On the First Cohomology Group of a Minimal Set

Ippei ISHII

Keio University

Introduction.

It is one of the most important problems in the theory of topological dynamics to determine what space can be a minimal set under a continuous flow. For example, it has been conjectured that there is no minimal flow on the 3-sphere S^3 . In this paper, we shall study the first cohomology of minimal sets.

It is known that the space on which an almost periodic minimal flow or a distal minimal flow exists has a non-trivial first cohomology group. However the "almost periodicity" and the "distality" are both destroyed by a time-change, while the "minimality" is invariant by a time-change. The method for calculating the first cohomology of minial sets which is exhibited in this paper is quite independent of the parametrization by the time.

In § 3 we will establish a method for calculating the first cohomology of a minimal set from certain 0-th cohomology groups. As an application of the consequence of § 3, we can get a method for deciding the first cohomology of a minimal set which forms a 3-dimensional manifold (§ 4, Theorems 1 and 2). And in § 5 we will investigate on 1-cycles of a 3-dimensional minimal set. § 1 and § 2 are preliminaries. Higher dimensional cases can be treated by the same way, but it seems to be impossible to prove the non-triviality of the first cohomology of a minimal set by our method in the case of higher dimensional manifolds. Hence we do not treat the higher dimensional case in this paper. In the case of 3-manifolds, our method seems to be useful for the proof of the non-triviality of the first cohomology of a minimal set.

In the case when the minimal set is a two dimensional manifold, using our method, we can decide the first cohomology of it completely. But it is well-known that the only two dimensional manifold admitting a minimal flow on it is the 2-torus. Therefore the results for two

dimensional minimal sets are only stated in the appendix.

§1. Preliminaries.

Let (Y, ρ_t) or simply ρ_t be a flow on a compact metric space Y; i.e., ρ_t is a homeomorphism of Y for each real number t and $\rho_{t+s} = \rho_t \circ \rho_s$ for any two reals t and s. If $A \subset Y$ and $J \subset R$ (R is the set of real numbers), we write $A \cdot J$ or $(A \cdot J)_{\rho_t}$ for $\{\rho_t(y) | t \in J, y \in A\}$. A subset N on Y is said to be a minimal set if $\{y\} \cdot R = N$ for any $y \in N$. Especially if Y is a minimal set, then we call (Y, ρ_t) a minimal flow on Y.

DEFINITION 1. A subset Σ of Y is said to be a local section of the flow ρ_t if it satisfies:

- (i) $h: \overline{\Sigma} \times (-\mu, \mu) \to \overline{\Sigma} \cdot (-\mu, \mu)$ defined by $h(y, t) = \rho_t(y)$ is a homeomorphism for some $\mu > 0$. (μ is called a collar-size for Σ .)
- (ii) $\Sigma \cdot J$ is an open subset of Y if J is open in R. Moreover if Σ is compact, then we call it a global section.

LEMMA 1. Let (Y, ρ_t) be a minimal flow and $S = \{y_0\} \cdot Z (y_0 \in Y)$. If $\overline{S} \neq Y$, then \overline{S} is a global section of (Y, ρ_t) , where Z is the set of integers.

PROOF. It is proved in [1] that if $\bar{S} \neq Y$, then there is a positive number r such that $\{t|\rho_t(y)\in\bar{S}\}=\{nr|n\in Z\}$ for any $y\in\bar{S}$ and $\rho_t(\bar{S})\cap\rho_s(\bar{S})=\varnothing$ for $0< t< s\leq r$. Therefore the condition (i) in Definition 1 is satisfied by $\mu< r/2$. We shall show the condition (ii). Suppose $J=(0,\delta)$ $(\delta< r)$ and take a sequence $\{x_j\}\subset Y\setminus\bar{S}\cdot J$. Since $Y=\bar{S}\cdot(0,r]$, we can choose sequences $\{y_j\}\subset\bar{S}$ and $\{t_j\}\subset[\delta,r]$ such that $\rho_{t_j}(y_j)=x_j$. Hence we have that if $x_j\to x_0$, then $x_0=\rho_{t_0}(y_0)$ for some $t_0\in[\delta,r]$ and $y_0\in\bar{S}$. This shows that the condition (ii) holds for $J=(0,\delta)$. Evidently $\bar{S}\cdot(0,\delta)$ is homeomorphic to $\bar{S}\cdot(t,t+\delta)$ for any t, so it follows that (ii) is satisfied by any open J. This completes the proof.

LEMMA 2. Let (Y, ρ_i) be a minimal flow and Σ be a local section. Then for each $y \in Y$ there exists a sequence $\{t_j\}$ $(j=0, \pm 1, \pm 2, \cdots)$ of reals such that $\delta_1 < t_{j+1} - t_j < \delta_2$ for some positive constants δ_1 , δ_2 , and $\rho_i(y) \in \Sigma$ if and only if $t=t_j$ for some j.

PROOF. First take δ_1 so that $\delta_1 < \mu$ where μ is a collar-size for Σ . By the minimality of ρ_t , we can see that there exists a relatively dense subset L_y of R such that $\rho_t(y) \in \Sigma \cdot (-\delta_1, \delta_1)$ for $t \in L_y$ (see [2]). Hence we can take a sequence $\{t_j\}$ with the desired properties.

§ 2. A flow associated with a local section.

Throughout this section and the next, (M, ξ_t) will be a minimal flow on a compact metric space M. Let Ω be the set of all continuous functions on R with the compact-open topology, and η_t be a flow on Ω defined by $\eta_t(g)(s) = g(t+s)$.

Now take a local section Σ of (M, ξ_t) and a point $x_0 \in M$, and let $\{t_i\}$ be the sequence for x_0 as in Lemma 2. Then we can construct a uniformly continuous function f such that $f(t) > \varepsilon > 0$ for some constant ε and any t, and

$$\int_{t_j}^{t_{j+1}} f(t)dt = 1 \qquad (j=0, \pm 1, \pm 2, \cdots).$$

Define a flow ζ_t on $M \times \Omega$ by $\zeta_t(x, g) = (\xi_t(x), \eta_t(g))$ $(x \in M, g \in \Omega)$. Since $\overline{(\{f\} \cdot R)_{\eta_t}}$ is compact because of the uniform continuity of f, there is a compact minimal set \widetilde{M} of the flow ζ_t in $\overline{(\{(x_0, f)\} \cdot R)_{\zeta_t}}$, and (\widetilde{M}, ζ_t) is a minimal flow. By p we denote the natural projection $p: \widetilde{M} \to M$. It is easy to see that $p \circ \zeta_t = \xi_t \circ p$.

PROOF. Since $(\partial \Sigma \cdot R)_{\xi_t}$ does not contain an open set of M, there exists a point $x_1 \in M$ such that $(\{x_1\} \cdot R)_{\xi_t}$ has no common points with $\partial \Sigma$. Let $\widetilde{x}_1 = (x_1, g)$ be a point of \widetilde{M} , then by the minimality we have $\overline{(\{\widetilde{x}_1\} \cdot R)_{\xi_t}} = \widetilde{M}$. Obviously $x \in \Sigma$ or $x \in \Sigma' \setminus \overline{\Sigma}$ if $x \in \Sigma' \cap (\{x_1\} \cdot R)_{\xi_t}$, whence we obtain the consequence of the lemma.

LEMMA 4. $\overline{p^{-1}(\Sigma)}$ is a global section of (\widetilde{M}, ζ_t) .

PROOF. Let $N = \overline{(\{f\} \cdot R)_{\eta_t}} \subset \Omega$ and $F: M \times N \to R$ be a function defined by F(x, g) = g(0) $(x \in M, g \in N)$. Moreover define $\sigma: M \times N \times R \to R$ by

$$\sigma(x, g, t) = \int_0^t F(\zeta_s(x, g)) ds.$$

Because F>0, $\sigma(x, g, \cdot)$ is monotone. Hence if we define $\tilde{\zeta}_t$ by $\tilde{\zeta}_{\sigma}(x, g)=\zeta_t(x, g)$ where $\sigma=\sigma(x, g, t)$, then $\tilde{\zeta}_t$ is a flow on $M\times N$. Evidently $(\tilde{M}, \tilde{\zeta}_t)$ is also a minimal flow. Now let (x_1, g_1) be a point of $p^{-1}(\Sigma)$ and $\tilde{\Sigma}=\overline{(\{x_1, g_1\}\}\cdot Z)_{\tilde{\zeta}_t}}$. Then, by Lemma 1, $\tilde{\Sigma}$ is a global section of $(\tilde{M}, \tilde{\zeta}_t)$ so of (\tilde{M}, ζ_t) if $\tilde{\Sigma}\neq\tilde{M}$.

First we shall show that $p^{-1}(\Sigma) \subset \widetilde{\Sigma} \subset p^{-1}(\overline{\Sigma})$. If $(x, g) \in p^{-1}(\Sigma)$, then there exists a sequence $\{(x_j, g_j)\} \subset p^{-1}(\Sigma)$ such that $(x_j, g_j) \to (x, g)$ and

 $\zeta_{s_j}(x_1, g_1) = (x_j, g_j)$ for some s_j . From the definition of f, it follows that $\sigma(x_1, g_1, s_j)$ is an integer for each j, and hence that (x_j, g_j) is contained in $\widetilde{\Sigma}$. This implies that $p^{-1}(\Sigma) \subset \widetilde{\Sigma}$. On the other hand, if $k = \sigma(x_1, g_1, s)$ is an integer, then we have $p(\widetilde{\zeta}_k(x_1, g_1)) = p(\zeta_s(x_1, g_1)) \in \overline{\Sigma}$. So we obtain $\widetilde{\Sigma} \subset p^{-1}(\overline{\Sigma})$.

Now let us show that $\widetilde{\Sigma} = \overline{p^{-1}(\Sigma)}$. If not, then, because of Lemma 3, we can take a sequence $\{x_j\} \subset \Sigma' \setminus \overline{\Sigma}$ (so $p^{-1}(x_j) \cap \widetilde{\Sigma} = \emptyset$) so that there is a sequence $\{\widetilde{x}_j\}$ such that $\widetilde{x}_j \in p^{-1}(x_j)$ and \widetilde{x}_j tends to a point of $\widetilde{\Sigma}$. But this contradicts with the openness of $\widetilde{\Sigma} \cdot (-\mu, \mu)$. This completes the proof.

LEMMA 5. We can choose the function f so that $p^{-1}(x)$ is totally disconnected for any $x \in M$.

PROOF. Let $K = \sup_{x \in M} \inf\{t > 0 | \xi_t(x) \in \Sigma\}$ and μ be a collar-size for Σ . Define a family of functions $\{\Phi_r\} \subset \Omega$ ($\mu \le r \le K$) so that it satisfies:

- (a) $\Phi_r(t) = \varepsilon$ for $t \leq 0$ and $t \geq r$,
- (b) $\Phi_r(t) > \varepsilon$ for 0 < t < r,
- (c) $\int_0^r \Phi_r(t) dt = 1,$
- (d) $r \rightarrow \Phi_r$ is a homeomorphism.

where ε is a constant such that $0 < \varepsilon < 1/K$. For a sequence $\sigma = \{s_j\}$ such that $\mu \le s_{j+1} - s_j \le K$, define $\Psi(\sigma; t)$ to be

$$\Psi(\sigma;t) = \Phi_r(t-s_j)$$
 if $s_j \leq t \leq s_{j+1}$ and $s_{j+1} - s_j = r$.

For a point x of M, we denote by σ^x a sequence of reals such that $t \in \sigma^x$ if and only if $\xi_t(x) \in \Sigma$, and by σ_*^x a sequence such that $t \in \sigma_*^x$ if and only if $\xi_t(x) \in \overline{\Sigma}$. Setting $f(t) = \Psi(\sigma^{x_0}; t)$ $(x_0 \in M)$, we show that (\widetilde{M}, ζ_t) constructed by the same way as above has the desired property. For each point x of M, E_x denotes a family of sequences of reals $E_x = \{\sigma | \sigma^x \subset \sigma \subset \sigma_*^x\}$. Then it is easy to see that if $(x, g) \in p^{-1}(x)$, then $g(t) = \Psi(\sigma; t)$ for some $\sigma \in E_x$. On the other hand, if we define $\kappa: E_x \to 2^x$ by

$$\kappa(\sigma)(j) = \left\{egin{array}{ll} 0 & & ext{if} \quad s_j \in \sigma \ 1 & & ext{if} \quad s_j
otin \sigma \end{array}
ight.$$

where $\sigma_*^z = \{s_j\}$, then κ induces a homeomorphism $\{\Psi(\sigma; \cdot) | \sigma \in E_x\} \to 2^z$. This implies that $p^{-1}(x)$ is homeomorphic to a closed subset of the Cantor set, which proves the lemma.

PROPOSITION 1. For a minimal flow (M, ξ_t) and a local section Σ , there exists a minimal flow (\tilde{M}, ζ_t) with the following properties:

- (i) \tilde{M} is a compact metric space,
- (ii) there is a continuous map $p: \widetilde{M} \to M$ such that $p \circ \zeta_t = \xi_t \circ p$,
- (iii) $\overline{p^{-1}(\Sigma)}$ is a global section of (\widetilde{M}, ζ_t) ,
- (iv) $\overline{p^{-1}(\Sigma)}$ is totally disconnected; i.e., $\dim \overline{(p^{-1}(\Sigma))} = 0$.

PROOF. Let $\{U_j\}$ $(U_0 = \Sigma)$ be a countable base of open sets of Σ . Then each U_j is a local section. Therefore, by Lemmas 4 and 5, we can construct a minimal flow $(\widetilde{M}_j, \zeta_i^{(j)})$ for each j so that

- (a) \widetilde{M}_j is a compact metric space,
- (b) there is a homomorphism $p_j: \tilde{M}_j \to M$ of flows,
- (c) $\overline{p_j^{-1}(U_j)}$ is a global section of $(\widetilde{M}_j, \zeta_t^{(j)})$,
- (d) $p_j^{-1}(x)$ is totally disconnected for any $x \in M$.

Fix a point $x_0 \in M$ and take points a_j in $p_j^{-1}(x_0) \subset \widetilde{M}_j$. Let \widetilde{M} be a minimal set of $(\prod \widetilde{M}_j, \zeta_i)$ which is included in the orbit closure of the point $a_* = \prod a_j$, where $\zeta_i(\prod y_j) = \prod \zeta_i^{(j)}(y_j)$. Then it is clear that \widetilde{M} is a compact metric space and there is a homomorphism $p: \widetilde{M} \to M$ of flows.

By λ_j we denote the projection $\lambda_j\colon \widetilde{M}\to \widetilde{M}_j$. It can be easily seen that we may assume that $p(a_*)=x_0$, and that $p=p_j\circ\lambda_j$ for any j if $p(a_*)=x_0$. So we assume that $p=p_j\circ\lambda_j$ for any j. Then $\widetilde{\Sigma}_j=\lambda_j^{-1}(\overline{p_j^{-1}(U_j)})$ is a global section of (\widetilde{M},ζ_i) . We shall show that $\widetilde{\Sigma}_j$ coincides with $\overline{p^{-1}(U_j)}$. It is trivial that $p^{-1}(U_j)\subset\widetilde{\Sigma}_j\subset p^{-1}(\overline{U}_j)$. Therefore, by the same reasoning used in Lemmas 3 and 4, we can see that $\widetilde{\Sigma}_j$ must coincide with $\overline{p^{-1}(U_j)}$. Especially, putting j=0, we have that $\overline{p^{-1}(\Sigma)}$ is a global section of (\widetilde{M},ζ_i) .

The only thing left to be proved is that $\dim(\overline{p^{-1}(\Sigma)})=0$. To prove this, it must be noted that $\overline{p^{-1}(U_i)}$ is open and closed in $\overline{p^{-1}(\Sigma)}$. In fact, the closedness is clear and the openness follows from the openness of $\overline{p^{-1}(U_i)}\cdot(-\delta,\delta)$.

Let \widetilde{x} be an arbitrary point of $p^{-1}(\Sigma)$ and $x=p(\widetilde{x})$. Since $p^{-1}(x)\subset\prod p_j^{-1}(x)$ is totally disconnected, we can find an arbitrarily small neighborhood V of \widetilde{x} such that $V\cap p^{-1}(x)$ is open and closed in $p^{-1}(x)$. Let $K=p^{-1}(x)\setminus V$, then we can take a neighborhood W of K so that $\overline{W}\cap \overline{V}\cap p^{-1}(x)=\varnothing$. Hence there exists a U_j such that $x\in U_j$, $W\cap V\cap p^{-1}(\overline{U}_j)=\varnothing$ and $W\cup V\supset p^{-1}(\overline{U}_j)$. Now it is evident that $V\cap \overline{p^{-1}(\overline{U}_j)}$ is a closed and open subset of $\overline{p^{-1}(\Sigma)}$ which contains \widetilde{x} . For a point \widetilde{x} in $p^{-1}(\partial\Sigma)$ there exists a neighborhood V of \widetilde{x} and a point \widetilde{x}_1 in $p^{-1}(\Sigma)$ such that V is homeomorphic to some neighborhood of \widetilde{x}_1 . This implies that $\overline{p^{-1}(\Sigma)}$ is totally disconnected and this proves the proposition.

§ 3. Cohomology theory.

Let Y be any topological space. We denote by $\overline{H}^*(Y)$ the Alexander cohomology module of Y with the real coefficients.

Let Γ be a presheaf of R-module on Y and $\mathscr U$ be an open covering of Y. For $q \ge 0$ define $C^q(\mathscr U:\Gamma)$ to be the module of functions ψ which assign to an ordered (q+1)-tuple U_0, U_1, \dots, U_q of elements of $\mathscr U$ an element $\psi(U_0, U_1, \dots, U_q) \in \Gamma(U_0 \cap U_1 \cap \dots \cap U_q)$. A coboundary operator $\delta \colon C^q(\mathscr U;\Gamma) \to C^{q+1}(\mathscr U;\Gamma)$ is defined by

$$(\delta\psi)(U_0,\ U_1,\ \cdots,\ U_{q+1})=\sum\limits_{j=0}^{q+1}(-1)^j\psi(U_0,\ \cdots,\ \hat{U}_j,\ \cdots,\ U_{q+1})|_{U_0\cap U_1\cap\cdots\cap U_{q+1}}$$

where $(U_0, \dots, \widehat{U}_j, \dots, U_{q+1})$ denotes the q-tuple obtained by omitting U_j . The cohomology module of the cochain complex $C^*(\mathcal{U}; \Gamma) = \{C^q(\mathcal{U}; \Gamma), \delta\}$ is denoted by $H^*(\mathcal{U}; \Gamma)$. The Čech cohomology of Y with coefficients in Γ is defined by $\check{H}^*(Y; \Gamma) = \lim_{\longrightarrow} \{H^*(\mathcal{U}; \Gamma)\}$. For the precise definitions, see [3].

In what follows we shall investigate the cohomology of $X=M\setminus(\Sigma\cdot(-\mu,0))_{\xi_t}$ where Σ is a local section and μ is a collar-size for Σ . In this section, p denotes the restriction of $p\colon \widetilde{M}\to M$ to $\widetilde{X}=\widetilde{M}\setminus\overline{(p^{-1}(\Sigma)\cdot(-\mu,0))_{\xi_t}}$ where (\widetilde{M},ζ_t) is the flow constructed in Proposition 1.

Let Γ_1 and Γ_2 be presheaves on X defined by $\Gamma_1(U) = \bar{H}^0(U)$ and $\Gamma_2(U) = \bar{H}^0(p^{-1}(U))$ respectively, where U is an open subset of X. Then p induces a homomorphism $p^* \colon \Gamma_1 \to \Gamma_2$. Since p^* is a monomorphism, $0 \to \Gamma_1 \to \Gamma_2 \to \Gamma_3 \to 0$ ($\Gamma_3 = \operatorname{Coker}(p^*)$) is an exact sequence. Hence, by the usual argument of the cohomology theory, we have

LEMMA 6. There is an exact sequence

$$0 \to \check{H}^{0}(X; \Gamma_{1}) \to \check{H}^{0}(X; \Gamma_{2}) \to \check{H}^{0}(X; \Gamma_{3}) \to \check{H}^{1}(X; \Gamma_{1}) \to \check{H}^{1}(X; \Gamma_{2}) \to \cdots$$
. Moreover we get

LEMMA 7.
$$\check{H}^q(X; \Gamma_1) \simeq \bar{H}^q(X)$$
 and $\check{H}^q(X; \Gamma_2) \simeq \bar{H}^q(\tilde{X})$ for all q .

PROOF. Since X and \widetilde{X} are metric spaces, they are paracompact. And $\overline{H}^q(p^{-1}(x))$ is trivial for q>0 and any $x\in X$, because $p^{-1}(x)$ is totally disconnected. Hence this lemma immediately follows from the next lemma.

LEMMA 8. ([3]) Let $h: Y' \to Y$ be a closed continuous map between paracompact Hausdorff spaces. Suppose $\overline{H}^q(h^{-1}(y)) = 0$ for all $y \in Y$ and 0 < q < n. Let Γ be the presheaf on Y defined by $\Gamma(U) = \overline{H}^0(h^{-1}(U))$. Then

there are isomorphisms $\check{H}^q(Y;\Gamma) \simeq \bar{H}^q(Y')$ for q < n.

Consequently we obtain

PROPOSITION 2. There is an exact sequence

$$\check{H}^{0}(X; \Gamma_{2}) \longrightarrow \check{H}^{0}(X; \Gamma_{3}) \longrightarrow \bar{H}^{1}(X) \longrightarrow 0$$
.

PROOF. Since $\overline{p^{-1}(\Sigma)}$ is a global section, it is a strong deformation retract of \widetilde{X} . Hence $\overline{H}^1(\widetilde{X})$ is isomorphic to $\overline{H}^1(\overline{p^{-1}(\Sigma)})$. On the other hand, $\overline{H}^1(\overline{p^{-1}(\Sigma)})$ is trivial, because $\dim(\overline{p^{-1}(\Sigma)})=0$. Therefore, combining Lemmas 6 and 7, we have the consequence of the proposition.

§ 4. The case of 3-manifolds.

In this section, M will be a differentiable 3-dimensional compact manifold and ξ_t will be a minimal flow on M generated by a C^1 -vector field. First we introduce some notations.

NOTATIONS.

- (a) For a real valued function F (not necessarily continuous) defined on a subset D of M (or \widetilde{M}), \widehat{F} denotes a map $\widehat{F}: D \to M$ (or \widetilde{M}) defined by $\widehat{F}(x) = \xi_{F(x)}(x)$ (or $\zeta_{F(x)}(x)$), where (\widetilde{M}, ζ_t) is the flow constructed in Proposition 2.
- (b) Let Σ be a local section of (M, ξ_i) . Then we use the following notations.

$$egin{aligned} T_{\scriptscriptstyle \Sigma} \colon M & \longrightarrow R & ext{defined by} & T_{\scriptscriptstyle \Sigma}(x) = \inf\{t > 0 | \xi_t(x) \in ar{\Sigma}\} \text{ ,} \ B^{\scriptscriptstyle \perp}_{\scriptscriptstyle \Sigma} \subset \partial \Sigma \colon B^{\scriptscriptstyle \perp}_{\scriptscriptstyle \Sigma} = \{x \in \partial \Sigma | \, \hat{T}_{\scriptscriptstyle \Sigma}(x) \in \partial \Sigma\} \text{ ,} \ B^{\scriptscriptstyle j}_{\scriptscriptstyle \Sigma} \subset \partial \Sigma \colon B^{\scriptscriptstyle j}_{\scriptscriptstyle \Sigma} = \{x \in \partial \Sigma | \, \hat{T}_{\scriptscriptstyle \Sigma}(x) \in B^{\scriptscriptstyle j-1}_{\scriptscriptstyle \Sigma}\} & (j = 2, \ 3, \ \cdots) \text{ ,} \ A^{\scriptscriptstyle j}_{\scriptscriptstyle \Sigma} \subset \Sigma \colon A^{\scriptscriptstyle j}_{\scriptscriptstyle \Sigma} = \{x \in \Sigma | \, \hat{T}_{\scriptscriptstyle \Sigma}(x) \in B^{\scriptscriptstyle j}_{\scriptscriptstyle \Sigma}\} & (j = 1, \ 2, \ 3, \ \cdots) \text{ ,} \ C_{\scriptscriptstyle \Sigma} \subset \Sigma \colon C_{\scriptscriptstyle \Sigma} = \{x \in \Sigma | \, \hat{T}_{\scriptscriptstyle \Sigma}(x) \in \partial \Sigma\} \text{ .} \end{aligned}$$

Let Σ' be a local section which is C^1 -submanifold of M and Σ be an open subset of Σ' such that $\overline{\Sigma} \subset \Sigma'$ and the boundary $\partial \Sigma$ is a C^1 -submanifold of Σ' . For each point $(x, t) \in \partial \Sigma \times R$ with $\xi_t(x) \in \partial \Sigma$, we can take a small piece $\gamma_{x,t}$ of $\partial \Sigma$ and a C^1 -function $\omega_{x,t} \colon \gamma_{x,t} \to R$ so that $x \in \gamma_{x,t}$, $\omega_{x,t}(x) = t$ and $\hat{\omega}_{x,t}(\gamma_{x,t}) \subset \Sigma'$.

DEFINITION 2. We say $\partial \Sigma$ is transversal along the flow at $(x, t) \in \partial \Sigma \times R$, if $\xi_t(x) \notin \partial \Sigma$ or $\widehat{\omega}_{x,t}(\gamma_{x,t})$ is transversal to $\partial \Sigma$ at $\widehat{\omega}_{x,t}(x)$ in Σ' .

DEFINITION 3. A local section Σ is said to be regular if (a) Σ is connected,

- (b) $\partial \Sigma$ consists of finitely many connected components and each component is C^1 -diffeomorphic to the circle S^1 ,
 - (c) $B_{\Sigma}^1 \cup \hat{T}_{\Sigma}(B_{\Sigma}^1)$ intersects with every component of $\partial \Sigma$,
- (d) $\partial \Sigma$ is transversal along the flow at $(x, T_{\Sigma}(x))$ for any $x \in \partial \Sigma$, and so A_{Σ}^{1} is a finite set, and
 - (e) $A_{\Sigma}^{i} = \emptyset$ for $j \ge 2$.

LEMMA 9. Let Σ be a local section included in some C^1 local section Σ' and satisfying the conditions (a), (b) and (c) in Definition 3. Then there exists a regular local section arbitrarily close to Σ in the C^1 -topology.

PROOF. For simplicity we shall verify only the case when Σ is homeomorphic to a 2-disk. We take (r, θ) as the polar coordinate on Σ' and assume $\Sigma = \{r < r_0\}$. Then it follows from the minimality of (M, ξ_t) that for sufficiently small $\delta > 0$ there is a positive number ε with the following properties:

(1) for any θ_0 there exist continuous functions

$$G_{\theta_0}^j : D_{\theta_0} = \{ (r, \theta) | r_0 - \delta < r < r_0 + \delta, \ \theta_0 - \varepsilon < \theta < \theta_0 + \varepsilon \} \longrightarrow R \quad (j = 1, 2)$$

such that $G^{_1}_{\theta_0}\!<\!0$, $G^{_2}_{\theta_0}\!>\!0$ and $\hat{G}^{_j}_{\theta_0}\!(D_{\theta_0})\!\subset\!\{r\!<\!r_0\!-\!\delta\}$ $(j\!=\!1,\,2)$,

(2)

$$h \colon (\bigcup_{x \in D_{\theta_0}} \{x\} \times [G_{\theta_0}^{\scriptscriptstyle 1}(x), \ G_{\theta_0}^{\scriptscriptstyle 2}(x)]) \longrightarrow U_{\theta_0} = \{x = \xi_t(y) | y \in D_{\theta_0}, \ G_{\theta_0}^{\scriptscriptstyle 1}(y) \leqq t \leqq G_{\theta_0}^{\scriptscriptstyle 2}(y)\}$$

defined by $h(x, t) = \xi_t(x)$ is a homeomorphism.

Fix such δ and ε , and define $\mathscr F$ to be a function space

$$\mathscr{F} = \{f(\theta)|f\in C^{\scriptscriptstyle 1},\, f(\theta+2\pi)\!=\!f(\theta),\, r_{\scriptscriptstyle 0}\!-\!\delta\!<\!f(\theta)\!<\!r_{\scriptscriptstyle 0}\!+\!\delta\}$$
 .

For $f \in \mathcal{F}$, we set $\Sigma_f = \{(r,\theta) | r < f(\theta)\}$. The subspace \mathcal{F}_{θ_0} of \mathcal{F} is defined as: $f \in \mathcal{F}_{\theta_0}$ if and only if $\partial \Sigma_f$ is transversal along the flow at $(x,t) \in \partial \Sigma_f \times R$ whenever $\{x\} \cdot [0,t]$ (or $\{x\} \cdot [t,0]) \subset U_{\theta_0}$. Using the property (2) and the transversality theorem, we can see that \mathcal{F}_{θ_0} is open and dense in \mathcal{F} with respect to the C^1 -topology. Take finitely many numbers $\theta_1, \theta_2, \cdots, \theta_k$ so that $\bigcup_{j=1}^k D_{\theta_j} \supset \{r_0 - \delta < r < r_0 + \delta\}$, then $\bigcap_{j=1}^k \mathcal{F}_{\theta_j}$ is non-empty. Take a function f in this set, then we have that $\partial \Sigma_f$ is transversal along the flow at $(x,t) \in \partial \Sigma_f \times R$ if $(\{x\} \cdot [0,t])_{\xi_t} \cap \Sigma_f = \emptyset$, and hence that $A^1_{\Sigma_f}$ is finite. Moreover it can be easily seen that for each point a of $A^1_{\Sigma_f}$ there is an open set U with properties:

(a) $U = \{\xi_t(y) | y \in S, 0 < t < G(y)\}$ for some $S \subset \Sigma_f$ and some continuous function $G: S \to R$,

- (b) $S \cap A^1_{\Sigma_f} = \{a\},$
- (c) $\widehat{G}(S) \subset \Sigma_f$.

Let $\hat{T}^{j}_{\Sigma_{f}}(a) \in \partial \Sigma_{f}$ for $1 \leq j \leq n$ and $\hat{T}^{n+1}_{\Sigma_{f}}(a) \in \Sigma_{f}$. We may assume that $\hat{G}(a) = \hat{T}^{n+1}_{\Sigma_{f}}(a)$, and that there are continuous functions $G_{j} \colon S \to R$ $(j=1, 2, \cdots, n)$ such that $\hat{G}_{j}(a) = \hat{T}^{j}_{\Sigma_{f}}(a)$ and $\hat{G}_{j}(S) \subset \Sigma'$. Let γ'_{j} be the connected component of $\hat{G}_{j}(S) \cap \partial \Sigma_{f}$ which contains the point $\hat{G}_{j}(a)$, and $\gamma_{j} = \hat{G}_{j}^{-1}(\gamma'_{j})$. Because γ_{j} 's intersect transversally to each other, we may assume that $\gamma_{i} \cap \gamma_{j} = \{a\}$ for $i \neq j$. Hence we can deform f slightly to g so that g satisfies that (i) $\partial \Sigma_{g} = \partial \Sigma_{f}$ outside of U, (ii) $\bar{U} \cap A^{2}_{\Sigma_{g}} = \emptyset$ and (iii) $\partial \Sigma_{g}$ is transversal along the flow at $(x, t) \in \partial \Sigma_{g} \times R$ if $(\{x\} \cdot [0, t])_{\xi_{i}} \cap \Sigma_{g} = \emptyset$. Repeating this process finitely many times, we can get a regular local section. Since δ is arbitrary small, this completes the proof.

In the following of this section, let Σ' be a C^1 -local section and Σ be a regular local section whose closure is contained in Σ' .

LEMMA 10. If A_{Σ}^{1} consists of N points, then $C_{\Sigma}\backslash A_{\Sigma}^{1}$ has 2N connected components.

PROOF. It is evident that T_{Σ} is continuous on $C_{\Sigma}\backslash A_{\Sigma}^{1}$ and $\hat{T}_{\Sigma}(C_{\Sigma}\backslash A_{\Sigma}^{1})=\partial\Sigma\backslash(B_{\Sigma}^{1}\cup\hat{T}_{\Sigma}(B_{\Sigma}^{1}))$. Hence there is a one-to-one correspondence between the components of $C_{\Sigma}\backslash A_{\Sigma}^{1}$ and those of $\partial\Sigma\backslash(B_{\Sigma}^{1}\cup\hat{T}_{\Sigma}(B_{\Sigma}^{1}))$. Since $\partial\Sigma\backslash(B_{\Sigma}^{1}\cup\hat{T}_{\Sigma}(B_{\Sigma}^{1}))$ has 2N components, also $C_{\Sigma}\backslash A_{\Sigma}^{1}$ has 2N components.

Let $A_{\Sigma}^1 = \{a_1, a_2, \dots, a_N\}$. We denote by C_1, C_2, \dots, C_{2N} the components of $C_{\Sigma} \setminus A_{\Sigma}^1$. Then it is easy to see the existence of a neighborhood $S_k \subset \Sigma$ of a_k $(k=1, 2, \dots, N)$ which satisfies the following conditions:

- (a) there are continuous functions $\sigma_{k,j}: S_k \to R$ (j=1, 2, 3) such that $\hat{\sigma}_{k,j}(S_k) \subset \Sigma'$ (j=1, 2), $\hat{\sigma}_{k,3}(S_k) \subset \Sigma$, and $\hat{\sigma}_{k,j}(a_k) = \hat{T}_{\Sigma}^j(a_k)$ (j=1, 2, 3).
- (b) $S_k \cap (C_{\Sigma} \setminus A_{\Sigma}^1)$ has exactly three components $\gamma_{k,j}$ (j=1, 2, 3) such that $\hat{\sigma}_{k,2}(\gamma_{k,1}) \subset \Sigma$, $\hat{\sigma}_{k,2}(\gamma_{k,2}) \cap \overline{\Sigma} = \emptyset$ and $\hat{\sigma}_{k,2}(\gamma_{k,3}) \subset \partial \Sigma$.

DEFINITION 4.

- (i) For $1 \le k \le N$, define integers k(j) $(j=1, 2, 3, 4 \text{ and } 1 \le k(j) \le 2N)$ so that $C_{k(j)} \cap \gamma_{k,j} \ne \emptyset$ (j=1, 2, 3) and $\widehat{T}_{\lambda}(a_k) \in \overline{C}_{k(4)}$.
- (ii) A $2N \times 2N$ matrix $\Lambda_{\Sigma} = [\lambda_1, \lambda_2, \dots, \lambda_{2N}]$ (λ_j is a 2N column vector) is defined by

$$(u_1, u_2, \dots, u_{2N}) \lambda_{2k-1} = u_{k(1)} - u_{k(2)}$$

$$(u_1, u_2, \dots, u_{2N}) \lambda_{2k} = u_{k(2)} - u_{k(3)} + u_{k(4)}$$

$$(k=1, 2, \dots, 2N).$$

The remainder of this section is devoted to the proof of the next theorem.

THEOREM 1. Suppose that Σ is a regular local section with the collar-size μ and A^1_{Σ} consists of N-points. Let $X=M\setminus(\Sigma\cdot(-\mu,0))_{\varepsilon_t}$ and $i^*\colon \bar{H}^1(X)\to \bar{H}^1(\Sigma)$ be the homomorphism induced by the imbedding $i\colon \Sigma\to X$. Then we have $\mathrm{Ker}(i^*)\simeq R^{2N-m}$, if $\mathrm{rank}(\Lambda_{\Sigma})=m$.

Let \widetilde{X} , p, Γ_j etc. be the same as those in section 3. We now define a special open covering of X. First for $1 \le k \le N$, we set

$$\begin{aligned} &U_k^1 \!=\! \{\xi_t(x)|x \in S_k, \ 0 \!\leq\! t \!<\! \sigma_{k,1}(x) \!-\! \mu/3\} \cap X \\ &U_k^2 \!=\! \{\xi_t(x)|x \in S_k, \ \sigma_{k,1}(x) \!-\! 2\mu/3 \!<\! t \!<\! \sigma_{k,2}(x) \!-\! \mu/3\} \cap X \\ &U_k^3 \!=\! \{\xi_t(x)|x \in S_k, \ \sigma_{k,2}(x) \!-\! 2\mu/3 \!<\! t \!\leq\! \sigma_{k,3}(x) \!-\! \mu\} \cap X \end{aligned}$$

where S_k and $\sigma_{k,j}$ are the same as before. Next for $x \in C_{\Sigma} \setminus A_{\Sigma}^1$, we choose an open neighborhood $S'_x \subset \Sigma \setminus A_{\Sigma}^1$ of x so that $S'_x \cap (C_{\Sigma} \setminus A_{\Sigma}^1)$ is connected and there are continuous functions $\sigma'_{x,j} \colon S'_x \to R$ (j=1, 2) with $\hat{\sigma}'_{x,1}(S'_x) \subset \Sigma'$, $\hat{\sigma}'_{x,2}(S'_x) \subset \Sigma$ and $\hat{\sigma}'_{x,j}(x) = \hat{T}^j_{\Sigma}(x)$ (j=1, 2), and we set

$$\begin{split} &V_x^1 \!=\! \{\xi_t(y)|y \in S_x', \ 0 \!\leq\! t \!<\! \sigma_{x,1}'(y) \!-\! \mu/3\} \cap X \\ &V_x^2 \!=\! \{\xi_t(y)|y \in S_x', \ \sigma_{x,1}'(y) \!-\! 2\mu/3 \!<\! t \!\leq\! \sigma_{x,2}'(y) \!-\! \mu\} \cap X \ . \end{split}$$

And for $x \in \Sigma \backslash C_{\Sigma}$, we choose an open set W_x so that there are an open neighborhood $S''_x \subset \Sigma \backslash C_{\Sigma}$ and a continuous function $\sigma''_x : S''_x \to R$ such that $\hat{\sigma}''_x(S''_x) \subset \Sigma$ and $\sigma''_x(x) = T_{\Sigma}(x)$ and W_x can be written as

$$W_x = \{ \xi_t(y) | y \in S_x^{\prime\prime}, \ 0 \leq t \leq \sigma_x^{\prime\prime}(y) - \mu \}$$
.

It is clear that $\mathscr{U}_0 = \{U_k^j\}_{\substack{1 \le k \le N \\ j=1,2,3}} \cup \{V_x^j\}_{\substack{x \in C_\Sigma \setminus A_\Sigma^1 \\ j=1,2}} \cup \{W_x\}_{\substack{x \in \Sigma \setminus C_\Sigma \text{ is an open covering of } X.}$ We may assume, without loss of generality, that $U \cap V$ is connected for any $U, V \in \mathscr{U}_0$.

DEFINITION 5. For a 2N vector $u = (u_1, u_2, \dots, u_{2N})$, we define a collection $\phi_u = \{\phi_u(U)\}_{U \in \mathcal{U}_0}$ of functions $\phi_u(U): p^{-1}(U) \to R$ as follows:

- (i) if $U=U_k^1$ for some k, then $\phi_*(U)\equiv 0$,
- (ii) if $U=U_k^2$ for some k, then

$$\phi_{\mathbf{u}}(U)(\widetilde{x}) = \left\{egin{array}{ll} \mathbf{0} & ext{if} & \widetilde{x} \in \overline{p^{-1}(U_{k}^{2,1})} \ u_{k(2)} & ext{if} & \widetilde{x}
otin \overline{p^{-1}(U_{k}^{2,1})} \end{array}
ight.$$

where $U_k^{2,1} = \{\xi_t(x) | x \in S_k^1 = \hat{\sigma}_{k,1}^{-1}(\hat{\sigma}_{k,1}(S_k) \cap \Sigma), \ \sigma_{k,1}(x) \leq t < \sigma_{k,2}(x) - \mu/3\} \cap X,$ (iii) if $U = U_k^3$ for some k, then

$$\phi_u(U)(\widetilde{x}) = egin{cases} 0 & ext{if} & \widetilde{x} \in \overline{p^{-1}(U_k^{3,1})} \ u_{k(3)} & ext{if} & \widetilde{x} \in \overline{p^{-1}(U_k^{3,2})} \ u_{k(4)} & ext{if} & \widetilde{x}
otin \ p^{-1}(\overline{U_k^{3,1}}) \cup \overline{p^{-1}(\overline{U_k^{3,2}})} \end{cases}$$

 $\begin{array}{ll} \text{where} & U_k^{\scriptscriptstyle 3,1} = \! \{ \xi_t(x) | x \in S_k^{\scriptscriptstyle 2} = \hat{\sigma}_{k,2}^{\scriptscriptstyle -1}(\hat{\sigma}_{k,2}(S_k) \cap \varSigma), \; \sigma_{k,2}(x) \! \leq \! t \! \leq \! \sigma_{k,3}(x) - \mu \} \; \; \text{and} \; \; U_k^{\scriptscriptstyle 3,2} = \\ \{ \xi_t(x) | x \in S_k \backslash \overline{(S_k^{\scriptscriptstyle 1}} \cup \overline{S_k^{\scriptscriptstyle 2}}), \; \sigma_{k,2}(x) - 2\mu/3 \! < \! t \! \leq \! \sigma_{k,3}(x) - \mu \} \cap X, \end{array}$

- (iv) if $U=V_x^1$ for some $x\in C_\Sigma\backslash A_\Sigma^1$, then $\phi_u(U)\equiv 0$,
- (v) if $U=V_x^2$ for some $x \in C_{\Sigma} \backslash A_{\Sigma}^1$, then

$$\phi_u(U)(\widetilde{y}) = \left\{egin{array}{ll} 0 & ext{if} & \widetilde{y} \in \overline{p^{-1}(V_x^{2,1})} \ u_j & ext{if} & \widetilde{y}
otin \overline{p^{-1}(V_x^{2,1})} & ext{and} & S_x' \cap C_j
otin \end{array}
ight.$$

 $\begin{array}{ll} \text{where} \quad V_x^{2,1} = \{\xi_t(y) | y \in \hat{\sigma}_{x,1}'^{-1}(\hat{\sigma}_{x,1}'(S_x') \cap \Sigma), \ \sigma_{x,1}'(y) \leqq t \leqq \sigma_{x,2}'(y) - \mu\}, \\ \text{(vi)} \quad \text{if} \quad U = W_x \ \text{for some} \ x \in \Sigma \backslash C_{\Sigma}, \ \text{then} \ \phi_u(U) \equiv 0. \end{array}$

LEMMA 11. Each $\phi_u(U) \in \phi_u$ is a locally constant function on $p^{-1}(U)$.

PROOF. Because $\overline{p^{-1}(\Sigma)}$ is a global section, $\overline{p^{-1}(S\cap\Sigma)\cap p^{-1}(S)}$ is open and closed in $p^{-1}(S)$ for any subset S of Σ' . Hence $\overline{p^{-1}(U_k^{j,i})}\cap p^{-1}(U_k^j)$ $(k=1,\,2,\,\cdots,\,N,\,j=2,\,3,\,i=1,\,2)$ and $\overline{p^{-1}(V_x^{2,1})}\cap p^{-1}(V_x^2)$ $(x\in C_\Sigma\backslash A_\Sigma^1)$ are open and closed in $p^{-1}(U_k^j)$ and $p^{-1}(V_x^2)$ respectively. Therefore, by the definition of $\phi_u(U)$, it is a locally constant function for each $U\in \mathscr{U}_0$.

Since $\bar{H}^0(Y)$ is isomorphic to the module of locally constant functions on Y (see [3]), ϕ_u can be regarded as an element of $C^0(\mathcal{U}_0; \Gamma_2)$. Let π be the homomorphism $\Gamma_2 \to \Gamma_3$. We denote by π^* the induced homomorphism $C^*(\mathcal{U}; \Gamma_2) \to C^*(\mathcal{U}; \Gamma_3)$ and by π^* the homomorphism $H^*(\mathcal{U}; \Gamma_2) \to H^*(\mathcal{U}; \Gamma_3)$ or $\check{H}^*(X; \Gamma_2) \to \check{H}^*(X; \Gamma_2)$.

LEMMA 12. $\delta(\pi^*(\phi_u))=0$ in $C^1(\mathcal{U}_0; \Gamma_3)$ if and only if $u \Lambda_{\Sigma}=0$.

PROOF. Let $\langle \phi_u \rangle = \{ \psi \in C^0(\mathscr{U}_\mathfrak{C}; \, \Gamma_2) | \pi^*(\psi) = \pi^*(\phi_u) \}$. Then it is clear that $\delta(\pi^*(\phi_u)) = 0$ if and only if $\delta \psi \in p^*(C^1(\mathscr{U}_\mathfrak{C}; \, \Gamma_1)) \subset C^1(\mathscr{U}_\mathfrak{C}; \, \Gamma_2)$ for some $\psi \in \langle \phi_u \rangle$, where p^* is the homomorphism $C^*(\mathscr{U}; \, \Gamma_1) \to C^*(\mathscr{U}; \, \Gamma_2)$ induced by p. It is also evident that $\psi \in \langle \phi_u \rangle$ if and only if $\psi - \phi_u \in p^*(C^0(\mathscr{U}_\mathfrak{C}; \, \Gamma_1))$, and hence that all the element $\psi \in \langle \phi_u \rangle$ can be expressed as $\psi(U) = \phi_u(U) + b_U$ for any $U \in \mathscr{U}_\mathfrak{O}$ where b_U is a real constant.

Suppose $u\Lambda_{\Sigma}\neq 0$. If $u_{k(2)}-u_{k(3)}+u_{k(4)}\neq 0$, then $\phi_u(U_k^2)-\phi_u(U_k^3)$ is not constant on $p^{-1}(U_k^2\cap U_k^3)$. In the case when $u_{k(1)}-u_{k(2)}\neq 0$, $\phi_u(U_k^2)-\phi_u(V_x^2)$ is not constant on $p^{-1}(U_k^2\cap V_x^2)$ for a point $x\in C_{k(1)}\cap S_k$. Therefor, noting that $\delta\psi$ is in $p^*(C^1(\mathcal{W}_0;\Gamma_1))$ if and only if $\psi(U)-\psi(V)$ is constant on $p^{-1}(U\cap V)$ whenever $U\cap V\neq \emptyset$, we have that $\delta\psi\notin p^*(C^1(\mathcal{W}_0;\Gamma_1))$ if $\psi(U)=\phi_u(U)+b_U$ and $u\Lambda_{\Sigma}\neq 0$. On the other hand, it is easy to see that $\phi_u(U)-\phi_u(V)$ is constant on $p^{-1}(U\cap V)$ for any $U,V\in \mathcal{W}_0$ if $u\Lambda_{\Sigma}=0$. This completes the proof.

By this lemma, $\pi^*(\phi_u)$ represents an element of $H^0(\mathcal{U}_0; \Gamma_3)$ if $u \Lambda_{\Sigma} = 0$. We denote by $[\phi_u]$ the element of $\check{H}^0(X; \Gamma_3)$ represented by $\pi^*(\phi_u)$.

LEMMA 13. Let $L = \{ [\phi_u] | u \Lambda_{\Sigma} = 0 \}$. Then L is a submodule of $\check{H}^0(X; \Gamma_3)$ isomorphic to R^{2N-m} where $m = \operatorname{rank}(\Lambda_{\Sigma})$.

PROOF. It is clear that $[\phi_u]+[\phi_v]=[\phi_{u+v}]$, so L is a submodule. In order to prove that $L\simeq R^{2N-m}$, it is sufficient to show that $[\phi_u]=0$ if and only if u=0. Suppose $u_j\neq 0$, and take a point $x\in C_j$. Then $\phi_u(V_x^2)+b\not\equiv 0$ for any constant b. Now it is easy to see that $\psi\neq 0$ in $C^0(\mathcal{U};\Gamma_2)$ for any refinement \mathcal{U} of \mathcal{U}_0 if $\pi^*(\psi)=\pi^*(\lambda(\phi_u))$, where $\lambda\colon C^*(\mathcal{U}_0;\Gamma_2)\to C^*(\mathcal{U};\Gamma_2)$ is the usual homomorphism (see [3]). This implies that $[\phi_u]\neq 0$ if $u\neq 0$. The converse is trivial hence the proof is completed.

LEMMA 14. Let θ be an element of $\check{H}^{0}(X; \Gamma_{3})$. If $\delta^{*}(\theta) \in \operatorname{Ker}(i^{*})$, then there exists a 2N-vector u such that $u \Lambda_{\Sigma} = 0$ and $[\phi_{u}] - \theta \in \pi^{*}(\check{H}^{0}(X; \Gamma_{2}))$, where δ^{*} is the homomorphism $\check{H}^{0}(X; \Gamma_{3}) \to \check{H}^{1}(X; \Gamma_{1}) \simeq \bar{H}^{1}(X)$.

PROOF. If $\delta^*(\theta) \in \operatorname{Ker}(i^*)$, then there is an element $\psi' \in C^0(\mathcal{U}; \Gamma_2)$ such that $\pi^*(\psi') \in C^0(\mathcal{U}; \Gamma_3)$ represents θ , where \mathcal{U} is a suitable open covering of X. Consider the restriction of p onto $\overline{p^{-1}(\Sigma)}$. Then, by the same reasoning as Proposition 2, we get an exact sequence $\check{H}^0(\overline{\Sigma}; \Gamma_2) \to \check{H}^0(\overline{\Sigma}; \Gamma_3) \to \bar{H}^1(\overline{\Sigma})$. On the other hand, if follows from Lemma 8 that $\check{H}^0(\overline{\Sigma}; \Gamma_2) \cong \check{H}^0(\overline{p^{-1}(\Sigma)})$. Therefore, taking a refinement if necessary, we can find a locally constant function ψ^0 on $\overline{p^{-1}(\Sigma)}$ and an element ψ of $C^0(\mathcal{U}; \Gamma_2)$ such that $\pi^*(\psi) = \pi^*(\psi')$ and $\psi(U) = \psi^0$ on $p^{-1}(U) \cap \overline{p^{-1}(\Sigma)}$ if it is non-empty.

Now take a point $x \in C_j$. We can choose a neighborhood $S \subset \Sigma$ of x and sequences $\{t_j\}_{j=0}^n$, $\{t_j'\}_{j=0}^n$ ($t_0=0$, $t_j < t_{j+1} < t_j' < t_{j+1}'$, $t_n < T_{\Sigma}(x) < t_n'$) so that $S' = S \cap S_x'$ is connected and $S' \cdot [t_j, t_j'] \subset U_j$ for some $U_j \in \mathcal{U}$. Then, because $\delta \pi^{\sharp}(\psi) = 0$ in $C^1(\mathcal{U}; \Gamma_3)$, $\psi(U_{j+1}) - \psi(U_j)$ is constant on $p^{-1}(S') \cdot [t_{j+1}, t_j]$ for each j. Therefore, since $\psi(U)$ is locally constant for any $U \in \mathcal{U}$, $\Psi(\widetilde{x}, t) \equiv \psi(U_n)(\zeta_i(\widetilde{x})) - \psi^0(\widetilde{x})$ is a constant on $p^{-1}(S') \times [t_n, t_n']$ which we denote by $u_j(\psi)$. We must show that this constant does not depend on the choice of a point $x \in C_j$. Let $x' \in C_j$, $\widehat{T}_{\Sigma}(x') \in U'$ and $U' \cap U_n \neq \emptyset$. Then, because $\psi(U') - \psi(U_n) = 0$ on $p^{-1}(U') \cap p^{-1}(U_n) \cap \overline{p^{-1}(\Sigma)}$ and we may assume $\psi(U') - \psi(U_n)$ is constant on $p^{-1}(U' \cap U_n)$, we have $\psi(U') - \psi(U_n) = 0$ on $p^{-1}(U' \cap U_n)$. This implies that $u_j(\psi)$ is a constant determined only by j and ψ .

Setting $u(\psi) = (u_1(\psi), u_2(\psi), \dots, u_{2N}(\psi))$, we shall show $u(\psi)\Lambda_{\Sigma} = 0$. Take $a_k \in A_{\Sigma}^1$ and $U \in \mathcal{U}$ so that $\hat{T}_{\Sigma}(a_k) \in U$, then we have

$$\psi(U)(\zeta_{\sigma}(\widetilde{x})) - \psi^{0}(\widetilde{x}) = \begin{cases} u_{k(1)}(\psi) & \text{if} \quad p(\widetilde{x}) \in (S_{k} \backslash \overline{S_{k}^{1}}) \cap S_{k}^{2} \\ u_{k(2)}(\psi) & \text{if} \quad p(\widetilde{x}) \in (S_{k} \backslash \overline{S_{k}^{1}}) \backslash \overline{S_{k}^{2}} & (\sigma = \sigma_{k,1}(p(\widetilde{x}))) \end{cases}$$

where S_k , S_k^j and $\sigma_{k,1}$ are those given in Definition 5. Since it is shown that $\psi(U)(\zeta_o(\widetilde{x})) - \psi^o(\widetilde{x})$ is constant on some neighborhood of a_k , we obtain the equality $u_{k(1)}(\psi) - u_{k(2)}(\psi) = 0$. In order to prove $u_{k(2)}(\psi) - u_{k(3)}(\psi) + u_{k(4)}(\psi) = 0$, take an element $V \in \mathcal{U}$ so that $\widehat{T}_{\Sigma}^2(a_k) \in V$. Then we can see that

$$\psi(V)(\zeta_{\sigma}(\widetilde{x})) - \psi^{\scriptscriptstyle 0}(\widetilde{x})) = \begin{cases} u_{\scriptscriptstyle k(3)}(\psi) & \text{if} \quad p(\widetilde{x}) \in (S_k \backslash \overline{S_k^2}) \backslash \overline{S_k^1} \quad \text{and} \quad \sigma = \sigma_{\scriptscriptstyle k,2}(p(\widetilde{x})) \\ u_{\scriptscriptstyle k(4)}(\psi) & \text{if} \quad p(\widetilde{x}) \in \widehat{\sigma}_{\scriptscriptstyle k,1}((S_k \backslash \overline{S_k^2}) \cap \overline{S_k^1}) \quad \text{and} \\ \sigma = \sigma_{\scriptscriptstyle k,2}(\widehat{\sigma}_{\scriptscriptstyle k,1}^{-1}(p(\widetilde{x})) - \sigma_{\scriptscriptstyle k,1}(\widehat{\sigma}_{\scriptscriptstyle k,1}^{-1}(p(\widetilde{x})) \text{ .} \end{cases}$$

Let U be an element of $\mathscr U$ containing the point $\widehat T_{\Sigma}(a_k)$, and S be a subset of Σ' such that $S' = S \cap \widehat \sigma_{k,1}(S_k \backslash \overline{S_k^2})$ is connected and $S' \cdot [t_j, t_j'] \subset U_j \in \mathscr U(U_0 = U, U_n = V)$ for some sequences $\{t_j\}_{j=0}^n$ and $\{t_j'\}_{j=0}^n$ $(t_0 = 0, t_j < t_{j+1} < t_j' < t_{j+1}')$. Then we get

$$\psi(V)(\zeta_t(\widetilde{x})) - \psi(U)(\widetilde{x}) = \begin{cases} u_{k(3)}(\psi) - u_{k(2)}(\psi) & \text{for} \quad p(\widetilde{x}) \in S' \backslash \widehat{\sigma}_{k,1}(\overline{S_k^1}) \ & t_n < t < t'_n \\ u_{k(4)}(\psi) & \text{for} \quad p(\widetilde{x}) \in S' \cap \widehat{\sigma}_{k,1}(S_k^1) \ , \quad t_n < t < t'_n \ . \end{cases}$$

Since $\psi(U_{j+1}) - \psi(U_j)$ is constant on $p^{-1}(S') \cdot [t_{j+1}, t'_j]$, we must have $u_{k(3)}(\psi) - u_{k(2)}(\psi) = u_{k(4)}(\psi)$. This proves that $u(\psi)$ is a solution of $u \Lambda_{\Sigma} = 0$.

Now let us verify that $[\phi_{u(\psi)}]-\theta\in\pi^*(\check{H}^0(X;\Gamma_2))$. To prove this, it is sufficient to show that $\delta(\lambda(\phi_{u(\psi)})-\psi+\chi)=0$ in $C^1(\mathscr{U};\Gamma_2)$ for some $\chi\in p^*(C^0(\mathscr{U};\Gamma_1))$ where we assume that \mathscr{U} is a refinement of \mathscr{U}_0 and λ is the usual homomorphism $C^0(\mathscr{U}_0;\Gamma_2)\to C^0(\mathscr{U};\Gamma_2)$. It is now easy to see that for each $U\in\mathscr{U}$ there is a constant b_U such that $-\lambda(\phi_{u(\psi)}(U)+\psi(U)=\psi^0\circ\hat{T}_*+b_U$ where $T_*(x)=\sup\{t<0|\zeta_t(\widetilde{x})\in\overline{p^{-1}(\Sigma)}\}$. Because $\psi^0\circ\hat{T}_*$ is a locally constant function on \widetilde{X} , $\{\psi^0\circ\hat{T}_*|_{p^{-1}(U)}\}_{U\in\mathscr{U}}\in C^0(\mathscr{U};\Gamma_2)$ is a cocycle. Hence, putting $\chi(U)\equiv b_U$, we get $\chi\in p^*(C^0(\mathscr{U};\Gamma_1))$ and $\delta(\lambda(\phi_{u(\psi)})-\psi+\chi))=0$. This completes the proof.

LEMMA 15.
$$\pi^*(H^0(X; \Gamma_2)) \cap L = \{0\}.$$

PROOF. Suppose $u_j \neq 0$, and take a point $x \in C_j$. Then we can choose a sequence U_1, U_2, \cdots, U_n of elements of \mathcal{U}_0 so that $U_1 = V_x^1, U_2 = V_x^2$ and $U_i \cap U_{i+1} \cap \Sigma \neq \emptyset$ for $2 \leq i \leq n$ $(U_{n+1} = U_1)$. From the definition of ϕ_u , it follows that $\phi(U_2) - \phi(U_1) = u_j$ and $\phi(U_{i+1}) - \phi(U_i) = 0$ for $2 \leq i \leq n$, hence that $\delta \psi \neq 0$ in $C^1(\mathcal{U}_0; \Gamma_2)$ for any $\psi \in \langle \phi_u \rangle$. It is now easy to see that for any refinement \mathcal{U} of \mathcal{U}_0 there is no element $\psi \in C^0(\mathcal{U}; \Gamma_2)$ such that $\delta \psi = 0$ and $\pi^*(\psi) = \pi^*(\lambda(\phi_u))$. This proves the lemma.

PROOF OF THEOREM 1. Let α be an element of $\mathrm{Ker}(i^*)$. According to Proposition 2, we can choose an element θ of $\check{H}^0(X; \Gamma_3)$ such that

 $\delta^*\theta = \alpha$. Therefore it follows from Lemma 14 that $\operatorname{Ker}(i^*) \subset \delta^*(L)$. On the other hand, it is evident that $\delta^*([\phi_u])$ is contained in $\operatorname{Ker}(i^*)$ for any element $[\phi_u]$ of L. Hence, using Proposition 2 and Lemma 13, 15, we get $\operatorname{Ker}(i^*) \simeq L/\pi^*(\check{H}^0(X; \Gamma_2)) \cap L \simeq L \simeq R^{2N-m}$. This completes the proof.

As a special case, we can prove

THEOREM 2. Let Σ be a regular local section homeomorphic to a 2-disk and A_{Σ}^{1} consist of N-points. If $\operatorname{rank}(\Lambda_{\Sigma}) = m$, then $\overline{H}^{1}(M) \cong R^{2N-m}$.

PROOF. Because $\bar{H}^1(\bar{\Sigma})$ is trivial, it follows from Theorem 1 that $\bar{H}^1(X)$ is isomorphic to R^{2N-m} . Hence it is sufficient to show that $\bar{H}^1(X) \simeq \bar{H}^1(M)$.

Consider the following Mayer-Vietoris exact sequence

$$\cdots \to \widetilde{H}^{0}(X\cap (\overline{M\backslash X)}) \to \widetilde{H}^{1}(M) \to \widetilde{H}^{1}(X) \oplus \widetilde{H}^{1}(\overline{M\backslash X}) \to \widetilde{H}^{1}(X\cap (\overline{M\backslash X)}) \to \cdots$$

where $\widetilde{H}^*(\cdot)$ denotes the reduced singular cohomology. Because $\overline{M\backslash X}$ is homeomorphic to a 3-disk and $X\cap \overline{(M\backslash X)}$ to a 2-sphere, there is an isomorphism $\widetilde{H}^1(M)\simeq \widetilde{H}^1(X)$. Since M and X are manifolds, we get $\overline{H}^1(X)\simeq \widetilde{H}^1(X)\simeq \widetilde{H}^1(M)\simeq \widetilde{H}^1(M)$. This completes the proof.

§ 5. 1-cycles.

Again let ξ_t be a minimal flow on a 3-dimensional manifold M, and Σ be a regular local section with the collar-size μ which is homeomorphic to a 2-disk. In this section we will investigate on 1-cycles of M.

Let \mathscr{U} be an open covering of $X=M\backslash\Sigma\cdot(-\mu,0)$, and $\omega\in C^1(\mathscr{U};R)$ be a cocycle. Now we shall define the integral of ω along a circle. Let $\gamma\colon [a,b]\to X$ $(a< b,\,\gamma(a)=\gamma(b))$ be a closed continuous curve, and choose a partition $a=t_0< t_1<\cdots< t_k=b$ of [a,b] such that there are elements U_j $(j=1,\,2,\,\cdots,\,k)$ of \mathscr{U} such that $\gamma([t_{j-1},\,t_j])\subset U_j$. And define

$$I_7(\omega) = \omega(U_2, U_1) + \omega(U_3, U_2) + \cdots + \omega(U_k, U_{k-1}) + \omega(U_1, U_k)$$
 .

Using the cocycle condition, one can show that $I_r(\omega)$ does not depend on the choice of U_j $(1 \le j \le k)$, and that for another covering \mathscr{U}' and a cocycle $\omega' \in C^1(\mathscr{U}'; R)$ $I_r(\omega) = I_r(\omega')$ if ω and ω' are in the same class of $\check{H}^1(X; R)$. Moreover one can easily show that $I_r(\omega) = I_{r'}(\omega)$ if $[\gamma]_{H_1(X;R)} = [\gamma']_{H_1(X;R)}$. Thus we can set

$$\int_{[\tau]_{H_1(X;R)}} [\omega]_{\check{H}^1(X;R)} = I_{\tau}(\omega) .$$

Let A_{Σ}^{1} consist of N points, and C_{j} $(j=1, 2, \dots, 2N)$ be the com-

ponents of $C_{\Sigma}\backslash A_{\Sigma}^1$. For a point $x\in C_j$, let $\gamma'_{j,x}\colon [0,1]\to X$ be a continuous curve such that $\gamma'_{j,x}\subset \overline{\Sigma}$, $\gamma'_{j,x}(0)=\widehat{T}_{\Sigma}(x)$ and $\gamma'_{j,x}(1)=x$, and let $\gamma''_{j,x}$ be a continuous curve defined by $\gamma''_{j,x}(t)=\xi_t(x)$ $(0\leq t\leq T_{\Sigma}(x))$. Then $\gamma_{j,x}=\gamma'_{j,x}+\gamma''_{j,x}$ is a closed curve. Because Σ is homeomorphic to a disk, $[\gamma_{j,x}]_{H_1(X;R)}$ and $[\gamma_{j,x}]_{H_1(M;R)}$ do not depend on the point $x\in C_j$ and the curve $\gamma'_{j,x}$. Hence we write $[\gamma_j]_{H_1(X;R)}$ or $[\gamma_j]_{H_1(M;R)}$ instead of $[\gamma_{j,x}]_{H_1(X;R)}$ or $[\gamma_{j,x}]_{H_1(M;R)}$ respectively.

PROPOSITION 3. Suppose Σ is a regular section homeomorphic to a 2-disk for which A_{Σ}^{1} consists of N points. Let C_{j} $(j=1, 2, \dots, 2N)$ be the components of $C_{\Sigma}\backslash A_{\Sigma}^{1}$, and $[\gamma_{j}]_{H_{1}(M,R)}$ be that defined above. If $u\Lambda_{\Sigma}=0$ has a solution whose j-th component does not vanish, then $[\gamma_{j}]_{H_{1}(M,R)}\neq 0$.

PROOF. Let $u=(u_1, u_2, \dots, u_{2N})$ satisfy the equation $u\Lambda_{\Sigma}=0$, and ϕ_u be that in Definition 5. Then we can see that

(1)
$$\int_{[r_j]_{H_1(X;R)}} [\delta^*[\phi_u]]_{H^1(X;R)} = u_j$$

(see the proof of Lemma 15). Since Σ is homeomorphic to a disk, $H_1(X;R)$ is isomorphic to $H_1(M;R)$. Therefore (1) implies the consequence of the proposition.

PROPOSITION 4. Under the same assumption as Proposition 3, $H_1(M;R)$ is spanned by $\{[\gamma_j]_{H_1(M;R)}; j=1, 2, \cdots, 2N\}$.

PROOF. Let $u = (u_1, u_2, \dots, u_{2N})$ be a solution of $u \Lambda_{\Sigma} = 0$. If

$$\int_{[\tau_j]_{H_1(X;R)}} [\delta^*[\phi_u]]_{\check{H}^1(X;R)} = 0$$

for any $j=1, 2, \dots, 2N$, then by means of (1) we have u=0. On the other hand, according to Theorem 2, for any $\omega \in \check{H}^1(X; R)$ there is a solution u of $u\Lambda_{\Sigma}=0$ such that $\omega=\delta^*[\phi_u]$.

Suppose there is a closed curve γ such that $[\gamma]_{H_1(M;R)}$ is independent of $\{[\gamma_j]_{H_1(M;R)}; 1 \leq j \leq 2N\}$. Because the local section Σ is homeomorphic to a disk, we may assume that $\gamma \subset X$ and $[\gamma]_{H_1(X;R)}$ is not included in the subspace spanned by $\{[\gamma_j]_{H_1(X;R)}; 1 \leq j \leq 2N\}$. Therefore there is an element ω of $\check{H}^1(X;R)$ such that

$$\int_{[\tau]_{H_1(X;R)}} \omega \neq 0$$

but

$$\int_{[r_j]_{H,(X;R)}}\omega=0$$

for any $j=1, 2, \dots, 2N$. It is now clear that for such ω there is no solution u of $u\Lambda_z=0$ such that $\omega=\delta^*[\phi_u]$. This is a contradiction and the proof is complete.

APPENDIX

Theorem 2 implies that, in order to prove the conjecture that there is no minimal flow on S^3 , it is sufficient to show that if there is a minimal flow on S^3 , then one can construct a regular local section Σ such that $\Sigma \approx D^2$ and 2N-vectors $\lambda_1, \dots, \lambda_{2N}$ are not linearly independent where $\Lambda_{\Sigma} = [\lambda_1, \dots, \lambda_{2N}]$.

Also in the case when the dimension of minimal sets is greater than 3, we can get the results analogous to Theorems 1, 2 and Propositions 3, 4. However the matrix corresponding to Λ_{Σ} is not square in this higher dimensional case.

In the two dimensional case it is proved by our method that if M is a two dimensional manifold on which a minimal flow exists, then $H^1(M; R) \simeq R^2$. This gives another proof for the fact there is no minimal flow on the Klein bottle.

References

- [1] W. H. GOTTCHALK and G. A. HEDLUND, Topological Dynamics, Amer. Math. Soc. Colloquim Publications, 1955.
- [2] V.V. NEMYTSKII and V.V. STEPANOV, Qualitative Theory of Differential Equations, Princeton, 1960.
- [3] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.

Present Address:
DEPARTMENT OF MATHEMATICS
FACULTY OF ENGINEERING
KEIO UNIVERSITY
HIYOSHI, YOKOHAMA 223