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Introduction.

It is one of the most important problems in the theory of topological
dynamics to determine what space can be a minimal set under a con-
tinuous flow. For example, it has been conjectured that there is no
minimal flow on the 3-sphere S:. In this paper, we shall study the first
cohomology of minimal sets.

It is known that the space on which an almost periodic minimal flow
or a distal minimal flow exists has a non-trivial first cohomology group.
However the “almost periodicity” and the “distality” are both destroyed
by a time-change, while the “minimality’” is invariant by a time-change.
The method for calculating the first cohomology of minial sets which is
exhibited in this paper is quite independent of the parametrization by the
time.

In §3 we will establish a method for calculating the first cohomology
of a minimal set from certain 0-th cohomology groups. As an application
of the consequence of §3, we can get a method for deciding the first
cohomology of a minimal set which forms a 3-dimensional manifold (§ 4,
Theorems 1 and 2). And in §5 we will investigate on 1l-cycles of a 3-
dimensional minimal set. §1 and §2 are preliminaries. Higher dimen-
sional cases can be treated by the same way, but it seems to be impos-
sible to prove the non-triviality of the first cohomology of a minimal set
by our method in the case of higher dimensional manifolds. Hence we
do not treat the higher dimensional case in this paper. In the case of
3-manifolds, our method seems to be useful for the proof of the non-
triviality of the first cohomology of a minimal set.

In the case when the minimal set is a two dimensional manifold,
using our method, we can decide the first cohomology of it completely.
But it is well-known that the only two dimensional manifold admitting
a minimal flow on it is the 2-torus. Therefore the results for two
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dimensional minimal sets are only stated in the appendix.

§1. Preliminaries.

Let (Y, p,) or simply o, be a flow on a compact metric space Y; i.e.,
p. is a homeomorphism of Y for each real number ¢ and p,,,=p,°p, for
any two reals ¢t and s. If ACY and JCR (R is the set of real numbers),
we write A-Jor (A-J),, for {0.(¥)lteJ, yc A}. A subset N on Y is said
to be a minimal set if {y}-R=N for any ye N. Especially if Y is a
minimal set, then we call (Y, p,) a minimal flow on Y.

DEFINITION 1. A subset Y of Y is said to be a local section of the
flow p, if it satisfies: '

(1) h:Zx(—p, p)—F-(—p, ¢) defined by h(y, t)=p,(y) is a homeo-
morphism for some ¢>0. (y¢ is called a collar-size for X.)

(i) 2X-.J is an open subset of Y if J is open in R.
Moreover if 3 is compact, then we call it a global section.

LEMMA 1. Let (Y, 0,) be a minimal flow and S={y,}- -Z (Y€ Y). If
S+Y, then S is a global section of (Y, p,), where Z is the set of im-
tegers.

PROOF. It is proved in [1] that if S+ Y, then there is a positve
number 7 such that {t|o(y)eS}={nrlnec Z} for any yeS and p.(S)N
P.(S)=@ for 0<t<s<r. Therefore the condition (i) in Definition 1 is
satisfied by p¢<7/2. We shall show the condition (ii). Suppose J=(0, d)
(6<r) and take a sequence {z;}C Y\S-J. Since Y=35-(0, 7], we can choose
sequences {y;}cS and {¢;}c[d, ] such that 0. (y;)=x;. Hence we have
that if «;—x, then z,=p, (¥, for some t,€[d, ] and y,€S. This shows
that the condition (ii) holds for J=(0, §). Evidently S-(0, §) is homeo-
morphic to S-(t, t+06) for any ¢, so it follows that (ii) is satisfied by any
open J. This completes the proof.

LEMMA 2. Let (Y, p,) be a minimal flow and X be a local section.
Then for each y€Y there exists a sequence {t;} (§=0, +1, +2, --+) of
reals such that 0,<t;.,—t;<0, for some positive constants J,, d,, and
e(y)e X if and only if t=t; for some j.

PrOOF. First take 9, so that 6, <p where ¢ is a collar-size for 3.
By the minimality of p,, we can see that there exists a relatively dense
subset L, of R such that o, (y)eZX.(—4é, d,) for te L, (see [2]). Hence
we can take a sequence {t;} with the desired properties.
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§2. A flow associated with a local section.

Throughout this section and the next, (M, &) will be a minimal flow
on a compact metric space M. Let 2 be the set of all continuous funec-
tions on R with the compact-open topology, and 7, be a flow on Q defined
by 7.(g)(8)=g(t+s).

Now take a local section Y of (M, &) and a point x,€ M, and let {¢;}
be the sequence for z, as in Lemma 2. Then we can construct a uniformly
continuous function f such that f(¢)>¢>0 for some constant ¢ and any
t, and

| rwdt=1 (=0, £1, 22, ).

Define a flow {, on MxQ by .z, g)=(&.(x), 7.(9)) (xe M, g€ ). Since
({f}-R),, is compact because of the uniform continuity of f, there is a
compact minimal set M of the flow ¢, in ({(x,, H}-R).,, and (M,¢,) is a
minimal flow. By p we denote the natural projection p: M— M. It is
easy to see that po{,=¢&0p.

LEMMA 3. Let 3’ be a local section such that 3'>%. Then p (2)U
pH(ZN\Z)=p H(I").

PrOOF. Since (03:R),, does not contain an open set of M, there
exists a point x, € M such that ({x,}-R),, has no common points with 92.
Let #=(x,, g) be a point of M, then by the minimality we have
({#%.}-R).,=M. Obviously x€ 3 or z € 3'\3 if ze€3'N({x,}:R),, whence we
obtain the consequence of the lemma.

LEMMA 4. p7%2) %8 a global section of (M, 2,).

PrROOF. Let N=({f}:-R),,cQ and F: MXxN—R be a function defined
by Fl(x, 9)=¢g(0) (xe M, ge N). Moreover define 6: MX NXR— R by

0@, g, )=\ F(C.(x, 9))ds .

Because F'’>0, o(z, g, -) is monotone. Hence if we define £, by . (z, g)=
C«(x, g) where o=0(x, g, t), then g, is a flow on Mx N. Evidently (11, &,
is also a minimal flow. Now let (x, g,) be a point of p»p7'(¥) and
S=({x, 9.)}-Z);,- Then, by Lemma 1, § is a global section of (#,¢,) so
of (M, ¢, if $+M.

First we shall show that p%(IX)cScp (3. If (x, g)ep (), then
there exists a sequence {(x;, g;,)})C» *(2) such that (x;, g;)—(x, g0 and
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Css(2yy 9.)=(®;, g;) for some s;. From the definition of f, it follows that
a(wl, g:, 8;) is an integer for each ,7, and hence that (x;, g;) is contained
in 3. This implies that p“(E)CZ’ On the other hand, if k=o(x, g, 3)
is an integer, then we have »{.(x, ¢.))=pC.(x, g))eZ. So we obtain
Scp(d). .

Now let us show that 3= p“‘(Z’) If not, then, because of Lemma
3, we can take a sequence {x;;c3"\3 (so p~(x;)N =) so that there is
a sequence {%;} such that %€ p~(x;) and %, tends to a point of 3. But
this contradicts with the openness of X.(—p, ¢). This completes the
proof.

LEMMA 5. We can choose the fumnction f so that p~'(x) s totally
disconnected for any x € M.

PRrROOF. Let K=sup,.,inf{t>0|s,(x) € X} and ¢ be a collar-size for 3.
Define a family of functions {?,}C Q2 (#<r<K) so that it satisfies:

(a) @.(t)=¢ for t<0 and t=7,

(b) @.(t)>¢ for 0<t<r,

© | owa=1,

(d) 'ro—+ @, is a homeomorphism.
where ¢ is a constant such that 0<e<1/K. For a sequence o={s;} such
that p¢<s;,,—s;<K, define ¥(o;t) to be

U(o;t)=0,(t—s;) if 8;<t<s;, and s;,—s;=7r.

For a point x of M, we denote by ¢* a sequence of reals such that
teo® if and only if &,(x)e X, and by o% a sequence such that t oz if
and only if £(x)e 3. Setting f(t)=¥(o%;t) (x,€ M), we show that (M, £,
constructed by the same way as above has the desired property. For
each point x of M, E, denotes a family of sequences of reals E,=
{olo*cocoi}. Then it is easy to see that if (x, g) € p7'(x), then g(t)=
¥(o;t) for some g€ F,. On the other hand, if we define «: E,—2% by

0 if 8;€0

£(0)(9) = if s;¢0

where 0¢%={s;}, then £ induces a homeomorphism (¥ (o; -)|occ E,}—2%.
This implies that p~*(x) is homeomorphic to a closed subset of the Cantor
set, which proves the lemma.

PROPOSITION 1. For a minimal flow (M, &) and a local section 3,
there exists a minimal flow (M, C,) with the following properties:
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(i) M is a compact metric space,

(ii) there is a continuous map p: M— M such that pol,=E&.p,
(iii) P X(2) is a global section of (M, C,),

(iv) P (2) is totally disconmected; i.e., dim(p~*(2))=0.

Proor. Let {U;} (U,=2) be a countable base of open sets of 3.
Then each U; is a local section. Therefore, by Lemmas 4 and 5, we can
construct a minimal flow (M;, ") for each j so that

(a) M, is a compact metric space,

(b) there is a homomorphism p;: M;— M of flows,

(¢) p;(U;) is a global section of (I;, ¢{),

(d) p;j'(x) is totally disconnected for any x e M.

Fix a point z,€ M and take points a; in p;(x,)C ;. Let M be a
minimal set of ([ M;, £,) which is included in the orbit closure of the
point a,=1la;, where (. (I1¥;)=11¢"(y;)- Then it is clear that M is
-a compact metric space and there is a homomorphism p: M —M of
flows.

By \; we denote the projection N;: M— M,. It can be easily seen
that we may assume that p(a,)=«, and that p=p;on; for any j if
play)=u,. So we assume that p=p;on; for any 5. Then 3;,=x;'(p;(Uj))
is a global section of (I, ¢,). We shall show that F; coincides with
p (U;. It is trivial that p~(U;)cf;cp *(U;). Therefore, by the same
reasoning used in Lemmas 3 and 4, we can see that 3; must coincide
with p~'(U,). Especially, putting =0, we have that p(2) is a global
section of (M, &,).

The only thing left to be proved is that dim(p~*(3))=0. To prove
this, it must be noted that »p~*(U;) is open and closed in p~*(%). In fact,
the closedness is clear and the openness follows from the openness of
p (U;)-(—9, ).

Let ¥ be an arbitrary point of p %) and x=p(&). Since p~(x)C
II »;'(x) is totally disconnected, we can find an arbitrarily small neighbor-
hood V of # such that VNp(x) is open and closed in p~'(x). Let
K=p"%x)\V, then we can take a neighborhood W of K so that wnvn
px)=. Hence there exists a U; such that xe U;, WN VNp(U)=0
and WU VopY(U,). Now it is evident that VNp~(U;) is a closed and
open subset of p~*(Y) which contains % For a point ¥ in p~'(0%) there
exists a neighborhood V of % and a point % in p~%(23) such that V is
homeomorphic to some neighborhood of #. This implies that p™'(2) is
totally disconnected and this proves the proposition.
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§3. Cohomology theory.

Let Y be any topological space. We denote by H*(Y) the Alexander
cohomology module of Y with the real coefficients.

Let I' be a presheaf of R-module on Y and % be an open covering
of Y. For ¢=0 define C«(Z :I") to be the module of functions « which
assign to an ordered (¢+1)-tuple U, U, ---, U, of elements of %Z an
element (U, U, ---, U)e '(U,NnU,N ---NU,). A coboundary operator
0:C(z; I')— C'"*z; I') is defined by

g+1

(5“F)( Uo, U, -- *y Uq+1)= Z (_1)j1/f( Uy -, ﬁi ) Uq+1)|UoﬂU1']--- Wi

3=0

where (U,, +--, Uj, +- -, U,.,) denotes the g-tuple obtained by omitting U,.
The cohomology module of the cochain complex C*(Z/; I')={C«(Z ;I), 6}
is denoted by H*(%;I'). The Cech cohomology of Y with coefficients in
I' is defined by H*(Y; F)=l£n{H *(zz:I')}. For the precise definitions,
see [3]. :
In what follows we shall investigate the cohomology of X=
M\(2-(—p, 0)), where X is a local section andN)u is a collar-size for J.
In this section, p denotes the restriction of p: M—>M to X=M\(p (2)-
(—#, 0)),, where (M, ¢,) is the flow constructed in Proposition 1.

Let I, and I', be presheaves on X defined by I'(U)=H*U) and
I, (U)=Hp *(U)) respectively, where U is an open subset of X. Then
p induces a homomorphism p*:I,—I,. Since p* is a monomorphism,
0—-I —I,—I;—0 (I';=Coker(p*)) is an exact sequence. Hence, by the
usual argument of the cohomology theory, we have

LEMMA 6. There ts an exact sequence

0— ﬁO(X; l’l)—>IV{0(X; FQ—»I?O(X; Fa)-——)ﬂ'l(X: F;)—*I:./T‘(X; [)— - .
Moreover we get

LEMMA 7. HYX;I')=HX) and HYX;I,)~H«X) for all q.

PrOOF. Since X and X are metric spaces, they are paracompact.
And HYp~'(x)) is trivial for ¢>0 and any z € X, because p~!(x) is totally
disconnected. Hence this lemma immediately follows from the next
lemma.

LEMMA 8. ([3]) Let h: Y'— Y be a closed continuous map between
paracompact Hausdorff spaces. Suppose H(h (y))=0 for all ye Y and
0<g<mn. Let I be the presheaf on Y defined by I'(U)=Hh(U)). Then
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there are isomorphisms HY; IN~HYY") for q¢<n.
Consequently we obtain
PROPOSITION 2. There 18 an exact sequence
HYX; I,) — HYX; ') — H(X) — 0.

PrROOF. Since p~'(Y) is a global section, it is a strong deformation
retract of X. Hence HX) is isomorphic to H (p~%2)). On the other
hand, H(p~*(2)) is trivial, because dim(p~*(2))=0. Therefore, combining
Lemmas 6 and 7, we have the consequence of the proposition.

§4. The case of 3-manifolds.

In this section, M will be a differentiable 3-dimensional compact
manifold and &, will be a minimal flow on M generated by a C'-vector
field. First we introduce some notations.

NOTATIONS.

(a) For a real valued function F' (not necessarily continuous) defined
on a subset D of M (or M), F' denotes a map F: D—M (or M) defined
by F(x)=¢pwm(x) (or Cpe(x)), where (M, ,) is the flow constructed in
Proposition 2.

(b) Let X be a local section of (M, &,). Then we use the following
notations.

T:: M — R defined by Ts(x)=inf{t>0/s(x)c 3},

BicaX: Bi={xcdX|Ts(x) €3},

BicdX: Bi={xco3|Tx(x)e Bi™'} (§=2,8, ---),
A Aj={we3|Ti@)e Bj}  (j=1,2,83,---),
C:c3: Cs={xe 3| Tx(x) €63} .

Let 2’ be a local section which is C!-submanifold of M and X be an
open subset of 3’ such that 33’ and the boundary 46~ is a C'-submani-
fold of X’. For each point (z, t) €03 X R with &,(x)€0X, we can take a
small piece 7,, of 93 and a C'-function ®,,: 7,.,—R so that ze7,,,
®, (x)=t and @, (7, )23

DEFINITION 2. We say 03 is transversal along the flow at (z,t)e
0¥ X R, if &,(x)¢dX or &,,(7,,. is transversal to 0X at @, (x) in 3.

DEFINITION 3. A local section Y is said to be regular if
(a) X is connected,
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(b) 02 consists of finitely many connected components and each
component is C-diffeomorphic to the circle S,

(¢) BiU TS(B_%) intersects with every component of 9%,

(d) 02X is transversal along the flow at (x, Tx(x)) for any x €92, and
so A% is a finite set, and

(e) Ai=@ for j=2.

LEMMA 9. Let 3 be a local section included in some C* local section
3" and satisfying the conditions (a), (b) and (¢) im Definition 3. Then
there exists a regular local sectiom arbitrarily close to X im the C'-
topology.

PrOOF. For simplicity we shall verify only the case when X is
homeomorphic to a 2-disk. We take (, 8) as the polar coordinate on 3’
and assume Y={r<7,}. Then it follows from the minimality of (M, &,)
that for sufficiently small 6>0 there is a positive number ¢ with the
following properties:

(1) for any 6, there exist continuous functions

Gi,: Dy, ={(r, O)|r,—0<7r<7,+0, 6,—e<0<6,+e}— R (j=1, 2)
such that Gj <0, G3,>0 and Gj (D,)C{r<r,—8} (i=1,2),

(2) |
h: (U {2} < [Go, (@), Goo(@)]) — Usp,={w=£W)lY € Doy (W) =t=G5(y)}

defined by h(x, t)=£&,(x) is a homeomorphism.
Fix such 6 and ¢, and define % to be a function space

F ={fOf e C', f(0+2m)=F(0), 7—0<f(0) <7+ 0} .

For fe. &, we set XY,={(r, O)lr<f(0)}. The subspace .#, of & is
defined as: fe.%,, if and only if 0%, is transversal along the flow at
(2, t) €03, x R whenever {z}-[0, t] (or {x}-[¢, 0])c U,,- Using the property
(2) and the transversality theorem, we can see that &, is open and
dense in .# with respect to the C'-topology. Take finitely many numbers
6., 6, - -, 0, s0 that Uk, Dy, D{r,—0<r<r,+46}, then N}-.. %5, is non-empty.
Take a function f in this set, then we have that 03, is transversal along
the flow at (x,t)edd, xR if ({«x}:]0, t]);,N3;=, and hence that A}, is
finite. Moreover it can be easily seen that for each point a of A there
is an open set U with properties:

(a) U={&()lyesS, 0<t<G(y)} for some SCI; and some continuous
function G: S—R,
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(b) SN A;,={a},

(e) G(S)CEf
Let f’éf(a)eazf for 1<j<n and T,;‘“(a)eZ’f We may assume that
G(a)-— ”“(a), and that there are contmuous functions G;: S—R (7=1, 2,

<o, M) such that G (a)= Txf(a) and G,(S)c3’. Let v; be the connected

component of G;(S)N03, which contains the point G (@), and 7;= ;1(’7;-).
Because 7;’s intersect transversally to each other, we may assume that
7:N7;={a} for 1%j. Hence we can deform f slightly to g so that ¢
satisfies that (i) 03,=03, outside of U, (ii) UNA%,=@ and (iii) 43, is
transversal along the flow at (x,t)cdd, xR if ({«}-[0, t])e,N2Z,=D.
Repeating this process finitely many times, we can get a regular local
section. Since ¢ is arbitrary small, this completes the proof.

In the following of this section, let 3’ be a C'-local section and X
be a regular local section whose closure is contained in 3’.

LEMMA 10. If A} consists of N points, then C:\A: has 2N connected
components.

PROOF. It is evident that T is continuous on C:\A} and Tx(C;\4})=
02\(B; U T.(BL). Hence there is a one-to-one correspondence between the
components of C;\A% and those of d3\(B:U Tx(B3). Since d3\(B3U T:(B2)
has 2N components, also C;\A; has 2N components.

Let Ax={a, a,, ---, ay}. We denote by C,, C,, -+, G,y the components
of C;\As. Then it is easy to see the existence of a neighborhood S,cX
of a, (k=1,2, ---, N) which satisfies the following conditions:

(a) there are continuous functions o, ;: S,i—>R (=1, 2, 8) such that
&k.j(sk)cz’ (j=1, 2)) &k,s(Sk)CZ: and ak,i(a’k)= Tg‘(ak) (j=1, 2, 3)'

(b) S.N(Cs\A%) has exactly three components 7, ; (=1, 2, 3) such
that 6,,(74)C3, Gre(Teo)NE=0 and G;q(7ss) 02

DEFINITION 4.
(i) For 1=<k=N, define integers k(:)) (y =1, 2, 3,4 and 1=</k(7)<2N)
so that C;N7,;# @ (§=1,2, 3) and T.(a:) € Cr-

(i) A 2Nx2N matrix Az=[\;, Ny, -+, Mx] Ov; is 8 2N column vector)
is defined by

(U gy =y Ugy) Ngpmy = Up(1) — Uica)
(uu Woy =2y uzN))'zk:uk(z)—"uk(a)+uk(4) (k’-—:l, 2, ° % ZN) .

The remainder of this section is devoted to the proof of the next
theorem.
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THEOREM 1. Suppose that X 18 a regular local section with the
colla/r-size ¢ and Ay consists of N-points. Let X=M\(Z-(—p, 0»& and

HY(X)—>H'Y>) be the homomorphism induced by the imbedding i: E’->X
Then we have Ker (1*)=R* ™, if rank(A;) m.

Let X, p, I'; etc. be the same as those in section 3. We now define
a special open covering of X. First for 1<k<N, we set

Ui={&(@)r e S, 05t<0,,(x)—/3}N X
i={u@)x €S,y 04,(%) —2/3<E< 0L o(2) — /3N X
Ui={&:(®)|x € Sy, 0us(2)—2¢/8<t =0, (2)—p}N X
- where S, and o,,; are the same as before. Next for x ¢ Cs\A%, we choose
an open neighborhood S; C 3\A: of z so that S;N(C;\A}) is connected and

there are continuous functions o ;:S.,—R (=1, 2) with a;,S,)cY,
0, S)cX and 4., ()= Ti(x) (=1, 2), and we set

Vi={&lyeS., 0=t<o, () — /31N X
‘ Vi={&Wly e 8., 0., () —213<t=0.(¥)— N X .
And for x € Y\C;, we choose an open set W, so that there are an open

neighborhood S;c3\C; and a continuous function o¢;:S;— R such that
0, (SYcY and o) (x)="Ts(x) and W, can be written as

W.={&WlyeS., 0st<a./(y)— 1} .
It is clear that ?/o—{U,,}lsngU{V }zecz\A: U{W.}).excy is an open covering

1=1,2

of X. We may assume, W1thout loss of generality, that UN V is connected
for any U, Ve %,.

DEFINITION 5. For a 2N vector w=(u,, 4, -+, U,y), We define a
collection ¢,={4.(U)}yc.., of functions ¢,(U): p™(U)— R as follows:
(i) if U=U; for some k, then 4,(U)=0,
(ii) if U= U; for some k, then
0 if Fer UM
LU)(@) = i
¢ ( )( ) Ug(s) if X ¢ p—l( Ulg’l)
where Up'={£(x)|x € Si=0:1(0:.(S0) N 2), 04, ()=t <0us(2)—p/3} N X,
(iil) if U=U; for some %k, then
0 if Zep™(UP)
6. (UX)E)=1{ Ui if Zep™(U?
Uno i Tep(UFHUDP™(U?)
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where Up'={s(2)|x € S}=8;%(6:s(S0) N 2), 0,:(0) St <0, (x)— 2} and Upr=
{e@)lx e Si\SLUSY), 0,,.(x) —2p/3<t <0, 4(x)— ) N X,

(iv) if U=V, for some ¢ C;\A%, then 6.(U)=0,

(v) if U=V? for some x € C;\A}, then-

0 if Fep iV
(U = ! s
- (U)(®) u; if Fep (VF) and S,NC;#@

where VE'=(8,y)ly € 6.7(60.(S) N 3), 0 (y) St o(y)— 1),
(vi) if U=W, for some = € 2\C;:, then ¢,(U)=0.

LEMMA 11. Each ¢, (U)e g, is a locally constant Sunction on p~(U).

PROOF.  Because p~'(J) is a global section, P (SN2)Np%S) is open
and closed in p7(S) for any subset S of 3’. Hence p(UFYNp (U}
(k=1,2, ---, N, =2, 38, i=1, 2) and p (V2)Np V2 (we Cs\A}) are open
and closed in p~Y(Uj) and p % V3?) respectively. Therefore, by the defini-
tion of ¢,(U), it is a locally constant function for each Ue Uy

Since H(Y') is isomorphic to the module of locally constant functions
on Y (see [3]), ¢. can be regarded as an element of C(Zy; I'y). Let w
be the homomorphism I,—7I',, We denote by =* the induced homomor-
phism C*(Z; I',)—>C*(Z; I'y) and by z* the homomorphism H*(%; I',) —
H*(z; I'y) or H*(X; I',)— H*(X; I',).

LEMMA 12. 0(n%(¢,))=0 in C %y [ if and only if udy=0.

PROOF. Let {p.)>={y € CAZ,; I,)|n*(y)=n*4,)}. Then it is clear that
0(m*(¢,))=0 if and only if oy € PHCHZ,; I'))cCY#,; I';) for some + € {g,>,
where p* is the homomorphism C*(%; I')—C*(z; I',) induced by p. It
is also evident that v € (g,) if and only if v—g, € pXC(Z,y; I'Y)), and
hence that all the element 4 € (¢,> can be expressed as y(U)=¢,(U)+b,
for any Ue %, where b, is a real constant. : v

Suppose uA;+0. If Uiiz) — Upcp) + Uy %0, then ¢, (UD—¢,(UP) is not
constant on p~'(UiN U}). In the case when u,, — e %0, 6. (U — 6, (V?)
is not constant on p~(UzN V?) for a point x € C,,,NS,. Therefor, noting
that oy is in pYCY%,; I')) if and only if Y (U)—4(V) is constant on
P (UN V) whenever UN V=@, we have that oy & pXCHzy IY)) if vw(U)=
6.(U)+b, and ud;+#0. On the other hand, it is easy to see that ¢,(U)—
$.(V) is constant on p(UN V) for any U Vez, if uds;=0. This
completes the proof.

By this lemma, #n*(¢,) represents an element of H N2y Ty) if uds=0.
We denote by [¢.] the element of H %X; I';) represented by 7m*(s,).



52 IPPEI ISHII

LEMMA 13. Let L={[¢,]luds=0}. Then L i3 a submodule of H(X; I';)
isomorphic to R* ™ where m=rank(4;s). ’

PrOOF. It is clear that [¢,]+[#.]1=[¢us.), S0 L is a submodule. In
order to prove that L~R*™, it is sufficient to show that [¢,]=0 if and
only if #=0. Suppose u;#0, and take a point x€C;. Then ¢,(V)+b#0
for any constant b. Now it is easy to see that =0 in C%%/; I, for
any refinement % of %, if #*(y)=n*(\(4.)), where N\:C*(Zy I[:)—
C*(z ; T',) is the usual homomorphism (see [3]). This implies that [¢,]+#0
if w=0. The converse is trivial hence the proof is completed.

LEMMA 14. Let 0 be an element of HYX;I). If 5*(6)eKer(i%),
then there exists a 2N-vector w such that ud;=0 and [¢,] -0 € Tc*(ﬁ X; Iy)),
where 8* is the homomorphism HX; I'y)— HYX; I')=HYX).

PrOOF. If 6*(6) € Ker(i*), then there is an element '€ C%Z ;%)
such that w*(y')e C%% ; I's) represents 6, where Z is a suitable open
covering of X. Consider the restriction of p onto p P %2). Then, by the
same reasoning as Proposition 2, we get an exact sequence H (3; Iy)—
HYS:; ) —HYZ). On the other hand, if follows from Lemma 8 that
H F; )= H(p~*(3)). Therefore, taking a refinement if necessary, we
can find a locally constant function 4° on »(3) and an element 4 of
CYZ; I';) such that m*(y)=7n*(y’) and y(U)=+° on p"(U)Np~(2) if it is
non-empty. '

Now take a point 2€C;. We can choose a neighborhood SCX of x
and sequences {t;}7_o, {ti}t=0 (8e=0, £;<t; ., <t;<tji1, ta < Ts(x)<t,) so that
S’'=SNS, is connected and S’-[t;, t;]c U, for some U;€ % . Then, because
ot (y)=0 in CHZ; I's), ¥(U;.)—+(U;) is constant on Pp~Y(S")[t;44 t;] for
each j. Therefore, since ¥(U) is locally constant for any Ue Z, (%, )=
(U (F)—¥*(E) is a constant on »p~'(S")x[t,, t.] which we denote by
w;(+). We must show that this constant does not depend on the choice
of a point x€C;. Let 2’ €C;, To(x)e U and U'NU,#@. Then, because
(U —(U,)=0 on p(U)Np(U,)Np~(2) and we may assume (U")—

+(U,) is constant on p~*(U’ N U,), we have 4(U")—y( U,)=0o0np(U'N U,).
This implies that u;(y) is a constant determined only by j and +.

Setting u(yr) = (u,(v), uz(a,lr), -« «, Uyn(¥)), we shall show u(4)4:=0. Take

a,c A, and Ue Z so that Ts(a,) € U, then we have

Uiy (P) if @) e(S\SHNS;

U)C(®) — @)=
"ﬁ‘( )(C (w)) ¥ (x) uk(z)("l") if p(w) € (Sk\S )\S2 (a=0k,,(p(':§)))
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where S,, Si and o,, are those given in Definition 5. Since it is shown
that Y(U)C(E)) —+%&E) is constant on some neighborhood of a,, we obtain
the equality e (¥)—Ure(¥)=0. In order to prove u,u(¥)—Urw(¥)+
Up(¥)=0, take an element Ve Z so that T¥a,) e V. Then we can see
that

Ui (V) if p@)e (Sk\'y—z)\sﬁ and 0=0,,.(p(%))

Upo(¥)  if  p(&) e 6., ((S\SHNSL) and
0=0,,(0%:(0(%)) — 04,,(F%5(P(E)) .

P(V)CoAZ)) — (&) =

Let U be an element of % containing the point T:(a,), and S be a subset
of 3’ such that S'=8N6,,,(S,\S%) is connected and S'-[¢;, t;]]c U; € ZZ(U,= U,
U,=V) for some sequences {¢;}i, and {tj}j-o (£, =0, t;<t;n<t;<tju)-
Then we get
Uiy (P) — Uiy (V) for p(&) e 8"\, 1(S ’

: t,<t<t.,

(Upo(y)  for pE)eS' NG, (Sh), t.<t<t..

P(VIELE) — (U XE)=

Since ¥ (U;,,)—(U,) is constant on p~%(S')-[t;,, ti], we must have
Upie) (V) — Uiy () =Ur(v). This proves that u(y) is a solution of uwA:=0.

Now let us verify that [¢u(¢)]——0erc*(f1°(X; I'y)). To prove this, it
is sufficient to show that O0(A(guy))—¥+x)=0 in CY%;I,) for some
x € pH(C%(Z ; I',)) where we assume that %/ is a refinement of %/, and »
is the usual homomorphism CX%,; I',)—C%(Z;I';). It is now easy to
see that for each Ue % there is a constant b, such that —\(¢,w(U)+
W(U)=+ T\ +b, where T,(x)= sup{t<0|Ct(x)€p‘1(2)} Because % T, is
a locally constant function on X, {4 T*lp—l(m},,e,, e C#; I',) is a cocycle.
Hence, putting x(U)=b,, we get x € p"(C%(Z; I'))) and d(M@uy) — ¥+ X)) =0.
This completes the proof.

LEmMMA 15. #n*(H'X; I';)) N L={0}.

Proor. Suppose u;#0, and take a point x € C;. Then we can choose
a sequence U, U, -+, U, of elements of %, so that U,=V;, U,=V; and
UnU.. NI+ for 2<i<n (U,,,=U,). From the definition of ¢, it
follows that &(U,)—¢(U)=u; and &(U,,,)—¢(U,)=0 for 2=i=mn, hence
that oy %0 in C(%Z,; I,) for any +€{4,>. It is now easy to see that
for any refinement % of %/, there is no element € C°(% ; I';) such that
0y =0 and 7*(y)=7*(\(¢,)). This proves the lemma.

PROOF OF THEOREM 1. Let a be an element of Ker(:*). According
to Proposition 2, we can choose an element ¢ of Iv{°(X; I';)) such that
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0*0=a. Therefore it follows from Lemma 14 that Ker(i*)cé*(L). On

the other hand, it is evident that 6*([4,]) is contained in Ker (i*) for any

element [¢,] of L. Hence, using Proposition 2 and Lemma 13, 15, we

get Ker(i*):L/:r*(IvI"(X; I'))NL=L=~R*"™, This completes the proof.
As a special case, we can prove

THEOREM 2. Let I be a regular local section homeomorphic to a
2-disk and Ar consist of N-points. If rank(Ay)=m, then H'(M)~R¥—=,

PROOF. Because H'(J) is trivial, it follows from Theorem 1 that
HYX) is isomorphic to R* ™. Hence it is sufficient to show that
BY(X)=~H\M). '

Consider the following Mayer-Vietoris exact sequence

- — H(X N (M\X)) — H(M) —» H(X)QHM\X) > B XNMNX))— - -+

where H*(-) denotes the reduced singular cohomology. Because M\X is
homeomorphic to a 3-disk and XN(M\X) to a 2-sphere, there is an
isomorphism H'M)~H!X). Since M and X are manifolds, we get
H(X)=~H(X)=H(M)=H"(M). This completes the proof.

§5. 1-cycles.

Again let £, be a minimal flow on a 3-dimensional manifold M, and
2 be a regular local section with the collar-size ¢ which is homeomorphic
to a 2-disk. In this section we will investigate on l-cycles of M.

Let Z be an open covering of X=M\Y-(—g, 0), and we C(%; R)
be a cocycle. Now we shall define the integral of @ along a circle. Let
7:[a, b]— X (a<b, 7(a)="(b)) be a closed continuous curve, and choose a
partition a=1%,<t,<---<t,=b of [a, b] such that there are elements U;
(1=1,2, ---, k) of Zr such that v([t;_, t;])c U;. And define

Ir(w) = 0)( Uz» U1) + (D( Ua’ Uz) R 0)( Uk’ Uk—1) + (0( Uv Uk) .

Using the cocycle condition, one can show that I,(w) does not depend on
the choice of U; (1=j<k), and that for another covering %’ and a
cocycle 0’ e C{(Z’; R) I(w)=I(w') if ® and @' are in the same class of
HYX; R). Moreover one can easily show that I(w)=I.(®) if [Ty, xim=
[l x:m- Thus we can set

S [w]bvtl(x:m = 7(0)) .
1z, (x:m)

Let A consist of N points, and C; (=12, ---, 2N) be the com-



COHOMOLOGY GROUP OF A MINIMAL SET 55

ponents of C;\As. For a point zeCj, let 7;,:[0, 1] > X be a continuous
curve such that 7v;,c%, 7,.(0)=T:(x) and 7,,(1)==, and let ¥}, be a
continuous curve defined by 7} (t)=¢,(x) (0Zt< Tx(x)). Then v; =7 .+77,
is a closed curve. Because X is homeomorphic to a disk, [7;.ls,x:» and
[7s,0lz,00:0 do not depend on the point x € C; and the curve 7;,. Hence
we write [Yly,x:m OF [Vilu,uem instead of [7;.luxim O [Vialu,urim
respectively.

PROPOSITION 3. Suppose X is a regular section homeomorphic to a
2-disk for which A% comsists of N points. Let C; (§=1,2, +---,2N) be
the components of C:\As, and [V;lu,u,» be that defined above. If udz=0
has a solution whose j-th component does mot vanish, then [7;lu,a:m#0.

PROOF. Let u=(u,, %, -+, u,y) satisfy the equation uA;=0, and ¢,
be that in Definition 5. Then we can see that

(1) [0*[g 1 xim =%

S[Tj]Hl(X;R)

(see the proof of Lemma 15). Since I is homeomorphic to a disk,
H,(X; R) is isomorphic to H,(M; R). Therefore (1) implies the consequence
of the proposition.

PROPOSITION 4. Under the same assumption as Proposition 3,
H\(M; R) is spanned by {[Vilm,onm; 5=1,2, -++, 2N}.

ProOOF. Let u=(u,, U, -+, Uyy) be a solution of u4;=0. If

S [0*[¢u]l 1 z: =0
(751 (x:R)

for any 5=1,2, ---, 2N, then by means of (1) we have w=0. On the
other hand, according to Theorem 2, for any e H'(X;R) there is a
solution 4 of uAd;=0 such that w=0*[4,].

Suppose there is a closed curve 7 such that [Y]u,u:» is independent
of {[7ilu,:m; 1=37=2N}. Because the local section X is homeomorphic
to a disk, we may assume that YC X and [7]z,x: is not included in the
subspace spanned by {[7;ls,x:m; 1=7=2N}. Therefore there is an element

w of H (X; R) such that

S 0+0
rla, (xR

but

S w=0
[rilm, (x:my
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for any j=1,2, ---,2N. It is now clear that for such @ there is no
solution u of uA4;=0 such that w=0*[¢,]. This is a contradiction and
the proof is complete.

APPENDIX

Theorem 2 implies that, in order to prove the conjecture that there
is no minimal flow on 8% it is sufficient to show that if there is a
minimal flow on S?% then one can construct a regular local section 3 such
that Y~D* and 2N-vectors \,, -+, A,y are not linearly independent where
Aé'.':[)"n °t % sz]-

Also in the case when the dimension of minimal sets is greater than
3, we can get the results analogous to Theorems 1, 2 and Propositions
3, 4. However the matrix corresponding to A4; is not square in this
higher dimensional case.

In the two dimensional case it is proved by our method that if M
is a two dimensional manifold on which a minimal flow exists, then
HYM; R)=R*. This gives another proof for the fact there is no minimal
flow on the Klein bottle.
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