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Introduction

In this paper we shall study an analogue of Paley-Wiener theorem
on a connected semisimple Lie group G with finite center. Namely, we
would like to characterize the Fourier transforms of z-spherical functions
with compact support on G. In the preceding papers [4], [6], we obtained
some results about this problem under the assumption that the real rank
of G is one. However, since the method in this case is deeply dependent
on one complex variable analysis, it is useless for us to investigate
the case of higher rank (but we shall use the same technique in §4).
Therefore we have to think out a new method. Now we shall sketch
the contents in this paper. :

In §2 we shall consider the behavior of p-functions at their singu-
lar points. Then under some assumptions we obtain a relation between
the p-functions corresponding to the cuspidal parabolic subgroups of G
whose split components are not conjugate under K. Moreover, using
this relation and the functional equation of the Eisenstein integral, we
can obtain a key proposition which will be frequently used in the fol-
lowing arguments. Roughly speaking, the above assumptions are con-
nected with an explicit imbedding theorem of discrete series as a sub-
representation of non-unitary principal series. As you know, at present
these explicit forms are not obtained in general, but for the case of
G=8U(n, 1) (n€N) (see [8)]).

Now we shall use the same notation in [4]. Let P,=M,A,N, denote
a minimal parabolic subgroup of G' and suppose that a(¥)=(ai(r); 1=¢=
n;, 1=j<m) (cf. §1.8) belongs to & (F,)%?. Then the inverse Fourier
transform is given as

(0.1) flw)=& (@) |
——é W)~ 3, L pw;, V)E(Py: ¢5: v: x)ad(v)dy ,

i=1
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(see Theorem 1 in [4]). Now furthermore we assume that each compo-
nent ai(v) of @ has a holomorphic extension on (&%), which is an ex-

ponential type. Then in §3, we would like to obtain the following type
theorem.

Theorem (+). Let notation be as above. Then f(z) can be decom-
posed as

0.2) fx)=F(x)+G(z) ,

lwhere F(x) and G(x) belong to C2(G, z) and the kernel of & 4, Tespec-
tively.

However, to our regret, we do not obtain a general proof of this

theorem. In this paper we shall give a proof for the following two
cases.

(1) The case of a real rank one.

(2) G=SUQ, 2) and v=(}, 7).
We shall investigate the first in §3 and the second in §4. I believe
the method in the above cases can be extended to the general case.

S§1. Notation and preliminary.

1.1. Notation.

Let G be a connected semisimple Lie group with finite center and
be of the real rank R(ReZ, R=1). Let K be a maximal compact sub-
group of G and & denote the Cartan involution which is induced on G
by K. Then we can define the associated Iwasawa decomposition G =
KAN, as usual. Let M, be the centralizer of 4, in K. Then it is ob-
vious that M, is contained in K and Py=M,A,N, is a minimal parabolic
subgroup of G. Now in this paper we shall denote Lie algebras by
small German letters and for any real vector space V we shall denote
by V. and V* the complex vector space and the dual vector space of V
respectively. Moreover let & (G) denote the set of all equivalence classes
of irreducible unitary representations on G and £,(G) denote the subset
of &(G) which consists of all equivalence classes of square-integrable
representations on G. For other Lie groups we shall define the same
notation; &( ), &,( ) as usual. Then for any equivalence class w we
shall denote by @ an irreducible representation whose class belongs to .

1.2. The decomposition of & (G, 7).
In this subsection we shall decompose the z-spherical Schwartz space
Z°(G, v) with respect to the conjugacy classes of Cartan subgroups of
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G. Next arguments were developed in Harish-Chandra [3] § 27.

First let V be the finite dimensional Hilbert space satisfying the
conditions in Harish-Chandra [3] § 8 and let z=(z,, 7.) be a unitary double
representation of K on V. Then we can define the V-valued Schwartz
space & (G, V) on G and the subspace of z-spherical functions &(G, 7)
as usual. Moreover we denote by °Z (G, ) the subspace of z-spherical
cusp forms on G (cf. Harish-Chandra [1] §19). Now let I, I, ---, I,
be a complete set of #-stable Cartan subgroups of G, no two of which
are conjugate under G. Let A,(1=<i¢<7) denote the vector part of I,
and put for each A,

(1.1) M,= (N Ker|X]|,

ZeX(Mf)

where M? is the centralizer of A, in G and X(M;) is the group of all
continuous homomorphisms of M; into the multiplicative group of real
numbers. Then we denote by P,=M,AN,(1<i<r) the parabolic sub-
group of G whose nilradical N, is contained in N,. Now let &,(G, 7)
(L<i=<r) denote the closed subspace of & (G, r) which consists of all
elements f satisfying the following condition; if @ is a parabolic sub-
group of G whose split component is not conjugate to A, under K, then

L2 f@~0

(cf. Harish-Chandra [1] §16, §20). Then from Theorem 27.2 in Harish-
Chandra [3] & (G, 7) can be decomposed as follows;

(1.3) ZF(G, 1)=F4,(G, 7) B Fu(G, T)D - - - ® F(G, 7)

where @ is the topological direct sum. Here we note that when I, is
a compact Cartan subgroup of G, i.e., A,={1}, then &,(G, 7) coincides
with °&(G, 7). Since A, is a maximal vector subgroup of G, there exists
a #-stable Cartan subgroup of G whose vector part is equal to 4,. There-
fore without loss of generality we may assume that this Cartan sub-
group and A, are equal to 7', and A, respectively.

1.8. The Fourier transform on Z.(G, 7).

In this subsection we shall review the results in T. Kawazoe [4].
Fix I(1<i<r) and for simplicity we shall write I" and P=MAN instead
of I', and P,=M,A,N, respectively.

First we note that A is the vector part of a ¢-stable Cartan sub-
group of G. Therefore P is cuspidal and &,(M) is not empty (see V.S.
Varadarajan [7] part II Prop. 6.23). Now we denote by Ly=°& (M, 74)
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the space of 7,-spherical cusp forms on M, where 7, is the restriction
of ¢ to Ky=KNM. Then for each @ in &,(M) let 5~ denote the
smallest closed subspace of L*(M) which contains all matrix coefficients
of w and put L,(w)=(54 @V )NLy. Then it is well known that L, is
finitely dimensional and can be decomposed as follows;

wEE(M J=1 se

(L.4) L= 3 Li@)=3 5 L)

where W= W(A) is the Weyl group of (G, A) and W(w,;)(1<j<m) is the
subgroup of W consisting of all se W such that sw,=w;. Here we
denote by

(1.5) {¢5; 1=i=<n;=dim(L,(w;))}

an orthonormal basis of Ly(w;)(1<j<m) with respect to the L*>-norm on M.
Now we shall construct the Fourier transform on &G, 7). First
put F =,=a* and

(1.6) Flg, v)=(e"1)"\(f, B(P: ¢: v:.))

for feZ . (G, ), €Ly, and ve.#, where ¢ and v are the constants
which were defined in Harish-Chandra [3] §2, §11 and E(P: ¢: v: x)(x € G)
is the Eisenstein integral of G. Then from the results in Harish-Chandra
[2] §13 for fixed o, f(¢, v) is a rapidly decreasing function on &, i.e.,
it belongs to the Schwartz space (% ) on .# . Then using these funec-
tions, we shall define the Fourier transform &, of (G, 7) into & (&)
(n=n(P)=n,+n,+---+mn,) as follows; for feZ (G, 7)

(L.7) i) =(Fgh v); 1Sismy, L<j<m)
=(f(¢iy ))), Tty f(¢;}\’ ”)y f(¢f, D), :\' i) f(¢izl ”)9 e
: "’f(¢r, D)! "'sf(¢:m9 D)) .

Next we shall define the subspace of (& )" which becomes the

image of €,(G, ) by the above mapping &,. Here we note that « in
& (Z )" can be written as

(1°8) a=(a19 Qg - -, an) ’

where a;(1=j=<m) are elements in (% )*. Then let (% )% denote
the subspace of 2°(# )" which consists of all a=(a,, a,, - - -, a,) (see(1.8))
satisfying the following relations;

(1.9) ai(sv)="Cps(s; 5 V)ai(v) for all sec W(w,;) and ve F(1=<j <m),
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where aj is the transposed vector of a;(1=<j<m) and °Cpip(s; 87) is a
unitary operator of L,(w;) onto Ly(sw;) which was defined in Harish-
Chandra [3] p. 152. Here we regard this operator as a matrix operator
with respect to the orthonormal basis (1.5) and denote the complex con-
jugate of it by™. Then we can easily prove that & (F )% is closed in
Z ()" and obtain the following Theorem 1 (see [4] Theorem 1).

THEOREM 1. The mapping &, is a homoemorphism of &G, 7)
onto & (F )x. Moreover the inverse mapping of &4 18 given by

e

110 f@)=3 W)~ 3| p@, VEP: i v: ) g}, v)dv
for fe@.G,1),

where dv i8 the FEuclidean measure on % which t8 dual to the Haar

measure da on A and p(w; L)A<Sj<m) are p-functions on G which were
defined in Harish-Chandra [3] §13.

Here we note that the mapping £, can be extended to a mapping
of (G, 7) onto & (). composing the projection of & (G, ) onto
% 4G, 7). From now on we shall denote this extension by the same
notation.

1.4. The p-functions on G.

We keep to the notations of the subsections 1.2 and 1.3. In this
subsection we shall describe the definition and some properties of the
p-functions on G. These results were obtained in Harish-Chandra [3].

Let J(P) denote the set of all reduced roots of (P, A) (see Harish-
Chandra [3] p. 120) and fix a € I(P). Now let a, be the hyperplane a=0
in a and put

(1.11) " M,= ) Ker|Z|,

Le X (M)

where M; is the centralizer of a, in G. Moreover put *P,=M, N P,
*A,=M,NAand *N,=M, NN respectively. Then it is well known that

*P, is a parabolic subgroup of M, and its Langlands decomposition is
given by

(1.12) *P,=M*Ax*N, .
Here we note that *A4, and *n, can be written as

(1.13) *A,=exp RH, and *na=kZ| o
=1
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respectively, where H, is some element in *a, and g, is the space of
all X in g such that [H, X]=ka(H)X for all Hea (cf. Harish-Chandra
[3] Lemma 2.8). Next let P,=M,A,N, be the parabolic subgroup of G
whose split component is equal to A,=expa, and nilradical is contained
in N,. Here put #,=a* and *.#,=(*a,)* for simplicity. Moreover we
denote by &7, 7.’ and *.#.’ the set of all regular elements in &, 7,
and *.#, respectively.

Now since dim *A,=prk(M,)+1, there exists a number z,(»,)>0 for
we &,(M) and 2, € * %, such that

(1.14) Lu(Na) I g1ops(Na) T B (M) =1

(see Harish-Chandra [3] Lemma 12.1 and see §13 for the definitions of
j-functions). Now let *y, denote the restriction of ve. & on *a, and

put
(1.15) AW, v)=p,(*v,) for we &(M) and rveF'.

Then the p-function on G is given by

(1.16) o, »)=_11 po, ).

Next Lemma 1 is obtained by an explicit calculation of #,(\,) (cf. Harish-
Chandra [3] § 28-§ 36).

LEMMA 1. (o, v) extends to a meromorphic function on &, and
moreover there exists a number 6>0 such that the following conditions

hold.
(1) p(w, v) i8 holomorphic on F,(9).
(2) There exist numbers ¢, r=0 such that

(1.17) | (@, )| Se(l+|vel)r (ve.FU9)),

where v=vy+(—1)",(Vp, v: € F ) and F,(0) i8 the set of all Yy € F, such
th@t |91|§3. '

Now let 3,(P) denote the set of all @e I(P) such that &,(M,) is not
empty, i.e., P, is cuspidal. Here we note that for each a2 (P) there
exists a 6-stable Cartan subgroup of G whose vector part is equal to
A,. Therefore there exists a unique i=i(a)(1=i1<7r) such that I'; and
A, are conjugate to this Cartan subgroup and A, respectively. Now we
shall prove the following Lemma 2.

LEMMA 2. When a i8 not in Z(P), ¢ (®, v) i8 a polynomial on FZ..
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In particular the singularities of p(w, v) depend on t,(w, v)(ae X(P)).

PROOF. Suppose a is not contained in XY,(P). Then from the defini-
tion of I (P) &,M,) is empty. Therefore there exist no compact Cartan
subgroups of M, and rank(M,)>rank(K, ). On the other hand the vector
part of the Cartan subgroup I"N M, of M, is equal to *4, and dim *4,=1.
Thus I'N M, is a fundamental Cartan subgroup of M,. Therefore Lemma
2 is obvious from Harish-Chandra [3] Theorem 24.1. Q.E.D.

1.5. Two lemmas for the Eisenstein integrals.

Let notation be as in the preceding subsections. Now suppose that
P'=M'A'N’ is a parabolic subgroup of G which contains P=MAN. Put
*P=PNM',*A=ANM and *N=NNM’' respectively. Then we can
obtain the following functional equations for the Eisenstein integrals
(see Harish-Chandra [8] Lemma 17.5).

LEMMA 3. Let notation be as above. Then for ¢cLyyve F and
ze@,

(1.18) E(P": E(*P: ¢: *v:.): V': x)=E(P: ¢: v: x) ,

where *v and V' are the restrictions of v on *a and the orthogonal com-
plement a’ of *a in a respectively.

Next let V=C~(Kx K). Then we can define the scalar product (,)
on V and the unitary double representation = of K on V as usual (cf.
Harish-Chandra [1] §26). Now let F be a finite subset of & (K) and put
Or=D>,;.70;, Where a,=d(d)conj(X,) (X, is the character of the class é
and d(6)=2X,(1)). Here let V, denote the subset of V consisting of all
v € V such that

(1.19) v= SK () ()vdle= SKaF(k)vr(k)dlc :

Then we can easily prove that V, is stable under z and its dimension
is finite. Thus we can define the unitary double representation 7, of
K on V, as the restriction of ¢ to V;. From now on we fix a finite
subset F' of & (K) and write (V, ) for the pair (V5, z5).

Now let w be in &£,(M) and fix it. Then the induced representa-
tion of G is given by

(1.20) 22, =Indfan@®e ®1) for ve.7,
(cf. Harish-Chandra [3] §4). Let 9,=9:, denote the representation space
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of #7,. Now put
(L.21) Pr=| axon ik and ©I=Pu(®,) .

Then we obtain the following Lemma 4 (cf. Harish-Chandra [3] Lemma
7.1 and Theorem 7.1)

LEMMA 4. For each T in End(9%) we can associate a vy, in L,(®)
such that the mapping; Ty, -d.* is a linear isometry of End(9I) with
Hilbert-Schmidt norm onto Ly(®w) with L*-morm, where d, is the formal

degree of the class @w. Moreover these T and +, satisfy the following
relation;

(1.22) E(P: yp:v: o)1) =tr(ng (2)T) for xzeG and ve F,,
where we restrict w;,, on 9, and regard it as an endomorphism of 9.

Last we recall that the Eisenstein integral satisfies the following
inequality (see Harish-Chandra [2] Lemma 17.1). For ¢ € L,, there exist
numbers »=0 and ¢>0 such that

(1.23) |[E(P: ¢: v: x)|y <eB(x)|(v, x)|reco 11

for all ve. #, and x€ G, where |-|, is the norm in V and ¢, is a con-
stant which does not depend on ¢, v, x (for the definitions of ¢, Z(x),
o(x), |(v, x)| see Harish-Chandra [1] § 10 and [2] § 17).

1.6. The parametrization of v in .&#,.

We keep to the notations in the preceding subsections. Suppose that
the parabolic rank of P, i.e.,, dim A is p(1=<p<R). Then it is obvious
that dim A,=p—1 and dim*A4,=1. Therefore using the dual form (, ) of
the Cartan-Killing form on a, we can choose an orthogonal basis
{e, €3, ---, €3} of F# such that {ef, e5, ---, e5_,} (resp. {e5}) is an ortho-
gonal basis of &, (resp. *#,). Now for simplicity we put zf=(, €7)/
(ef, e)(1=<i<p) for ve &#. Then v=y,+*v,, where v, and *v, are the
restrictions of v on a, and *a,, can be ertten as

Pp—1

4
(1.24) v=‘2_l xfe?, »a=‘z_‘,1x?e? and *y,=ux%" .

Moreover without loss of generality we may identify YvEF, v, €(F,),
and *y,e(*+#.). with («f, ¢, ---, 25)eC?, (af, xF, ---, x5-,)€C?* and
(%) € C respectively. Now let C“P—(C (AL, ySp) denote the »pXxop-
matrix which transforms (¢, ef, - - -, ef)t to (ef, e3, - - -, €5), where a, B €
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2(P) and (.)* is the' transposed vector of (.). Here we note that for
each a, g€ 3(P) C* belongs to GL(p, R) and moreover satisfies; (C*)'=
C** and (Cglpy ngﬁ, Ty ng):#(oy O’ ) O, 1)(0!75,8).

§2. The key proposition.

In this section we shall prove two lemmas and one proposition,
which will be used in §4 under some assumptions.

First fix P,.=M,A,N,1<k<7r) and for simplicity we shall write P=
MAN instead of P,. Suppose a is in Y (P) and fix it. Then we can
define the cuspidal parabolic subgroup P,=M,A,N, of G and the parabolic
subgroup *P,=M*AXN, of M, as in § 1.4 respectively. Then it is obvious
that P, contains P and is conjugate to P,(i=i(a)) under K (see §1.4).
From now on we assume that ¢eL,(0w) (we &(M)) and *v$ e (*F,),
satisfy the following condition; .

2.1 E(*P,: ¢: *vz: m)e Ly (o) (meM,)

for some o=o0(¢, *v2) € &,(M,).

Now we shall apply the arguments in §1 5 for the pair (M, M)
instead of (G, M) and define the induced representation of M, as fol-
lows; '

(2.2) Ty 4 =Indye v (@Re™=R1) .

Then it is obvious that this representation is non-unitary principal series
of M, and from Lemma 1.4 its matrix coefficients can be written as

(2.3) E(*P,: : *v2: m)(1:1) (meM,)

for € Ly(w). Therefore E(*P,: ¢: *v2: m)(1:1) is a finite linear combina-
tions of these matrix coefficients of z%,. On the other hand from (2.1)
E(*P,: ¢: *v3: m)(1:1) belongs to 5%, in particular, to L*(M,). There-
fore without loss of generality we may assume that ¢ is infinitesimally
equivalent to a subrepresentation of =;s,. Here we denote this rela-

tion by
(2.4) o<y %s -

Next we shall apply the arguments in §1.5 for the pair (G, M,) instead
of (G, M) and obtain the following relations;

(2.5) mps, =Ind§ 4 v, (6@e=R@1)
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<Indf, .ov(Induf ;v (@R Q@Y. 1)
=Indf v (@Re=+"2@1) =7} ..
~and

(2.6) xrs =Indg, . 7, (e®e=®1)

<Ind§ , 7 (Induss v (@Re™ @R, 1)
= Indg:(C_O®e”¢+"‘°a ®1) = 71';:»° ’

where »°=y +*20v, e %), P.=M,AN(N,=6(N,) and P'=MA*N,N,.
Then using these relations, we can obtain the following Lemma 5.

LEMMA 5. Let notation be as above. Then for v,e . #.”,

(2.7) #o, vy=c T @, v°) (°=v,+3),

7€ Z(P)—{a}

where F." 18 the set of all v, € F, such that the both sides of (2.7) are
well-defined and ¢ i8 a constant which does not depend on v,.

PROOF. Let $2=95.- and $7=9;,., denote the representation spaces
of zZ,. and x;% respectively. Put N=6(N) and P=MAN. Now we
shall recall the results about intertwining operators of the induced re-
presentations; n} ., of G and n;’ia of M,, which were obtained in Harish-

Chandra [3] §5. Here we shall use the same notation in it. Then we
have the following relation;

(2.8) Jpi3(V) =J 12 (V) pi5(V) ,

where v is an element in ., on which these three intertwining operators
are well-defined (¢f. Harish-Chandra [3] Lemma 5.2). Now from the re-
lations (2.5) and (2.6), without loss of generality we may assume that

$r- and HF« are closed subspaces of $; and $;’ respectively. Here we
note that the intertwining operators J,,(v)(v € %) of .’ onto H; and
JoaiFaV) ¥, € F,) of T« onto Hr« can be written as

(2.9) Top)®) =77\ hEDdT (e ),
(2.10) J,,alfa(»a)(h')zv;;.,—:aSN k' (Rx)dn (B € ©I<),
respectively (see Harish-Chandra [3] §5 for notations). Moreover we

note that vz, and v, 5, don’t depend on v € & and v, € F, respectively.
Therefore we can easily prove that the restriction of Jp(»°) to 93 is

well-defined and coincides with J,,5 (v,) up to a scalar multiplication.
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Now we shall rewrite these relations about J-functions in terms of small
j-functions (see §1.4 (1.14) and (1.16)). Then using the definition of
j-functions and the fact that the g-functions are independent of a finite
subset F in & (K), we can obtain the following calculation;

(2.11) (0, v) "' =7Jp, 17,V I7,1p,(Va)

= J B (Va) Py B (V)™

=Jpp@)ipp(@°)* X (c=7p, 5. Vrip)

= lim Gep()iep®) dps@)* dpr®)* X,
where v, € ) and F"'=F."+(*F,),. Here we note that P’ and P
are adjacent parabolic subgroups of G, and moreover « is the unique
root in I(P)NZ(P) (cf. Harish-Chandra [3] p. 120). Therefore from
Lemma 13.1 in Harish-Chandra [3] we have

(2.12) Ferp() G pnp(0)* T = po(@, V)

where v is in %, on which these functions are well-defined. Thus from
(2.11) and (2.12) we have for vy, e .#,”

(2.13) o, vy = lim 1@, )ies0)inE®) X e

= lim g (o, v)#(w, v)" xXe

=c I p(w,»°)",
reZ(P)—{a}
(see (1.16) in §1.4 and Remark 2 in below). Therefore Lemma 5 was
proved. Q.E.D.

REMARK 1. Under the assumption that (2.1) holds, we can easily
prove that *vg is in (—1)"*,, and °xi(*ve="‘wxje;) is in (—1)"*Z by
using the facts about infinitesimally characters of induced representa-
tions and discrete series for M,.

Here let L,(6 € R) denote the line in the complex plane C whose im-
aginary part equals to (—1)"?%6 and for §=(0, d,, -+, 0,) € R® we put
Fi={x%e?; x¥e L), where p=dim A and L,=L,. Then for simplicity
put

P p—1
2 =E FiL, ,,,i’r-il:I1 2 and *F,2=,% respectively .

REMARK 2. Let v be in &, and regard it as a vector («f, 27, ---,
22) in C? (see §1.6). Then for ve 3(P)—{a}, «, can be written as
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(2°14) xf»"—"(xf, xg’ Tty w;)(C;.!;; ngr %y Cg; ¢ .

Now put v°=p,+*v; (v,€.%.° and *»2 be as above). Then using the
above Remark 1 and the facts that (CZ, Cg, ---, C2) belongs to R® and
is not equal to (0,0, ---, 0, 1)(see §1.6), we prove that for a suitable g,
x, is not in (—1)"2Z. On the other hand each singularity *p2 = xhel, of
#(®@, v) belongs to (—1)**#; and in particular °x, to (—1)“*Z. There-
fore we can prove that v»° is not a singularity of U(w, v)(v e Z(P)—{a})
for a suitable ¢ € R*.

COROLLARY 1. Let *v: be as above. Then there exists a sufficiently
small 0 in R? such that for v, e . Fp2,

(215) #(0, ”a)=c H #T(wy uo) ’

7eZ(P)—|a}

where v° =y, +*v2,

PROOF. Since the singularities of t,(w, v) (8 Z(P)) are discrete,
this corollary is obvious from Lemma 1 in §1 and the similar arguments
in the above Remark 2. Q.E.D.

Now let *»? and o=0(g, *v3) be as above and put y(m)=E(*P,: ¢:
*vi:m) (me M,) (see (2.1)). Then the following Lemma 6 is obvious
from Lemma 8 in §1.5.

LEMMA 6.
(2.16) EP,: y:v,: x)=E(P: $:v°:2) (v, €(F,). and xe@).

Therefore using these two lemmas, we obtain the following key
proposition.

PROPOSITION 1. Let notation be as above. Suppose that a(v,) belongs
to &(F,) and moreover has a holomorphic extension on (F.). which is
an exponential type. Then we have

2.17) U, v,+*v)E(P: ¢: v, + *vg: x)a(v,)dy,

2
Sfa reX(P)—{a}

belongs to €. (G, 1)=%F 4, (G, ), where 9 is the same as in Corollary 1
and dy, i8 the restriction of dv on a,.

PrOOF. From the results in Harish-Chandra [3] § 26, we can obtain
that
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(2.18) S 140, v )E(P,: 2 v,: 2)a(v)dv,
,?‘a

belongs to &, (G, 7)=%F4,,(G, 7). Here we note that (o, v,) is holo-
morphic on (F,),(8) (see Lemma 1 in §1.4 for the case of (P, 0) instead
of (P, w)) and moreover E(P, :v,: p)a(V,) is holomorphic on (&,)..
Therefore using (1.17), (1.23) and the fact that a(v,) is an exponential
type, we can obtain that (2.18) is equal to

(2.19) Sﬂ 140, v,)E(P,: ¥ v w)a®,)dy,

by Cauchy’s integral theorem. Thus Proposition 1 is obvious from
Corollary 1 and Lemma 6. Q.E.D.

Now suppose dim A=p(1<p=<R) and put S,={i; 1=i=r such that
dim A,<k}. Here we shall define the closed subspace &(G, 7) of #(G, 7)
by ‘

(2.20) Q; & 4,(G, 7).
€ k
In particular, we note that & (G, v) coincides with the kernel of &,

§3. The decomposition of f(z) and an analogue of Paley-Wiener
theorem.

We keep to the notations in the preceding sections. For simplicity
we shall denote the minimal parabolic subgroup P,=M,A,N, of G by
P=MAN in this section. Suppose that (ai(»); 1=i<n; 1=<j=m) is in
ZE(F). (see §1.8) and each ai(v) has a holomorphic extension on .Z;
with an exponential type. Now put

3.1) @) =3 W) 5w, »)BP: ¢i: v: D))y

(ef. (1.10)). In this section we would like to prove the following type
theorem.
THEOREM(x) f(x) can be decomposed as follows.
(3.2) flx)=F(x)+G(x) ,
where F(x) and G(x) belong to C2(G, t) and Fr-(G, T) respectively.

However we don’t have a general proof of this theorem. Here we
shall prove for the case of a real rank one, i.e., dim A=1, and for the
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case of G=SU(2, 2).

(1) The case of a real rank one.
First we shall consider the following condition (see [4]).
(cl) If there exists a relation such that

dm . g pe ) —
(3.3) E:,C‘-""(EZ-‘&).M, E(P: ¢i: v: 2)=0 ,

where m, is a non-negative integer, v,e€.&, and C,;,eC, then

(3.4) S Cose (L’?'"—‘ aiv)=0 .

115»‘ dvﬂlc |v=vt

Then we have obtained the following theorem in [4].

THEOREM 3. Let notation be as above and suppose ai(v) satisfy the
condition (cl). Then f(x) can be decomposed as follows.

(3.5) flz)=F(x)+G(x) ,
where F(x) € C(G, 7) and G(x) € &G, 7)=°"&(G, 7) (R=1 in this case).

Next we shall consider the following condition about ¢ € L,(®w) (@ €
&(M)).
(c2) Let v=»°e .57, be one of singularities of ®(v: a)Cp p(s; s7'v)* '¢(1)
(e € A* and se€ W=W(G, A)) on . F +(—1)V*CL(F +), where F +={ve . F;
v(H,)>0 for all positive roots a of (G, A)}. Then @(sv: a)Cp(8; v)* '¢(1)
is holomorphic at v=v° and the following (3.7) is valid.

(8.7 E(P: ¢: s7'v°: x) belongs to Ly(o) for some o€ &H(GF)
(see G. Warner [9] Chap. 9.1 for the definitions of these operators).

REMARK 3. Here we note that 3-eigenvalues of the matrix coeffici-
ents of discrete series for G are real and regular. Therefore from the
relation (3.7), we can easily prove that v°e(—1)"2% and Im(»°)#0. In
particular @(v: a)Cp5(s; s7'v)* '¢(1) (s€ W and a € A}) is holomorphic on
&% . Moreover, we note that there exists b, e (—1)"2%# + such that the
above function is holomorphic on Im(»)=b,.

EXAMPLE. In the case of G=8SU(n, 1) (neN) and 7=(z,, 7;), where
7zl € Z) is a one-dimensional representation of K on C, these assumptions
hold (see N. Wallach [8]).
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THEOREM 4. Suppose that all ¢i(l<i<m;, 1<j=m) satisfy the con-
dition (¢2). Then f(x) can be decomposed as (3.5).

ProOr. First we put
(3.8) f(x)= L 1w, V)E(P: ¢: v: m)a@)dy ,

where ¢ satisfies the above condition (c2) and a(v) € (% ) has a holo-
morphic extension on &, with an exponential type. Now we recall the
Harish-Chandra expansion of the Eisenstein integral, i.e., for a € A* and
vel”’,

3.9) E(P: ¢: v: a,):ZW(D(sv: a)Cp p(8; V)g(1)e" 0018 @)
=ZW@'(SV: a)Cp p(8; V)g(1)e!—n" 2v=Poltlogtan

and

(3.10) @'(v: a)——1 when a(log(a))—— « for all ae 4+

(see G. Warner [9] Chap. 9, Theorems 9.1.4.1 and 9.1.5.1). Therefore
we can rewrite f(a) (a € A+) as follows;

@.11) fla)= S, H@, v) 3, B(sv: a)Crix(s; Y)p(1)e= ottosteN ar(v)dy

sew

=3 ¢ L_(D(sv: a)Cp p(8; v)* g(1)e oo () dy

=3, ¢ L—q)(w @)Cpip(8; 87)* (1) 008 (s~ v)dy .

seWwW

Here we used the following relation (3.12) and the fact that the inte-
grand is holomorphic on .# (see Remark 3).

(8.12) (@, v)Cpip(8; V)*Cp p(s; v)=¢"

for se W and ve€ .’ (see Harish-Chandra [3] Lemma 17.1).

Next we note that the dimension of & is equal to one and the
singular points of @(v: a)Cp p(s; s7W)* '¢(1) (a € A* and s€ W) are discrete
and finite on F +H(—1)"*CL(. *). Thus using the residue theorem, we
can change the integral line &# to .&# +b, as follows.

(3.13) f(a):‘-EW 028 o D(v: a)Cp p(s; 87W)* "g(1)e otos@ (g~ p)dy
+Z ReS{@(V: a)CP,P(s; 3_12))*_1¢(1)a(s‘lv)}cze‘p°(l°g‘“’) ,
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where 3, Res is the residua corresponding to the finite singular points
of the integrand of (3.11) on 0<Im(v)<b,. For simplicity we shall denote
the first term of (3.13) by I(a) (a € A*). Then using the same method
in the proof of Theorem 2 in [4] and the fact that the integrand of
(3.11) is holomorphic on Im(v)=b, we can easily prove that I(a)=0 for
a sufficiently large ac A*. Thus from the Cartan decomposition G=
KCL(A")K of G and the r-sphericalness of f(x) we can extend I(a) to a
compactly supported function F(x) on G.

Next let y=»° € . #, be one of singularities of the integrand of (3.11)
on 0<Im(»)<b,. Then from the condition (¢2) we have

(3.14) E(P: ¢:57v°: 2) € °&(G, 7) .

In particular it belongs to L*G, r) and thus, from (3.9) and (3.10) we
can obtain

(3.15) E(P:¢:57'v°: a)=0(1°: a)Cp5(3; s7v°)p(1) (a € A+ and se W).
Therefore using these facts, we have for a e A+
(3.16) Res {D(u: )Crip(s; 57'0)* p(L)a(s~'v))
_ =Res{t(@, V)O(v: a)Crix(s; s7')g(L)a(s )}
=Res {#1(@, V)}P(V°: a)Crix(s; 572°)g(L)ax(s™"v)
=yﬁ;§s {t(w, V)IE(P: ¢: s~ °: a)a(s~'v°) .
Hence we can easily extend Res,_,-{0(v: a)Cp 5(s; 87'w)* 'g(1)a(s~'v)}c?e ottostan

to a function in °&(G, 7). Therefore the second term of (3.13) extends
to a function G(x) € °&Z(G, 7). Then f(x) can be written as

3.17) J(@)=F(x)+G(x) ,

where F(x) and G(x) belong to C(G, 7) and °&(G, 7) respectively. This
completes the proof of Theorem 4. Q.E.D.

(2) The case of G=SU(_2, 2).

First we shall consider the following two conditions, which are
natural extensions of the conditions (cl) and (¢2) in the case of a real
rank one.

(Cl) We shall use the parametrization of ve.#, in §1.6, i.e., v=
(xf, x5) € C¥(a € Z(P)). If there exists a relation such that
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amt+"3
3.18 Ciitis
( ) t,gl,a bty (0xf)™t(oxs)™s

E(P: ¢i: v: )=0,

—_—
V=Vie

where m,, n, are non-negative integers, v?,€ &, and C,;,,€C, then

(3.19) s ¢, gmerre

. ai(v)=0.
of, b (0xH)™t(oxX)™s Iv=v2,. )

(C2) Let v=v°e.#, be one of singular points of @(v: a)Cp(s; s~ W)**
¢(1) (ac At and se W) on F +(—1)"*CL(s *). Then there exists a
B € 2y(P) such that

(8.20) E(*Py: ¢: *v5: m) belongs to LMﬁ(a) for some o€ &,(M;) ,

where *vg is the restriction of »° on *a;. Here we note that in this
case *v; € (—1)"**#, and moreover there exists a b,e(—1)"2% + such
that @(v: a)Cp p(s; s7'v)* '¢(1) is holomorphic on Im (v)=b,.

To obtain a proof of Theorem(x) for the case of z=(¢!, '), where
7t (€ Z) is a one-dimensional representation of K on C, we assume the
above condition (Cl). Moreover we have to calculate the explicit forms
of c-and p-functions. We shall give these calculations and a proof of
Theorem(*) in the following § 4.

§4. G=SUQ, 2) and t=(c', 7).

4.1, The Cartan decomposition.
A C .
g= i B ; A, B skew Hermitian of order 2, TrA+TrB=0, C
¢
arbitrary} ,

A
= {( B) ; A, B skew Hermitian of order 2, TrA+TrB=0} ,
C
p= {(t— ) ; C arbitrary } .

4.2. The conjugacy classes of Cartan subalgebras.
U h,

B=4| ~% h:\. weVv=iR, h, h,c R},



236 TAKESHI KAWAZOE
u, . h
b= U, 5 U, €V —1IR, he R},
h ) ul
- 2’%1 - uz
U,
U, . -7
b2= ’ ul, uz, ua S 1/’—1.R
Us
U — U Us

4.3. A minimal parabolic subalgebra.

[ [u
my=< —u ;i ueV—1R},
w
—U
h, \
A= h, ;  hy, h.eR},
h,
h,
a c+d —a c—d
n={| ~¢—¢ —b ¢+d b ; a,beV —1R,¢,decC
a c+d —a c—d
c—d —b —c+d b
4.4. The root system of (g, %,).
Let e,(1=i1=<4) be the linear form on 0, defined by
e(H)=—V =1u+h, u h,
e;(H)=V' —1u+h, —u h,
- for H= B .
e(H)=—V —1u—h, or h, u €%
64(H)=1/:-_i-u—h2 hz —Uu

Then the root system .2 of g is given by
B ={x(e,—e;); 1Zi<j=<4}.

4.5. The root system of (g, a,).
Now we shall denote the restriction of ¢,(1<i<4) to a, by the same
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notation. Then the restricted roots system of ¥ is expressed as follows.

S=3(Py)={x(e,—ey), £(e,—¢s), *(e,—e), *(e.—e)}
={xa, x(a,+2a,), (o, +a,), Ta},

where a,=e,—e,, a,=e,—e,. Now put ¢;;=2(a,, ay)/(a,, a)1=1, j<2). Then
the Cartan matrix (c,;) is given by

-2 2/
For simplicity we put a=a,, g=a,+2a,, v=a, and d=a,+a, respectively.
Then the relation between these roots can be written as follows.

4.6. *ad,, a,, m,, gz(e:a’ B’ s 6)'

a a
. —a a
a,= ; @€ER a,= ; a€R
a a
—a a
a ¢ v u l
—-Cc —a w —v —
my= : aecV—1R,veR,c,velC
v U a ¢ }
w —v —C¢ —a
( a a
—a a
8r =1 ; a€elC
a a
a —a
a a
a —a
*a,= ; 0ER a;= ; a€R
a a
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a c v
m=4]"% ¢~ 7 acV —1R,veR,c,ucC
v —u —a —¢
u v ¢ —a
a —a
—a a
8= ; aelC
a —a
l —a a
a
a
*a, =+ ; A€ER a,= ; a€R
a
a
{a
b v S
mazl . ; a,beV—1R,veC
v —2a —b
—a a —_—
8. =1 ; acV—1R
—a a
/ a
a
*ap=- ; G0€ER ap= ; a€R
a
\ o
/a, v
b _—
my=4| _ ; a,beV—1R,veC
v —2b —a
\ ;
ja —a
8= ; acV —1R

Here we note that
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M,=M,SL2,C), M,=M,=UQ1, 1)=8SUQ, 1)XT .

4.7. One-dimensional representations of K.

For each integer I the one-dimensional representation 7! of K on C is
given as follows.

ci(k)=(detV)' for k=<U V)eK,

where U, Ve U(2) and det Udet V=1.

4.8. The restriction of ' to M,(e=0, o, 3, 7, 5).
Put K,=KNM(c=0, a, 8, v, §) and denote the restriction of ¢'(l € Z)
to K, by 7. Then

e\/—lﬂ

(k) =1 for k= ey @cR)eK,,

e‘/—lo

— —V=1(2044)

ri(k)=e""ito+9 for o= e 0, 6cReK,,
ev/:1¢

e~ vV=1@28+0)

! VI ev=1¢
(k) =e 1w+ for k= 0,9cR)e K, ,

e\/:iﬂ

e’ =1¢

(k) =(£1) for k= <U U)(Ue U@2), detU*=1)e K, ,

zik)=detU for k= (U U‘1> (UeU@2)eK;.

Here we note that 7z, and 7} can be written as zt=X\{, and 7h=)\(,
where )\, is a representation of SO(2) (a maximal compact subgroup of
SL(2, R)) and {, is a representation of T respectively.

4.9. Explicit forms of c-functions.

Put 7=(z%, 7') (le€ Z). Here we shall calculate the explicit forms of
c-functions; Cp 5,(1;¥) and C.p,.p,(1; *v.)(e=a, 8, 7, ). For simplicity we
shall denote these functions by Ci(v) and C!(v)(e=a, B, 7, §) respectively
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and moreover use the parametrization of v in §1.6 and put x*=2x; (=
a, 3,7,0). Then

o ),
VT F(l/—zlx‘ 4 l—;l >+F(V;1x‘ 4 1;l )

Ci(v) =—xl_‘ _ for e=v,0

Cly)= for ¢=a, 8,

(see Y. Muta [6] and G. Warner [9] Chap. 9). Here we note that x'=
2//2—x%/2 and x’=2x"/2+%/2. Thus C{(v) is given as follows.

Ci(v) = C.(0)Ci(»)Ci(»)Ci(v)
() O () ()
% { nr(l/:-;ix“ +l+1) r(V:le« +1.-z) 1,(1/:‘10,,5 +1+l)

2
vV =1xf | 11 \//2*\*> [2*\*\|™!
X ( 2 2 )((Tz') (_2')>} ‘
4.10. Explicit forms of p-functions.
For simplicity we denote x(1,v) and (1, *v,) (e=a, G, 7, 0), Where 1

is the trivial representation of K,=M, by () and pi(v) respectively.
Then using the relation; ¢(»)C:(»)C{(—v)=1(e=0, a, 8, 7, 6), we can obtain

)= 7::( )thn(z 11) for ¢=a, g,
)= (@) for e=v9,

oy = (L )b (Z+ XS ) D )en (XS ) () -(Z))

4.11. Proof of Theorem(*).
First we note that L, =°&(M, 1)=C and moreover n=mn(P,)=1.
Thus we can choose an orthonormal base {1}=({1;} in L,, Therefore

E(F )= (F )x={a e E(F,) ; a(av)=a(y) for all
and the mapping &,, is an homoemorphism of &, (G, 7) onto & (F;)4-

Now let a(v) be in &(%,), which has a holomorphic extension on
(F,). with an exponential type. Here we put
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(4.1) - flm= Sr W) E(Py: 1:v: 2)a@)dy (e @) .
. 0
Then we obtain the following Theorem 5.

THEOREM 5. Suppose that a(v) satisfies the condition (Cl). Then
S(x) can be decomposed as follows.

(4.2) : flw)=F(x)+Gx) ,
where F(x) e C2(G, 7) and G(x) € Z4(G, 7) (note that R=2 in this case).

PROOF. First we recall a relation between the matrix coefficients
of discrete series and non-unitary principal series on SL(2, R) (ef. [10]).
Then using this relation and the explicit forms of ¢- and g-functions,
we can easily prove that the poles v=v° of C!(v)* ' satisfy the condition
(C2) in §3. Here we note that from the recurrence definition of @(v: a)
(a € Af) (cf. Appendix (3)), @(v: @) has no poles on (—1)"*)CL(# +) and is
holomorphic on .%#". Moreover, from the explicit form of ¢- and p-func-
tions, Ci(»)*™" is also holomorphic on .&# . Therefore by the same calcu-
lation in the case of a real rank one, we obtain that

(4.3) fla)= cZL D(v: @)CLY)* " e-rtos@) qy(g-1y)dy

se Wy

=|W01czs D(v: a)CY(p)* e Na()dy  (a€ A7) .
o

Here we shall denote xf(=2f) and «(=2f) by 2 and y respectively and
put

(4.4) Iz, y: a)=0(: a)Ci(v)* "erotiosted y(y)
= (V)P (v: @)Ci(v)e PN a(y) (v=wef+yer and ac Af)

for simplicity. Moreover we shall regard it as a meromorphic function
of v on (F,).. Here we note that the Weyl group of (G, A,) consists of
the following transformations;

8ot (2, ¥) — (2, ¥) 8¢ (%, ¥y) — (¥, o)

8.: (&, y) — (@, —y) s (x, y) — (—y, %)

&: (X, y) — (—x,y) 3 (%, ) — (y, —2)

8: (¢, ¥) — (—x, —y) s: (2, y) — (—y, —2).

(4.5)

Thus, |W,/=8. For an integer » we put z,=1"—1(2p—1) (resp. 2V —1p)
when ! is even (resp. odd). Moreover let v,=v,(p) (0<t< T=T(p)) denote
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the singular points of Res,_, I(z, ¥: a)(a € A}) on 0=<Im(y)<V'—1l and m,
denote its order. In particular we put v,=0 (if »,=0 is not a pole, it
is not necessary to consider the residue at this point). Let b, be as in
the condition (C2) in §3. In this case (V' —1l, V —11)<b,=(vV —1(l+1),
vV =1(l+1)).

Now we shall change the integral line .#; of (4.3) to #,+b,. Then
using the residue theorem repeatly, we obtain that for a € Af and a
sufficiently small ¢ in (—1)"*R*,

(4.6) f(a):ScZLOI(x, y: a)dy
= SGZSR SRI (x, y: a)dzdy
=802§R+b1§m2 Iz, y: a)dzdy

+802{S 3" Res I(z, y: a)ds+8¢* S 3" Res I(z, ¥: a)dy)

Rp=1 y=z4 R—-3 q=1 T=24

—8¢c* IZ Iﬁ) Res (Res I(x, y: a)) ,
g=1 t=0 y=v; z=z4
where b,=(b,, e?) (¢=1,2) and I'=[l/2]. For simplicity we shall denote
these three terms by I{(a), I{(a) and If(a) respectively.
(If) First we note that I(x, ¥: a) is a holomorphic function on Im(x)=b,
and Im(y)=b,, and moreover satisfies the following Lemma 7.

LEMMA 7. Fix ac A} and suppose that v is sufficiently distant from
the singularities of @'(v:a)Cl(»)*™'. Then there exist mumbers ¢, r>0
such that

(4.7) |0 (v: )Co(w)* | <e(L+[v )" .

ProOF. This Lemma is obvious from G. Warner [9] Chap. 9 and the
explicit form of Ci{(»). Q.E.D.

Moreover we note that a(v) is a holomorphic function on (&%;). with
an exponential type. Therefore using the above lemma and the method
of the classical Paley-Wiener theorem on an Euclidean space, we can
prove that for a sufficiently large ac Af, I[[(a)=0. Hence from the
Cartan decomposition G=KCL(A)K and the fact that f(x) is a r-spherical
function on G, we can easily prove that I{(a) extends to a compactly
supported function I{(x) on G. '
(°{) From the results in §2 we obtain that for a safficiently small
o€ (—1)"’R+,
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(4.8) R(p: g)=|_ Res pi(w, Y)E(P: L w, y: g)az, y)do
’ (9eG and 1=p<l)

belongs to &,(G, 7). Thus for a € Af

(4.9) R(p: a)= SR Res po(m YE(P,: 1: x, y: a)a(x y)dz
=2, Sm f‘:‘is ti(x, ¥)@(s(x, y): a)Cy(s(x, ¥))
0 p X a(x, y)da x e=rolosted |

Here we note that @((x, ¥): a)(x€ R or y€ R) has at most simple poles
and et R(p: a)(a € AF) is a rapily decreasing function on A;. The-
refore noting (3.9) and (3.10) in §3, we can easily obtain that

(4.10) R(p: a)=2 S Res {¢ti(x, ¥)}D(x, z,: a)Ci(x, 2,)a(z, 2,)dx X e~otost)

.__z?

+ SR Res {¢ti(y, 1)}0(2,, x: a)Ci(z,, x)(2,, x)dx X e~roiosa)

+é =2y

=2§ Res I(, y: a)da:+2s Res I(, y: a)dy —Res(Res I(x, y: ) .

R y= Zp R—3§ z= zp z=2zp
Here we used the following relation;
(4.11) i, y)=pi(s(x, y)) for se W,.

Thus If(a) can be written as

(4.12) I (a) =8¢ ﬁ‘, {S Res I(z, y: a)dx+s Res I, ¥: a)dy}

R y= Zy R—3 r=2p

=4c* ZR(p a)+8c* Z,ZII}IeE, {Res I(z, y: a)} (ac€ Af).
s R

For simplicity we denote these terms by °IJ and R respectively. The-
refore using the z-sphericalness of f(x) and the Cartan decomposition,
we can easily prove that °If(a) extends to a function °IJ(x) on G which
belongs to &,(G, 7).

(R{+1I) Here we note that from (4.10) and the definition of
R! R{(a)+I{(a) can be written as follows.

U T(q)

(4.13) Ri(@)+I{(@)= —8¢* 3, S Res {Res I(z, y: a)}

g=1t=1 y=v; X=2,y
I T() mg—1

=—8 330 3 Um0 (S) atew),

g=1t=1 m=0
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where U(m, t, g:a)0=m=m,—1, 1=t=<T(Q), 1=qg=<l') is a (m+1)-th
Laurent coefficient of Res,_, I(z, y: a) at y=v..
Now we put

@19 Emteo=(L) BR:ilLzue @6

Y ly=v;
for 0=sm=m,—1,1=<t<T(q), 1=q=<l’ and ¢, = E(m*, t*, ¢*:.)A <k=<~), where
o=m*=m,—1, 1=t*<T(q*), 1=q¢*<l’, denote a maximal linearly independ-
ent subset of the above functions (4.14). Then E(m,t, q:g) can be
written as

(4.15) B(m, t, ¢: )=3, A(m, t, ; Kleu(o) (9€G and A(m,t,¢;K)€C).

Here we note that from the condition (Cl) and (4.15) a(v) satisfies the
following relation;

d \™ L ) _Ei_ mk
@16 (FL)_ @ =3 Alm, t, g b dy)
for all m, t, q. For simplicity we put (d/dy)?;';,,t,,a(z,k, Y=A,A=5kZ7).
Since ¢, (1<k<7v) are real analytic functions on G, we can choose &, €
C>(G, t)(1=k=7v) such that

ka(zq": Y)

|y=v‘

(4.17) (hy €)=0,; (=1, J=7) .

Now we put
(4.18) 1@)=f@)— 3 k(@) @),

where h,= &, (& 4,(h))L=Ek=7) (note that hi=h,—h, belongs to (G, 7)).
Then

(4.19) g»)=9gQ; v)=(g, E(P,: 1: v:.))
=a()— :2=1A,ﬁ,,(v) .

Therefore §(v) belongs to &(#, ). and moreover has a holomorphic ex-
tension on (%,). which is an exponential type (note that each h, has
a compact support). Now using the same arguments as before, we can
prove that I’(x) and °Ii(x) belong to C*(G, t) and &(G, ) respectively.
Now we shall prove that Ri+I{=0. To do this we note that
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d \™ ~
(4.20) (@—)W:” 9(z5 ¥)

=(L)  a@, -3 4 (L) k)
dy /ty=v, k=1 dy /1y=v,

for 0sm=m.,—1, 1=t<7T(q), 1=p=<!l'. By the way since h,eC(G, 1)
(1=k=7), we have

(4.21) (71%}'):=u Ry W)
=(—d%>:=”t (hay B(Py: 1: %, 4:.))yms,
=(7‘%):’=” (hey BE(Py: 1: 7, y:.)),—s,
= (1, (.(%.):m E(P;: 1: 2,, 4:.) )= (s, B(m, t, p:.))

=A(m, t, p; k) .

Therefore from (4.16) the above equation (4.20) is equal to 0. Thus Ri(a)+
I'(a)=0 for ae€ Af (cf. (4.13)) and Ri(a)+ I{(a)=_, Au(R%(a)+ I'(a)).
Now using these facts, we can obtain that

422  f@=0@)+3 Aki(@)
= {Ii@)+ *I@)+9' @)+ {3, Aulu(®)~ ki)
={E@+3% Ah@}+{"l@)+g'@ -3 i@ |,

where ¢'=g—gGe& (G, 7). Then the first term of (4.22) belongs to
C>(G, ) and the second term belongs to &°,(G, ). Thus this decomposi-
tion is desired. Q.E.D.

Next Corollary is an analogue of Paley-Wiener theorem.

COROLLARY 2. Let a(y) be in &(F;). and have a holomorphic ex-
tension on (F,), which is an exponential type. Now suppose that a(v)
satisfies the condition (Cl) im §3. Then there exists F € C(G, ) such that

(4.23) ZF)=a.

Proor. Corollary is obvious from Theorem 5 and the fact that
#,(G, 7) is the kernel of &,,. Q.E.D.
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Appendix

In this appendix we shall obtain the results in §2 for the case of
G=8U(2, 2) and z=(7!, 7*) by a direct calculation of c¢- and g-functions.
First we recall that the Eisenstein integral can be expanded as

E(P: 1, y: a)= 3, O(s(®, 9): a)Ci(s(x, y))e e »-rotontan

(1) E*P,;:1l:x:a,) = Z,V Dy (t: a,)Ca(tx)eV=itz—ra) togiag) |

where p, (resp. p,) is the half of the sum of all positive roots 4+ of (G, A4,)
(resp. (M,, *A,)) and ac Af,a,€*Af. Moreover (x,y) (resp. = in the
second equation) belongs to a suitable dense subset I'z(c) in C? (resp.
Iy (c) in C). Here we note that the definitions of @; and @), are given
as follows;

(2) D5(, y: a)= § I'(V —1(z, y)—p)e "5 (a € AF),

where L is the set of all A € &, of the form n=m,a+m,y, the m,(1<i<2)
being the non-negative integers and I',(v) is defined by the following
recurrence relation (here we note dim z'=1);

=0, I;»)=0 for n¢L,

(3) {2(x, v)— (O N—=20)}3(v)
=2 3, 3 {(@ »)— (@ M —20a)} 100z (V)

+8 3 3 @n—D7 (Y)Y - u-na(®)

acP, 221

-8 >, > (Y, Y_)+7(Y, Y _)H 1-0az (V)

aeP+ nal

(P, is the set of all positive roots a of (g, ) whose restriction & on a,
does not vanish, and Y.,=(X,%+60(X,))/2). @y (x:a,)(a,€c*A}) is defined
by the same way for M,. Then I'g(c) and Iy (c) are the set of all (z, y)
and x on which the above recurrence relation is well-defined (see [9] 9.1.4
for the detail).

Here we note that from the results about discrete series for SL(2, R)
(see [10]), E(*P,:1:2z,:a,) 1<p=l') can be written as

(4) E(*P,: 1: z,: a,) =% (2,: a)Ca(z,)e" is—ra)t0se))(a, € *AY) .

For simplicity we denote it by +(a,). Then we can easily prove that
(a,) extends to a function y(m) on M which belongs to L, (¢) for
some 0 € &,(M,). Moreover from the functional equation of the Eisenstein
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integral we have
(5) E(P;:y:y:9)=E(P:1:2, y:9) (9€G).

Now we shall calculate the constant terms of the both sides of (5). Then
from the left we have

(6) Ep (Pyriy:agm)= 3, Cp ip,(8; Y)yp(m)e’vloste
seW,
where W,=W(G, A,). Here we note that

(7) lim @z, y: aza,)

aﬁ—l—’-‘—:eo
converges to a function which does not depend on y and a,, where
(®, y)els(c) and asc*Af, a,e*Al (see [1] §21 for the definition of
a,g?oo). This fact is obvious from the definition of @; and the recurrence
relation of I';,(v). From now on we denote it by @(z: a,).

Therefore, using the explicit form of the Weyl group of (G, 4,) and
the fact that the left side of (5) (thus, the right side of (5)) satisfies
the weak inequality (see [1]§21), we can obtain that from (1) and (5)
(8) lim |e?8°8©@8) B(Py: af: y: aza,)

aﬂ—->°°
Pa

—_ @(zp: aa)Cg(zp, y)es/:lu(log(aﬁ)) ew_——lzp—pa) (log(ay))

—0(z,: aa)c(l)(zm —y)e~V"ivtiogag) gW=izp—pg) loglag) | =) ,

Since the constant terms is unique, we have the following relation com-
paring (6) and (8).

(9)  Craur,(1; PV (ar) =0(2,: a,)Ci(2,, Yl p—ra bz (a, € *AT) .

However, since the p-function satisfies the following relation;

(10) Lo, PICrip, L Y¥IF=CllP|* (e F),
we can obtain that from (4) and (9)
(11) (o, Y)|Ci(z,, YI*=c|Calz,)®? (y € F."),

where ¢ is a constant which does not depend on y. Therefore we have

(12) ©o, ) =ctt Y —2,)t(y+2,) WeF").

This is the desired relation.
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