)$ is strongly continuous on [0, $\left.t_{1}\right]$ and

$$
\begin{equation*}
\left\|\bar{U}_{n}(t)\right\| \leqq M_{0}\left(L_{\lambda}\left(t_{1}\right)\right)^{n} \exp (\lambda t) \quad \text { for } \quad t \in\left[0, t_{1}\right] \tag{1.6}
\end{equation*}
$$

Since $L_{\lambda}\left(t_{1}\right) \leqq L_{\lambda}\left(t_{0}\right)<1, \sum_{n=0}^{\infty} \bar{U}_{n}(t)$ converges absolutely in the uniform operator topology and uniformly in t on [$0, t_{1}$]. Define $U_{V}(t) \in B(X)$ by

$$
\begin{equation*}
U_{V}(t)=\sum_{n=0}^{\infty} \bar{U}_{n}(t) \quad \text { for } \quad t \in\left[0, t_{1}\right] \tag{1.7}
\end{equation*}
$$

then $U_{V}(t)$ is strongly continuous on [$0, t_{1}$]. Clearly $U_{V}(0)=V(0)$ and by the definition of $\bar{U}_{n}(t)$ and (1.7) $U_{V}(t)$ satisfies the integral equation (1.1) for $x \in D$ and $t \in\left(0, t_{1}\right]$, and from (1.6) and (1.7) one has

$$
\begin{equation*}
\left\|U_{V}(t)\right\| \leqq M_{0}\left(1-L_{\lambda}\left(t_{0}\right)\right)^{-1} \exp (\lambda t) \quad \text { for } \quad t \in\left[0, t_{1}\right] \tag{1.8}
\end{equation*}
$$

Translate (1.1) by t_{1} to see that $W(t)=U_{V}\left(t+t_{1}\right)$ must satisfy

$$
\begin{aligned}
W(t) x & =V\left(t+t_{1}\right) x+\int_{0}^{t+t_{1}} U_{V}\left(t+t_{1}-s\right) F(s) x d s \\
& =\left[V\left(t+t_{1}\right) x+\int_{t}^{t+t_{1}} U_{V}\left(t+t_{1}-s\right) F(s) x d s\right]+\int_{0}^{t} W(t-s) F(s) x d s
\end{aligned}
$$

for $t>0$ and $x \in D$. Clearly the term in brackets, we say, the new forcing function $V_{1}(t) x$ is strongly continuous on R_{+}by (F_{1}) and Lemma 1.4 and satisfies (1.3), since from (1.8) and (F_{2}) one has

$$
\begin{aligned}
\left\|V_{1}(t) x\right\| & \leqq M_{0} \exp \left(\lambda\left(t+t_{1}\right)\right)\left[\|x\|+\left(1-L_{\lambda}\left(t_{0}\right)\right)^{-1} \int_{t}^{t+t_{1}} \exp (-\lambda s)\|F(s) x\| d s\right] \\
& \leqq M_{1} \exp (\lambda t)\|x\| \text { for } t \in\left[0, t_{1}\right] \text { and } x \in D,
\end{aligned}
$$

where $M_{1}=M_{0}\left[1+L_{\lambda}\left(2 t_{0}\right)\left(1-L_{\lambda}\left(t_{0}\right)\right)^{-1}\right] \exp \left(\lambda t_{1}\right)$. Therefore the same argument can be repeated to obtain a solution of (1.1) on ($t_{1}, 2 t_{1}$], $\left(2 t_{1}, 3 t_{1}\right], \ldots$ until $\left(N t_{1}, T\right]$ where $(N+1) t_{1} \geqq T$, and $\left\|U_{V}(t)\right\| \leqq M(t) \exp (\lambda t)$ for $t \in[0, T]$
and some nondecreasing function $M(t)$ which depends on t and λ. Since T is an arbitrary positive number, this proves the existence of a oneparameter family $U_{V}(t) \in B(X)$ on R_{+}which is strongly continuous, and satisfies the integral equation (1.1) and the estimate (iii) for $t \in R_{+}$.
Q.E.D.

Remark 1.5. The condition (L_{1}): there exists $t_{0}, 0<t_{0} \leqq \infty$ such that $L_{\lambda}\left(t_{0}\right)<1$ for some $\lambda \in R$, is equivalent to the following condition
(L_{2}) $\lim _{t \downarrow 0} L_{\lambda}(t)<1$ for some $\lambda \in R$.
We use this fact in section 2.
We now give a simple condition which guarantees the assumptions of Proposition 1.3.

Lemma 1.6. Let $\left\{F(t) ; t \in R_{+}\right\}$be a one-parameter family of linear operators defined on a dense linear subset D of X which satisfies (F_{1}). If there exists a non-negative function $\phi \in L_{\mathrm{loc}}^{1}\left(R_{+}\right)$such that

$$
\begin{equation*}
\|F(t) x\| \leqq \phi(t)\|x\| \quad \text { for } \quad t \in R_{+} \quad \text { and } \quad x \in D, \tag{5}
\end{equation*}
$$

then $F(t)$ is of class $(F(\cdot))$ and there exist constants $0<t_{0} \leqq \infty$ and $\lambda \in R$ such that $L_{\lambda}\left(t_{0}\right)<1$.
§ 2. A one-parameter family $\left\{T(t) ; t \in R_{+}\right\}$in $B(X)$ is called a semigroup of class (C_{0}) on X if it satisfies
$T(0)=I$ (the identity operator), $T(t+s)=T(t) T(s)\left(t, s \in R_{+}\right)$, and $T(t) x \in$ $C\left(R_{+} ; X\right)$ for each $x \in X$. The infinitesimal generator A of $\left\{T(t) ; t \in R_{+}\right\}$ is defined by

$$
D(A)=\left\{x \in X ; A x=\lim _{h \downarrow 0} h^{-1}[T(h)-I] x \text { exists }\right\}
$$

It is well known that A is a densely defined, closed linear operator in X. We denote by $\rho(A)$ and $R(\lambda ; A)$ the resolvent set and resolvent of A, respectively: $R(\lambda ; A)=(\lambda-A)^{-1}, \lambda \in \rho(A)$. For $t>0 T(t)$ and A commute on $D(A)$, and for $x \in D(A) T(t) x$ is strongly continuously differentiable on R_{+}and is the unique solution of the differential equation $d T(t) / d t=A T(t) x$ with the initial condition $T(0) x=x$. Moreover $\int_{0}^{t} T(s) x d s \in D(A)$ and $A \int_{0}^{t} T(s) x d s=T(t) x-x$ for $x \in X$ and $t>0$. It is also well known that there exist constants $M \geqq 1$ and $\omega \in R$ such that

$$
\begin{equation*}
\|T(t)\| \leqq M \exp (\omega t) \quad \text { for } \quad t \in R_{+} \quad \text { and } \quad\{\lambda ; \lambda>\omega\} \subset \rho(A) \tag{2.1}
\end{equation*}
$$

Moreover $R(\lambda ; A)=\int_{0}^{\infty} \exp (-\lambda t) T(t) x d t$ for $x \in X$ and $\lambda>\omega$.
Concerning further results of a semi-group of operators of class $\left(\mathrm{C}_{0}\right)$ see for example Dunford-Schwartz [1] or Pazy [10].

In what follows A will be the infinitesimal generator of a $\left(\mathrm{C}_{0}\right)$ semigroup $\left\{T(t) ; t \in R_{+}\right\}$and $B(t)$ be a linear operator defined on $D(B(t))$ with range in X.

Definition 2.1. A one-parameter family $\left\{B(t) ; t \in R_{+}\right\}$is said to be of class ($B(\cdot)$) if
$\left(\mathrm{B}_{1}\right)$ there exists a dense linear subset D of X such that $D \subset D(A) \cap$ $D(B(t))$ for all $t \in R_{+}, T(t) D \subset D$ for each $t \in R_{+}$and $B(t) x: R_{+} \rightarrow X$ is measurable for each $x \in D$,
$\left(\mathrm{B}_{2}\right)$ there exists a function $\beta \in L_{1 \mathrm{cc}}^{1}\left(R_{+}\right)$such that

$$
\|B(t) x\| \leqq \beta(t)\|x\|_{A} \quad \text { for all } t \in R_{+} \quad \text { and } \quad x \in D,
$$

where $\|x\|_{A}=\|x\|+\|A x\|$, and
$\left(\mathrm{B}_{3}\right)$ for any $t \in R_{+}$

$$
\sup \left\{\int_{0}^{t}\left\|\int_{0}^{s} B(s-r) T(r) x d r\right\| d s ; x \in D,\|x\| \leqq 1\right\}<\infty
$$

In order to show that $\left(B_{3}\right)$ makes sense we need the following lemma. For a proof see Lemma 1.1 in [6].

Lemma 2.2. Let $\left\{B(t) ; t \in R_{+}\right\}$satisfy $\left(B_{1}\right)$ and $\left(B_{2}\right)$. Let $u: R_{+} \rightarrow D$ be any function such that $u(t)$ and $A u(t)$ are continuous on R_{+}. Then as a function of $s, B(t-s) u(s) \in L^{1}([0, t] ; X)$ for $t>0$ and if we define $g(t)=$ $\int_{0}^{t} B(t-s) u(s) d s$ for $t>0$ and $g(0)=0$, then $g \in C\left(R_{+} ; X\right)$.

The operator of the form $B(t)=b(t) A$ will serve as an important example which forms a family of class $(B(\cdot))$, where $b \in L_{1 o c}^{1}\left(R_{+}\right)$is a given function.

Proposition 2.3. Let $\left\{B(t) ; t \in R_{+}\right\}$satisfy
$\left(\mathrm{B}_{4}\right) \quad D(A) \subset D(B(t))$ for all $t \in R_{+}, B(t) x: R_{+} \rightarrow X$ is measurable for each $x \in D(A)$ and there exists a function $\beta \in L_{\text {ioc }}^{1}\left(R_{+}\right)$such that for any y in X

$$
\|B(t) R(\mu ; A) y\| \leqq \beta(t)\|y\| \text { for all } t \in R_{+} \text {and some } \mu \in \rho(A),
$$

and $\left(\mathrm{B}_{3}\right)$ with D replaced by $D(A)$. Then $\left\{B(t) ; t \in R_{+}\right\}$forms a family of class ($B(\cdot)$).

Proof. Clearly $\left(\mathrm{B}_{4}\right)$ implies $\left(\mathrm{B}_{1}\right)$ and $\left(\mathrm{B}_{2}\right)$ with D replaced by $D(A)$.
Q.E.D.

In the sequel it will be assumed that B is a linear operator defined on the domain $D(B)$ with range in X. The following result is a direct consequence of Proposition 2.3.

Corollary 2.4. Let $b \in L_{\text {ioc }}^{1}\left(R_{+}\right)$and $|b(t)|<\infty$ for $t \in R_{+}$. Let B satisfy

$$
\begin{equation*}
D(A) \subset D(B) \text { and } B R(\mu ; A) \in B(X) \text { for some } \mu \in \rho(A) \tag{k}
\end{equation*}
$$

and $\left(\mathrm{B}_{3}\right)$ with D and $B(t)$ replaced by $D(A)$ and $b(t) B$, respectively. Then $\left\{b(t) B ; t \in R_{+}\right\}$forms a family of class (B($\left.\cdot\right)$).

Proof. Set $B(t)=b(t) B$. Then $B(t)$ is well defined for all $t \in R_{+}$and one has $D(B) \subset D(B(t))$ for $t \in R_{+}$. Now (B_{4}) follows from (B_{5}). Q.E.D.

Proposition 2.5. Let $\left\{B(t) ; t \in R_{+}\right\}$be of class $(B(\cdot))$. Set

$$
\begin{equation*}
F(t) x=\int_{0}^{t} B(t-s) T(s) x d s \quad \text { for } \quad t \in R_{+} \quad \text { and } \quad x \in D . \tag{2.2}
\end{equation*}
$$

Then $\left\{\boldsymbol{F}(t) ; t \in R_{+}\right\}$forms a family of class $(F(\cdot))$ and hence

$$
\begin{equation*}
L_{\lambda}(t)=\sup \left\{\int_{0}^{t} \exp (-\lambda s)\left\|\int_{0}^{s} B(s-r) T(r) x d r\right\| d s ; x \in D,\|x\| \leqq 1\right\} \tag{2.3}
\end{equation*}
$$

is finite for all $\lambda \in R$ and $t \in R_{+}$.
Proof. The conditions (F_{1}) and (F_{2}) follow from Lemma 2.2 and (B_{3}) respectively.
Q.E.D.

We now consider an integro-differential equation of the form

$$
\begin{equation*}
\frac{d}{d t} U(t) x=U(t) A x+\int_{0}^{t} U(t-s) B(s) x d s \quad \text { for } \quad t>0, \quad U(0) x=x \tag{2.4}
\end{equation*}
$$

Definition 2.6. A one-parameter family $\left\{U_{T}(t) ; t \in R_{+}\right\}$in $B(X)$ is said to be an adjoint kernel on R_{+}if
(i) $U_{T}(t) x \in C\left(R_{+} ; X\right)$ for each $x \in X$ and there exist $\lambda \in R$ and a nondecreasing function M such that $\left\|U_{T}(t)\right\| \leqq M(t) \exp (\lambda t)$ for $t \in R_{+}$,
(ii) there exists some dense linear subset D of X such that $D \subset$ $D(A) \cap D(B(t))$ for all $t \in R_{+}$and $U_{T}(t) x \in C^{1}\left(R_{+} ; X\right)$ for each $x \in D$, and
(iii) for $t>0$ and $x \in D U_{T}(t) x$ satisfies the integro-differential equation (2.4) with
(iv) $U_{T}(0)=I$.

Our first main result is the following
Theorem 2.7. Let $\left\{B(t) ; t \in R_{+}\right\}$be of class $(B(\cdot))$. Suppose that there exist constants $0<t_{0} \leqq \infty$ and $\lambda \geqq \omega$ such that $L_{\lambda}\left(t_{0}\right)<1$, where L_{λ} is the function defined by (2.3). Then there exists an adjoint leernel $\left\{U_{T}(t)\right.$; $\left.t \in R_{+}\right\}$.

The following lemma will be useful in the proof of Theorem 2.7 and in the remainder of this paper.

Lemma 2.8. Let $\left\{U(t) ; t \in R_{+}\right\}$be in $B(X)$ and satisfy
(i) $U(t) x \in C([0, \infty) ; X)$ for each $x \in X$, and
(ii) there exists a function $\widehat{\beta} \in_{1_{\mathrm{oc}}}^{1}\left(R_{+}\right)$such that

$$
\|U(t)\| \leqq \widehat{\beta}(t) \quad \text { for all } \quad t \in R_{+}
$$

If the hypotheses of Lemma 2.2 are satisfied, then we have

$$
\int_{0}^{t}\left(\int_{0}^{s} U(t-s) B(s-r) u(r) d r\right) d s=\int_{0}^{t}\left(\int_{r}^{t} U(t-s) B(s-r) u(r) d s\right) d r \quad \text { for } \quad t>0
$$

Proof. Fix $t>0$. Define $B(r, s) x=B(s-r) x$ for $(r, s) \in \bar{\Omega} \equiv\{(r, s)$; $0 \leqq r \leqq s \leqq t\}$ and $x \in D$. Then $B(r, s) x$ is measurable on $\bar{\Omega}$ for each $x \in D$ and from (B_{2}) one has $\|B(r, s) x\| \leqq \beta(s-r)\|x\|_{A}$ for $x \in D$. Clearly the function $\beta(r, s)=\beta(s-r)$ is integrable on $\bar{\Omega}$. Since $u(r)$ is strongly continuous on [$0, t$], the function $u(r, s)$ on $\bar{\Omega}$ to X defined by the formula $u(r, s)=u(r)$ is continuous. Further we define $U(r, s)=U(t-s)$ for $(r, s) \in$ $\bar{\Omega}$. Then $U(r, s) \in B(X)$ for $(r, s) \in \bar{\Omega}$ and $U(r, s) x$ is strongly continuous on $\bar{\Omega} \backslash\{(r, s) ; s=t\}$ for $x \in X$. Using the similar arguments as those used in the proof of Lemma 1.1 in [6] it is seen that $v(r, s)=B(r, s) u(r, s)$ is strongly measurable on $\bar{\Omega}$ and $U(r, s) v(r, s)$ is also strongly measurable on $\bar{\Omega}(\varepsilon)=\{(r, s) ; 0 \leqq r \leqq s<t-\varepsilon\}$ for sufficiently small $\varepsilon>0$. Thus $U(r, s) v(r, s)$ is strongly measurable on $\bar{\Omega}$. Moreover from (B_{2}) one has

$$
\int_{0}^{t}\left(\int_{0}^{s}\|U(r, s) v(r, s)\| d r\right) d s \leqq \sup \left\{\|u(r)\|_{A} ; 0 \leqq r \leqq t\right\}\left(\int_{0}^{t} \widehat{\beta}(s) d s\right)\left(\int_{0}^{t} \beta(s) d s\right)<\infty
$$

Thus by Corollary III.11.15 in [1] and Fubini's theorem we have

$$
\int_{0}^{t}\left(\int_{0}^{s} U(r, s) v(r, s) d r\right) d s=\int_{0}^{t}\left(\int_{r}^{t} U(r, s) v(r, s) d s\right) d r \quad \text { for } t>0 \text {. Q.E.D. }
$$

Proof of Theorem 2.7. Set $V(t)=T(t)$ in Proposition 1.3. Then Propositions 2.5 and 1.3 imply that there exists a one-parameter family $\left\{U_{T}(t) ; t \in R_{+}\right\}$in $B(X)$ which satisfies (i) and (iv) of Definition 2.6 and the integral equation of the form

$$
\begin{equation*}
U_{T}(t) x=T(t) x+\int_{0}^{t} U_{T}(t-s)\left(\int_{0}^{t} B(s-r) T(r) x d r\right) d s \tag{2.5}
\end{equation*}
$$

for $t>0$ and $x \in D$. From $\left(B_{1}\right),\left(B_{2}\right)$ and Lemma 1.4 it follows that as a a function of $s, U_{T}(t-s) B(s) x \in L^{1}([0, t] ; X)$ for $t>0$ and $x \in D$ and if we define $\hat{B}(t) x=\int_{0}^{t} U_{\boldsymbol{T}}(t-s) B(s) x d s$ for $t>0$ and $\hat{B}(0) x=0$ for each $x \in D$, then $D \subset D(\hat{B}(t))$ for $t \in R_{+}$and $\hat{B}(t) x \in C\left(R_{+} ; X\right)$ for $x \in D$. Furthermore by (i) of Definition 2.6 and (B_{2}) we have

$$
\begin{equation*}
\|\hat{B}(t) x\| \leqq M(t) \exp (\lambda t)\left(\int_{0}^{t} \beta(s) d s\right)\|x\|_{A} \equiv \widehat{\beta}(t)\|x\|_{A} \quad \text { for } \quad t>0 . \tag{2.6}
\end{equation*}
$$

Therefore if we define $\widehat{\beta}(0)=0$, then it is seen that $\widehat{\beta} \in L_{\text {loc }}^{1}\left(R_{+}\right)$and $\widehat{\beta}(t)<$ ∞ for $t \in R_{+}$, and hence $\widehat{\beta}(t)$ satisfies (B_{1}) and (B_{2}). Thus Lemma 2.2 implies that $\int_{0}^{t} \hat{B}(t-r) T(r) x d r$ is well defined and continuous in t for $t>0$ and $x \in D$. Since $U_{T}(t)$ is strongly continuous on $R_{+},\left\|U_{T}(t)\right\|$ is bounded and measurable on each finite interval of R_{+}. Thus from Lemma 2.8 we have

$$
\begin{aligned}
\int_{0}^{t} U_{T}(t-s)\left(\int_{0}^{t} B(s-r) T(r) x d r\right) d s & =\int_{0}^{t}\left(\int_{r}^{t} U_{T}(t-s) B(s-r) T(r) x d s\right) d r \\
& =\int_{0}^{t}\left(\int_{0}^{t-r} U_{T}(t-r-s) B(s) T(r) x d s\right) d r \\
& =\int_{0}^{t} \hat{B}(t-r) T(r) x d r \quad \text { for } t>0 \text { and } x \in D .
\end{aligned}
$$

Substituting this formula into (2.5) we have

$$
\begin{equation*}
U_{\mathrm{r}}(t) x=T(t) x+\int_{0}^{t} \hat{B}(t-s) T(s) x d s \quad \text { for } \quad t>0 \text { and } x \in D . \tag{2.7}
\end{equation*}
$$

Let $h>0$. Define $I_{1}(t ; h) x=h^{-1} \int_{0}^{h} \hat{B}(t+r) x d r-\hat{B}(t) x$ and $I_{2}(t ; h) x=$ $h^{-1} \int_{0}^{h} \hat{B}(t+h-r)(T(r) x-x) d r$ for $t \in R_{+}$and $x \in D$. We wish to show that

$$
\begin{equation*}
U_{T}(t+h) x=U_{T}(t) T(h) x+h \hat{B}(t) x+h I_{1}(t ; h) x+h I_{2}(t ; h) x \tag{2.8}
\end{equation*}
$$

for $t \in R_{+}$and $x \in D$. When $t=0$ this formula is easily obtained from (2.7). Let $t>0$. Then it follows from (2.7) and (B_{1}) that

$$
\begin{aligned}
U_{T}(t+h) x= & T(t+h) x+\int_{0}^{t+h} \hat{B}(t+h-r) T(r) x d r \\
= & T(t) T(h) x+\int_{0}^{t} \hat{B}(t-r) T(r) T(h) x d r+h \hat{B}(t) x \\
& +\left(\int_{0}^{h} \hat{B}(t+r) x d r-h \hat{B}(t) x\right)+\int_{0}^{h} \hat{B}(t+h-r)(T(r) x-x) d r \\
= & U_{T}(t) T(h) x+h \hat{B}(t) x+h I_{1}(t ; h) x+h I_{2}(t ; h) x .
\end{aligned}
$$

This proves (2.8).
We now show that $U_{T}(t) x \in C^{1}\left(R_{+} ; X\right)$ for each $x \in D$. Since $\hat{B}(t) x \in$ $C\left(R_{+} ; X\right)$ for $x \in D$, it follows that $\lim _{h 10} I_{1}(t ; h) x=0$ for $t \in R_{+}$. Let $t \in$ R_{+}. Choose $T>0$ such that $t+h<T$. Since $M(t)$ is nondecreasing, (2.6) yields

$$
\begin{aligned}
\left\|I_{2}(t ; h) x\right\| & \leqq h^{-1} \int_{0}^{h} \widehat{\beta}(t+h-r)\|T(r) x-x\|_{A} d r \\
& \leqq M(T) \exp (\lambda T)\left(\int_{0}^{T} \beta(s) d s\right) \sup \left\{\|T(r) x-x\|_{A} ; 0 \leqq r \leqq h\right\}
\end{aligned}
$$

Therefore this shows that

$$
\begin{aligned}
\frac{d^{+}}{d t} U_{T}(t) x & =\lim _{h \downarrow 0} h^{-1}\left[U_{T}(t+h) x-U_{T}(t) x\right] \\
& =U_{T}(t) \lim _{h \downarrow 0} h^{-1}(T(h) x-x)+\hat{B}(t) x+\lim _{h \downarrow 0}\left(I_{1}(t ; h) x+I_{2}(t ; h) x\right) \\
& =U_{T}(t) A x+\widehat{B}(t) x \quad \text { for } \quad t \in R_{+} \quad \text { and } \quad x \in D .
\end{aligned}
$$

Since the right-hand side of this equality is continuous on R_{+}we have

$$
\frac{d}{d t} U_{T}(t) x=U_{T}(t) A x+\widehat{B}(t) x \quad \text { for } \quad t>0 \quad \text { and } \quad x \in D
$$

Moreover it is easily seen that $\lim _{t \downarrow 0}(d / d t) U_{T}(t) x=A x=\left.\left(d^{+} / d t\right) U_{T}(t) x\right|_{t=0}$.
Q.E.D.

As a simple consequence of Theorem 2.7 we have the following which is one of the main results in [12].

Corollary 2.9. Let $\left\{B(t) ; t \in R_{+}\right\}$be a strongly continuous family in $B(X)$. Then there exists an adjoint kernel $\left\{U_{T}(t) ; t \in R_{+}\right\}$.

Proof. Since $\|B(t)\| \in L_{1 \mathrm{oc}}^{1}\left(R_{+}\right)$, it is easy to see that $\left\{B(t) ; t \in R_{+}\right\}$ forms a family of class $(B(\cdot))$ with D replaced by $D(A)$. Also for any $\lambda \in R$ we have $\lim _{t \downarrow 0} I_{\lambda}(t)=0$. Therefore we can find $t_{0}>0$ such that $L_{\lambda}\left(t_{0}\right)<1$. Thus the conclusion follows from Theorem 2.7.
Q.E.D.

Corollary 2.10. Let $\left\{B(t) ; t \in R_{+}\right\}$satisfy
$\left(\mathrm{B}_{6}\right) \quad D(A) \subset D(B(t))$ for all $t \in R_{+}$, and there exists a constant b such that $\|B(0) R(\mu ; A) y\| \leqq b\|y\|$ for $y \in X$ and some $\mu \in \rho(A)$.

Further there exists another family $\left\{B_{1}(t) ; t \in R_{+}\right\}$of linear operators in X which satisfies $\left(\mathrm{B}_{4}\right)$ with β replaced by some function $\beta_{1} \in L_{\mathrm{ioc}}^{1}\left(R_{+}\right)$for this $\mu \in \rho(A)$ and

$$
B(t) x=B(0) x+\int_{0}^{t} B_{1}(s) x d s \quad \text { for } \quad t>0 \quad \text { and } \quad x \in D(A)
$$

Then there exists an adjoint kernel $\left\{U_{T}(t) ; t \in R_{+}\right\}$.
Proof. Observe that $B(t) x: R_{+} \rightarrow X$ is continuous for every $x \in D(A)$. From (B_{6}) and (B_{4}) it follows that

$$
\begin{align*}
\|B(t) R(\mu ; A) y\| & \leqq B(0) R(\mu ; A) y\|+\| \int_{0}^{t} B_{1}(s) R(\mu ; A) y d s \| \tag{2.9}\\
& \leqq\left(b+\int_{0}^{t} \beta_{1}(s) d s\right)\|y\| \equiv \beta_{2}(t)\|y\|
\end{align*}
$$

for $y \in X$ and some $\mu \in \rho(A)$. Therefore it is seen that $\left\{B(t) ; t \in R_{+}\right\}$ satisfies (B_{1}) and (B_{2}) with D replaced by $D(A)$ and Lemma 2.2 implies that as function of $s, \int_{0}^{s} B(s-r) T(r) x d r$ is continuous for each $s>0$ and $x \in D(A)$. Further by $\left(\mathrm{B}_{8}\right)$ and Fubini's theorem we have

$$
\begin{aligned}
\int_{0}^{s} B(s-r) T(r) x d r= & \int_{0}^{s} B(0) T(r) x d r+\int_{0}^{s}\left(\int_{r}^{s} B_{1}(s-u) T(r) x d u\right) d r \\
= & \int_{0}^{s} B(0) T(r) x d r+\int_{0}^{s}\left(\int_{0}^{u} B_{1}(s-u) T(r) x d r\right) d u \\
= & B(0) R(\mu ; A)\left(\mu \int_{0}^{s} T(r) x d r-T(s) x+x\right) \\
& +\int_{0}^{s} B_{1}(s-u) R(\mu ; A)\left(\mu \int_{0}^{u} T(r) x d r-T(u) x+x\right) d u
\end{aligned}
$$

Thus for any $\lambda \in R \quad L_{\lambda}(t)=\sup \left\{\int_{0}^{t} \exp (-\lambda s)\left\|\int_{0}^{s} B(s-r) T(r) x d r\right\| d s ; x \in D(A)\right.$, $\|x\| \leqq 1\}$ is well defined and satisfies the inequality

$$
L_{\lambda}(t) \leqq \int_{0}^{t} \exp (-(\lambda-\omega) s) r(s) d s
$$

where r is some continuous function on R_{+}. This shows that $\lim _{t 10} L_{\lambda}(t)=$
0. Therefore the conclusion follows from Proposition 2.3 and Theorem 2.7.
Q.E.D.

Corollary 2.11. Let $b \in C^{1}\left(R_{+}\right)$and let B satisfy $\left(B_{5}\right)$. Then there exists an adjoint kernel $\left\{U_{T}(t) ; t \in R_{+}\right\}$for $B(t)=b(t) B$.

Proof. Clearly (B_{5}) and $b \in C^{1}\left(R_{+}\right)$imply (B_{6}).
Q.E.D.

The class $P(A)$ defined in [1] plays an important role in perturbation theory of semi-group (see also [8] and [9]). We now also define $P(A)$ as follows:

Definition 2.12. A linear operator B is said to be of class $P(A)$ if it satisfies
$\left(\mathrm{B}_{7}\right)$ there exists a dense linear subset D of X such that $D \subset D(A) \cap$ $D(B), T(t) D \in D$ for $t \in R_{+}$and $B T(t) x \in C\left(R_{+} ; X\right)$ for each $x \in D$, and $\left(\mathrm{B}_{3}\right)$ with $B(t)$ replaced by $b(t) B$, where $b \in L_{\mathrm{loc}}^{1}\left(R_{+}\right)$.

The following result can be proved by the same arguments as those in Lemma 1.1 in [6].

Lemma 2.13. Let $\left\{U(t) ; t \in R_{+}\right\}$be a family in $B(X)$ and satisfy
(i) $U(t) x: R_{+} \rightarrow X$ is measurable for $x \in X$, and
(ii) there exists a function $\beta \in L_{1 \mathrm{oc}}^{1}\left(R_{+}\right)$such that

$$
\|U(t)\| \leqq \beta(t) \quad \text { for } \quad t \in R_{+}
$$

If $f \in C\left(R_{+} ; X\right)$, then as a function of $s, U(t, s) f(s) \in L^{1}([0, t] ; X)$ for all $t>0$. Further if we define $g(t)=\int_{0}^{t} U(t-s) f(s) d s$ for $t>0$ and $g(0)=0$, then $g \in C\left(R_{+} ; X\right)$.

Proposition 2.14. Let $b \in L_{\text {ioc }}^{1}\left(R_{+}\right)$and let B be of class $P(A)$. Then $\left\{F(t) ; t \in R_{+}\right\}$forms a family of class $(F(\cdot))$, where F is the function defined by (2.2) with $B(t)$ replaced by $b(t) B$.

Proof. Set $N=\{t ;|b(t)|=\infty\}$. Define $U(t)=b(t) I$ for $t \in R_{+} \backslash N$ and $U(t)=0$ for $t \in N$. Then $U(t)$ is well defined on R_{+}and $U(t) x: R_{+} \rightarrow X$ is measurable for $x \in X$. Since $B T(t) x \in C\left(R_{+} ; X\right)$ for $x \in D$ and $b \in L_{10 \mathrm{c}}^{1}\left(R_{+}\right)$, it follows from Lemma 2.13 that $F(t) x \in C\left(R_{+} ; X\right)$ for $x \in D$. Now it is easy to see that F satisfies (F_{1}) and (F_{2}).
Q.E.D.

Remark 2.15. Concerning the existence of family $\left\{F(t) ; t \in R_{+}\right\}$of class $(F(\cdot))$ the condition $\left(B_{7}\right)$ is rather restrictive. The following condi-
tion, for example, assures the conclusion of Proposition 2.14:
$\left(B_{7}^{\prime}\right)$ there exists a dense linear subset D of X such that $D \subset D(B)$, $T(t) D \subset D$ for $t \in R_{+}$and as a function of $t, B T(t) x \in L_{\text {ioc }}^{1}\left(R_{+} ; X\right)$ for $x \in D$.

Corresponding to Lemma 2.8 the following result holds. We omit its proof.

Lemma 2.16. Let $\left\{B(t) ; t \in R_{+}\right\}$be a family in $B(X)$ satisfying (i) (ii) of Lemma 2.13. Suppose further that $\left\{U(t) ; t \in R_{+}\right\}$is a strongly continuous family in $B(X)$. If $u \in C\left(R_{+} ; X\right)$, then we have

$$
\int_{0}^{t}\left(\int_{0}^{s} U(t-s) B(s-r) u(r) d r\right) d s=\int_{0}^{t}\left(\int_{r}^{t} U(t-s) B(s-r) u(r) d s\right) d r \quad \text { for } \quad t>0
$$

Theorem 2.17. Let $b \in L_{\mathrm{ioc}}^{1}\left(R_{+}\right)$and let B be of class $P(A)$. Suppose that there exist constants $0<t_{0} \leqq \infty$ and $\lambda \geqq \omega$ such that $L_{\lambda}\left(t_{0}\right)<1$, where L_{λ} is the function defined $b y(2.3)$ for $B(t)=b(t) B$. Then there exists an adjoint kernel $\left\{U_{T}(t) ; t \in R_{+}\right\}$.

Proof. Propositions 2.14 and 1.3 imply that there exists a oneparameter family $\left\{U_{r}(t) ; t \in R_{+}\right\}$in $B(X)$ which satisfies (i) and (iv) of Definition 2.6 and integral equation of the form

$$
U_{T}(t) x=T(t) x+\int_{0}^{t} U_{T}(t-s)\left(\int_{0}^{s} b(s-r) B T(r) x d r\right) d s
$$

for $t>0$ and $x \in D$. For $B(t)=b(t) B$ define $\hat{B}(t)$ as in the proof of Theorem 2.7. Then by Lemma $1.4 \hat{B}(t) x \in C\left(R_{+} ; X\right)$ for $x \in D$. Moreover Lemma 2.2, (i) of Definition 2.6 and $\left(B_{2}\right)$ imply that $\int_{0}^{t} \hat{B}(t-r) T(r) x d r$ is continuous in t for $t>0$ and $x \in D$ and there exists some $\widehat{\beta} \in L_{\text {ioc }}^{1}\left(R_{+}\right)$such that $\|\widehat{B}(t) x\| \leqq \widehat{\beta}(t)\|B x\|$ for $t \in R_{+}$and $x \in D$. Furthermore Lemma 2.16 implies

$$
\int_{0}^{t} U_{T}(t-s)\left(\int_{0}^{s} b(s-r) B T(r) x d r\right) d s=\int_{0}^{t} \hat{B}(t-r) T(r) x d r
$$

for $t>0$ and $x \in D$. Therefore we have

$$
U_{T}(t) x=T(t) x+\int_{0}^{t} \hat{B}(t-r) T(r) x d r \quad \text { for } \quad t>0 \quad \text { and } \quad x \in D
$$

Now by the same argument as in the proof of Theorem 2.7 one can easily complete the proof.
Q.E.D.

Corollary 2.18. Let $b \in L_{\text {ioc }}^{1}\left(R_{+}\right)$and B satisfy $\left(\mathrm{B}_{7}\right)$ and
$\left(\mathrm{B}_{8}\right)$ for some $t_{0}>0$

$$
\sup \left\{\int_{0}^{t_{0}}\|B T(s) x\| d s ; x \in D,\|x\| \leqq 1\right\}<\infty
$$

Then B is of class $P(A)$ and further there exists an adjoint kernel $\left\{U_{T}(t) ; t \in R_{+}\right\}$for $B(t)=b(t) B$. If $b \in L^{1}\left(R_{+}\right)$and $t_{0}=\infty$, then there exists $\lambda>\operatorname{Max}\{\omega, 0\}$ such that $\left\|U_{T}(t)\right\| \leqq M(\lambda) \exp (\lambda t)$ for $t \in R_{+}$and some constant $M(\lambda)$ which depends on λ only.

Proof. Define $K_{\lambda}\left(t_{0}\right)=\sup \left\{\int_{0}^{t_{0}} \exp (-\lambda s)\|B T(s) x\| d s ; x \in D,\|x\| \leqq 1\right\}$ for $\lambda \in R$, then by the same argument as in Lemma 1 in [9] we have

$$
\int_{0}^{\infty} \exp (-\lambda t)\|B T(t) x\| d t \leqq L\left(\lambda, t_{0}\right)\|x\| \quad \text { for } \quad x \in D \quad \text { and } \quad \lambda>\operatorname{Max}\{\omega, 0\}
$$

where $L\left(\lambda, t_{0}\right)=K_{\lambda}\left(t_{0}\right)\left[1+M \exp \left(-(\lambda-\omega) t_{0}\right)\left\{1-\exp \left(-(\lambda-\omega) t_{0}\right)\right\}\right]^{-1}$. Thus it follows that

$$
\begin{aligned}
& \int_{0}^{t} \exp (-\lambda s)\left\|\int_{0}^{s} b(s-r) B T(r) x d r\right\| d s \\
& \quad \leqq\left(\int_{0}^{t} \exp (-\lambda s)|b(s)| d s\right)\left(\int_{0}^{t} \exp (-\lambda s)\|B T(s) x\| d s\right) \\
& \quad \leqq L\left(\lambda, t_{0}\right)\left(\int_{0}^{t} \exp (-\lambda s)|b(s)| d s\right)\|x\| \quad \text { for } t>0
\end{aligned}
$$

Therefore for $\lambda>\operatorname{Max}\{\omega, 0\}$

$$
L_{\lambda}(t)=\sup \left\{\int_{0}^{t} \exp (-\lambda s)\left\|\int_{0}^{e} b(s-r) B T(r) x d r\right\| d s ; x \in D,\|x\| \leqq 1\right\}
$$

is well defined and finite for all $t>0$. Moreover the above inequality shows that $\lim _{t \downarrow 0} L_{\lambda}(t)=0$. Thus B is of class $P(A)$ and further the first part of the conclusion follows from Theorem 2.17.

If $b \in L^{1}\left(R_{+}\right)$and $t_{0}=\infty$, then we have for $\lambda>\operatorname{Max}\{\omega, 0\}$

$$
L_{\lambda}(t) \leqq K_{\lambda}(\infty)\left(\int_{0}^{t} \exp (-\lambda s)|b(s)| d s\right) \leqq K_{\lambda}(\infty)\left(\int_{0}^{\infty} \exp (-\lambda s)|b(s)| d s\right)
$$

where $K_{\lambda}(\infty)=\sup \left\{\int_{0}^{\infty} \exp (-\lambda s)\|B T(s) x\| d s ; x \in D,\|x\| \leqq 1\right\}$. Since $L_{\lambda}(t)$ is bounded and nondecreasing in $t, L_{\lambda}(\infty)=\lim _{t \rightarrow \infty} L_{\lambda}(t)$ exists and satisfies the inequality $L_{\lambda}(\infty) \leqq K_{\lambda}^{\prime}(\infty)\left(\int_{0}^{\infty} \exp (-\lambda s)|b(s)| d s\right) . \quad K_{\lambda}(\infty)$ is also nonincreasing in λ, and hence there exists $K_{\infty}(\infty)=\lim _{\lambda \rightarrow \infty} K_{\lambda}(\infty)<\infty$. Since
$b \in L^{1}\left(R_{+}\right)$, one has $\lim _{\lambda \rightarrow \infty}\left(\int_{0}^{\infty} \exp (-\lambda s)|b(s)| d s\right)=0$. Thus $\lim _{\lambda \rightarrow \infty} L_{\lambda}(\infty)=0$. Now by Proposition 1.3 we have $\left\|U_{T}(t)\right\| \leqq M\left(1-L_{\lambda}(\infty)\right)^{-1} \exp (\lambda t)$ for $t \in R_{+}$ and sufficiently large $\lambda>\operatorname{Max}\{\omega, 0\}$.
Q.E.D.

Corollary 2.19. Let $b \in L_{\text {ioc }}^{1}\left(R_{+}\right)$, and let $\psi \in L_{1 \mathrm{oc}}^{1}\left(R_{+}\right)$and $\psi(t)>0$ for $t \in R_{+}$. Assume that B is a closed linear operator in X such that

$$
\begin{equation*}
T(t) X \subset D(B) \quad \text { for all } t>0, \quad \text { and } \tag{9}
\end{equation*}
$$

$\left(\mathrm{B}_{10}\right) \quad\|B T(t) x\| \leqq \psi(t)\|x\| \quad$ for $x \in X$ and $t>0$.
Then B is of class $P(A)$ and further there exists an adjoint kernel $\left\{U_{T}(t) ; t \in R_{+}\right\}$for $B(t)=b(t) B$.

Proof. Let $\delta>0$. Choose $\delta_{1}=\delta_{1}(\delta)$ such that $0<\delta_{1} \leqq \delta$ and $\psi\left(\delta_{1}\right)<\infty$. Let $t \geqq \delta$ and let $t=n \delta_{1}+s, 0 \leqq s<\delta_{1}, n \geqq 1$. Then

$$
\begin{align*}
\|B T(t) x\| & =\left\|B T\left(\delta_{1}\right) T\left((n-1) \delta_{1}+s\right) x\right\| \tag{2.10}\\
& \leqq\left(\psi\left(\delta_{1}\right) M \exp \left(-\omega \delta_{1}\right)\right) \exp (\omega t)\|x\| \equiv M(\delta) \exp (\omega t)\|x\|
\end{align*}
$$

$$
\text { for } t \geqq \delta
$$

Especially $\|B T(\delta) x\| \leqq M(\delta) \exp (\omega \delta)\|x\|$. Replacing δ by t, we have

$$
\begin{equation*}
\|B T(t) x\| \leqq M(t) \exp (\omega t)\|x\| \quad \text { for } \quad x \in X \text { and } t>0 \tag{2.11}
\end{equation*}
$$

where $M(t)<\infty$ for $t>0$. Let $t>0$. Choose $\hat{\varepsilon}$ such that $0<\hat{\varepsilon}<t$. Then the strong continuity of $B T(t) x$ in t follows from the estimates

$$
\|B T(t+h) x-B T(t) x\| \leqq M(t) \exp (\omega t)\|T(h) x-x\| \quad \text { for } \quad h>0
$$

and

$$
\|B T(t-h) x-B T(t) x\| \leqq M(\hat{\varepsilon}) \exp (\omega t)\|T(h) x-x\| \quad \text { for } \quad t-\hat{\varepsilon}>h>0
$$

Next we shall show that $D(A) \subset D(B)$ and $B R(\mu ; A) \in B(X)$ for $\mu>\omega$. Let $\delta>0$ be fixed again. Choose $\varepsilon>0$ such that $\varepsilon<\delta$. Then it follows from (B_{10}) and (2.10) that

$$
\begin{align*}
\int_{\varepsilon}^{\infty} \exp (-\mu s)\|B T(s) x\| d s= & \int_{\varepsilon}^{\delta} \exp (-\mu s)\|B T(s) x\| d s \tag{2.12}\\
& +\int_{0}^{\infty} \exp (-\mu s)\|B T(s) x\| d s \\
& \leqq\left[\int_{0}^{\delta} \exp (-\mu s) \psi(s) d s+M(\delta)(\mu-\omega)^{-1}\right]\|x\| \\
& \equiv M_{1}\|x\|
\end{align*}
$$

for $x \in X$ and $\mu>\omega$. Setting $R_{\varepsilon}(\mu ; A) x=\int_{\varepsilon}^{\infty} \exp (-\mu s) T(s) x d s$, then $R_{\varepsilon}(\mu ; A) x \in D(B)$. Moreover by (2.12) and (B_{10}) we can see that $\lim _{\varepsilon \downarrow 0} B R_{\varepsilon}(\mu ; A) x$ exists. Since $\lim _{\varepsilon \downarrow 0} R_{\varepsilon}(\mu ; A) x=R(\mu ; A) x$ and B is closed, we have
$R(\mu ; A) x \in D(B), \lim _{\varepsilon \downarrow 0} B R_{\varepsilon}(\mu ; A) x=B R(\mu ; A) x$ and $\|B R(\mu ; A) x\| \leqq M_{1}\|x\|$
for $x \in X$ and $\mu>\omega$. That is, $D(A) \subset D(B)$ and $B R(\mu ; A) \in B(X)$ for $\mu>\omega$. Now it is not difficult to see that $B T(t) x \in C\left(R_{+} ; X\right)$ for every $x \in D(A)$ and there exists some $t_{0}>0$ which satisfies (B_{8}) with D replaced by $D(A)$. The conclusion now follows from Corollary 2.18.
Q.E.D.
§3. In this section we shall deal with the inhomogeneous initial value problems

$$
\left\{\begin{align*}
\frac{d}{d t} u(t) & =A u(t)+\int_{0}^{t} B(t-s) u(s) d s+f(t) \quad \text { for } \quad t>0 \tag{E}\\
u(0) & =x
\end{align*}\right.
$$

and

$$
\left\{\begin{align*}
\frac{d}{d t} u(t) & =A u(t)+\int_{0}^{t} b(t-s) B u(s) d s+f(t) \quad \text { for } t>0 \\
u(0) & =x
\end{align*}\right.
$$

Throughout this section we shall assume that $\left\{B(t) ; t \in R_{+}\right\}$is of class $(B(\cdot)), B$ is of class $P(A), b \in L_{1 \mathrm{loc}}^{1}\left(R_{+}\right)$and D is the set defined in Definition 2.1 (or Definition 2.12).

Definition 3.1. A function $u: I=[0, T] \rightarrow D$ is said to be a strong solution of (E) (or (E^{\prime})) on I if u and $A u$ (or $B u$) $\in C(I ; X$) and (E) (or $\left(\mathrm{E}^{\prime}\right)$) is satisfied at all points in $I \backslash\{0\}$, where T is some positive number.

Obvious modifications of this definition can be used when the interval I is of the form $[0, T)$ with $0<T \leqq \infty$.

Theorem 3.2. If the hypotheses of Theorem 2.7 are true, then the adjoint kernel $\left\{U_{T}(t) ; t \in R_{+}\right\}$exists. If u is a strong solution of (E) on I for $f \in C(I ; X)$ and $x \in D$, then

$$
\begin{equation*}
u(t)=U_{T}(t) x+\int_{0}^{t} U_{T}(t-s) f(s) d s \quad \text { for } \quad t \in I \tag{3.1}
\end{equation*}
$$

Proof. Theorem 2.7 and $u(t) \in D$ imply that there exists an adjoint
kernel $\left\{\dot{U}_{T}(t) ; t \in R_{+}\right\}$and the X-valued function $g(s)=U_{T}(t-s) u(s)$ is strongly differentiable for $0<s<t$. Define $\widehat{B}(t)$ and $\widehat{\beta}(t)$ as in the proof of Theorem 2.7 and define $\hat{g}(t)=\int_{0}^{t} B(t-r) u(r) d r$ for $t \in I \backslash\{0\}$ and $\hat{g}(0)=0$, then from Lemma 2.2 we can see that $\hat{g} \in C(I ; X)$. Noting that $\widehat{\beta}(t)$ is finite for each $t \in R_{+}$and nondecreasing in t, from (2.6) one has

$$
\begin{aligned}
&\|\hat{B}(t-s-h) u(s+h)-\hat{B}(t-s) u(s)\| \leqq\|\hat{B}(t-s-h) u(s)-\hat{B}(t-s) u(s)\| \\
&+\widehat{\beta}(T)\|u(s+h)-u(s)\|_{4}
\end{aligned}
$$

for $0 \leqq s<t$ and $0<h<t-s$, and

$$
\begin{aligned}
\|\hat{B}(t-s+h) u(s-h)-\hat{B}(t-s) u(s)\| \leqq & \|\hat{B}(t-s+h) u(s)-\hat{B}(t-s) u(s)\| \\
& +\widehat{\beta}(2 T)\|u(s-h)-u(s)\|_{4}
\end{aligned}
$$

for $0<s \leqq t$ and $0<h<s$. Thus it is seen that as a function of $s, \hat{B}(t-s) u(s)$ is strongly continuous on [0, t]. Now from (E) and (iii) of Definition 2.6 it follows that

$$
\begin{aligned}
g^{\prime}(s)= & U_{T}(t-s) u^{\prime}(s)-U_{T}^{\prime}(t-s) u(s) \\
= & U_{T}(t-s)\left(A u(s)+\int_{0}^{s} B(s-r) u(r) d r+f(s)\right) \\
& -U_{T}(t-s) A u(s)-\int_{0}^{t-s} U_{T}(t-s-r) B(r) u(s) d r \\
= & U_{T}(t-s) f(s)+U_{T}(t-s) \hat{g}(s)-\hat{B}(t-s) u(s) \quad \text { for } \quad 0<s<t .
\end{aligned}
$$

Here ${ }^{\prime}=d / d t$. Integrating $g^{\prime}(s)$ from ε to $t-\varepsilon$ and then letting $\varepsilon \rightarrow 0$ we have

$$
\begin{aligned}
u(t)- & U_{T}(t) x-\int_{0}^{t} U_{T}(t-s) f(s) d s \\
& =\int_{0}^{t} U_{T}(t-s) \hat{g}(s) d s-\int_{0}^{t} \hat{B}(t-s) u(s) d s \\
& =\int_{0}^{t} U_{T}(t-s)\left(\int_{0}^{s} B(s-r) u(r) d r\right) d s-\int_{0}^{t}\left(\int_{0}^{t-s} U_{T}(t-s-r) B(r) u(s) d r\right) d s \\
& =\int_{0}^{t}\left(\int_{0}^{s} U_{T}(t-s) B(s-r) u(r) d r\right) d s-\int_{0}^{t}\left(\int_{0}^{t} U_{T}(t-r) B(r-s) u(s) d r\right) d s=0 .
\end{aligned}
$$

The last equality follows from Lemma 2.8.
Q.E.D.

TheOrem 3.2'. The conclusion of Theorem 3.2 remains true with Theorem 2.7 and (E) replaced by Theorem 2.17 and (E^{\prime}) respectively.

The proof of Theorem 3.2^{\prime} can be carried out by similar arguments
to those in the proof of Theorem 3.2 with using Theorem 2.17 and Lemma 2.16.

Remark 3.3. Miller has obtained a similar result under the condition that (E) is uniformly well posed (Theorem 5.4 in [6]) or that $B(t)=b(t) A$ and $b \in L^{1}\left(R_{+}\right) \cap C^{1}\left(R_{+}\right)$(Corollary 7.6 in [6]).

Corollary 3.4. Let $f \equiv 0$ in (E) (or ($\left.\mathrm{E}^{\prime}\right)$). If (E) (or ($\left.\mathrm{E}^{\prime}\right)$) has a unique strong solution for every $x \in D$, then the adjoint kernel is uniquely determined.

Definition 3.5. The continuous function u defined by (3.1) is called the mild solution of (E) (or (E^{\prime})) on I.

Finally in Theorem 3.7 below we give a sufficient condition under which (E) has a unique strong solution on R_{+}. Our proof is similar to the proof of Lemma 7.2 in [6] and our result contains a generalization of its lemma. To prove Theorem 3.7 we need the following lemma which is proved in Chapter 4 of [10].

Lemma 3.6. Let $f_{1}, f_{2} \in C\left(R_{+} ; X\right)$ such that
(i) $f_{1} \in C^{1}\left(R_{+} ; X\right)$, and
(ii) $f_{2} \in D(A)$ for $t \in R_{+}$and $A f_{2} \in L_{\text {ioc }}^{1}\left(R_{+} ; X\right)$.

Then for any $x \in D(A)$,

$$
\frac{d}{d t} u(t)=A u(t)+f_{1}(t)+f_{2}(t), \quad u(0)=x
$$

has a unique strong solution $u \in C^{1}\left(R_{+} ; X\right)$ such that $A u \in C\left(R_{+} ; X\right)$. This solution can be represented in the form

$$
u(t)=T(t) x+\int_{0}^{t} T(t-s)\left(f_{1}(s)+f_{2}(s)\right) d s \quad \text { for } \quad t>0
$$

and

$$
A u(t)=T(t) f_{1}(0)-f_{1}(t)+\int_{0}^{t} T(t-s)\left(f_{1}^{\prime}(s)+A f_{2}(s)\right) d s+A T(t) x \quad \text { for } \quad t>0
$$

Theorem 3.7. Suppose that $\left\{B(t) ; t \in R_{+}\right\}$satisfies $\left(\mathrm{B}_{\theta}\right)$ with $\beta_{1} \in C\left(R_{+}\right)$. If $f \in C^{1}\left(R_{+} ; X\right)$ or $f(t) \in D(A)$ for $t \in R_{+}$and $A f \in L_{\mathrm{ioc}}^{1}\left(R_{+} ; X\right)$, then the mild solution of (E) on R_{+}is the unique strong solution of (E) on R_{+}.

Proof. Fix any $T>0$ and $\mu \in \rho(A)$. Define $d(T)=\{v: v$ maps [0, T] into $D(A)$ and both v and $A v$ are continuous\}. Since A is closed, it is easy to see that $d(T)$ with norm $\left\|\|v\|=\sup \left\{\exp (-L t)\|v(t)\| \|_{\Lambda}: 0 \leqq t \leqq T\right.\right.$
for some $\left.L \in R_{+}\right\}$, is a Banach space, where $\|y\|_{\Lambda}=\|y\|+\|(\mu-A) y\|$ for every $y \in D(A)$. Given v in $d(T)$ define $S_{0} v(t)=\int_{0}^{t} B(t-s) v(s) d s$ for $0<t \leqq$ T and $S_{0} v(0)=0$. By the use of $\left(\mathrm{B}_{6}\right)$ with $\beta_{1} \in C\left(R_{+}\right)$and ($\left.\mathrm{B}_{4}\right)$ it is seen that $S_{0} v(t)$ is well defined and strongly continuously differentiable with

$$
\frac{d}{d t} S_{0} v(t)=B(0) v(t)+\int_{0}^{t} B_{1}(t-s) v(s) d s
$$

since $S_{0} v(t)=B(0) R(\mu ; A)\left(\mu \int_{0}^{t} v(s) d s-\int_{0}^{t} A v(s) d s\right)+\int_{0}^{t} B_{1}(s) R(\mu ; A)\left(\mu \int_{0}^{t-s} v(r) d r-\right.$ $\left.\int_{0}^{t-s} A v(r) d r\right) d s$ and $B(0) R(\mu ; A)$ and $B_{1}(s) R(\mu ; A) \in B(X)$ for $s \in R_{+}$. From Lemma 3.6 it follows that any v in $d(T)$,

$$
\frac{d}{d t} u(t)=A u(t)+\left\{S_{0} v(t)+f(t)\right\}, \quad u(0)=x \in D(A)
$$

has a unique strong solution $u=S v$ which is again in $d(T)$.
Since S_{0} is a linear operator on $d(T)$, we can decide whether or not S is a contraction map by computing the norm when $x=0$ and $f \equiv 0$. If $||v|| \mid \leqq 1$, then from (2.9)

$$
\left\|S_{0} v(t)\right\| \leqq \int_{0}^{t}\|B(t-s) v(s)\| d s \leqq \exp (L t) \int_{0}^{t} \beta_{2}(s) \exp (-L s) d s,
$$

where $\beta_{2}(s)=b+\int_{0}^{s} \beta_{1}(r) d r$. Therefore

$$
\exp (-L t)\left\|S_{0} v(t)\right\| \leqq \int_{0}^{t} \beta_{2}(s) \exp (-L s) d s
$$

while $x=0, f \equiv 0$ and Lemma 3.6 imply that

$$
\begin{aligned}
\|S v(t)\| & =\left\|\int_{0}^{t} T(t-s) S_{0} v(s) d s\right\| \\
& \leqq \int_{0}^{t} M \exp (\omega(t-s)) \exp (L s)\left(\int_{0}^{t} \beta_{2}(r) \exp (-L r) d r\right) d s
\end{aligned}
$$

or

$$
\exp (-L t)\|S v(t)\| \leqq M \int_{0}^{t} \exp (-(L-\omega)(t-s))\left(\int_{0}^{s} \beta_{2}(r) \exp (-L r) d r\right) d s
$$

and
$\|(\mu-A) S v(t)\|=\left\|\mu S v(t)+S_{0} v(t)-\int_{0}^{t} T(t-s)\left(S_{0} v\right)^{\prime}(s) d s\right\|$

$$
\begin{aligned}
& \leqq|\mu|\|S v(t)\|+\left\|S_{0} v(t)-\int_{0}^{t} T(t-s)\left(B(0) v(s)+\int_{0}^{s} B_{1}(s-r) v(r) d r\right) d s\right\| \\
& \leqq|\mu|\|S v(t)\|+\left\|S_{0} v(t)\right\|+M \exp (L t) \int_{0}^{t} \exp (-(L-\omega)(t-s)) \\
& \quad \times\left(b+\int_{0}^{s} \beta_{1}(r) \exp (-L r) d r\right) d s .
\end{aligned}
$$

Thus

$$
\begin{aligned}
&\left\|\|S\| \mid \leqq M\left[(1+|\mu|) \int_{0}^{T} \exp (-(L-\omega)(T-s))\left(\int_{0}^{s} \beta_{2}(r) \exp (-L r) d r\right) d s\right.\right. \\
&+ M^{-1} \int_{0}^{T} \beta_{2}(s) \exp (-L s) d s+\int_{0}^{T} \exp (-(L-\omega)(T-s)) \\
&\left.\times\left(b+\int_{0}^{s} \beta_{1}(r) \exp (-L r) d r\right) d s\right]<1
\end{aligned}
$$

for L sufficiently large, where we have used the fact that if a and b are non-negative functions, and $b(t)$ is nondecreasing in t, then

$$
\int_{0}^{t} a(t-s) b(s) d s=\int_{0}^{t} a(s) b(t-s) d s
$$

is also nondecreasing in t for $t>0$. Thus the contraction mapping theorem implies the existence and uniqueness of a strong solution of (E) on [$0, T$]. Since T is an arbitrary positive number, this proves the existence and uniqueness on R_{+}.
Q.E.D.

Corollary 3.8. Suppose that $\left\{B(t) ; t \in R_{+}\right\}$satisfies $\left(B_{6}\right)$ with $\beta_{1} \in$ $C\left(R_{+}\right)$. Then the adjoint kernel $U_{T}(t)$ maps $D(A)$ into $D(A)$ for each $t \in R_{+}$with $A U_{T}(t) x \in C\left(R_{+} ; X\right)$ and satisfies

$$
\frac{d}{d t} U_{T}(t) x=A U_{T}(t) x+\int_{0}^{t} B(t-s) U_{T}(s) x d s \quad \text { for } \quad x \in D(A) \quad \text { and } \quad t>0
$$

and

$$
\frac{d}{d t} U_{T}(t) x=U_{T}(t) A x+\int_{0}^{t} U_{T}(t-s) B(s) x d s \quad \text { for } \quad x \in D(A) \quad \text { and } \quad t>0
$$

The following example shows that every function given by (3.1) does not satisfy equation (E).

Example. Consider the integro-differential equation

$$
\left\{\begin{align*}
\frac{d}{d t} u(t) & =A u(t)+k^{2} \int_{0}^{t} T(t-s) u(s) d s+f(t) \quad \text { for } t>0, \tag{E}\\
u(0) & =x
\end{align*}\right.
$$

where k is a given constant. It is not difficult to see that the adjoint kernel $\left\{U_{T}(t) ; t \in R_{+}\right\}$is given by $U_{T}(t)=\cosh (k t) T(t)$. Suppose there exists an $x \in X$ such that $T(t) x \notin D(A)$ for any $t>0$. Then $u(t)=U_{T}(t) x$ is not differentiable for all $t>0$ and thus u is not a solution of (E) with $f \equiv 0$. Moreover if $f(t)=k T(t) x$ for all $t \in R_{+}$, by Theorem 3.2 the solution u of (E) is, if it exists, represented by

$$
\begin{aligned}
u(t) & =\cosh (k t) T(t) x+k \int_{0}^{t} \cosh (k(t-s)) T(t-s) T(s) x d s \\
& =\exp (k t) T(t) x .
\end{aligned}
$$

But this is not also differentiable for any $t>0$.
Acknowledgment. The author is grateful to Mr. M. Shimizu for useful advices.

References

[1] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
[2] S. I. Grossman and R. K. Miller, Perturbation theory for Volterra integro-differential systems, J. Differential Equations, 8 (1970), 457-474.
[3] K. B. Hannsgen, The resolvent kernel of an integro-differential equation in Hilbert space, SIAM J. Math. Anal., 7 (1976), 481-490.
[4] K. B. HANNSGEN, Uniform L^{1} behavior for an integro-differential equation with parameter, SIAM J. Math. Anal., 8 (1977), 626-639.
[5] J. T. Marti, On integro-differential equation in Banach spaces, Pacific J. Math., 20 (1967), 99-108.
[6] R. K. Miller, Volterra integral equations in a Banach space, Funkcial. Ekvac., 18 (1975), 163-193.
[7] R. K. Miller, Nonlinear Volterra Integral Equations, W. A. Benjamin, Menlopark, California, 1971.
[8] I. Miyadera, On perturbation theory for semi-groups of operators, Tôhoku Math. J., 18 (1966), 299-310.
[9] I. Miyadera, On perturbation of semi-groups of operators, Sci. Res., School of Education, Waseda Univ., 21 (1972), 21-24 (in Japanese).
[10] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Lecture Notes, no. 10, University of Maryland, College Park, Maryland, 1974.
[11] R. S. Phillips, Perturbation theory for semi-groups of linear operators, Trans. Amer. Math. Soc., 74 (1953), 199-221.
[12] K. Tsuruta, On linear integro-differential equations in a Banach space, Kenkyu Ronsyu, Tokyo Metropolitan Junior College of Commerce, 7 (1979), 85-104 (in Japanese).
[13] J. Voigt, On the perturbation theory for strongly continuous semigroups, Math. Ann., 229 (1977), 163-171.

Present Address:

Branci of Business Management
Tokyo Metropolitan Junior College of Commerce harumi 1-Chome, Chuo-ku, Tokyo 104

[^0]: Received September 18, 1979
 Revised March 17, 1980 and August 23, 1980

