Токуо Ј. Матн. Vol. 3, No. 2, 1980

Weak-* Maximality of Certain Hardy Algebras $H^{\infty}(m)$

Shûichi OHNO

Waseda University (Communicated by J. Wada)

The purpose of this paper is to discuss the weak-*maximality of certain Hardy algebras $H^{\infty}(m)$. Merrill [7] obtained conditions for the maximality of Hardy algebras for logmodular algebras. In this paper we study this problem for hypo-Dirichlet algebras and obtain a similar result as one of Merrill. We also discuss as an application the(uniform) maximality of certain classes of hypo-Dirichlet algebras.

§1. Preliminaries.

Let A be a uniform algebra on a compact Hausdorff space X, i.e., let A be a closed subalgebra in C(X) separating points in X and containing constant functions on X, where C(X) denotes the Banach algebra of complex-valued continuous functions on X with the supremum norm. A is called a hypo-Dirichlet algebra on X if there exist finite elements $Z_1, Z_2, \dots, Z_{\sigma}$ in the family A^{-1} of invertible elements of A such that the real linear space of functions of the form of

$$\operatorname{Re}(f) + \sum_{i=1}^{\sigma} c_i \log |Z_i| \quad (f \in A, c_i \in \mathbb{R})$$

is dense in the space $C_{\mathbb{R}}(X)$ of real continuous functions on X.

Now let A be a hypo-Dirichlet algebra and M_A be the maximal ideal space of A. Then each element ϕ of M_A has a finite dimensional set M_{ϕ} of representing measures on X for ϕ . And every $\phi \in M_A$ has a unique Arens-Singer measure m on X. A positive measure m on X is called an Arens-Singer measure for ϕ if $\log |\phi(f)| = \int \log |f| dm$ for all $f \in A^{-1}$ ([1]; [4], p. 116).

The abstract Hardy spaces $H^{p}(m)$, $1 \leq p \leq \infty$, associated with A are defined as follows; for $1 \leq p < \infty$, $H^{p}(m)$ is the $L^{p}(m)$ -closure of A and $H^{\infty}(m)$ is the weak-*closure of A in $L^{\infty}(m)$. We see that $H^{\infty}(m)$ is an

Received February 7, 1980

algebra. For $1 \le p \le \infty$, $H_0^p(m) = \{f \in H^p(m): \int fdm = 0\}$. Let N^p be the real annihilator of A in $L_R^p(m)$ $(1 \le p \le \infty)$ and N_c^p be the complexification of N^p . Then we have the following ([4], p. 109).

$$N^1 = N^p = N^\infty$$
,
 $H^\infty(m) = H^p(m) \cap L^\infty(m)$ $(1 \le p < \infty)$.

and

$$L^p(m) = H^p(m) \bigoplus \overline{H^p(m)} \bigoplus N^{\infty}_{c} \qquad (1 .$$

Let P be a Gleason part of M_A containing ϕ . When ϕ has a unique Arens-Singer measure m (where ϕ has not a unique representing measure), it is known that P is non-trivial, i.e., P is not a singleton ([1], Theorem 12.2). Though ϕ can be extended to $H^{\infty}(m)$, we shall denote the extended one by ϕ again whenever no confusion arises. Let \tilde{P} be the Gleason part of ϕ in $M_{H^{\infty}(m)}$, the maximal ideal space of $H^{\infty}(m)$. Then $\tilde{P} =$ $\left\{ \widetilde{\psi} \colon f(\widetilde{\psi}) = \int f d_{\psi}, \ d_{\psi} \text{ is a representing measure for } \psi \in P \text{ and } f \in H^{\infty}(m)
ight\}.$ The space \widetilde{P} , endowed with the induced topology of $M_{H^{\infty}(m)}$, can be compactified by adding a boundary Γ so that $\tilde{P} \cup \Gamma$ can be given the structure of a finite compact bordered Riemann surface and the functions in $H^{\infty}(m)$ are analytic on \tilde{P} . There is a natural isometric embedding of the algebra $H^{\infty}(\widetilde{P})$ of bounded analytic functions on \widetilde{P} into $H^{\infty}(m)$ so that $H^{\infty}(m)$ is the direct sum of $H^{\infty}(\widetilde{P})$ and the ideal I of functions in $H^{\infty}(m)$ which vanish identically on \widetilde{P} ([4], p. 161; [6]).

A closed (weak-* closed for $p = \infty$) subspace M of $L^{p}(m)$ $(1 \le p \le \infty)$ is called *invariant* if $f \in A$ and $g \in M$ imply that $fg \in M$. Ahern and Sarason [1] said that an invariant subspace M of $L^{p}(m)$ is of type B if A_0M is not dense in M (for $p=\infty$, not weak-*dense), where A_0 is the kernel of the functional ϕ . And they offered the conjecture whether every invariant subspace of $L^{p}(m)$ of type B is of the form $wH^{p}(m)$, where w is a function in $L^{\infty}(m)$ that agrees in modulus almost everywhere with $|Z_1|^{\alpha_1} \cdots |Z_{\sigma}|^{\alpha_{\sigma}}$ for some real numbers $\alpha_1, \cdots, \alpha_{\sigma}$. They called such a function w a rigid function and such a subspace $wH^{p}(m)$ a Beurling subspace. For example, if the invariant subspace M of $L^{p}(m)$ is generated by f such that $\log |f|$ is summable, it is known that M is of type B and so a Beurling subspace ([1], Lemma 11.1). In general, they proved that if the subspace $H^{p}_{\psi}(m)$ is a Beurling subspace for every ψ in P, then every invariant subspace of $L^{p}(m)$ of type B is a Beurling subspace ([1], Theorem 13.1) and Gamelin answered that $H^{p}_{\psi}(m)$ is a Beurling subspace for every ψ in P ([6], Theorem 8.6).

304

§2. Weak-*maximality of $H^{\infty}(m)$.

We need the following theorem, essentially due to Gamelin (cf. [4], p. 177, Lemma 8.1; [5]), in order to prove our main theorem.

THEOREM 2.1. Let A be a hypo-Dirichlet algebra on a compact Hausdorff space X and m be a unique Arens-Singer measure on X for $\phi \in P$, a non-trivial Gleason part of M_A . Then the following properties are equivalent:

(i) $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$;

(ii) If $f \in L^{1}(m)$, $f \neq 0$, $h \in L^{\infty}(m)$ and $fh^{n} \in H^{1}(m)$ for $n = 0, 1, 2, \cdots$, then $h \in H^{\infty}(m)$;

(iii) If $f \in L^{1}(m)$, $f \neq 0$, $h \in L^{\infty}(m)$ and $fh^{n} \in H^{1}(m) + N_{c}^{\infty}$ for $n = 0, 1, 2, \cdots$, then $h \in H^{\infty}(m)$;

(iv) If M is a non-zero closed invariant subspace of $L^1(m)$ which can not be reduced to the form $\chi_E L^1(m)$, χ_E the characteristic function of a set E, and if $h \in L^{\infty}(m)$ satisfies $hM \subset M$, then $h \in H^{\infty}(m)$.

PROOF. (i) \Rightarrow (iv). Let M be a non-zero closed invariant subspace in $L^{1}(m)$ and B be the family of $f \in L^{\infty}(m)$ with $fM \subset M$. Then B is a weak-* closed subalgebra of $L^{\infty}(m)$ containing $H^{\infty}(m)$. By (i), $B = H^{\infty}(m)$ or $B = L^{\infty}(m)$. If $B = L^{\infty}(m)$, M must be the form $\chi_{E}L^{1}(m)$. This contradicts the assumption of (iv). Hence $B = H^{\infty}(m)$. From this, if $h \in L^{\infty}(m)$ satisfies $hM \subset M$, then $h \in H^{\infty}(m)$.

 $(iv) \Rightarrow (iii)$. Assume (iv) and if M is the closed invariant subspace in $L^{1}(m)$ generated by fh^{n} , $n=0, 1, 2, \cdots$, then M satisfies the assumption of (iv). Indeed, if M is of the form $\chi_{E}L^{1}(m)$, then $\chi_{E}L^{1}(m)=M\subset H^{1}(m)+N_{c}^{\infty}$. Since $H^{1}(m)+N_{c}^{\infty}$ is an invariant subspace of type B, $H^{1}(m)+N_{c}^{\infty}=wH^{1}(m)$ for a rigid function w. So $w^{-1}\chi_{E}L^{1}(m)\subset H^{1}(m)$, and hence $\chi_{E} \in H^{1}(m)$ since $w \in L^{1}(m)$. This contradicts the antisymmetric property of $H^{1}(m)$. So $h \in H^{\infty}(m)$ by (iv).

(iii) \Rightarrow (ii). It is clear because $H^1(m) \subset H^1(m) + N_c^{\infty}$.

(ii) \Rightarrow (i). Let $h \in L^{\infty}(m)$ and $h \notin H^{\infty}(m)$. Let *B* denote the weak-* closed subalgebra generated by $H^{\infty}(m)$ and *h*. Then *B* is a weak-*closed subalgebra of $L^{\infty}(m)$ and contains $H^{\infty}(m)$ properly. We prove only that $B=L^{\infty}(m)$. If $f \in L^{1}(m)$ is orthogonal to *B*, fh^{n} is orthogonal to *A* for $n=0, 1, 2, \cdots$. In particular, $fh^{n} \perp A_{0}$. So $fh^{n} \in H^{1}(m) + N_{c}^{\infty}$ $(n=0, 1, 2, \cdots)$ ([1], Theorem 11.1). Since $H^{1}(m) + N_{c}^{\infty}$ is of the form $wH^{1}(m)$ for a rigid function $w, w^{-1}fh^{n} \in H^{1}(m)$ $(n=0, 1, 2, \cdots)$. By (ii) and the fact that $h \notin H^{\infty}(m), w^{-1}f=0$, and hence f=0. It follows that $B=L^{\infty}(m)$.

The implication $(ii) \Rightarrow (i)$ of the theorem above is due to Dr. T.

SHÛICHI OHNO

Nakazi. We are now in a position to give our main theorem. This is an analogue of results of Merrill ([7], Theorems 1 and 2) in the case when A is a hypo-Dirichlet algebra.

THEOREM 2.2. Let A be a hypo-Dirichlet algebra on a compact Hausdorff space X and m be a unique Arens-Singer measure on X for $\phi \in M_A$. Suppose that \tilde{P} is the (non-trivial) Gleason part of ϕ in $M_{H^{\infty}(m)}$. Then the following properties are equivalent:

- (i) $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$;
- (ii) If $f \in H^{\infty}(m)$ vanishes on \tilde{P} , then f=0;
- (iii) Each non-zero invariant subspace M in $H^2(m)$ is of the form

$$M = wH^2(m)$$
,

where w is a rigid function in $H^{\infty}(m)$.

PROOF. (i) \Rightarrow (ii). Let Γ be the ideal boundary of \tilde{P} . Then we can regard $C_R(\Gamma)$ as a subspace of $L_R^{\infty}(m)$. Let I be the ideal of functions in $H^{\infty}(m)$ which vanish on \tilde{P} . Then since $C_R(\Gamma)I \subset I$, we have $L_R^{\infty}(\Gamma)I \subset I$, where $L_R^{\infty}(\Gamma)$ denotes the weak-*closure of $C_R(\Gamma)$ in $L_R^{\infty}(m)$ ([6]). Suppose now that (ii) is not true, then $I \neq \{0\}$. If M is the $L^1(m)$ -closure of I, then M is a non-zero invariant subspace of $L^1(m)$. And M is not reduced to the form $\chi_E L^1(m)$. This is because of the antisymmetric property of $H^1(m)$. Now we have a $\chi_E \in L_R^{\infty}(\Gamma)$ such that $\chi_E I \subset I$ and $0 < \chi_E < 1$. Hence $\chi_E M \subset M$. But $\chi_E \in L^{\infty}(m)$ and $\chi_E \notin H^{\infty}(m)$. Thus, by Theorem 2.1 (i) \Rightarrow (iv), $H^{\infty}(m)$ is not maximal.

(ii) \Rightarrow (iii). Let M be a non-zero invariant subspace in $H^2(m)$ and let $M' = M \cap L^{\infty}(m)$. In order to show that M has the form $wH^2(m)$ for a rigid function w, we show only that M' is of the form $wH^{\infty}(m)$ since the closure of $M \cap L^{\infty}(m)$ in $L^2(m)$ is M ([4], p. 131, Theorem 6.1). By (ii) we have $H^{\infty}(m) = H^{\infty}(\tilde{P})$ and so $M' \subset H^{\infty}(\tilde{P})$.

Case I. If M' contains a function which does not vanish at ϕ , then M' is of type B and so is of the form $wH^{\infty}(m)$.

Case II. Suppose that all functions in M' vanish at ϕ . They have a zero of a finite order at ϕ . Let k be the smallest positive integer among their orders at ϕ . Let g be a function in $H^{\infty}(\tilde{P})$ which has a simple zero at ϕ and vanishes nowhere else on $\tilde{P} \cup \Gamma$ and $\log |g|$ be summable (for example, [6], p. 139). Then $g^{-k}M'$ is a non-zero invariant subspace containing a function which does not vanish at ϕ . Hence $g^{-k}M'$ is of the form $wH^{\infty}(m)$, and so $M' = wg^k H^{\infty}(m)$. Consequently, as M' is generated by a function wg^k in $H^{\infty}(m)$ such that $\log |wg^k|$ is summable, M' is of type B and M' itself is of the form $w_0 H^{\infty}(m)$ for a rigid function w_0 .

306

 $(iii) \Rightarrow (i)$. If (iii) is true, it is easy to prove that any non-zero invariant subspace M in $H^{1}(m)$ has the form $wH^{1}(m)$. Suppose that Bis a properly weak-*closed subalgebra of $L^{\infty}(m)$ containing $H^{\infty}(m)$. We must prove $B = H^{\infty}(m)$. Let M be an annihilator of B in $L^{1}(m)$. Then M is a non-zero invariant subspace of $L^{1}(m)$ which is contained in $H^1(m) + N_c^{\infty}$. Since the invariant subspace $H^1(m) + N_c^{\infty}$ has the form $w_0H^1(m)$ for a rigid function w_0 , $w_0^{-1}M$ is a non-zero invariant subspace contained in $H^{1}(m)$ and hence $w_{0}^{-1}M = w'H^{1}(m)$ for a rigid function w'. It follows that $M = w'w_0H^1(m) = w'(H^1(m) + N_c^{\infty})$, and so $B = (w')^{-1}H_0^{\infty}(m)$. As $H_0^{\infty}(m)$ is a Beurling subspace, we can denote that $B = wH^{\infty}(m)$ for a rigid function w. Now B is an algebra, so it contains w^2 and there is a function h in $H^{\infty}(m)$ with $w^2 = wh$. Hence $w = h \in H^{\infty}(m)$. Consequently $B=H^{\infty}(m)$.

In the proof of $(i) \Rightarrow (ii)$ above of Merrill in the case A is a logmoduarl algebra, the Wermer's embedding function Z plays an important rôle. Our proof of $(i) \Rightarrow (ii)$ is based on results of Gamelin ([6], p. 139-140).

REMARK. It is known that the corona conjecture is true for a finite open Riemann surface; if R is a finite open Riemann surface, then R is dense in $M_{H^{\infty}(R)}$ (Alling [2]). So we can easily obtain the following; under the hypothesis of Theorem 2.2, the property of that theorem is equivalent to

(iv) \tilde{P} is dense in $M_{H^{\infty}(m)}$.

In fact, if (ii) of the theorem is true, $H^{\infty}(m)$ is isometrically isomorphic to $H^{\infty}(\tilde{P})$. So $M_{H^{\infty}(m)}$ is homeomorphic to $M_{H^{\infty}(\tilde{P})}$. As \tilde{P} is dense in $M_{H^{\infty}(\tilde{P})}$, \tilde{P} is dense in $M_{H^{\infty}(m)}$. Conversely if f in $H^{\infty}(m)$ vanishes on \tilde{P} , f=0 by (iv).

EXAMPLES. Now we present the examples of hypo-Dirichlet algebras such that $H^{\infty}(m)$ is maximal.

(1) Let R be a finite open Riemann surface and X be its boundary. Let A be the algebra of all functions on X that are restrictions of functions continuous on $R \cup X$ and analytic in R. Then A is a hypo-Dirichlet algebra. Fix m a harmonic measure for some point in R. Constructing the abstract Hardy algebra $H^{\infty}(m)$, $H^{\infty}(m)$ is a maximal weak-^{*} closed subalgebra of $L^{\infty}(m)$ ([1]).

(2) Let K be a compact subset of the complex plane with a nonempty interior whose complement has finitely many components and Xbe its boundary. Let A be the algebra of all functions on X that can be uniformly approximated by rational functions whose poles lie off K.

SHÛICHI OHNO

Then A is a hypo-Dirichlet algebra. Fix m a unique Arens-Singer measure on X for some point in K and construct the abstract Hardy algebra $H^{\infty}(m)$. Then $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$.

§3. The uniform maximality of hypo-Dirichlet algebras.

Let K be a compact finitely connected subset in C, the interior K° be connected and $A = R(K)|_{bK}$, where bK denotes the topological boundary of K. Then A is a hypo-Dirichlet algebra on bK (see examples in §2). Here we see that only non-trivial Gleason part of M_A is precisely the interior K° of K ([4], p. 149). As an application of Theorem 2.2, we can show the following, using a similar method as in a theorem of Merrill ([7], Theorem 5).

THEOREM 3.1. A uniform algebra $A = R(K)|_{bK}$ as above is maximal as a uniformly closed subalgebra of C(bK).

PROOF. Suppose that B is a uniform algebra containing A and m is a unique Arens-Singer measure for a point of K° . Then $H^{\infty}(m) \subset B^{\infty} \subset$ $L^{\infty}(m)$, where B^{∞} is the weak-*closure of B in $L^{\infty}(m)$. B^{∞} is a weak-* closed subalgebra of $L^{\infty}(m)$. That B^{∞} is an algebra is proved as follows; it is clear that $BB^{\infty} \subset B^{\infty}$. Taking the weak-*closure, we have $B^{\infty}B^{\infty} \subset B^{\infty}$. Now, since $H^{\infty}(m)$ is weak-*closed and maximal, $B^{\infty} = H^{\infty}(m)$ or $B^{\infty} = L^{\infty}(m)$. Let $B^{\infty} = H^{\infty}(m)$ and let μ be a measure on bK which is orthogonal to A. By the theorem of Wilken ([4], p. 47) μ is absolutely continuous with respect to a unique Arens-Singer measure for any z in the interior K^0 of K. This is because of that K^0 is only non-trivial Gleason part of the maximal ideal space of A. In particular, μ is absolutely continuous with respect to m, and so $\mu = hdm$ for a function $h \in L^{1}(m)$. Since A and B have the same weak-*closure, $\mu \perp H^{\infty}(m) = B^{\infty}$, and so $\mu \perp B$. It follows that A=B. When $B=L^{\infty}(m)$, suppose that μ is a measure on bK which is orthogonal to B. Since $\mu \perp A$, using the theorem of Wilken again, $\mu = hdm$ for some $h \in L^1(m)$. Hence $\mu \perp B^{\infty} =$ $L^{\infty}(m)$ since $\mu \perp B$, and so $\mu = 0$. Consequently B = C(bK). It proves the theorem.

As a special case of the theorem above, we have the following.

COROLLARY 3.2 (Björk and de Paepe [3]). Let $K = \{z \in C : r \leq |z| \leq 1, where 0 < r < 1\}$, and $A = R(K)|_{bK}$. Then A is a maximal uniformly closed subalgebra of C(bK).

308

HARDY ALGEBRAS

ACKNOWLEDGMENTS. The author wishes to express their hearty thanks to Dr. T. Nakazi and Dr. J. Tanaka for their valuable advices and constant encouragments.

References

- P. R. AHERN and D. SARASON, The H^p spaces of a class of function algebras, Acta Math., 117 (1967), 123-163.
- [2] N. L. ALLING, A proof of the corona conjecture for finite open Riemann surfaces, Bull. Amer. Math. Soc., 70 (1964), 110-112.
- [3] J.-E. BJÖRK and P. J. DE PAEPE, Maximal subalgebras, Papers from the summer gathering on function algebras at Aarhus, July 1969, 36-39, Various publications series no. 9, Matematisk Institut, Aarhus, 1969.
- [4] T. W. GAMELIN, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969.
- [5] T. W. GAMELIN, Remarks on compact groups with ordered duals, Rev. Un. Mat. Argentina, 23 (1967), 97-108.
- [6] T. W. GAMELIN, Embedding Riemann surfaces in maximal ideal spaces, J. Functional Analysis, 2 (1968), 123-146.
- [7] S. MERRILL, Maximality of certain algebras $H^{\infty}(dm)$, Math. Z., 106 (1968), 261-266.

Present Address: DEPARTMENT OF MATHEMATICS SCHOOL OF SCIENCES AND ENGINEERINGS WASEDA UNIVERSITY NISHIOKUBO, SHINJUKU-KU, TOKYO 160