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The purpose of this paper is to discuss the $weak_{-}^{*}maximality$ of
certain Hardy algebras $H^{\infty}(m)$ . Merrill [7] obtained conditions for the
maximality of Hardy algebras for logmodular algebras. In this paper
we study this problem for hypo-Dirichlet algebras and obtain a similar
result as one of Merrill. We also discuss as an application the(uniform)
maximality of certain classes of hypo-Dirichlet algebras.

\S 1. Preliminaries.

Let $A$ be a uniform algebra on a compact Hausdorff space $X$, i.e.,
let $A$ be a closed subalgebra in $C(X)$ separating points in $X$ and con-
taining constant functions on $X$, where $C(X)$ denotes the Banach algebra
of complex-valued continuous functions on $X$ with the supremum norm.
$A$ is called a hypo-Dirichlet algebra on $X$ if there exist finite elements
$Z_{1},$ $Z_{2},$

$\cdots,$
$Z_{\sigma}$ in the family $A^{-1}$ of invertible elements of $A$ such that

the real linear space of functions of the form of

${\rm Re}(f)+\sum_{i=1}^{\sigma}c_{i}$ log $|Z_{i}|$ $(feA, c_{i}\in R)$

is dense in the space $C_{R}(X)$ of real continuous functions on $X$.
Now let $A$ be a hypo-Dirichlet algebra and $M_{A}$ be the maximal ideal

space of $A$ . Then each element $\phi$ of $M_{A}$ has a finite dimensional set $M$,
of representing measures on $X$ for $\phi$ . And every $\phi eM_{A}$ has a unique
Arens-Singer measure $m$ on $X$. A positive measure $m$ on $X$ is called an
Arens-Singer measure for $\phi$ if log $|\phi(f)|=\int\log|f|dm$ for all $feA^{-1}$ ([1];
[4], p. 116).

The abstract Hardy spaces $H^{p}(m),$ $ 1\leqq p\leqq\infty$ , associated with $A$ are
defined as follows; for $1\leqq p<\infty,$ $H^{p}(m)$ is the $L^{p}(m)$-closure of $A$ and
$H^{\infty}(m)$ is the $weak_{-}^{*}closure$ of $A$ in $L^{\infty}(m)$ . We see that $H^{\infty}(m)$ is an
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algebra. For $1\leqq p\leqq\infty,$ $H_{0}^{p}(m)=\{f\in H^{p}(m):\int fdm=0\}$ . Let $N^{p}$ be the
real annihilator of $A$ in $L_{R}^{p}(m)(1\leqq p\leqq\infty)$ and $N_{c}^{p}$ be the complexification
of $N^{p}$ . Then we have the following ([4], p. 109).

$N^{1}=N^{p}=N^{\infty}$ ,
$H^{\infty}(m)=H^{p}(m)\cap L^{\infty}(m)$ $(1\leqq p<\infty)$ ,

and

$L^{p}(m)=H^{p}(m)\oplus\overline{H_{0}^{p}(m)}\oplus N_{\iota}^{\infty}$ $(1<p<\infty)$ .
Let $P$ be a Gleason part of $M_{A}$ containing $\phi$ . When $\phi$ has a unique

Arens-Singer measure $m$ (where $\phi$ has not a unique representing measure),
it is known that $P$ is non-trivial, i.e., $P$ is not a singleton ([1], Theorem
12.2). Though $\phi$ can be extended to $H^{\infty}(m)$ , we shall denote the extended
one by $\phi$ again whenever no confusion arises. Let $\tilde{P}$ be the Gleason
part of $\phi$ in $M_{H^{\infty}(m)}$ , the maximal ideal space of $H^{\infty}(m)$ . Then $\tilde{P}=$

$\{\tilde{\psi};f(\tilde{\psi})=\int fd\psi,$ $ d\psi$ is a representing measure for $\psi\in P$ and $f\in H^{\infty}(m)\}$ .
The space $\tilde{P}$, endowed with the induced topology of $M_{H^{\infty}(n)}$ , can be com-
pactified by adding a boundary $\Gamma$ so that $\tilde{P}\cup\Gamma$ can be given the structure
of a finite compact bordered Riemann surface and the functions in $H^{\infty}(m)$

are analytic on P. There is a natural isometric embedding of the algebra
$H^{\infty}(\tilde{P})$ of bounded analytic functions on $\tilde{P}$ into $H^{\infty}(m)$ so that $H^{\infty}(m)$ is
the direct sum of $H^{\infty}(\tilde{P})$ and the ideal $I$ of functions in $H^{\infty}(m)$ which
vanish identically on $\tilde{P}$ ([4], p. 161; [6]).

A closed ($weak_{-}^{*}$ closed for $ p=\infty$ ) subspace $M$ of $L^{p}(m)(1\leqq p\leqq\infty)$

is called invariant if feA and geM imply that $fgeM$. Ahern and
Sarason [1] said that an invariant subspace $M$ of $L^{p}(m)$ is of type $B$ if
$A_{0}M$ is not dense in $M$ (for $ p=\infty$ , not $weak_{-}^{*}dense$), where $A_{0}$ is the
kernel of the functional $\phi$ . And they offered the coniecture whether
every invariant subspace of $L^{p}(m)$ of type $B$ is of the form $wH^{p}(m)$ ,
where $w$ is a function in $L^{\infty}(m)$ that agrees in modulus almost every-
where with $|Z_{1}|^{\alpha_{1}}\cdots|Z_{\sigma}|^{\alpha_{\sigma}}$ for some real numbers $\alpha_{1},$ $\cdots,$ $\alpha_{\Phi}$ . They called
such a function $w$ a rigid function and such a subspace $wH^{p}(m)$ a
Beurling subspace. For example, if the invariant subspace $M$ of $L^{p}(m)$

is generated by $f$ such that log $|f|$ is summable, it is known that $M$ is
of type $B$ and so a Beurling subspace ([1], Lemma 11.1). In general,
they proved that if the subspace $H_{\psi}^{p}(m)$ is a Beurling subspace for every
$\psi$ in $P$, then every invariant subspace of $L^{p}(m)$ of type $B$ is a Beurling
subspace ([1], Theorem 13.1) and Gamelin answered that $H_{\psi}^{p}(m)$ is a
Beurling subspace for every $\psi$ in $P$ ([6], Theorem 8.6).
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\S 2. $Weak-*maximality$ of $H^{\infty}(m)$ .
We need the following theorem, essentially due to Gamelin (cf. [4],

p. 177, Lemma 8.1; [5]), in order to prove our main theorem.

THEOREM 2.1. Let $A$ be a hypo-Dirichlet algebra on a compact
Hausdorff space $X$ and $m$ be a unique Arens-Singer measure on $X$ for
$\phi eP$, a non-trivial Gleason part of $M_{A}$ . Then the following properties
are equivalent:

(i) $H^{\infty}(m)$ is a maximal $weak_{-}^{*}closed$ subalgebra of $L^{\infty}(m)$ ;
(ii) If $feL^{1}(m),$ $f\neq 0,$ $heL^{\infty}(m)$ and $fh^{n}eH^{1}(m)$ for $n=0,1,2,$ $\cdots$ ,

then $h\in H^{\infty}(m)$ ;
(iii) If $f\in L^{1}(m),$ $f\neq 0,$ $heL^{\infty}(m)$ and $fh^{n}eH^{1}(m)+N_{c}^{\infty}$ for $n=$

$0,1,2,$ $\cdots$ , then $h\in H^{\infty}(m)$ ;
(iv) If $M$ is a non-zero closed invariant subspace of $L^{1}(m)$ which

can not be reduced to the form $\chi_{E}L^{1}(m),$ $\chi_{B}$ the characteristic function
of a set $E$, and if $heL^{\infty}(m)$ satisfies $hM\subset M$, then $h\in H^{\infty}(m)$ .

PROOF. $(i)=(iv)$ . Let $M$ be a non-zero closed invariant subspace in
$L^{1}(m)$ and $B$ be the family of $f\in L^{\infty}(m)$ with $fM\subset M$. Then $B$ is a weak-*
closed subalgebra of $L^{\infty}(m)$ containing $H^{\infty}(m)$ . By (i), $B=H^{\infty}(m)$ or $B=$
$L^{\infty}(m)$ . If $B=L^{\infty}(m),$ $M$ must be the form $\chi_{E}L^{1}(m)$ . This contradicts
the assumption of (iv). Hence $B=H^{\infty}(m)$ . From this, if $h\in L^{\infty}(m)$

satisfies $hM\subset M$, then $heH^{\infty}(m)$ .
$(iv)\Rightarrow(iii)$ . Assume (iv) and if $M$ is the closed invariant subspace in

$L^{1}(m)$ generated by $fh$“, $n=0,1,2,$ $\cdots$ , then $M$ satisfies the assumption
of (iv). Indeed, if $M$ is of the form $x_{E}L^{1}(m)$ , then $\chi_{E}L^{1}(m)=M\subset H^{I}(m)+$

$N_{e}^{\infty}$ . Since $H^{1}(m)+N_{c}^{\infty}$ is an invariant subspace of type $B,$ $H^{1}(m)+N_{c}^{\infty}=$

$wH^{1}(m)$ for a rigid function $w$ . So $w^{-1}x_{E}L^{1}(m)\subset H^{1}(m)$ , and hence $x_{B}e$

$H^{1}(m)$ since $weL^{1}(m)$ . This contradicts the antisymmetric property of
$H^{1}(m)$ . So $h\in H^{\infty}(m)$ by (iv).

$(iii)\Rightarrow(ii)$ . It is clear because $H^{1}(m)\subset H^{1}(m)+N_{c}^{\infty}$ .
$(ii)\Rightarrow(i)$ . Let $heL^{\infty}(m)$ and $h\not\in H^{\infty}(m)$ . Let $B$ denote the weak-*

closed subalgebra generated by $H^{\infty}(m)$ and $h$ . Then $B$ is a $weak_{-}^{*}closed$

subalgebra of $L^{\infty}(m)$ and contains $H^{\infty}(m)$ properly. We prove only that
$B=L^{\infty}(m)$ . If $feL^{1}(m)$ is orthogonal to $B,$ $fh$“ is orthogonal to $A$ for
$n=0,1,2,$ $\cdots$ . In particular, $fh^{n}\perp A_{0}$ . So $fh^{n}eH^{\iota}(m)+N_{c}^{\infty}(n=0,1,2, \cdots)$

([1], Theorem 11.1). Since $H^{1}(m)+N_{c}^{\infty}$ is of the form $wH^{J}(m)$ for a rigid
function $w,$ $w^{-1}fh^{\prime*}eH^{1}(m)(n=0,1,2, \cdots)$ . By (ii) and the fact that
$h\not\in H^{\infty}(m),$ $w^{-1}f=0$ , and hence $f=0$ . It follows that $B=L^{\infty}(m)$ .

The implication $(ii)\Rightarrow(i)$ of the theorem above is due to Dr. T.
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Nakazi. We are now in a position to give our main theorem. This is
an analogue of results of Merrill ([7], Theorems 1 and 2) in the case when
$A$ is a hypo-Dirichlet algebra.

THEOREM 2.2. Let $A$ be a hypo-Dirichlet algebra on a compact
Hausdorf space $X$ and $m$ be a unique Arens-Singer measure on $X$ for
$\phi eM_{A}$ . Suppose that $\tilde{P}$ is the (non-trivial) Gleason part of $\phi$ in $M_{H^{\infty}(m*)}$ .
Then the following properties are equivalent:

(i) $H^{\infty}(m)$ is a maximal $weak-*closed$ subalgebra of $L^{\infty}(m)$ ;
(ii) If $feH^{\infty}(m)$ vanishes on $\tilde{P}$, then $f=0$ ;
(iii) Each non-zero invariant subspace $M$ in $H^{2}(m)$ is of the form

$M=wH^{2}(m)$ ,

where $w$ is a rigid function in $H^{\infty}(m)$ .
PROOF. $(i)\Rightarrow(ii)$ . Let $\Gamma$ be the ideal boundary of $\tilde{P}$. Then we can

regard $C_{R}(\Gamma)$ as a subspace of $L_{R}^{\infty}(m)$ . Let $I$ be the ideal of functions
in $H^{\infty}(m)$ which vanish on $\tilde{P}$. Then since $C_{R}(\Gamma)I\subset I$, we have $L_{R}^{\infty}(\Gamma)I\subset I$,
where $L_{R}^{\infty}(\Gamma)$ denotes the $weak-*closure$ of $C_{R}(\Gamma)$ in $L_{R}^{\infty}(m)$ ([6]). Suppose
now that (ii) is not true, then $I\neq\{0\}$ . If $M$ is the $L^{1}(m)$-closure of $I$,
then $M$ is a non-zero invariant subspace of $L^{1}(m)$ . And $M$ is not reduced
to the form $\chi_{B}L^{1}(m)$ . This is because of the antisymmetric property of
$H^{1}(m)$ . Now we have a $x_{B}eL_{R}^{\infty}(\Gamma)$ such that $\chi_{B}I\subset I$ and $0<\chi_{B}<1$ . Hence
$\chi_{B}M\subset M$. But $x_{E}eL^{\infty}(m)$ and $\chi_{B}\not\in H^{\infty}(m)$ . Thus, by Theorem 2.1 $(i)\Rightarrow(iv)$ ,
$H^{\infty}(m)$ is not maximal.

$(ii)\Rightarrow(iii)$ . Let $M$ be a non-zero invariant subspace in $H^{2}(m)$ and let
$M^{\prime}=M\cap L^{\infty}(m)$ . In order to show that $M$ has the form $wH^{2}(m)$ for a
rigid function $w$ , we show only that $M$ ’ is of the form $wH^{\infty}(m)$ since
the closure of $M\cap L^{\infty}(m)$ in $L^{2}(m)$ is $M$ ([4], p. 131, Theorem 6.1). By
(ii) we have $H^{\infty}(m)=H^{\infty}(\tilde{P})$ and so $M’\subset H^{\infty}(\tilde{P})$ .

Case I. If $M^{\prime}$ contains a function which does not vanish at $\phi$ , then
$M$ ’ is of type $B$ and so is of the form $wH^{\infty}(m)$ .

Case II. Suppose that all functions in $M$ ’ vanish at $\phi$ . They have
a zero of a finite order at $\phi$ . Let $k$ be the smallest positive integer
among their orders at $\phi$ . Let $g$ be a function in $H^{\infty}(\tilde{P})$ which has a
simple zero at $\phi$ and vanishes nowhere else on $\tilde{P}\cup\Gamma$ and log $|g|$ be
summable (for example, [6], p. 139). Then $g^{-k}M$ ’ is a non-zero invariant
subspace containing a function which does not vanish at $\phi$ . Hence $g^{-k}M$’ is
of the form $wH^{\infty}(m)$ , and so $M^{\prime}=wg^{k}H^{\infty}(m)$ . Consequently, as $M^{\prime}$ is gener-
ated by a function $wg^{k}$ in $H^{\infty}(m)$ such that log $|wg^{k}|$ is summable, $M^{\prime}$ is
of type $B$ and $M$’ itself is of the form $w{}_{0}H^{\infty}(m)$ for a rigid function $w_{0}$ .
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(iii)- (i). If (iii) is true, it is easy to prove that any non-zero
invariant subspace $M$ in $H^{1}(m)$ has the form $wH^{1}(m)$ . Suppose that $B$

is a properly $weak_{-}^{*}closed$ subalgebra of $L^{\infty}(m)$ containing $H^{\infty}(m)$ . We
must prove $B=H^{\infty}(m)$ . Let $M$ be an annihilator of $B$ in $L^{1}(m)$ . Then
$M$ is a non-zero invariant subspace of $L^{1}(m)$ which is contained in
$H^{1}(m)+N_{c}^{\infty}$ . Since the invariant subspace $H^{1}(m)+N_{c}^{\infty}$ has the form
$w{}_{0}H^{1}(m)$ for a rigid function $w_{0},$ $w_{0}^{-1}M$ is a non-zero invariant subspace
contained in $H^{1}(m)$ and hence $w_{0}^{-1}M=w^{\prime}H^{1}(m)$ for a rigid function $w’$ .
It follows that $M=w^{\prime}w{}_{0}H^{1}(m)=w^{\prime}(H^{1}(m)+N_{t}^{\infty})$ , and so $B=(w’)^{-1}H_{0}^{\infty}(m)$ .
As $H_{0}^{\infty}(m)$ is a Beurling subspace, we can denote that $B=wH^{\infty}(m)$ for a
rigid function $w$ . Now $B$ is an algebra, so it contains $w^{2}$ and there is
a function $h$ in $H^{\infty}(m)$ with $w^{2}=wh$ . Hence $w=h\in H^{\infty}(m)$ . Consequent-
ly $B=H^{\infty}(m)$ .

In the proof of $(i)\Rightarrow(ii)$ above of Merrill in the case A is a logmoduarl
algebra, the Wermer’s embedding function $Z$ plays an important r\^ole.
Our proof of $(i)\Rightarrow(ii)$ is based on results of Gamelin ([6], p. 139-140).

REMARK. It is known that the corona conjecture is true for a finite
open Riemann surface; if $R$ is a finite open Riemann surface, then $R$ is
dense in $M_{H^{\infty}(R)}$ (Alling [2]). So we can easily obtain the following; under
the hypothesis of Theorem 2.2, the property of that theorem is equivalent
to

(iv) $\tilde{P}$ is dense in $M_{H^{\infty}(m)}$ .
In fact, if (ii) of the theorem is true, $H^{\infty}(m)$ is isometrically isomorphic

to $H^{\infty}(\tilde{P})$ . So $M_{H^{\infty}(\cdot)}$ is $homeomorphictoM_{H^{\infty}(\tilde{P})}$ . As $\tilde{P}$ is dense in $M_{H^{\infty}(\tilde{P})}$ ,
$\tilde{P}$ is dense in $M_{H^{\infty}(m)}$ . Conversely if $f$ in $H^{\infty}(m)$ vanishes on $\tilde{P},$ $f=0$ by
(iv).

EXAMPLES. Now we present the examples of hypo-Dirichlet algebras
such that $H^{\infty}(m)$ is maximal.

(1) Let $R$ be a finite open Riemann surface and $X$ be its boundary.
Let $A$ be the algebra of all functions on $X$ that are restrictions of
functions continuous on RUX and analytic in $R$ . Then $A$ is a hypo-
Dirichlet algebra. Fix $m$ a harmonic measure for some point in $R$ . Con-
structing the abstract Hardy algebra $H^{\infty}(m),$ $H^{\infty}(m)$ is a maximal weak-*
closed subalgebra of $L^{\infty}(m)$ ([1]).

(2) Let $K$ be a compact subset of the complex plane with a non-
empty interior whose complement has finitely many components and $X$

be its boundary. Let $A$ be the algebra of all functions on $X$ that can
be uniformly approximated by rational functions whose poles lie off $K$.
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Then $A$ is a hypo-Dirichlet algebra. Fix $m$ a unique Arens-Singer
measure on $X$ for some point in $K$ and construct the abstract Hardy
algebra $H^{\infty}(m)$ . Then $H^{\infty}(m)$ is a maximal $weak-*closed$ subalgebra of
$L^{\infty}(m)$ .

\S 3. The uniform maximality of hypo-Dirichlet algebras.

Let $K$ be a compact finitely connected subset in $C$, the interior $K^{0}$

be connected and $A=R(K)|_{bK}$ , where $bK$ denotes the topological boundary
of $K$. Then $A$ is a hypo-Dirichlet algebra on $bK$ (see examples in \S 2).
Here we see that only non-trivial Gleason part of $M_{A}$ is precisely the
interior $K^{0}$ of $K$ ([4], p. 149). As an application of Theorem 2.2, we
can show the following, using a similar method as in a theorem of
Merrill ([7], Theorem 5).

THEOREM 3.1. A uniform algebra $A=R(K)|_{bK}$ as above is maximal
as a uniformly closed subalgebra of $C(bK)$ .

PROOF. Suppose that $B$ is a uniform algebra containing $A$ and $m$ is
a unique Arens-Singer measure for a point of $K^{0}$ . Then $ H^{\infty}(m)\subset B^{\infty}\subset$

$L^{\infty}(m)$ , where $B^{\infty}$ is the $weak_{-}^{*}closure$ of $B$ in $L^{\infty}(m)$ . $B^{\infty}$ is a weak-*
closed subalgebra of $L^{\infty}(m)$ . That $B^{\infty}$ is an algebra is proved as
follows; it is clear that $BB^{\infty}\subset B^{\infty}$ . Taking the $weak_{-}^{*}closure$ , we have
$B^{\infty}B^{\infty}\subset B^{\infty}$ . Now, since $H^{\infty}(m)$ is $weak-*closed$ and maximal, $B^{\infty}=H^{\infty}(m)$

or $B^{\infty}=L^{\infty}(m)$ . Let $B^{\infty}=H^{\infty}(m)$ and let $\mu$ be a measure on $bK$ which is
orthogonal to $A$ . By the theorem of Wilken ([4], p. 47) $\mu$ is absolutely
continuous with respect to a unique Arens-Singer measure for any $z$ in
the interior $K^{0}$ of $K$. This is because of that $K^{0}$ is only non-trivial
Gleason part of the maximal ideal space of $A$ . In particular, $\mu$ is
absolutely continuous with respect to $m$ , and so $\mu=hdm$ for a function
$heL^{1}(m)$ . Since $A$ and $B$ have the same $weak-*closure,$ $\mu\perp H^{\infty}(m)=B^{\infty}$ ,
and so $\mu\perp B$ . It follows that $A=B$. When $B=L^{\infty}(m)$ , suppose that $\mu$

is a measure on $bK$ which is orthogonal to $B$ . Since $\mu\perp A$ , using the
theorem of Wilken again, $\mu=hdm$ for some $h\in L^{1}(m)$ . Hence $\mu\perp B^{\infty}=$

$L^{\infty}(m)$ since $\mu\perp B$ , and so $\mu=0$ . Consequently $B=C(bK)$ . It proves the
theorem.

As a special case of the theorem above, we have the following.

COROLLARY 3.2 ($Bj\dot{0}rk$ and de Paepe [3]). Let $K=\{z\in C:r\leqq|z|\leqq 1$ ,
where $0<r<1$}, and $A=R(K)|_{bK}$ . Then $A$ is a maximal uniformly
closed subalgebra of $C(bK)$ .
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