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Introduction

In this paper we study a linear Volterra integro-differential equation
of the form

(E) $\frac{d}{dt}u(t)=Au(t)+\int_{0}^{t}B(t-s)u(s)ds+f(t)$ for $t>0,$ $u(O)=x$ ,

in a Banach space $X$ with norm $||\cdot||$ . Here $ f:R_{+}=[0, \infty$ ) $\rightarrow X$ is continuous
and $A$ is the infinitesimal generator of a semi-group of class $(C_{0})$ on $X$.
For each $teR_{+}B(t)$ is a (in general unbounded) linear operator with
domain dense in $X$. Let $B(X)$ denote the set of all bounded linear
operators from $X$ into itself.

It is well known [2] that on a finite dimensional space $X=R$“ (the
n-dimensional space of column vectors with the usual norm $|\cdot|$ ),

(0.1) $u(t)=U(t)x+\int_{0}^{t}U(t-s)f(s)ds$ for $t>0$ ,

is a unique solution of (E) for $x\in X$. In this case A and $B(t)$ are $n\times n$

matrices, $B(t)$ is a locally integrable function on $R_{+}$ and the $n\times n$ matrix
function $U(t)$ is the solution of the equation

$\frac{d}{dt}U(t)=AU(t)+\int_{0}^{t}B(t-s)U(s)ds=U(t)A+\int_{0}^{t}U(t-s)B(s)ds$ for $t>0$ ,

$U(O)=I$ (the identity matrix).

In a general Banach space $X$, it is also known $[5, 12]$ that if {$B(t)$ ;
$teR_{+}\}$ is in $B(X)$ and $B(t)x:R_{+}\rightarrow X$ is continuous for each $xeX$, then
there exists a one-parameter family $\{U(t);t\in R_{+}\}$ in $B(X)$ which satisfie8
the following two equations
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(U) $\frac{d}{dt}U(t)x=AU(t)x+\int_{0}^{\iota}B(t-s)U(s)xds$ for $t>0,$ $U(O)x=xeD(A)$ ,

and

(U) $\frac{d}{dt}U(t)x=U(t)Ax+\int_{0}^{t}U(t-s)B(s)xds$ for $t>0,$ $U(O)x=xeD(A)$ ,

and the function $u$ given by (0.1) gives the unique solution of (E) for
$x\in D(A)$ and $f$ strongly continuously differentiable on $R_{+}$ .

Our purpose of this paper is to generalize the results in [2], [5] and
[12] to the case in which $\{B(t);teR_{+}\}$ is not necessarily in $B(X)$ . The
paper is organized as follows. In section 1 we construct a one-parameter
family $\{U_{T}(t);teR_{+}\}inB(X)$ satisfying certain integral equation in $X$ by
using “successive approximations” method which has been used for per-
turbation theory of semi-group generators by Miyadera $[8, 9]$ and Voigt
[13], and for Volterra integro-differential equations in a Banach space by
the author [12]. In section 2 we give some sufficient conditions on $B(t)$

under which $U_{T}(t)$ satisfie8 $(U_{2})$ for $xeD$, where $D$ is a dense linear subset
of $X$. In section 3 an existence and uniqueness theorem is obtained for
(E) under appropriate conditions which also guarantee that $U_{T}(t)$ satisfies
(U) and $(U_{2})$ for $x\in D$ . Further in section 3 “the variation of constants”
formula of the form (0.1) is obtained. Our results in section 3 will partly
correspond to Miller’s theorem [6] which has been obtained by studies of
well-posedness of Volterra integro-differential equations in a Banach space.

For results on linear Volterra integro-differential equations in a
Hilbert space see Hannsgen $[3, 4]$ .

Let $I$ be a subinterval of $R=(-\infty, \infty)$ . As usual $L^{1}(I)$ will denote
the Lebesgue space of all extended real-valued measurable functions
$g:I\rightarrow\overline{R}$ such that $\int_{I}|g(t)|dt<\infty$ , where $\overline{R}$ denotes the set of all extended
real numbers. $L_{1oc}^{1}(R_{+})$ will denote the set of all R-valued functions $g$

which are locally of class $L^{1}(R_{+})$ ; that is $\int_{0}^{T}|g(t)|dt<\infty$ for every $T>0$ .
$C(I)$ will denote the set of all real-valued continuous functions $g:I\rightarrow R$ and
$C^{1}(I)$ will denote the set of all real-valued continuously differentiable func-
tions $g:I\rightarrow R$ . $L^{1}(I;X)$ will denote the set of all $g:I\rightarrow X$ such that $g$

is Bochner integrable on I. $L_{1oc}^{1}(R_{+};X)$ will denote the set of all X-
valued functions $g$ which are locally of class $L^{1}(R_{+};X)$ . $C(I;X)$ will
denote the set of all X-valued continuous functions $g:I\rightarrow X$ and $C^{1}(I;X)$

will denote the set of all X-valued strongly continuously differentiable
functions $g:I\rightarrow X$.
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\S 1. We begin with the integral equation of the form

(1.1) $U(t)x=V(t)x+\int_{0}^{t}U(t-s)F(s)xd8$ for $t>0$ ,

where $V$ and $F$ are given operator-valued functions. We now introduce
a class of linear operators.

DEFINITION 1.1. A one-parameter family of linear operators $F(t)$

defined on a dense linear $|subsetD$ of $X$ for each $t\in R_{+}$ is said to be
of class $(F(\cdot))$ if

(F) $F(t)x\in L_{1oc}^{1}(R_{+};X)$ for each $x\in D$ ,

(F) for any $t\in R_{+}$

$sup\{\int_{0}^{t}||F(s)x||ds;xeD,$ $||x||\leqq 1\}<\infty$

REMARK 1.2. Each of the following conditions is equivalent to $(F_{2})$ .
(F) For some $xeR$ and any $t\in R_{+}$

$(*)$ $\sup\{\int_{0}^{t}\exp(-\lambda s)||F(s)x||ds;x\in D,$ $||x||\leqq 1\}<\infty$ .

(F) For any $\lambda eR$ and $teR_{+}(^{*})$ holds.

If $\{F(t);teR_{+}\}$ belongs to $(F(\cdot))$ , we define

$L_{\lambda}(t)=\sup\{\int_{0}^{t}\exp(-\lambda s)||F(s)x||ds;x\in D,$ $||x||\leqq 1\}$

for any $xeR$ and $teR_{+}$ .
Our first result is the following proposition. The proof of the result

uses the same techniques as those used in [9] and [12].

PROPOSITION 1.3. Let $\{F(t);t\in R_{+}\}$ be of class $(F(\cdot))$ . Suppose that
there exist constants $ 0<t_{0}\leqq\infty$ and $xeR$ such that $L_{\lambda}(t_{0})<1$ . Then for
each strongly continuous family $\{V(t);teR_{+}\}$ in $B(X)$ satisfying

(1.2) $||V(t)||\leqq M_{0}$ exp $(\lambda t)$ for $t\in R^{+}$ and some $M_{0}>0$

there exists $a$ one-parameter family $\{U_{V}(t);t\in R_{+}\}$ in $B(X)$ with the
properties:

(i) $U_{V}(t)$ is strongly continuous on $R_{+}$ ,
(ii) for each $xeDU_{V}(t)x$ satisfies the integral equation (1.1), and
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(iii) there exists a non(lecreasing function $M(t)$ defined on $R_{+}$ such
that

$||U_{\gamma}(t)||\leqq M(t)$ exp $(\lambda t)$ for $teR_{+}$ .
In particular if $ t_{0}=\infty$ we have $||U_{r}(t)||\leqq M_{0}(1-L_{\lambda}(\infty))^{-1}\exp(xt)$ for $teR_{+}$ .

To prove this proposition we use the following lemma.

LEMMA 1.4. Let $\{U(t);teR_{+}\}$ be in $B(X)$ and $U(t)xeC(R_{+};X)$ for
each $xe$ X. If $feL_{1oc}^{1}(R_{+};X)$ , then as a function of $s,$ $U(t-s)f(\epsilon)e$

$L^{1}([0, t];X)$ for $t>0$ . Further if we define $g(t)=\int_{0}U(t-s)f(s)ds$ for $t>0$,
and $g(O)=0$ , then $geC(R_{+};X)$ .

The proof of Lemma 1.4 can be carried out by standard arguments,
and let us note that under the condition of Proposition 1.3 the equality
$U_{r}(O)=V(0)$ holds, if $\{U_{V}(t);teR_{+}\}$ exists, since Lemma 1. 4 implies
$\lim_{t\downarrow 0}\int_{0}^{t}U_{\gamma}(t-s)F(\epsilon)xds=0$ and $D$ is dense.

$PR\infty F$ OF PROPOSITION 1.3. Fix $T>0$ . It follows from the definition
of $L_{\lambda}(t)$ that $L_{\lambda}(t)\leqq L_{\lambda}(t_{0})<1$ whenever $0<t\leqq t_{0}$ . Therefore we can choose
some $0<t_{1}\leqq T$ such that $t_{t}\leqq t_{0}$ and $L_{\lambda}(t_{1})<1$ . In fact if $ t_{0}=\infty$ or $T<t_{0}$

we can set $t_{1}=T$ and if $T\geqq t_{0}$ we can set $t_{1}=t_{0}$ . Let $\{V(t);teR_{+}\}$ be a
family in $B(X)$ and $V(t)xeC(R_{+};X)$ for each xeX with the estimate
(1.2). Then

(1.3) $||V(t)x||\leqq M_{0}$ exp $(\lambda t)||x||$ for every $xeX$ and $t>[0, t_{1}]$ .
For each nonnegative integer $n$ and $te[0, t_{\iota}]$ we define a bounded linear
operator $U_{l}(t)$ on $D$ as follows: for $xeD$

(1.4) $U_{0}(t)x=V(t)x$ , $U.(t)x=\int_{0}^{t}U_{*-1}(t-s)F(s)xds$ for $te(0, t_{1}$]

and $U.(O)x=0$ for $n=1,2,$ $\cdots$ ,

where $\overline{U}_{n-1}(t)$ denotes the extension of $U_{-1}(t)$ onto $X$. To observe that
$U.(t)$ are well defined and bounded on $D$, we show that for every $n$ and
$xeD,$ $U.(t)xeC(O, t_{1}$] $;X$) and

(1.5) $||U.(t)x||\leqq M_{0}(L_{\lambda}(t_{1}))$ exp $(\lambda t)||x||$ for $t\in[0, t_{1}]$ .
By $(F_{1}),$ $(1.4)$ and Lemma 1.4 it follows that for $t\in(O, t_{1}$]

$U_{1}(t)x=\int_{0}^{t}\overline{U}_{0}(t-s)F(s)xds$ and $U_{1}(0)x=0$
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are well defined and $U_{1}(t)xeC([0, t_{1}];X)$ for $xeD$ . Moreover, by ( $ 1.3\rangle$

and the definition of $L_{\lambda}(t_{1})$ one has

$||U_{1}(t)x||\leqq M_{0}\exp(\lambda t)\int_{0}^{t}\exp(-\lambda s)||F(s)x||ds$

$\leqq M_{0}\exp(\lambda t)L_{\lambda}(t_{1})||x||$ for $t\in(O, t_{1}$]

and hence $||U_{1}(t)x||\leqq M_{0}L_{\lambda}(t_{1})\exp(\lambda t)||x||$ for $t\in[0, t_{1}]$ . Since $D$ is dense
in $X,$ $U_{1}(t)$ can be extended onto $X$. Now we see by induction that $ U_{\hslash}(t\rangle$

is well defined and $U.(t)xeC([0, t_{1}];X)$ for $x\in D$ , and (1.5) holds. Con-
sequently it follows that for every $n\overline{U}_{n}(t)$ is strongly continuous on $[0, t_{1}]$

and

(1.6) $||\overline{U}_{n}(t)||\leqq M_{0}(L_{\lambda}(t_{1}))\exp(\lambda t)$ for $t\in[0, t_{1}]$ .
Since $L_{\lambda}(t_{1})\leqq L_{\lambda}(t_{0})<1,$ $\sum_{n=0}^{\infty}\overline{U}_{n}(t)$ converges absolutely in the uniform
operator topology and uniformly in $t$ on $[0, t_{1}]$ . Define $U_{V}(t)\in B(X)$ by

(1.7) $U_{V}(t)=\sum_{n\Rightarrow 0}^{\infty}\overline{U}_{n}(t)$ for $t\in[0, t_{1}]$ ,

then $U_{V}(t)$ is strongly continuous on $[0, t_{1}]$ . Clearly $U_{V}(0)=V(0)$ and by
the definition of $\overline{U}_{n}(t)$ and (1.7) $U_{V}(t)$ satisfies the integral equation (1.1)
for $x\in D$ and $t\in(O, t_{1}$], and from (1.6) and (1.7) one has

(1.8) $||U_{V}(t)||\leqq M_{0}(1-L_{\lambda}(t_{0}))^{-1}\exp(\lambda t)$ for $te[0, t_{1}]$ .
Translate (1.1) by $t_{1}$ to see that $W(t)=U_{V}(t+t_{1})$ must satisfy

$W(t)x=V(t+t_{1})x+\int_{0}^{t+t_{I}}U_{V}(t+t_{1}-s)F(s)xds$

$=[V(t+t_{1})x+\int_{t}^{t+t_{1}}U_{V}(t+t_{1}-s)F(s)xds]+\int_{0}^{t}W(t-s)F(s)xds$

for $t>0$ and $x\in D$ . Clearly the term in brackets, we say, the new forcing
function $V_{1}(t)x$ is strongly continuous on $R_{+}$ by $(F_{1})$ and Lemma 1.4 and
satisfies (1.3), since from (1.8) and $(F_{2})$ one has

$||V_{1}(t)x||\leqq M_{0}\exp(\lambda(t+t_{1}))[||x||+(1-L_{\lambda}(t_{0}))^{-1}\int_{t}^{t+t_{1}}\exp(-\lambda s)|\}F(s)x||ds]$

$\leqq M_{1}\exp(\lambda t)||x||$ for $te[0, t_{1}]$ and $x\in D$ ,

where $M_{1}=M_{0}[1+L_{\lambda}(2t_{0})(1-L_{\lambda}(t_{0}))^{-1}]\exp(\lambda t_{1})$ . Therefore the same argu-
ment can be repeated to obtain a solution of (1.1) on $(t_{1},2t_{1}$], $(2t_{1},3t_{1}$], $\cdots$

until $(Nt_{1}, T$ ] where $(N+1)t_{1}\geqq T$, and $||U_{V}(t)||\leqq M(t)$ exp $(\lambda t)$ for $te[0,$ $\tau 1$
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and some nondecreasing function $M(t)$ which depends on $t$ and $\lambda$ . Since
$T$ is an arbitrary positive number, this proves the existence of a one-
parameter family $U_{V}(t)\in B(X)$ on $R_{+}$ which is strongly continuous, and
satisfies the integral equation (1.1) and the estimate (iii) for $teR_{+}$ .

Q.E.D.

REMARK 1.5. The condition $(L_{1})$ : there exists $ t_{0},0<t_{0}\leqq\infty$ such that
$L_{\lambda}(t_{0})<1$ for some $\lambda\in R$ , is equivalent to the following condition

(L) $\lim_{t\downarrow 0}L_{\lambda}(t)<1$ for some $\lambda\in R$ .

We use this fact in section 2.
We now give a simple condition which guarantees the assumptions

of Proposition 1.3.

LEMMA 1.6. Let $\{F(t);teR_{+}\}$ be $a$ one-parameter family of linear
operators defined on a dense linear subset $D$ of $X$ which satisfies $(F_{1})$ .
If there exists a non-negative function $\phi eL_{1oc}^{1}(R_{+})$ such that

$(F_{f})$ $||F(t)x||\leqq\phi(t)||x||$ for $teR_{+}$ and $xeD$ ,

then $F(t)$ is of class $(F(\cdot))$ and there exist constants $ 0<t_{0}\leqq\infty$ and $\lambda\in R$

such that $L_{\lambda}(t_{0})<1$ .
\S 2. A one-parameter family $\{T(t);teR_{+}\}$ in $B(X)$ is called a semi-

group of class $(C_{0})$ on $X$ if it satisfies
$T(O)=I$ (the identity operator), $T(t+s)=T(t)T(s)(t, seR_{+})$ , and $T(t)xe$

$C(R_{+};X)$ for each $xeX$. The infinitesimal generator $A$ of $\{T(t);teR_{+}\}$

is defined by

$D(A)=$ {$xeX;Ax=\lim_{k\downarrow 0}h^{-1}[T(h)-I]x$ exists}.

It is well known that $A$ is a densely defined, closed linear operator in
X. We denote by $\rho(A)$ and $R(\lambda;A)$ the re8o1vent set and resolvent of
$A$ , respectively: $R(\lambda;A)=(\lambda-A)^{-1},$ $\lambda e\rho(A)$ . For $t>0T(t)$ and $A$ commute
on $D(A)$ , and for $xeD(A)T(t)x$ is strongly continuously differentiable on
$R_{+}$ and is the unique solution of the differential equation $dT(t)/dt=AT(t)x$

with the initial condition $T(O)x=x$ . Moreover $\int_{0}^{t}T(\epsilon)xdseD(A)$ and
$A\int_{0}^{t}T(s)xds=T(t)x-x$ for $x\in X$ and $t>0$ . It i8 also well known that
there exist constants $M\geqq 1$ and $\omega eR$ such that

(2.1) $||T(t)||\leqq M\exp(\omega t)$ for $teR_{+}$ and $\{\lambda;x>\omega\}\subset\rho(A)$ .



INTEGRO-DIFFERENTIAL EQUATIONS 337

Moreover $R(h;A)=\int_{0}^{\infty}\exp(-\lambda t)T(t)xdt$ for $x\in X$ and $\lambda>\omega$ .
Concerning further results of a semi-group of operators of class $(C_{0})$

see for example Dunford-Schwartz [1] or Pazy [10].
In what follows $A$ will be the infinitesimal generator of a $(C_{0})$ semi-

group $\{T(t);t\in R_{+}\}$ and $B(t)$ be a linear operator defined on $D(B(t))$ with
range in $X$.

DEFINITION 2.1. A one-parameter family $\{B(t);teR_{+}\}$ is said to be
of class $(B(\cdot))$ if

(B) there exists a dense linear subset $D$ of $X$ such that $ D\subset D(A)\cap$

$D(B(t))$ for all $teR_{+},$ $T(t)D\subset D$ for each $t\in R_{+}$ and $B(t)x:R_{+}\rightarrow X$ is
measurable for each $xeD$ ,

(B) there exists a function $\beta\in L_{1oc}^{1}(R_{+})$ such that

$||B(t)x||\leqq\beta(t)||x||_{A}$ for all $t\in R_{+}$ and $x\in D$ ,

where $||x||_{A}=||x||+||Ax||$ , and
$(B_{\epsilon})$ for any $teR_{+}$

$sup\{\int_{0}^{t}\Vert\int_{0}B(s-r)T(r)xdr\Vert ds;x\in D,$ $||x||\leqq 1\}<\infty$

In order to show that $(B_{\theta})$ makes sense we need the following lemma.
For a proof see Lemma 1.1 in [6].

LEMMA 2.2. Let $\{B(t);t\in R_{+}\}$ satisfy $(B_{1})$ and $(B_{2})$ . Let $u:R_{+}\rightarrow D$ be
any function such that $u(t)$ and Au $(t)$ are continuous on $R_{+}$ . Then as
a function of 8, $B(t-s)u(s)eL^{1}([0, t];X)$ for $t>0$ and if we define $g(t)=$

$\int_{0}B(t-s)u(s)ds$ for $t>0$ and $g(O)=0$ , then $g\in C(R_{+};X)$ .
The operator of the form $B(t)=b(t)A$ will serve as an important

example which forms a family of class $(B(\cdot))$ , where $b\in L_{1oc}^{1}(R_{+})$ is a
given function.

PROPOSITION 2.3. Let $\{B(t);t\in R_{+}\}$ satisfy

(B) $D(A)\subset D(B(t))$ for all $t\in R_{+},$ $B(t)x:R_{+}\rightarrow X$ is measurable for each
$x\in D(A)$ and there exists a function $\beta eL_{1oc}^{1}(R_{+})$ such that for any
$y$ in $X$

$||B(t)R(\mu;A)y||\leqq\beta(t)||y||$ for all $t\in R_{+}$ and some $\mu\in\rho(A)$ ,
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and $(B_{\theta})$ with $D$ replaced by $D(A)$ . Then $\{B(t);t\in R_{+}\}$ forms a family
of class $(B(\cdot))$ .

PROOF. Clearly $(B_{4})$ implies $(B_{1})$ and $(B_{2})$ with $D$ replaced by
$Q.E.DD(A).$ .

In the sequel it will be assumed that $B$ is a linear operator defined
on the domain $D(B)$ with range in $X$. The following result is a direct
consequence of Proposition 2.3.

COROLLARY 2.4. Let $beL_{1oc}^{1}(R_{+})$ and $|b(t)|<\infty$ for $t\in R_{+}$ . Let $B$

satisfy

$(B_{b})$ $D(A)\subset D(B)$ and $BR(\mu;A)eB(X)$ for some $\mu e\rho(A)$ ,

and $(B_{s})$ with $D$ and $B(t)$ replaced by $D(A)$ and $b(t)B$, respectively. Then
$\{b(t)B;t\in R_{+}\}$ forms a family of class $(B(\cdot))$ .

PROOF. Set $B(t)=b(t)B$. Then $B(t)$ is well defined for all $teR_{+}$ and
one has $D(B)\subset D(B(t))$ for $t\in R_{+}$ . Now $(B_{4})$ follows from $(B_{b})$ . Q.E.D.

PROPOSITION 2.5. Let $\{B(t);t\in R_{+}\}$ be of class $(B(\cdot))$ . Set

(2.2) $F(t)x=\int_{0}^{t}B(t-s)T(s)xds$ for $teR_{+}$ and $x\in D$ .

Then $\{F(t);t\in R_{+}\}$ forms a family of class $(F(\cdot))$ and hence

(2.3) $L_{\lambda}(t)=\sup\{\int_{0}^{t}\exp(-\lambda s)\Vert\int_{0}B(s-r)T(r)xdr\Vert ds;x\in D,$ $||x||\leqq 1\}$

is finite for all $\lambda\in R$ and $t\in R_{+}$ .
PROOF. The conditions $(F_{1})$ and $(F_{2})$ follow from Lemma 2.2 and $(B_{s})$

respectively. Q.E.D.

We now consider an integro-differential equation of the form

(2.4) $\frac{d}{dt}U(t)x=U(t)Ax+\int_{0}^{t}U(t-s)B(s)xds$ for $t>0$ , $U(O)x=x$ .

DEFINITION 2.6. A one-parameter family $\{U_{T}(t);t\in R_{+}\}$ in $B(X)$ is
said to be an adjoint kernel on $R_{+}$ if

(i) $U_{T}(t)x\in C(R_{+};X)$ for each xeX and there exist $\lambda eR$ and a
nondecreasing function $M$ such that $||U_{T}(t)||\leqq M(t)$ exp $(\lambda t)$ for $t\in R_{+}$ ,

(ii) there exists some dense linear subset $D$ of $X$ such that $ D\subset$

$D(A)\cap D(B(t))$ for all $t\in R_{+}$ and $U_{T}(t)x\in C^{1}(R_{+};X)$ for each $xGD$ , and
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(iii) for $t>0$ and $xeDU_{T}(t)x$ satisfies the integro-differential equation
(2.4) with

(iv) $U_{T}(0)=I$.
Our first main result is the following

THEOREM 2.7. Let $\{B(t);t\in R_{+}\}$ be of class $(B(\cdot))$ . Suppose that there
exist constants $ 0<t_{0}\leqq\infty$ and $x\geqq\omega$ such that $L_{\lambda}(t_{0})<1$ , where $L_{\lambda}$ is the
function defined by (2.3). Then there exists an adjoint kernel { $U_{T}(t)$ ;
$teR_{+}\}$ .

The following lemma will be useful in the proof of Theorem 2.7 and
in the remainder of this paper.

LEMMA 2.8. Let $\{U(t);t\in R_{+}\}$ be in $B(X)$ and satisfy
(i) $U(t)x\in C([0, \infty);X)$ for each $xeX$, and
(ii) there exists a function $\hat{\beta}\in_{1oc}^{1}(R_{+})$ such that

$||U(t)||\leqq\hat{\beta}(t)$ for all $t\in R_{+}$ .
If the hypotheses of Lemma 2.2 are satisfied, then we have

$\int_{0}^{t}(\int_{0}^{l}U(t-s)B(s-r)u(r)dr)ds=\int_{0}^{t}(\int_{r}^{t}U(t-s)B(s-r)u(r)ds)d\gamma$ for $t>0$ .

PROOF. Fix $t>0$ . Define $B(\gamma s)x=B(s-r)x$ for $(r, s)\in\overline{\Omega}\equiv\{(r, s)$ ;
$0\leqq r\leqq s\leqq t\}$ and $x\in D$. Then $B(r, s)x$ is measurable on $\overline{\Omega}$ for each $x\in D$

and from $(B_{2})$ one has $||B(r, s)x||\leqq\beta(s-r)||x||_{A}$ for $x\in D$ . Clearly the
function $\beta(r, s)=\beta(s-r)$ is integrable on $\overline{\Omega}$ . Since $u(\gamma)$ is strongly con-
tinuous on $[0, t]$ , the function $u(\gamma s)$ on $\overline{\Omega}$ to $X$ defined by the formula
$u(r, s)=u(r)$ is continuous. Further we define $U(r, s)=U(t-s)$ for $(r, s)\in$

$\overline{\Omega}$ . Then $U(r, s)\in B(X)$ for $(r, s)\in\overline{\Omega}$ and $U(r, s)x$ is strongly continuous
on $\overline{\Omega}\backslash \{(r, s);s=t\}$ for $x\in X$. Using the similar arguments as those used
in the proof of Lemma 1.1 in [6] it is seen that $v(r, s)=B(\gamma s)u(r, s)$ is
strongly measurable on $\overline{\Omega}$ and $U(r, \epsilon)v(r, s)$ is also strongly measurable
on $\overline{\Omega}(\epsilon)=\{(r, s);0\leqq r\leqq s<t-\epsilon\}$ for sufficiently small $\epsilon>0$ . Thus $U(r, s)v(\gamma s)$

is strongly measurable on $\overline{\Omega}$ . Moreover from $(B_{2})$ one has

$\int_{0}^{t}(\int_{0}||U(\gamma s)v(r, s)||dr)ds\leqq\sup\{||u(\gamma)||_{A};0\leqq r\leqq t\}(\int_{0}^{t}\hat{\beta}(s)ds)(\int_{0}^{t}\beta(s)ds)<\infty$

Thus by Corollary III.11.15 in [1] and Fubini’s theorem we have

$\int_{0}^{t}(\int_{0}^{*}U(r, s)v(r, s)dr)ds=\int_{0}^{t}(\int_{r}^{t}U(r, s)v(\gamma s)ds)dr$ for $t>0$ . Q.E.D.
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PROOF OF THEOREM 2.7. Set $V(t)=T(t)$ in Proposition 1.3. Then
Propositions 2.5 and 1.3 imply that there exists a one-parameter family
$\{U_{T}(t);teR_{+}\}$ in $B(X)$ which satisfies (i) and (iv) of Definition 2.6 and
the integral equation of the form

(2.5) $U_{r}(t)x=T(t)x+\int_{0}^{t}U_{T}(t-s)(\int_{0}B(s-r)T(r)xdr)ds$

for $t>0$ and $xeD$. From $(B_{1}),$ $(B_{2})$ and Lemma 1.4 it follows that as a
a function of $s,$ $U_{T}(t-s)B(s)xeL^{1}([0, t];X)$ for $t>0$ and xeD and if we
define $\hat{B}(t)x=\int_{0}^{t}U_{r}(t-s)B(s)xds$ for $t>0$ and $\hat{B}(0)x=0$ for each $xeD$, then
$D\subset D(\hat{B}(t))$ for $teR_{+}$ and $\hat{B}(t)xeC(R_{+};X)$ for $xeD$ . Furthermore by (i)
of Definition 2.6 and $(B_{2})$ we have

(2.6) $||\hat{B}(t)x||\leqq M(t)$ exp $(\lambda t)(\int_{0}^{t}\beta(s)ds)||x||_{A}\equiv\hat{\beta}(t)||x||_{A}$ for $t>0$ .
Therefore if we define $\hat{\beta}(0)=0$ , then it is seen that $\hat{\beta}eL_{1oc}^{1}(R_{+})$ and $\hat{\beta}(t)<$

$\infty$ for $teR_{+}$ , and hence $\hat{\beta}(t)$ satisfies $(B_{1})$ and $(B_{2})$ . Thus Lemma 2.2
implies that $\int_{0}^{t}\hat{B}(t-r)T(r)xdr$ is well defined and continuous in $t$ for $t>0$

and $xeD$ . Since $U_{T}(t)$ is strongly continuous on $R_{+},$ $||U_{T}(t)||$ is bounded
and measurable on each finite interval of $R_{+}$ . Thus from Lemma 2.8 we
have

$\int_{0}^{t}U_{T}(t-s)(\int_{0}^{l}B(s-r)T(r)xdr)ds=\int_{0}^{t}(\int^{t}U_{r}(t-s)B(s-r)T(r)xds)dr$

$=\int_{0}^{t}(\int_{0}^{t-r}U_{r}(t-r-s)B\langle s)T(r)xd\epsilon)dr$

$=\int_{0}^{t}\hat{B}(t-r)T(r)xdr$ for $t>0$ and $xeD$ .

Substituting this formula into (2.5) we have

(2.7) $U_{T}(t)x=T(t)x+\int_{0}^{t}\hat{B}(t-s)T(s)xds$ for $t>0$ and $xeD$ .

Let $h>0$ . Define $I_{1}(t;h)x=h^{-1}\int_{0}^{h}\hat{B}(t+r)xdr-\hat{B}(t)x$ and $I_{\mathfrak{g}}(t;h)x=$

$h^{-1}|_{0}^{h}\hat{B}(t+h-r)(T(r)x-x)dr$ for $teR_{+}$ and $xeD$ . We wish to show that

(2.8) $U_{r}(t+h)x=U_{T}(t)T(h)x+h\hat{B}(t)x+hI_{1}(t;h)x+hI_{l}(t;h)x$

for $teR_{+}$ and $xeD$. When $t=0$ this formula is easily obtained from
(2.7). Let $t>0$ . Then it follows from (2.7) and $(B_{1})$ that
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$U_{T}(t+h)x=T(t+h)x+\int_{0}^{t+h}\hat{B}(t+h-\gamma)T(r)xdr$

$=T(t)T(h)x+\int_{0}\hat{B}(t-r)T(r)T(h)xdr+h\hat{B}(t)x$

$+(\int_{0}^{h}\hat{B}(t+r)xdr-h\hat{B}(t)x)+\int_{0}^{h}\hat{B}(t+h-r)(T(r)x-x)dr$

$=U_{T}(t)T(h)x+h\hat{B}(t)x+hI_{1}(t;h)x+hI_{2}(t;h)x$ .
This proves (2.8).

We now show that $U_{T}(t)xeC^{1}(R_{+};X)$ for each $xeD$ . Since $\hat{B}(t)x\in$

$C(R_{+};X)$ for $xeD$, it follows that $\lim_{h\downarrow 0}I_{1}(t;h)x=0$ for $teR_{+}$ . Let $te$

$R_{+}$ . Choose $T>0$ such that $t+h<T$. Since $M(t)$ is nondecreasing, (2.6)
yields

$||I_{2}(t;h)x||\leqq h^{-1}\int_{0}^{h}\hat{\beta}(t+h-r)||T(r)x-x||_{4}dr$

$\leqq M(T)$ exp $(\lambda T)(\int_{0}^{T}\beta(s)d_{S})\sup\{||T(r)x-x||_{A};0\leqq r\leqq h\}$ .
Therefore this shows that

$\frac{d^{+}}{dt}U_{T}(t)x=\lim_{h\downarrow 0}h^{-1}[U_{T}(t+h)x-U_{T}(t)x]$

$=U_{T}(t)\lim_{h\downarrow 0}h^{-1}(T(h)x-x)+\hat{B}(t)x+\lim_{h\downarrow 0}(I_{1}(t;h)x+I_{2}(t;h)x)$

$=U_{T}(t)Ax+\hat{B}(t)x$ for $teR_{+}$ and $xeD$ .
Since the right-hand side of this equality is continuous on $R_{+}$ we have

$\frac{d}{dt}U_{T}(t)x=U_{T}(t)Ax+\hat{B}(t)x$ for $t>0$ and $xeD$ .

Moreover it is easily seen that
$\lim_{t\downarrow 0}(d/dt)U_{T}(t)x=Ax=(d^{+}/dt)U_{T}(t)x|_{t=0}Q.E.D$ .

As a simple consequence of Theorem 2.7 we have the following which
is one of the main results in [12].

COROLLARY 2.9. Let $\{B(t);teR_{+}\}$ be a strongly continuous family
in $B(X)$ . Then there exists an adjoint kernel $\{U_{T}(t);teR_{+}\}$ .

PROOF. Since $||B(t)||eL_{1oc}^{1}(R_{+})$ , it is easy to see that $\{B(t);teR_{+}\}$

forms a family of class $(B(\cdot))$ with $D$ replaced by $D(A)$ . Also for any
$\lambda\in R$ we have $\lim_{t\downarrow 0}I_{\lambda}(t)=0$ . Therefore we can find $t_{0}>0$ such that
$L_{\lambda}(t_{0})<1$ . Thus the conclusion follows from Theorem 2.7. Q.E.D.
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COROLLARY 2.10. Let $\{B(t);teR_{+}\}$ satisfy

(B) $D(A)\subset D(B(t))$ for all $t\in R_{+}$ , and there exists a constant $b$ sueh that

$||B(0)R(\mu;A)y||\leqq b||y||$ for $yeX$ and some $\mu e\rho(A)$ .
Further there exists another family $\{B_{1}(t);teR_{+}\}$ of linear operators in
$X$ which satisfies $(B_{4})$ with $\beta$ replaced by some function $\beta_{1}eL_{1oc}^{1}(R_{+})$ for
this $\mu\in\rho(A)$ and

$B(t)x=B(0)x+\int_{0}^{t}B_{1}(s)xds$ for $t>0$ and $x\in D(A)$ .

Then there exists an adjoint kernel $\{U_{T}(t);teR_{+}\}$ .
PROOF. Observe that $B(t)x:R_{+}\rightarrow X$ is continuous for every $xeD(A)$ .

From $(B_{0})$ and $(B_{4})$ it follows that

(2.9) $||B(t)R(\mu;A)y||\leqq||B(0)R(\mu;A)y||+\Vert\int_{0}^{t}B_{1}(s)R(\mu;A)yds\Vert$

$\leqq(b+\int_{0}^{t}\beta_{1}(s)d_{S})||y||\equiv\beta_{2}(t)||y||$

for $y\in X$ and some $\mu e\rho(A)$ . Therefore it is seen that $\{B(t);t\in R_{+}\}$

satisfies $(B_{1})$ and $(B_{2})$ with $D$ replaced by $D(A)$ and Lemma 2.2 implies

that as function of $s,$ $\int_{0}B(s-\gamma)T(r)xdr$ is continuous for each $s>0$ and
$x\in D(A)$ . Further by $(B_{6})$ and Fubini’s theorem we have

$\int_{0}B(s-r)T(r)xdr=\int_{0}B(0)T(r)xdr+\int_{0}(\int_{f}B_{1}(s-u)T(r)xdu)dr$

$=\int_{0}B(0)T(r)xdr+\int_{0}(\int_{0}^{*}B_{1}(s-u)T(r)xdr)du$

$=B(O)R(\mu;A)(\mu\int_{0}T(r)xdr-T(s)x+x)$

$+\int_{0}B_{1}(s-u)R(\mu;A)(\mu\int_{0}^{u}T(r)xdr-T(u)x+x)du$ .

Thus for any $xeRL_{\lambda}(t)=\sup\{\int_{0}^{t}\exp(-\lambda s)\Vert\int_{0}B(s-r)T(r)xdr\Vert ds;xeD(A)$ ,
$||x||\leqq 1\}$ is well defined and satisfies the inequality

$L_{\lambda}(t)\leqq\int_{0}^{t}\exp(-(\lambda-\omega)s)r(s)ds$ ,

where $r$ is some continuous function on $R_{+}$ . This shows that $\lim_{\downarrow 0}L_{\lambda}(t)=$
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$0$ . Therefore the conclusion follows from Proposition 2.3 and Theorem
2.7. Q.E.D.

COROLLARY 2.11. Let $b\in C^{1}(R_{+})$ and let $B$ satisfy $(B_{5})$ . Then there
exists an adjoint kernel $\{U_{T}(t);t\in R_{+}\}$ for $B(t)=b(t)B$ .

PROOF. Clearly $(B_{6})$ and $b\in C^{1}(R_{+})$ imply $(B_{6})$ . Q.E.D.

The class $P(A)$ defined in [1] plays an important role in perturbation
theory of semi-group (see also [8] and [9]). We now also define $P(A)$ as
follows:

DEFINITION 2.12. A linear operator $B$ is said to be of class $P(A)$ if
it satisfies

(B) there exists a dense linear subset $D$ of $X$ such that $ D\subset D(A)\cap$

$D(B),$ $T(t)D\in D$ for $t\in R_{+}$ and $BT(t)xeC(R_{+};X)$ for each $x\in D$,
and $(B_{a})$ with $B(t)$ replaced by $b(t)B$, where $b\in L_{1oc}^{1}(R_{+})$ .

The following result can be proved by the same arguments as those
in Lemma 1.1 in [6].

LEMMA 2.13. Let $\{U(t);t\in R_{+}\}$ be a family in $B(X)$ and satisfy
(i) $U(t)x:R_{+}\rightarrow X$ is measurable for $xeX$, and
(ii) there exists a function $\beta\in L_{1oc}^{1}(R_{+})$ such that

$||U(t)||\leqq\beta(t)$ for $teR_{+}$ .

If $feC(R_{+};X)$ , then as a function of $s,$ $U(t, s)f(s)\in L^{1}([0, t];X)$ for all
$t>0$ . Further if we define $g(t)=\int_{0}^{t}U(t-s)f(s)ds$ for $t>0$ and $g(O)=0$ ,
then $g\in C(R_{+};X)$ .

PROPOSITION 2.14. Let $b\in L_{A\circ c}^{1}(R_{+})$ and let $B$ be of class $P(A)$ . Then
$\{F(t);teR_{+}\}$ forms a family of class $(F(\cdot))$ , where $F$ is the function
defined by (2.2) with $B(t)$ replaced by $b(t)B$ .

PROOF. Set $N=\{t;|b(t)|=\infty\}$ . Define $U(t)=b(t)I$ for $teR_{+}\backslash N$ and
$U(t)=0$ for $teN$. Then $U(t)$ is well defined on $R_{+}$ and $U(t)x:R_{+}\rightarrow X$ is
measurable for $x\in X$. Since $BT(t)x\in C(R_{+};X)$ for $x\in D$ and $beL_{1oc}^{1}(R_{+})$ ,
it follows from Lemma 2.13 that $F(t)x\in C(R_{+};X)$ for $x\in D$ . Now it is
easy to see that $F$ satisfies $(F_{1})$ and $(F_{2})$ . Q.E.D.

REMARK 2.15. Concerning the existence of family $\{F(t);teR_{+}\}$ of
class $(F(\cdot))$ the condition $(B_{7})$ is rather restrictive. The following condi-
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tion, for example, assures the conclusion of Proposition 2.14:
(B) there exists a dense linear subset $D$ of $X$ such that $D\subset D(B)$ ,

$T(t)D\subset D$ for $teR_{+}$ and as a function of $t,$ $BT(t)xeL_{1oc}^{1}(R_{+};X)$ for
$xeD$ .

Corresponding to Lemma 2.8 the following result holds. We omit its
proof.

LEMMA 2.16. Let $\{B(t);teR_{+}\}$ be a family in $B(X)$ satisfying (i)
(ii) of Lemma 2.13. Suppose further that $\{U(t);teR_{+}\}$ is a strongly
continuous family in $B(X)$ . If $ueC(R_{+};X)$ , then we have

$\int_{0}(\int_{0}U(t-s)B(s-r\cdot)u(r)dr)ds=\int_{0}^{t}(\int^{t}U(t-s)B(s-r)u(r)ds)dr$ for $t>0$ ,

THEOREM 2.17. Let $beL_{1\infty}^{1}(R_{+})$ and let $B$ be of class $P(A)$ . Suppose
that there exist constants $ 0<t_{0}\leqq\infty$ and $\lambda\geqq\omega$ such that $L_{\lambda}(t_{0})<1$ , where
$L_{\lambda}$ is the function defined by (2.3) for $B(t)=b(t)B$. Then there exists an
adjoint kernel $\{U_{T}(t);teR_{+}\}$ .

$PR\infty F$ . Propositions 2.14 and 1.3 imply that there exists a one-
parameter family $\{U_{r}(t);teR_{+}\}$ in $B(X)$ which satisfies (i) and (iv) of
Definition 2.6 and integral equation of the form

$U_{T}(t)x=T(t)x+\int_{0}U_{T}(t-s)(\int_{0}b(s-r)BT(r)xdr)ds$

for $t>0$ and $xeD$ . For $B(t)=b(t)B$ define $\hat{B}(t)$ as in the proof of Theorem
2.7. Then by Lemma 1.4 $\hat{B}(t)xeC(R_{+};X)$ for $xeD$. Moreover Lemma
2.2, (i) of Definition 2.6 and $(B_{2})$ imply that $\int_{0}^{t}\hat{B}(t-r)T(r)xdr$ is continuous
in $t$ for $t>0$ and $xeD$ and there exists some $\hat{\beta}eL_{1oc}^{1}(R_{+})$ such that
$||\hat{B}(t)x||\leqq\hat{\beta}(t)||Bx||$ for $teR_{+}$ and $xeD$. Furthermore Lemma 2.16 implies

$\int_{0}^{\iota}U_{T}(t-s)(\int_{0}b(s-r)BT(r)xdr)ds=\int_{0}^{t}\hat{B}(t-r)T(r)xdr$

for $t>0$ and $xeD$. Therefore we have

$U_{T}(t)x=T(t)x+\int_{0}^{t}\hat{B}(t-r)T(r)xdr$ for $t>0$ and $xeD$ .
Now by the same argument as in the proof of Theorem 2.7 one can
easily complete the proof. Q.E.D.

COROLLARY 2.18. Let $beL_{1oc}^{1}(R_{+})$ and $B$ satisfy $(B_{\tau})$ and
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(B) for some $t_{0}>0$

$\sup\{\int_{0}^{t_{0}}||BT(s)x||ds;xeD,$ $||x||\leqq 1\}<\infty$ .

Then $B$ is of class $P(A)$ and further there exists an adjoint kernel
$\{U_{T}(t);teR_{+}\}$ for $B(t)=b(t)B$ . If $beL^{1}(R_{+})$ and $ t_{0}=\infty$ , then there exists
$\lambda>{\rm Max}\{\omega, 0\}$ such that $||U_{T}(t)||\leqq M(x)$ exp $(\lambda t)$ for $teR_{+}$ and some con-
stant $M(\lambda)$ which depends on $\lambda$ only.

PROOF. Define $K_{\lambda}(t_{0})=\sup\{\int_{0}^{t_{0}}\exp(-\lambda s)||BT(s)x||ds;xeD,$ $||x||\leqq 1\}$ for
$\lambda eR$ , then by the same argument as in Lemma 1 in [9] we have

$\int_{0}^{\infty}\exp(-\lambda t)||BT(t)x||dt\leqq L(\lambda, t_{0})||x||$ for $xeD$ and $\lambda>{\rm Max}\{\omega, 0\}$ ,

where $L(\lambda, t_{0})=K_{\lambda}(t_{0})[1+M\exp(-(\lambda-\omega)t_{0})\{1-\exp(-(\lambda-\omega)t_{0})\}]^{-1}$ . Thus it
follows that

$\int_{0}^{t}\exp(-\lambda\epsilon)\Vert\int_{0}b(s-r)BT(r)xdr\Vert ds$

$\leqq(\int_{0}^{t}\exp(-\lambda s)|b(s)|ds)(\int_{0}^{t}\exp(-\lambda s)||BT(s)x||ds)$

$\leqq L(\lambda, t_{0})(\int_{0}\exp(-\lambda s)|b(s)|ds)||x||$ for $t>0$ .
Therefore for $\lambda>{\rm Max}\{\omega, 0\}$

$L_{\lambda}(t)=\sup\{\int_{0}\exp(-\lambda s)\Vert\int_{6}b(s-r)BT(r)xdr\Vert ds;xeD,$ $||x||\leqq 1\}$

is well defined and finite for all $t>0$ . Moreover the above inequality
shows that $\lim_{t\downarrow 0}L_{\lambda}(t)=0$ . Thus $B$ is of class $P(A)$ and further the first
part of the conclusion follows from Theorem 2.17.

If $beL^{1}(R_{+})$ and $ t_{0}=\infty$ , then we have for $\lambda>{\rm Max}\{\omega, 0\}$

$L_{\lambda}(t)\leqq K_{\lambda}(\infty)(\int_{0}^{t}\exp(-\lambda s)|b(s)|ds)\leqq K_{\lambda}(\infty)(\int_{0}^{\infty}\exp(-\lambda s)|b(s)|ds)$ ,

where $K_{\lambda}(\infty)=\sup\{\int_{0}^{\infty}\exp(-\lambda s)||BT(s)x||ds;xeD,$ $||x||\leqq 1$}. Since $L_{\lambda}(t)$ is
bounded and nondecreasing in $t,$ $L_{\lambda}(\infty)=\lim_{t\rightarrow\infty}L_{\lambda}(t)$ exists and satisfies
the inequalIty $L_{\lambda}(\infty)\leqq K_{\lambda}(\infty)(\int_{0}^{\infty}\exp(-\lambda s)|b(s)|ds)$ . $K_{\lambda}(\infty)$ is also non-
increasing in $\lambda$ , and hence there exists $ K_{\infty}(\infty)=\lim_{\lambda\rightarrow\infty}K_{\lambda}(\infty)<\infty$ . Since
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$b\in L^{1}(R_{+})$ , one has $\lim_{\lambda\rightarrow\infty}(\int_{0}^{\infty}\exp$ $(-\lambda s)|b(s)|ds)=0$ . Thus $1{\rm Im}_{\lambda\rightarrow\infty}L_{\lambda}(\infty)=0$ .
Now by Proposition 1.3 we have $||U_{T}(t)||\leqq M(1-L_{\lambda}(\infty))^{-1}\exp(\lambda t)$ for $teR_{+}$

and sufficiently large $\lambda>{\rm Max}\{\omega, 0\}$ . Q.E.D.

COROLLARY 2.19. Let $beL_{1oc}^{1}(R_{+})$ , and let $\psi eL_{1oc}^{1}(R_{+})$ and $\psi(t)>0$

for $teR_{+}$ . Assume that $B$ is a closed linear operator in $X$ such that

(B) $T(t)X\subset D(B)$ for all $t>0$ , and

(B) $||BT(t)x||\leqq\psi(t)||x||$ for $xeX$ and $t>0$ .
Then $B$ is of class $P(A)$ and further there exists an adjoint kernel
$\{U_{T}(t);t\in R_{+}\}$ for $B(t)=b(t)B$.

$PR\infty F$ . Let $\delta>0$ . Choose $\delta_{1}=\delta_{1}(\delta)$ such that $ 0<\delta_{1}\leqq\delta$ and $\psi(\delta_{1})<\infty$ .
Let $ t\geqq\delta$ and let $t=n\delta_{1}+s,$ $0\leqq s<\delta_{1},$ $n\geqq 1$ . Then

(2.10) $||BT(t)x||=||BT(\delta_{1})T((n-1)\delta_{1}+s)x||$

$\leqq(\psi(\delta_{1})M\exp(-\omega\delta_{1}))$ exp $(\omega t)||x||\equiv M(\delta)$ exp $(\omega t)||x||$

for $ t\geqq\delta$ .
Especially $||BT(\delta)x||\leqq M(\delta)\exp(\omega\delta)||x||$ . Replacing $\delta$ by $t$ , we have
(2.11) $||BT(t)x||\leqq M(t)$ exp $(\omega t)||x||$ for $xeX$ and $t>0$ ,

where $ M(t)<\infty$ for $t>0$ . Let $t>0$ . Choose $\hat{\epsilon}$ such that $0<\hat{\epsilon}<t$ . Then
the strong continuity of $BT(t)x$ in $t$ follows from the estimates

$||BT(t+h)x-BT(t)x||\leqq M(t)$ exp $(\omega t)||T(h)x-x||$ for $h>0$

and

$||BT(t-h)x-BT(t)x||\leqq M(\hat{\epsilon})\exp(\omega t)||T(h)x-x||$ for $t-\hat{\epsilon}>h>0$ .
Next we shall show that $D(A)\subset D(B)$ and $BR(\mu;A)eB(X)$ for $\mu>\omega$ .

Let $\delta>0$ be fixed again. Choose $\epsilon>0$ such that $\epsilon<\delta$ . Then it follows
from $(B_{10})$ and (2.10) that

(2.12) $\int_{\epsilon}^{\infty}\exp(-\mu s)||BT(s)x||ds=\int_{\epsilon}^{\delta}\exp(-\mu s)||BT(s)x||ds$

$+\int_{\delta}^{\infty}\exp(-\mu s)||BT(s)x||ds$

$\leqq[\int_{0}^{\delta}\exp(-\mu s)\psi(s)ds+M(\delta)(\mu-\omega)^{-1}]||x||$

$\equiv M_{1}||x||$
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for $x\in X$ and $\mu>\omega$ . Setting $R_{\epsilon}(\mu;A)x=\int_{\epsilon}^{\infty}$ exp $(-\mu s)T(s)xds$ , then

$R_{\epsilon}(\mu;A)x\in D(B)$ . Moreover by (2.12) and $(B_{10})$ we can see that
$\lim_{\epsilon\downarrow 0}BR_{\epsilon}(\mu;A)x$ exists. Since $\lim_{\epsilon\downarrow 0}R_{\epsilon}(\mu;A)x=R(\mu;A)x$ and $B$ is closed,
we have

$R(\mu;A)xeD(B),$ $\lim_{\text{\’{e}}\downarrow 0}BR_{\epsilon}(\mu;A)x=BR(\mu;A)x$ and $||BR(\mu;A)x||\leqq M_{1}||x||$

for xeX and $\mu>\omega$ . That is, $D(A)\subset D(B)$ and $BR(\mu;A)\in B(X)$ for
$\mu>\omega$ . Now it is not difficult to see that $BT(t)x\in C(R_{+};X)$ for every
$x\in D(A)$ and there exists some $t_{0}>0$ which satisfies $(B_{8})$ with $D$ replaced
by $D(A)$ . The conclusion now follows from Corollary 2.18. Q.E.D.

\S 3. In this section we shall deal with the inhomogeneous initial
value problems

(E) $\left\{\begin{array}{ll}\frac{d}{dt}u(t)=Au(t)+\int_{0}^{t}B(t-s)u(s)ds+f(t) & for t>0,\\u(0)=x, & \end{array}\right.$

and

(E’) $\left\{\begin{array}{ll}\frac{d}{dt}u(t)=Au(t)+\int_{0}^{t}b(t-s)Bu(s)ds+f(t) & for t>0,\\u(0)=x. & \end{array}\right.$

Throughout this section we shall assume that $\{B(t);t\in R_{+}\}$ is of class
$(B(\cdot)),$ $B$ is of class $P(A),$ $beL_{1oc}^{1}(R_{+})$ and $D$ is the set defined in Definition
2.1 (or Definition 2.12).

DEFINITION 3.1. A function $u:I=[0, T]\rightarrow D$ is said to be a strong
solution of (E) (or $(E’)$) on $I$ if $u$ and Au (or $Bu$) $\in C(I;X)$ and (E) (or
(E’) $)$ is satisfied at all points in $I\backslash \{0\}$ , where $T$ is some positive number.

Obvious modifications of this definition can be used when the interval
$I$ is of the form $[0, T$) with $ 0<T\leqq\infty$ .

THEOREM 3.2. If the hypotheses of Theorem 2.7 are true, then the
adjoint kernel $\{U_{T}(t);t\in R_{+}\}$ exists. If $u$ is a strong solution of (E) on
I for $f\in C(I;X)$ and $x\in D$, then

(3.1) $u(t)=U_{T}(t)x+\int_{0}^{t}U_{T}(t-s)f(s)ds$ for $t\in I$ .
PROOF. Theorem 2.7 and $u(t)\in D$ imply that there exists an adjoint
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kernel $\{U_{T}(t);teR_{+}\}$ and the X-valued function $g(s)=U_{T}(t-s)u(s)$ is strongly
differentiable for $0<s<t$ . Define $\hat{B}(t)$ and $\hat{\beta}(t)$ as in the $pr\infty f$ of Theorem
2.7 and define $\hat{g}(t)=\int_{0}^{t}B(t-r)u(r)dr$ for $teI\backslash \{0\}$ and $\hat{g}(O)=0$ , then from
Lemma 2.2 we can see that $\hat{g}eC(I;X)$ . Noting that $\hat{\beta}(t)$ is finite for
each $teR_{+}$ and nondecreasing in $t$ , from (2.6) one has

$||\hat{B}(t-s-h)u(s+h)-\hat{B}(t-s)u(s)||\leqq||\hat{B}(t-s-h)u(s)-\hat{B}(t-s)u(s)||$

$+\hat{\beta}(T)||u(s+h)-u(s)||_{4}$

for $0\leqq s<t$ and $0<h<t-s$ , and

$||\hat{B}(t-s+h)u(s-h)-\hat{B}(t-s)u(s)||\leqq||\hat{B}(t-s+h)u(s)-\hat{B}(t-s)u(s)||$

$+\hat{\beta}(2T)||u(s-h)-u(\epsilon)||_{4}$

for $0<s\leqq t$ and $0<h<s$ . Thus it is seen that as a function of $s,\hat{B}(t-s)u(s)$

is strongly continuous on $[0, t]$ . Now from (E) and (iii) of Definition 2.6
it follows that

$g^{\prime}(s)=U_{T}(t-s)u^{\prime}(s)-U_{T}^{\prime}(t-s)u(s)$

$=U_{T}(t-s)(Au(s)+\int_{0}B(s-r)u(r)dr+f(s))$

$-U_{T}(t-s)Au(s)-\int_{0}^{t-}U_{T}(t-s-r)B(r)u(s)dr$

$=U_{T}(t-\epsilon)f(s)+U_{T}(t-s)\hat{g}(s)-\hat{B}(t-s)u(s)$ for $0<s<t$ .
Here $’=d/dt$ . Integrating $g^{\prime}(s)$ from $\epsilon$ to $ t-\epsilon$ and then letting $\epsilon\rightarrow 0$ we
have

$u(t)-U_{T}(t)x-\int_{0}^{t}U_{T}(t-s)f(s)ds$

$=\int_{0}^{t}U_{T}(t-s)\hat{g}(s)ds-\int_{0}^{t}\hat{B}(t-s)u(s)ds$

$=\int_{0}^{t}U_{T}(t-s)(\int_{0}B(s-r)u(r)dr)ds-\int_{0}(\int_{0}^{\iota-}U_{T}(t-s-r)B(r)u(s)dr)ds$

$=\int_{0}^{t}(\int_{0}U_{T}(t-s)B(s-r)u(r)dr)ds-\int_{0}^{t}(\int^{t}U_{T}(t-r)B(r-s)u(s)dr)ds=0$ .

The last equality follows from Lemma 2.8. Q.E.D.

THEOREM 3.2’. The conclusion of Theorem 3.2 remains true with
Theorem 2.7 and (E) replaced by Theorem 2.17 and (E’) respectively.

The proof of Theorem 3.2’ can be carried out by similar arguments
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to those in the proof of Theorem 3.2 with using Theorem 2.17 and Lemma
2.16.

REMARK 3.3. Miller has obtained a similar result under the condition
that (E) is uniformly well posed (Theorem 5.4 in [6]) or that $B(t)=b(t)A$

and $beL^{1}(R_{+})\cap C^{1}(R_{+})$ (Corollary 7.6 in [6]).

COROLLARY 3.4. Let $f\equiv 0$ in $(E)$ (or $(E)$). If (E) (or $(E^{\prime})$ ) has a
unique strong solution for every $x\in D$, then the adjoint kernel is
uniquely determined.

DEFINITION 3.5. The continuous function $u$ defined by (3.1) is called
the mild solution of (E) (or ($E$‘)) on $I$.

Finally in Theorem 3.7 below we give a sufficient condition under
which (E) has a unique strong solution on $R_{+}$ . Our proof is similar to
the proof of Lemma 7.2 in [6] and our result contains a generalization
of its lemma. To prove Theorem 3.7 we need the following lemma which
is proved in Chapter 4 of [10].

LEMMA 8.6. Let $f_{1},$ $f_{2}\in C(R_{+};X)$ such that
(i) $f_{1}\in C^{1}(R_{+};X)$ , and
(ii) $f_{z}eD(A)$ for $teR_{+}$ and $Af_{2}eL_{1oc}^{1}(R_{+};X)$ .

Then for any $xeD(A)$ ,

$\frac{d}{dt}u(t)=Au(t)+f_{1}(t)+f_{2}(t)$ , $u(O)=x$

has a unique strong solution $ueC^{1}(R_{+};X)$ such that $Au\in C(R_{+};X)$ . This
solution can be represented in the form

$u(t)=T(t)x+\int_{0}^{t}T(t-s)(f_{1}(s)+f_{2}(s))ds$ for $t>0$

and

Au$(t)=T(t)f_{1}(0)-f_{1}(t)+\int_{0}^{t}T(t-s)(f_{1}(s)+Af_{2}(s))ds+AT(t)x$ for $t>0$ .

THEOREM 3.7. Suppose that $\{B(t);teR_{+}\}$ satisfies $(B_{t})$ with $\beta_{1}eC(R_{+})$ .
If $feC^{1}(R_{+};X)$ or $f(t)eD(A)$ for $t\in R_{+}$ and $AfeL_{1oc}^{1}(R_{+};X)$ , then the
mild solution of (E) on $R_{+}$ is the unique strong solution of (E) on $R_{+}$ .

PROOF. Fix any $T>0$ and $\mu e\rho(A)$ . Define $d(T)=\{v:v$ maps $[0, T]$

into $D(A)$ and both $v$ and $Av$ are continuous}. Since $A$ is closed, it is
easy to see that $d(T)$ with norm $|||v|||=\sup\{\exp(-Lt)|||v(t)|||_{A}:0\leqq t\leqq T$
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for some $LeR_{+}$}, is a Banach space, where $|||y|||_{A}=||y||+||(\mu-A)y||$ for
every $yeD(A)$ . Given $v$ in $d(T)$ define $S_{0}v(t)=\int_{0}^{t}B(t-s)v(s)ds$ for $ 0<t\leqq$

$T$ and $S_{0}v(0)=0$ . By the use of $(B_{0})$ with $\beta_{1}eC(R_{+})$ and $(B_{4})$ it is seen
that $S_{0}v(t)$ is well defined and strongly continuously differentiable with

$\frac{d}{dt}S_{0}v(t)=B(0)v(t)+\int_{0}^{t}B_{1}(t-s)v(s)ds$ ,

since $S_{0}v(t)=B(0)R(\mu;A)(\mu\int_{0}^{t}v(s)ds-\int_{0}^{t}Av(s)ds)+\int_{0}^{t}B_{1}(s)R(\mu;A)(\mu\int_{0}^{t-}v(r)dr-$

$\int_{0}^{t-}Av(r)dr)ds$ and $B(O)R(\mu;A)$ and $B_{1}(s)R(\mu;A)\in B(X)$ for $seR_{+}$ . From
Lemma 3.6 it follows that any $v$ in $d(T)$ ,

$\frac{d}{dt}u(t)=Au(t)+\{S_{0}v(t)+f(t)\}$ , $u(O)=xeD(A)$

has a unique strong solution $u=Sv$ which is again in $d(T)$ .
Since $S_{0}$ is a linear operator on $d(T)$ , we can decide whether or not

$S$ is a contraction map by computing the norm when $x=0$ and $f\equiv 0$ .
If $|||v|||\leqq 1$ , then from (2.9)

$||S_{0}v(t)||\leqq\int_{0}^{t}||B(t-s)v(s)||ds\leqq\exp(Lt)\int_{0}^{\iota}\beta_{2}(s)$ exp $(-Ls)ds$ ,

where $\beta_{2}(s)=b+\int_{0}^{l}\beta_{1}(r)dr$ . Therefore

$\exp(-Lt)||S_{0}v(t)||\leqq\int_{0}^{t}\beta_{2}(s)$ exp $(-Ls)ds$ ,

while $x=0,$ $f\equiv 0$ and Lemma 3.6 imply that

$||Sv(t)||=\Vert\int_{0}^{t}T(t-s)S_{0}v(s)ds\Vert$

$\leqq\int_{0}^{t}M$ exp $(\omega(t-s))$ exp $(Ls)(\int_{0}\beta_{2}(r)$ exp $(-Lr)dr)ds$

or

exp $(-Lt)||Sv(t)||\leqq M\int_{0}^{t}\exp(-(L-\omega)(t-s))(\int_{0}\beta_{2}(r)$ exp$(-Lr)dr)ds$

and

$||(\mu-A)Sv(t)||=\Vert\mu Sv(t)+S_{0}v(t)-\int_{0}^{t}T(t-s)(S_{0}v)^{\prime}(s)ds\Vert$
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$\leqq|\mu|||Sv(t)||+||S_{0}v(t)-\int_{0}^{t}T(t-s)(B(0)v(s)+\int_{0}^{\epsilon}B_{1}(s-r)v(r)dr)ds\Vert$

$\leqq|\mu|||Sv(t)||+||S_{0}v(t)||+M$ exp $(Lt)\int_{0}^{t}\exp(-(L-\omega)\langle t-s))$

$\times(b+\int_{0}^{\epsilon}\beta_{1}(r)$ exp $(-L\gamma)dr$) $ds$ .
Thus

$|||S|||\leqq M[(1+|\mu|)\int_{0}^{T}\exp(-(L-\omega)(T-s))(\int_{0}^{l}\beta_{2}(\gamma)$ exp $(-Lr)dr)ds$

$+M^{-1}\int_{0}^{T}\beta_{2}(s)$ exp $(-Ls)ds+\int_{0}^{T}\exp(-(L-\omega)(T-s))$

$\times(b+\int_{0}^{l}\beta_{1}(r)$ exp $(-L\gamma)dr$)$ds]<1$
for $L$ sufficiently large, where we have used the fact that if $a$ and $b$

are non-negative functions, and $b(t)$ is nondecreasing in $t$ , then

$\int_{0}^{t}a(t-s)b(s)ds=\int_{0}^{t}a(s)b(t-s)ds$

is also nondecreasing in $t$ for $t>0$ . Thus the contraction mapping theorem
implies the existence and uniqueness of a strong solution of (E) on $[0, T]$ .
Since $T$ is an arbitrary positive number, this proves the existence and
uniqueness on $R_{+}$ . Q.E.D.

COROLLARY 3.8. Suppose that $\{B(t);t\in R_{+}\}$ satisfies $(B_{6})$ with $\beta_{1}e$

$C(R_{+})$ . Then the adjoint kernel $U_{T}(t)$ maps $D(A)$ into $D(A)$ for each
$t\in R_{+}$ with $AU_{T}(t)xeC(R_{+};X)$ and satisfies

$\frac{d}{dt}U_{T}(t)x=AU_{T}(t)x+\int_{0}^{t}B(t-s)U_{T}(s)xds$ for $x\in D(A)$ and $t>0$ ,

and

$\frac{d}{dt}U_{T}(t)x=U_{T}(t)Ax+\int_{0}^{t}U_{T}(t-s)B(s)xds$ for $xeD(A)$ and $t>0$ .

The following example shows that every function given by (8.1) does
not satisfy equation (E).

EXAMPLE. Consider the integro-differential equation

(E) $\left\{\begin{array}{ll}\frac{d}{dt}u(t)=Au(t)+k^{2}\int_{0}^{t}T(t-s)u(s)ds+f(t) & for t>0 ,\\u(0)=x, & \end{array}\right.$



352 KUNIO TSURUTA

where $k$ is a given constant. It is not difficult to see that the adjoint
kernel $\{U_{T}(t);teR_{+}\}$ is given by $U_{r}(t)=\cosh(kt)T(t)$ . Suppose there exists
an $xeX$ such that $T(t)x\not\in D(A)$ for any $t>0$ . Then $u(t)=U_{T}(t)x$ is not
differentiable for all $t>0$ and thus $u$ is not a solution of (E) with $f\equiv 0$ .
Moreover if $f(t)=kT(t)x$ for all $teR_{+}$ , by Theorem 3.2 the solution $u$ of
(E) is, if it exists, represented by

$u(t)=\cosh(kt)T(t)x+k\int_{0}^{t}\cosh(k(t-s))T(t-s)T(s)xds$

$=\exp(kt)T(t)x$ .
But this is not also differentiable for any $t>0$ .
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