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On the Volume Elements on an Expansive Set
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In [6], J. Moser proved that the group $\mathcal{D}(M)$ of all $C^{\infty}$-diffeomorphisms
of a compact connected $C^{\infty}$-manifold $M$ with $\partial M=\emptyset$ acts transitively on
the space SX of all $C^{\infty}$-volume elements with total volume one, where the
action is of course given by the pullback $\varphi^{*}dV$ for $\varphi\in \mathcal{D}(M)$ and $ dV\in$ ’T.

Moreover the mapping $\Phi:\mathcal{D}(M)\rightarrow\gamma$
’ given by $\Phi(\varphi)=\varphi^{*}dV$ for any

fixed $ dV\in\Psi$
’ defines a structure of principal fibre bundle with the fibre

$\mathcal{D}_{dV}(M)=\{\varphi\in \mathcal{D}(M);\varphi^{*}dV=dV\}$ , where the topologies are given by the
$C^{\infty}$-topology. Since ST is convex, the above principal bundle turns out to
be trivial, and hence $\mathcal{D}(M)$ is homeomorphic to $\mathcal{D}_{dV}(M)\times$ ST (cf. [8], [1],
[9]). Especially, $\mathcal{D}_{dV}(M)$ is homotopically equivalent with $\mathcal{D}(M)$ .

The purpose of this note is to show that a little weaker theorem
holds for a wider class of compact sets, I.e., orientable expansive sets
with nonvoid connected interior $S$ such that $S=\overline{\prime S}$. Namely, in such a
compact set $S$ , the inclusion $i:\mathcal{D}_{dV}(S)\rightarrow \mathcal{D}(S)$ gives a weak homotopy
equivalence.

\S 1. Preliminaries and the precise statement of the theorem.

Let $N$ be an n-dimesional smooth $(C^{\infty}-)$ manifold and $S$ a compact
subset of $N$. By $T_{s}^{\prime}$ we denote the restriction of the tangent bundle $T_{N}$

onto $S$ . Functions, vector fields (sections of $T_{s}^{\prime}$ ) or p-forms (sections of
the exterior product $\wedge^{p}T_{s}^{\prime}$ ) are said to be smooth if they can be extended
smoothly on a neighborhood of $S$ in $N$. A smooth vector field $u$ on $S$

is called a strictly tangent vector field on $S$ if the integral curves of an
extension $\tilde{u}$ of $u$ with initial points in $S$ are contained in $S$ for $-\infty<t<\infty$ .
This property for $u$ does not depend on the choice of extension $\tilde{u}$ . By
$\Gamma(T_{s})$ , we denote the totality of smooth strictly tangent vector fields on
$S$ . As it will be proved in the next section, $\Gamma(T_{s})$ is a Lie algebra under
the usual Lie bracket product and a $\Gamma(1_{s})$-module, where $\Gamma(1_{S})$ is the
ring of all $C^{\infty}$-functions on $S$ .
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A mapping $\varphi$ of $S$ onto $S$ is said to be a $G^{\infty}$-difeomorphism of $S$ if
$\varphi$ can be extended to a $C^{\infty}$-diffeomorphism of a neighborhood of $S$ onto
another one of $S$ . The group of all $C^{\infty}$-diffeomorphisms of $S$ will be
denoted by $\mathcal{D}(S)$ . A compact subset $S$ of $N$ will be called an expansive
set, if for each $x\in S$ there is $X_{x}\in\Gamma(T_{s})$ such that $X.(x)=0$ and there is
an extension $\tilde{X}_{x}$ of $X_{x}$ with the following property (P):

(P) The eigenvalues of the linear part of $\tilde{X}_{x}$ at $x$ are real and positive.

We call such X. an expansive vector field on $S$ at $x$ . Remark at first
that for any $xe’ S$ , there is an expansive vector field on $S$ at $x$ . There-
fore the above condition for expansive sets is only related to the shape
of $S-S$ . However, if $S\neq\overline{S}$, then the property (P) may depend on the
choice of extension $X_{x}$ . A compact cornered manifold is an important
example of expansive set. Moreover a subset such as $\{(x, y)eR^{2};x^{3}-y^{2}\geqq 0$ ,
$x^{2}+y^{2}\leqq 1\}$ is an expansive set. An expansive vector field at the origin is
given by

$\frac{1}{3}x\frac{\partial}{\partial x}+\frac{1}{2}y\frac{\partial}{\partial y}$

multiplied by an appropriate cut off function.
Note that if $\overline{S}\neq S$ , then it is rather hard to define the $C^{\infty}$-topology

on $\Gamma(T_{s}),$ $\Gamma(1_{s})$ or $\mathcal{D}(S)$ . So, for the simplicity we assume $\overline{S}=S$

throughout this note. Under this condition, $\mathcal{D}(S)$ is a topological group
in the $C^{\infty}$-topology. Now, assume that $S$ has an orientable neighborhood
in $N$, and let $\tilde{\ovalbox{\tt\small REJECT}_{s}}$ be the totality of $C^{\infty}$-volume forms on $S$ with the
$C^{\infty}$-topology. If $S$ is an expansive set, then it is not hard to see that $S$

is a measurable set by every dVe $\Psi_{s}^{\backslash }\sim$ . (See \S 3.) Let $\Psi_{S}=\{dVe\tilde{r}_{s}$ ;
$\int_{S}dV=1\}$ . Then $\Psi_{s}^{\neg}$ is a closed convex subset of $\tilde{\ovalbox{\tt\small REJECT}}_{S}$ .

Let $\delta^{k+1}$ be the unit closed disk in $R^{k+1}$ with the origin $0$ as the
center, and $\sigma^{k}$ the boundary of $\delta^{k+1}$ . The statement to be proved in this
note is as follows:

THEOREM. Let $S$ be a compact expansive set in $N$ with orientable
neighborhood and with nonvoid connected interior $S$ such that $\overline{S}=S$ .
For an arbitrary $k$ , let $h:\sigma^{k}\rightarrow\chi_{S^{\backslash }}$ be a continuous mapping. Then there
is a continuous mapping $H:\delta^{k+1}\rightarrow \mathcal{D}(S)$ such that $H(O)=identity$ and
$H(q)^{*}dV_{0}=h(q)$ for $qe\sigma^{k}$ , where $dV_{0}$ is a prescribed element in ST.

Apply the above theorem to the case $k=0$ , and we have that the
group $\mathcal{D}(S)$ acts transitively on ST. Moreover it is not hard to see the
following:
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COROLLARY. Let $\mathcal{D}_{dV_{0}}(S)=\{\varphi\in \mathcal{D}(S);\varphi^{*}dV_{0}=dV_{0}\}$ . Notations and
assumptions being as above, the inclusion $i:\mathcal{D}_{dV_{0}}(S)\rightarrow \mathcal{D}(S)$ gives a
weak homotopy equivalence, i.e., $\pi_{*}(\mathcal{D}_{dV_{0}}^{0}(S))\rightarrow\pi_{*}(\mathcal{D}(S))$ is an iso-
morphism.

REMARK. If $\mathcal{D}_{dV_{0}}(S)$ and $\mathcal{D}(S)$ are ANR (absolute neighborhood
retract), then Theorem 15 in [11] shows that the above $i$ gives a homotopy
equivalence. However, there is no simple method to prove $\mathcal{D}_{dV_{0}}(S)$ or
$\mathcal{D}(S)$ is ANR.

For the later use, we shall define notions of smoothness of mappings
in the remainder of this section. Let $W$ be an open subset of a
$C^{\infty}$-manifold $N’$ . A mapping $\varphi:W\rightarrow \mathcal{D}(S)$ is said to be smooth if there
are open neighborhoods $U,$ $U^{\prime}$ of $W\times S$ in $W\times N$, and a smooth diffe-
omorphism $\tilde{\Phi}:U\rightarrow U^{\prime}$ such that (a) $\Phi$ can be written in the form $\Phi(w, x)=$

$(w,\overline{\varphi}(w)(x))$ , and (b) $\tilde{\varphi}(w):U_{w}\rightarrow U_{w}^{\prime}$ is an extension of $\varphi(w)$ , where $U_{w}=$

$U\cap(\{w\}\times N),$ $U_{w}^{\prime}=U^{\prime}\cap(\{w\}\times N)$ . Let $T$ be a compact subset of $N^{\prime}$ . A
mapping $\psi;T\rightarrow \mathcal{D}(S)$ is said to be smooth if $\psi$ can be extended to a
smooth mapping of an open neighborhood of $T$ into $\mathcal{D}(S)$ . We denote
by $\leftarrow/\nearrow\swarrow(T, \mathcal{D}(S))$ the totality of smooth mappings of $T$ into $\mathcal{D}(S)$ . If
$T$ is an interval $[a, b],$ $\psi$ is called a smooth arc in $\mathcal{D}(S)$ .

Let $E$ be a $C^{\infty}$-vector bundle on $N$ and $E_{s}^{\prime}$ the restriction of $E$ onto
$S$ . By $\Gamma(E_{s}^{\prime})$ we denote the space of all $C^{\infty}$-sections of $E_{s}^{\prime}$ . A mapping
$\psi:T\rightarrow\Gamma(E_{s}^{\prime})$ is said to be smooth, if there are neighborhoods $W_{T},$ $V_{s}$ of
$T,$ $S$ respectively in $N’,$ $N$ and a mapping $\tilde{\psi}$ of $W_{T}$ into $\Gamma(E_{s}^{\prime})$ which
extends $\psi$ such that $\tilde{\psi}(w)(x)$ is smooth with respect to $(w, x)\in W_{T}\times V_{s}$ .
By $\leftarrow\ovalbox{\tt\small REJECT}(T, \Gamma(E_{s}^{\prime}))$ we denote the totality of smooth mappings of $T$ into
$\Gamma(E_{s}^{\prime})$ .

Let $E_{1},$ $E_{2}$ are $C^{\infty}$-vector bundles on $N$ and $F=E_{1}\otimes E_{2}^{*}$ . Then there
is a natural evaluation mapping $ ev:\mathscr{M}\swarrow(T, \Gamma(F_{s}^{\prime}))\times \mathscr{M}\swarrow(T, \Gamma(E_{2,S}^{\prime}))\rightarrow$

$\vee\nearrow\swarrow(T, \Gamma(E_{1,S}^{\prime}))$ , defined by $ev(A, v)(t)(x)=A(t)(x)v(t)(x)$ , where $teT$ and
$x\in S$ . Let $GL(E)$ be the bundle of the fibre isomorphisms of $E$ onto
itself, and $GL(E_{s}^{\prime})$ its restriction to $S$ . The space $\swarrow\swarrow(T, \Gamma(GL(E_{s}^{\prime})))$ is
defined by the same manner as above. The group inversion defines
naturally a mapping $i$ of $\swarrow\swarrow(T, \Gamma(GL(E_{s}^{\prime})))$ onto itself. Now, assume
that $\overline{T}=T$ , $’\overline{S}=S$ . Then, the $C^{\infty}$-topologies can be well-defined on
$\mathscr{M}\swarrow(T, \mathcal{D}(S)),$ $\leftarrow\nearrow\ovalbox{\tt\small REJECT}(T, \Gamma(E_{s}^{\prime}))$ and $\swarrow\swarrow(T, \Gamma(GL(E_{s}^{\prime})))$ by regarding each
element as a mapping from $T\times S$ . The following continuity lemma is
easy to prove:

LEMMA 1.1. Notations and assumptions being as above, $ev$ and $i$

are continuous in the $C^{\infty}$-topology.
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A system $\{E, E^{k}, k\geqq 0\}$ ( $k’ s$ are integers) is called an ILB-system if
each $E^{k}$ is a Banach space, $E^{k+1}$ is bounded-linearly and densely imbedded
in $E^{k}$ and $E$ is the intersection of all $E^{k}$ with the inverse limit topology
(cf. [10] Chap. I). By $\mathscr{M}^{r}(T, E^{k})$ we denote the space of all $C^{r}$-mappings
of $T$ into $E^{k}$ , where the smoothness should be understood by the same
manner as in the case of $C^{\infty}$ . Since $\overline{T}=T,$ $\mathscr{M}^{r}(T, E^{k})$ is a Banach space
in the $C^{r}$-uniform topology, and $\mathscr{M}^{r}(T, E^{k+1})$ is bounded-linearly and
densely imbedded in . $\mathscr{A}^{r}(T, E^{k})$ . Let $\mathscr{M}(T, E)$ be the intersection of
all $\mathscr{M}^{k}(T, E^{k})$ with the inverse limit topology. Then $\{\mathscr{M}(T, E),$ $\mathscr{M}^{k}(T, E^{k})$ ,
$k\geqq 0\}$ is an ILB-system. An element $of\swarrow\swarrow(T, E)$ will be called a smooth
mapping of $T$ into $E$. Let $\{F, F^{k}, k\geqq 0\}$ be another ILB-system. A linear
mapping $A:E\rightarrow F$ is said to be $or\cdot de\gamma r$ if $A$ can be extended to a con-
tinuous mapping $A:E^{k+r}\rightarrow F^{k}$ for every $k$ such that $ k+\gamma$ $k\geqq 0$ . We
denote by $L_{r}(E, F)$ the linear space of all linear mappings of order $r$ ,
and by $L_{r}^{k}$ its completion by the norm $|||A|||_{k}=\max\{||A||_{i};\max(O, \gamma)\leqq i\leqq k\}$ ,
where $||A||_{i}$ is the operator norm of $A:E^{:+r}\rightarrow F^{:}$ . Obviously, $\{L_{r}(E, F)$ ,
$L_{r}^{k},$ $k\geqq\max(r, 0)$ } is an ILB-system. Therefore one can define the space
$\swarrow\swarrow(T, L_{r}(E, F))$ . Let $GL_{r}(E, F)$ be the totality of $A$ $eL_{r}(E, F)$ such that
$A$ can be extended to a continuous bijection of $E^{k+r}$ onto $F^{k}$ for every
$k$ such that $k+r,$ $k\geqq 0$ . A mapping $\varphi:T\rightarrow GL_{r}(E, F)$ is said to be smooth,
if $\varphi:T\rightarrow L_{r}(E, F)$ is smooth. The following lemma is not hard to prove:

LEMMA 1.2. Notations and assumptions being as above,

$ev:\swarrow d(T, L_{r}(E, F))\times \mathscr{M}\swarrow(T, E)\rightarrow \mathscr{M}(T, F)$

$i:\swarrow\swarrow(T, GL_{r}(E, F))\rightarrow’ \mathscr{F}(T, GL_{-r}(F, E))$

are continuous, where $ev(A, u)(t)=A(t)u(t)$ and $(iA)(t)=A(t)^{-1}$ .
\S 2. The group $\mathcal{D}(S)$ and the Lie algebra $\Gamma(T_{s})$ .
Let $S$ be a compact subset of $N$. Without loss of generality, one

may assume that $N$ is a compact manifold with $C^{\infty}$ boundary $\partial N$ such
that $ S\cap\partial N=\emptyset$ . Since $N$ itself is an expansive set, the group $\mathcal{D}(N)$ is
defined by the same manner as above. $\mathcal{D}(N)$ is a strong ILB-Lie group
(cf. [9]) with the Lie algebra $\Gamma(T_{N})$ , where $\Gamma(T_{N})$ is the totality of
$C^{\infty}$-vector fields $\tilde{u}$ on $N$ such that $\tilde{u}|\partial N$ are tangent vector fields on $\partial N$

(cf. [9] II. 4 or [10] Chap. 8, \S 7). We denote by $\mathcal{D}_{s}(N)$ the group
$\{\tilde{\varphi}\in \mathcal{D}(N);\tilde{\varphi}(S)=S\}$ , and by $\mathcal{D}_{S,0}(N)$ the group { $\tilde{\varphi}\in \mathcal{D}_{S}(N);\tilde{\varphi}(x)=x$ for
every $xeS$}. $\mathcal{D}_{S,0}(N)$ is a closed normal subgroup of $\mathcal{D}_{s}(N)$ . Let $\Gamma_{S}(T_{N})$

be the totality of $\tilde{u}e\Gamma(T_{N})$ such that exp $t\tilde{u}e\mathcal{D}_{S}(N)$ for $-\infty<t<\infty$ ,
where exp $t\tilde{u}$ is the one parameter subgroup generated by $\tilde{u}$ . Since
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$\mathcal{D}_{S}(N)$ is a closed subgroup of $\mathcal{D}(N),$ $\Gamma_{S}(T_{N})$ is a closed Lie subalgebra
of $\Gamma(T_{N})$ (cf. 1.4.1 Theorem [9]). Set $\Gamma_{S,0}(T_{N})=\{\tilde{u}e\Gamma_{S}(T_{N});\tilde{u}|S\equiv 0\}$ . It
is clear that $\Gamma_{S,0}(T_{N})=$ { $\tilde{u}e\Gamma(T_{N})$ ; exp tue $\mathcal{D}_{S,0}(N)$ for $-\infty<t<\infty$ }.
Therefore, $\Gamma_{s,0}(T_{N})$ is a closed Lie subalgebra of $\Gamma(T_{N})$ and in fact a
closed ideal of $\Gamma_{S}(T_{N})$ . We denote by $\Gamma_{s}$ the factor space $\Gamma_{S}(T_{N})/\Gamma_{S,0}(T_{N})$ .
Let $\Gamma(1_{s})$ be the ring of all $C^{\infty}$-functions on $S$ .

LEMMA 2.1. $\Gamma_{s}$ can be canonically identified with $\Gamma(T_{s})$ , and $\Gamma(T_{s})$

is a $\Gamma(1_{s})$-module.

PROOF. Let $ue\Gamma(T_{s})$ . Then, $u$ can be extended to a smooth vector
field $\tilde{u}$ on $N$ such that $\tilde{u}\equiv 0$ on a neighborhgod of $\partial N$. Thus, $\tilde{u}\in\Gamma_{s}(T_{N})$ .
Let $\pi\tilde{u}=\hat{u}$ , where $\pi:\Gamma_{S}(T_{N})\rightarrow\Gamma_{s}$ is the canonical projection. It is clear
that $\hat{u}$ depends only on $u$ , and the mapping $u|-\rightarrow\hat{u}$ is injective. The
converse is trivial. Thus, $\Gamma(T_{s})$ is a Lie algebra. The bracket product
defined on $\Gamma(T_{s})$ is obviously the usual Lie bracket product. Looking
at every integral curve, we get easily the second assertion.

By the above result, we can make $\Gamma(T_{s})$ a topological Lie algebra
by the factor space topology. If $\overline{\prime s}=S$ , then it coincides with the $C^{\infty}-$

topology. So, we assume $\overline{\prime 6^{\prime}}=S$ in the remainder of this section. Let
$\vee r$ be a basis of neighborhoods of the identity of $\mathcal{D}(S)$ in the $C^{\infty}-$

topology. For any $ We\Lambda\nearrow$ , we denote by $W_{0}$ the points in $W$ which
can be joined to the identity by piecewise smooth arcs in $W$. Set $\Leftrightarrow A_{0}^{\prime}=$

$\{W_{0};w\in\vee r\}$ . Then, $\leftrightarrow A_{0}^{\nearrow}$ satisfies the axioms of a basis of neighbor-
hoods of the identity of a topological group, hence by $-l_{0}^{\prime}$ one can define
a topology on $\mathcal{D}(S)$ , making $\mathcal{D}(S)$ a topological group. This topology
will be called LPSAC-topology, where LPSAC means “Locally-Piecewise-
Smooth-Arcwise Connected“. (See also [9] p. 13.)

LEMMA 2.2. Let $\mathcal{D}_{s}$ be the factor group $\mathcal{D}_{s}(N)/\mathcal{D}_{S,0}(N)$ Then, $\mathcal{D}_{s}$

can be canonically identified with an open subgroup of $\mathcal{D}(S)$ in LPSAC-
topology.

PROOF. Evidently, $\mathcal{D}_{s}$ can be canonically imbedded in $\mathcal{D}(S)$ . Thus,
for the proof we have only to show that $\mathcal{D}_{S}$ contains the identity
component of $\mathcal{D}(S)$ in LPSAC-topology. Let $\varphi_{t},$ $t\in[0,1]$ be a piecewise
smooth arc joining $\varphi_{1}$ and the identity $\varphi_{0}$ . By definition, there is a
division $0=t_{0}<t_{1}<\cdots<t_{m}=1$ of $[0,1]$ such that $\varphi_{t},$ $t\in[t_{i}, t_{i+1}]$ , are smooth
arc in $\mathcal{D}(S)$ . Hence, there is an extension $\tilde{\varphi}_{t}$ of $\varphi_{t}$ on each $[t_{i}, t_{i+1}]$ .
Define $\tilde{u}_{t}$ by $(d/dt)\tilde{\varphi}_{t}=\tilde{u}_{t}\overline{\varphi}_{t}$ . Then, $\tilde{u}_{t}$ is a $C^{\infty}$-vector field defined on a
neighborhood $U_{t}$ of $S$ for every $t\in[t_{i}, t_{i+1}]$ . Since $[t_{i}, t_{i+1}]\times S$ is compact,
$V=\bigcap_{te[t_{i},t_{i+1}]}U_{t}$ is a neighborhood of $S$ . One may assume $\overline{V}\cap\partial N=\emptyset$
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without loss of generality. Hence multipying a $C^{\infty}$-function $g$ on $N$ sucl
that supp $g\subset V$ and $g\equiv 1$ on a neighborhood of $S,$ $ v_{t}=g\tilde{u}_{t}\sim$ is a smootl
vector field on $N$. Solve the equation $(d/dt)\tilde{\psi}_{t}=v_{t}\tilde{\psi}_{t}\sim$ on $[t_{i}, t_{i+1}]$ with $th\langle$

initial condition $\tilde{\psi}_{t_{l}}$ which is obtained by solving the same equation $0l$

$[t_{i-1}, t_{i}]$ , where we set $\tilde{\psi}_{0}=identity$ . Then, $\tilde{\psi}_{t}\equiv\tilde{\varphi}_{t}$ on some neighborhoot
of $S$ . Since $\tilde{\psi}_{t}e\mathcal{D}_{s}(N)$ for $t\in[0,1]$ and $\tilde{\psi}_{t}|S=\varphi_{t}$ , we get $\varphi_{t}e\mathcal{D}_{S}fo$

.

$t\in[0,1]$ .
For any $\tilde{\varphi}e\mathcal{D}(N),\tilde{u}\in\Gamma(T_{N})$ , we define $Ad(\tilde{\varphi})\tilde{u}$ by $ d/dt|_{t=0}\tilde{\varphi}\cdot\exp$ tu

$\tilde{\varphi}^{-1}$ . Then by a simple computation, we see
$(Ad(\tilde{\varphi})\tilde{u})(x)=d\tilde{\varphi}u(\tilde{\varphi}^{-1}(x))$ .

Now, recall the definition of $\Gamma_{S}(T_{N})$ . If $\tilde{\varphi}\in \mathcal{D}_{s}(N)$ , then obviously

(1) $Ad(\tilde{\varphi})\Gamma_{s}(T_{N})=\Gamma_{s}(T_{N})$ .
Let $\mathcal{D}_{s}(N)_{0}$ be the identity component of $\mathcal{D}_{s}(N)$ in LPSAC-topology
Then, by the same proof as in Lemma 2.2 $\lceil 2$], we see that every orbi
$\mathcal{D}_{S}(N)_{0}(x)$ of $xeN$ is a $C^{\infty}$-immersed submanifold of $N$. Moreover, $i$ .
$x\in S$ , then

(2) $\ovalbox{\tt\small REJECT}_{s}(N)_{0}(x)=\mathcal{D}(S)_{0}(x)$

where $\mathcal{D}(S)_{0}$ is the identity component of $\mathcal{D}(S)$ in LPSAC-topology
Therefore we get the following:

LEMMA 2.3. $S$ is a disjoint union of connected $C^{\infty}$-immersed sub
manifolds $ S_{\lambda}:x\in\Lambda$ . Each $S_{\lambda}$ is an orbit $\mathcal{D}(S)_{0}$ .

Note that if $u\in\Gamma(T_{s})$ , then $u|S_{\lambda}$ is a smooth tangent vector field $0l$

$S_{\lambda}$ for each $xe\Lambda$ . Since every $ue\Gamma(T_{s}^{\prime})$ can be extended to a complet $($

vector field $\tilde{u}$ on $N$, we have easily the following:

COROLLARY 2.4. A smooth vector field $u$ on $S$ is a strictly tangen
vector field on $S$ if and only if $u(x)\in T_{x}S_{\lambda}$ for any $x\in S$ , where $S_{\lambda}i$

the orbit which contains $x$ and $T.S_{\lambda}$ is the tangent space of $S_{\lambda}$ at $x$ .
Let $\Lambda_{r}=$ { $\lambda\in\Lambda$ ; dim $S_{\lambda}\leqq r$}, and let $S^{(r)}=\bigcup_{\lambda e\Lambda_{r}}S_{\lambda}$ . In general, $th_{t}$

structure of $S^{(r)}$ is very complicated. However, if there is an orbit $S$

with dim $S_{\mu}\geqq 1$ , we can see a local product structure of $S$ at every $xeS_{\rho}$

To do this, we need at first the following:

LEMMA 2.5. Let $\tilde{\mathfrak{U}}$ be a Lie subalgebra of $\Gamma(T_{N})$ . Suppose there $i$

$\tilde{u}e\Gamma(T_{N})$ such that
(a) $Ad(\exp t\tilde{u})\tilde{\mathfrak{U}}=\tilde{\mathfrak{U}}$
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(b) $\int_{a}^{b}Ad(\exp t\tilde{u})v\sim dt\in\tilde{\mathfrak{U}}$ for any $v\sim\in\tilde{\mathfrak{U}}$ and $-\infty<a\leqq b<\infty$ .
Suppose $\tilde{u}$ does not vanish at $p\in N.$ Then, there is a relatively compact
open neighborhood $V_{p}$ of $p$ in $N$ satisfying the following: For any $\tilde{w}e\tilde{\mathfrak{U}}$

with supp $\tilde{w}\subset V_{p}$ , the integral

$I(\tilde{w})=\int_{0}^{2c}Ad(\exp t\tilde{u})\tilde{w}dt\backslash $ ( $e\tilde{\mathfrak{U}}$ by $(b)$ )

satisfies $[u, I(\tilde{w})]\equiv\tilde{w}$ on $V_{p}$ , where $c>0$ depends only on $V_{p}$ .
The proof is seen in Lemma 1.3 [2]. However, it should be remarked

that if $\tilde{u}=\partial/\partial x^{1}$ on a local coordinate system, then

(3) $I(\tilde{w})=\sum_{i=1}^{n}\int_{0}^{2c}\tilde{w}^{i}(x^{1}-t, x^{2}, \cdots, x^{n})dt\partial/\partial x^{i}$ ,

where $\tilde{w}=\sum_{l=1}^{n}\tilde{w}^{i}\partial/\partial x^{i}$ . Remark also that if $\tilde{\mathfrak{U}}$ is closed in the $C^{\infty}$-topology,
then the assumed property (b) is obtained by (a). Thus, by (1), we can
apply this lemma for $\tilde{u}e\Gamma_{S}(T_{N})$ , replacing $\tilde{\mathfrak{U}}$ by $\Gamma_{S}(T_{N})$ .

Note that $\Gamma_{S}(T_{N})$ is an $\Gamma(1_{N})$-module (cf. Lemma 2.1). For a vector
field $\tilde{u}$ defined on an open subset of $N$, we denote by $\tilde{u}\in 1oc\Gamma_{s}(T_{N})$ if
a suitable extension of $\tilde{u}$ is contained in $\Gamma_{S}(T_{N})$ , and we use the notation

$\in$

loc throughout this note.

PROPOSITION 2.6. Suppose dim $S_{\mu}=r\geqq 1$ . Then for every point $p\in S_{\mu}$ ,
there is a $C^{\infty}$-local coordinate system $(x^{1}, \cdots, x’)$ on a neighborhood $U$

of $p$ in $N$ such that $\partial/\partial x^{i}\in$

loc $\Gamma_{S}(T_{N})$ for $1\leqq i\leqq r$ .
PROOF. Since $S_{\mu}$ is an orbit of $\mathcal{D}(S)_{0}$ , the tangent space $T_{p}S_{\mu}$ is

given by $\Gamma_{S}(T_{N})(p)$ . Since $r\geqq 1$ , there is $v_{1}\in\Gamma_{S}(T_{N})$ such that $v_{1}(p)\neq 0$ .
By a suitable choice of a local coordinate system $(x^{1}, \cdots, x^{n})$ , we may
assume that $v_{1}\equiv\partial/\partial x^{1}$ on that coordinate neighborhood. Moreover, we
may assume without loss of generality that $\partial/\partial x^{1}|_{p},$

$\cdots,$
$\partial/\partial x^{r}|_{p}$ span the

tangent space $T_{p}S_{\mu}$ . Since $\Gamma_{S}(T_{N})$ is an $\Gamma(1_{N})$-module, one can find $r$

vector fields $v_{1},$ $\cdots,$ $ v_{r}\in$ loc $\Gamma_{S}(T_{N})$ such that

(4) $\left\{\begin{array}{ll}v_{1}=\partial/\partial x^{1} & \\v_{i}=\partial/\partial x^{i}+\sum_{j=r+1}^{n}g_{i}^{j}(x^{1}, \cdots, x^{n})\partial/\partial x^{j} & (2\leqq i\leqq r).\end{array}\right.$

Now, assume that there is an integer $s(1\leqq s\leqq r)$ such that

(5) $\left\{\begin{array}{ll}v_{i}=\partial/\partial x^{i} & (1\leqq i\leqq s)\\v_{j}=\partial/\partial x^{j}+g & \sum_{r+1}^{n}g_{j}^{k}(x^{\iota}, \cdots, x^{n})\partial/\partial x^{k} (s+1\leqq j\leqq\gamma)\end{array}\right.$
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on a neighborhood $U$ of $p$ . Replacing $\tilde{u}$ in Lemma 2.5 by $v.$ , we choose
a neighborhood $V_{p}$ of $p$ in $U$ with the same property as in Lemma 2.5.
Let $f(x^{1}, \cdots, x^{\epsilon-1})h(x, \cdots, x^{n})$ be a $C^{\infty}$-function on $N$ such that supp $fh\subset V_{1}$

and $f\equiv 1,$ $h\equiv 1$ on neighborhoods $V_{1},$ $V_{2}$ of zeros of $R^{*-1},$ $R^{n-\epsilon+1}$ respec.
tively. Set

$u_{j}=v_{j}-I(fh[\partial/\partial x, v_{j}])$ , $s+1\leqq j\leqq r$ ,

and we see that $[\partial/\partial x, u_{j}]\equiv 0$ on $V_{1}\times V_{2}\subset V_{p}$ . Moreover, since $I$ is merely
an integration (cf. (3)), $[\partial/\partial x^{i}, u_{j}]\equiv 0$ on $V_{1}\times V_{l}$ for every $i,$ $i$ such thal
$1\leqq i\leqq s-1,$ $s+1\leqq j\leqq r$ . Thus, $u_{*+1},$ $\cdots,$ $u_{r}$ do not depend on the variable
$x^{*}$ on $V_{1}\times V_{2}$ . Therefore by a suitable change of variables $x^{\iota+1},$

$\cdots,$
$x^{n}$

one may assume that $u_{\iota+1}\equiv\partial/\partial x^{+1}$ on a neighborhood of $p$ , hence one haf
vector fields

(6) $\left\{\begin{array}{ll}v_{i}^{\prime}=\partial/\partial x^{i} & (1\leqq i\leqq s+1)\\v_{f}^{\prime}=\partial/\partial x^{j}+g & \sum_{=r+1}^{n}g_{j^{k}}^{\prime}(x^{\epsilon+1}, \cdots, x^{n})\partial/\partial x^{k} (s+2\leqq j\leqq r)\end{array}\right.$

on a neighborhood of $p$ such that $v_{1}^{\prime},$

$\cdots,$
$ v_{r}^{\prime}\in$

loc $\Gamma_{S}(T_{N})$ . Thus, by induc
tion we obtain the desired result.

Let $(x^{1}, \cdots, x^{r}, x^{r+1}, \cdots, x^{n})$ be a smooth local coordinate system a
$p\in S_{\mu}$ obtained by the above proposition. Let $R^{r},$ $R^{n-r}$ be $r,$ $n-r$ dimen
sional cartesian spaces respectively. By the above result, we have $th\{$

following local product structure of $S$ :

COROLLARY 2.7. There are neighborhoods $V,$ $W$ of zeros of $R^{r},$ $R^{n-}$

respectively such that $(V\times W)\cap S=V\times(W\cap S)$ regarding $V\times W$ as $($

local coordinate $neighbo\gamma hood$ at $p$ .
In the remainder of this section, we shall give another smoothnes

lemma for the the later use. Let $\Gamma(T_{s}),$ $\Gamma(T_{s}^{\prime})$ be as in \S 1 and $assum|$

$\overline{\prime s}=S$ . A mapping $\psi$ of $T$ into $\Gamma(T_{s})$ is said to be smooth if $\psi\in\swarrow K(\mathcal{I}$

$\Gamma(T_{s}^{\prime}))$ . Thus, one can define the $space\swarrow\swarrow(T, \Gamma(T_{s}))$ with $C^{\infty}$-topology
where $\overline{\prime\tau}=T$ is assumed as in \S 1. Let $\Sigma$ be a compact topological space
and $u:\Sigma\rightarrow.\mathscr{M}\swarrow(T\times[0,1], \Gamma(T_{s}))$ a continuous mapping. We denote th
image by $u_{\alpha,t,\lambda}$ for $(\alpha, t, \lambda)\in\Sigma\times T\times[0,1]$ . Solve that equation

(7) $\frac{\partial}{\partial\lambda}\psi_{\alpha,t,\lambda}=u_{\alpha,t,\lambda}\psi_{\alpha,t,\lambda}$

with the initial condition $\psi_{\alpha,t,0}=identity$ . Then, we have

LEMMA 2.8. Notations and assumptions being as above, $\psi_{\alpha,t,\lambda}e\mathcal{D}(\llcorner\sigma$

and $\psi_{\alpha.*,*}$ defines a continuous mapping of $\Sigma$ $into\leftrightarrow\swarrow\swarrow(T\times[0,1],$ $\mathcal{D}(S)^{\backslash }$,
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PROOF. $v_{\alpha}=(O, \partial/\partial\lambda, u_{\alpha,t,\lambda})$ can be regarded as a tangent vector field
on $T\times[0,1]\times S$ . Let $\phi$ be a $C^{\infty}$-function on $(-\infty, \infty)$ such that $\phi\equiv 1$ on
$[0,1]$ , and supp $\phi\subset(-\epsilon, 1+\epsilon)$ . For a sufficiently small $\epsilon,$ $v_{\alpha}\sim=(O,$ $\phi\partial/\partial\lambda$ ,
$u_{\alpha,t,\lambda})$ is defined on $\tau\times[-\epsilon, 1+\epsilon]\times S$ , and by Corollary 2.4 $ v_{a}\sim$ is a smooth
strictly tangent vector field on $\tau\times[-\epsilon, 1+\epsilon]\times S$ . Let $\Psi_{\alpha,\lambda}$ be the one
parameter subgroup generated by $ v_{\alpha}\sim$ . Then, $\Psi_{\alpha,\lambda}\in \mathcal{D}(T\times[-\epsilon, 1+\epsilon]\times S)$ ,
and $\Psi_{\alpha,*}$ defines a continuous mapping of $\Sigma$ into $\mathscr{M}\swarrow([0,1],$ $\mathcal{D}(T\times[-\epsilon$ ,
$1+\epsilon]\times S)$ by the well-known continuity theorem (cf. [7], p. 22 and p. 41).
Now set

(8) $\Psi_{\alpha,\lambda}(t, 0, x)=(t, \lambda, \psi_{\alpha,t,\lambda}(x))$ , $\lambda\in[0,1]$ .
Then, $\psi_{\alpha,t,\lambda}$ is the solution of (7), $\psi_{\alpha,t,\lambda}e\mathcal{D}(S)$ and by definition $\psi_{\alpha,*,*}\in$

$l\swarrow(T\times[0,1], \mathcal{D}(S))$ . It is now obvious that $\psi_{0,*,*}$ defines a continuous
mapping of $\Sigma into\swarrow\swarrow(T\times[0,1], \mathcal{D}(S))$ .

\S 3. Several properties of expansive sets.

Throughout this section, we assume that $S$ is an expansive subset
of $N$. By Lemma 2.3, $S$ is a disjoint union of $\mathcal{D}(S)_{0}$-orbits $S_{\lambda},$ $\lambda\in\Lambda$ .
Let $\Lambda_{r}=$ { $\lambda\in\Lambda$ ; dim $S_{\lambda}\leqq r$ }.

LEMMA 3.1. $\Lambda_{0}$ is a finite set.

PROOF. Let $S_{\lambda}$ be an orbit with $\dim S_{\lambda}=0$ . Then $S_{\lambda}$ is a single
point $\{p\}$ . Let $X_{p}$ be an expansive vector field on $S$ at $p$ and $\tilde{X}_{p}$ an
extension of $X_{p}$ with property (P) in \S 1. We may assume $\tilde{X}_{p}\in$

loc $\Gamma_{S}(T_{N})$

without loss of generality. Since $p$ is an isolated zero of $X_{p}$ , we see that
$\bigcap_{\lambda\in\Lambda_{0}}S_{\lambda}$ is discrete, hence finite.

Let $S_{\mu}$ be an orbit of $\mathcal{D}(S)_{0}$ with $\dim S_{\mu}=r\geqq 1$ , and $p$ a point in $S_{\mu}$ .
We choose a local coordinate system $(x^{1}, \cdots, x^{r}, x^{r+1}, \cdots, x^{n})$ on an open
neighborhood $U$ of $p$ by the same manner as in Proposition 2.6. Obviously,
$(x^{1}, \cdots, x^{r}, 0, \cdots, 0)$ gives a local coordinate system of immersed submani-
fold $S_{\mu}$ . Let $X_{p}$ be an expansive vector field on $S$ at $p$ , and $\tilde{X}_{p}$ an
extension of $X_{p}$ with property (P). Let

$\tilde{X}_{p}^{(1)}=\sum_{i,j=1}^{b}a_{j}^{i}x^{j}\partial/\partial x^{i}$

be the linear part of $\tilde{X}_{p}$ at $p$ . Since $\tilde{X}_{p}^{(1)}$ leaves the tangent space $T_{p}S_{\mu}$

invariant, we have $a_{j}^{i}=0$ for $r+1\leqq i\leqq n,$ $1\leqq j\leqq r$ . Set

$\tilde{X}_{p}=\sum_{i=1}^{n}h^{i}(x^{1}, \cdots, x^{n})\partial/\partial x^{i}$
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by using the above local coordinate system, and let

(9) $\tilde{Y}_{p}=\sum_{i=r+1}h^{:}(x^{1}, \cdots, x^{n})\partial/\partial x^{:}$ .
Since $\tilde{X}_{p}\in$

loc $\Gamma_{S}(T_{N})$ and $\Gamma_{S}(T_{N})$ is an $\Gamma(1_{N})$-module, we have $\tilde{Y}_{p}e$

loc $\Gamma_{S}(T_{N})$

by using Proposition 2.6. The linear part of $\tilde{Y}_{p}$ is given by

(10) $\tilde{Y}_{p}^{\prime_{1)}}=\sum_{i,\dot{g}=r+1}^{n}a_{j}^{i}x^{\dot{f}}\partial/\partial x^{:}$ .
The eigenvalues of $(a_{\dot{f}}^{i})_{r+1\leqq i,j\leq n}$ are real and positive. Using the same
notation as in Corollary 2.7, we see easily that $\tilde{Y}_{p}|W=\sum_{i=r+1}^{n}h^{i}(0,$

$\cdots,$
$0$ ,

$x^{r+1},$
$\cdots,$

$x^{\hslash}$) $\partial/\partial x^{:}$ is strictly tangent to $W\cap S$ . Hence, regarding $\tilde{Y}_{p}|W$ as
a local vector field $\tilde{Z}_{p}$ on a neighborhood of $p$ , we have the following:

LEMMA 3.2. Notations and assumptions being as above, there is a
vector field $\tilde{Z}_{p}$ on a local coordinate neighborhood of $p$ such that

(i) $\tilde{Z}_{p}\in_{1oc}\Gamma_{S}(T_{N})$ and $Z_{p}(p)=0$ ,
(ii) $\tilde{Z}_{p}=\sum_{i=r+1}^{t}h^{i}(x^{r+1}, \cdots, x)\partial/\partial x^{:}$ on a neighborhood of $p$ ,
(iii) the linear part of $\tilde{Z}_{p}$ at $p$ with respect to the variables $x^{r+1},$

$\cdots,$
$x^{n}$

are real and positive.

By the above result combined with Corollary 2.4 we have

COROLLARY 3.3. Let $S_{\mu}$ be an r-dimesional orbit of $\mathcal{D}(S)_{0}$ . Then,
the boundary $S_{\mu}-S_{\mu}$ is a disjoint union of orbits $S_{\lambda}$ such that dim $S_{\lambda}<r$ .
In particular, if $\overline{S}=S,$ $S$ is measurable with respect to any smooth
volume element on $S$ .

Under the same notations, the following is also easy, but shows the
locally-closedness of each orbit:

COROLLARY 3.4. For any $p\in S_{\mu}$ , there are neighborhood $V,$ $W$ of
zeros of $R^{r},$ $R^{n-r}$ respectively such that, regarding $V\times W$ as a neighbor-
hood of $p$ by the same manner as in Corollary 2.7, $V$ is a local coordi-
nate neighborhood of $S_{\mu}$ and $W\cap S_{\mu}=\{0\}$ .

PROOF. We have only to show $W\cap S_{\mu}=\{0\}$ . If there is not such $W$,
then there is a sequence $\{q_{n*}\}$ in $R^{n-r}$ converging to $0$ such that $q.eS_{\mu}$ .
By Corollary 2.7, $V\times\{q.\}$ is an open subset of the immersed submanifold
$S_{\mu}$ . Now, consider the integral curves of $\tilde{Z}_{p}$ with initial point $q_{m}$ . This
must be contained in $S_{\mu}$ , but this is a contradiction, because $\dim S_{\mu}=r$ .

Now, the goal of the remainder of this section is the following:
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PROPOSITION 3.5. $\Lambda$ is a finite set.

PROOF. Since $S$ is compact, we have only to show the locally-
finiteness of $\{S_{\lambda}\}_{\lambda eA}$ . Assume that there is an s-dimensional orbit $S_{\mu}$ with
following property $(*)$ :
$(*)$ There is a point $peS_{\mu}$ and infinitely many $\overline{S}_{\lambda},$ $\lambda\in\Lambda$

’ such that $S_{\lambda}\ni p$ .
We may assume that $s$ is the maximum among the dimensions of $S_{\mu}$ with
property $(*)$ . By Proposition 2.6 and Lemma 3.2, there is a local coordinate
system $(x^{1}, \cdots, x^{*}, \cdots, x^{n})$ such that $\partial/\partial x^{i}\in$

loc $\Gamma_{S}(T_{N})$ for $1\leqq i\leqq s$ , and that
there is a local vector field $\tilde{Z}_{p}$ with properties $(i)-(iii)$ in Lemma 3.2
replacing $r$ by $s$ . By an appropriate change of the variables $x^{+1},$

$\cdots,$
$x^{n}$

in accordance with Sternberg’s normalization theorem (cf. Corollary 1.5
[3]), we may assume that $\tilde{Z}_{p}$ can be written in the form

(11) $Z_{p}=\sum_{i=l+1}^{n}\mu_{i}x^{i}\partial/\partial x^{i}+\sum_{i=\epsilon+1}^{n}\varphi^{:}(x^{\iota+1}, \cdots, x^{1-1})\partial/\partial x^{i}$ ,

where $\mu_{\epsilon+1}\leqq\mu_{\epsilon+2}\cdots\leqq\mu$, are the eigenvalues of the linear part of $\tilde{Z}_{p}$

and $\varphi^{i}(x^{\epsilon+1}, \cdots, x^{:-1})=\sum a_{\alpha}^{i}x^{\alpha}$ are polynomial such that $\alpha_{+1}\mu_{+1}+\cdots+$

$\alpha_{i-l}\mu_{i-1}=\mu_{i}$ and $|\alpha|=\alpha_{s+1}+\cdots+\alpha_{i-1}\geqq 1$ . By a suitable change of coordinate
$x^{i}\}\rightarrow\lambda_{i}x^{:}$ if necessary, we may assume that the linear part of the second
term of (11) has sufficiently small coefficients, say $<\delta$ . The second term
of (11) is called the nilpotent part of $\tilde{Z}_{p}$ .

Let $f_{0}(x^{+1}, \cdots, x^{n})=\sum_{i=\epsilon+1}^{n}(x^{i})^{2}$ . Since $\mu_{i}$ are posistive and $\delta$ is suffic-
iently small, we see that there is a neighborhood $W$ of $0$ of $R^{n-}$ such that
$\tilde{Z}_{p}f_{0}>0$ on $W-\{0\}$ . Let $\Sigma_{p}(\epsilon)$ be an $\epsilon$-sphere with the center $0$ such that
$\Sigma_{p}(\epsilon)\subset W$. The inequality $\tilde{Z}_{p}f_{0}>0$ means that the integral curves of $\tilde{Z}_{p}$

intersect $\Sigma_{p}(\epsilon)$ transversally. Choose a point $q_{\lambda}$ in $S_{\lambda}\cap\Sigma_{p}(\epsilon)$ for each
$\lambda\in\Lambda’$ . Since $S\cap\Sigma_{p}(\epsilon)$ is compact, there is an infinite but countable subset
$\Lambda^{\prime\prime}$ of $\Lambda$

’ such that $\{q_{\lambda};\lambda e\Lambda^{\prime\prime}\}$ converges to a point $qeS\cap\Sigma_{p}(\epsilon)$ . Let $S_{\sigma}$

be the $\mathcal{D}(S)_{0}$-orbit of $q$ . Considering an expansive vector field $X_{q}$ on $S$

at $q$ , we see that $\overline{S_{\lambda}}\ni q$ , for infinitely many $\lambda$ of $\Lambda^{\prime}$ . Thus, $S_{\sigma}$ has
property $(*)$ . Since $S_{\sigma}ap$ , we have $\dim S_{\sigma}>s$ by Corollary 3.3. This
contradicts the maximality of $s$ . Thus, $\{S_{\lambda};xe\Lambda\}$ is locally finite and
hence $\Lambda$ is a finite set.

\S 4. Control of the volume forms near the boundary.

Throughout this section, $S$ means always a compact expansive subset
of $N$ such that (i) $S$ has an orientable neighborhood in $N$, and (ii) the
interior $S$ is nonvoid and connected. We also assume that $\overline{S}=S$. Let
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$\Psi_{s}^{*}$ be the space of all $C^{\infty}$-volume forms $dV$ on $S$ such that $\int_{s}dV=1$

The goal of this section is the following:

PROPOSITION 4.1. Let $dV_{0}$ be an arbitrarily fixed volume form in
$\ovalbox{\tt\small REJECT}_{s}$ , and let $h:\sigma^{k}\rightarrow r_{s}$ be a continuous mapping. Then, there is $($

continuous mapping $H:\delta^{k+1}\rightarrow \mathcal{D}(S)$ satisfying that $H(O)=identityan($

that there is neighborhood $W$ of $\partial S=S-S$ in $S$ such that $H(q)^{*}dV_{0}\equiv h(q$

on $W$ for every $q\in\sigma^{k}$ .
The proof will be given in several lemmas below.
Let $D$ be an $n-r$-dimensional closed disk with the center, $0$ , and $\acute{\nu}$

the space of all $C^{\infty}$-volume forms on $D$ with the $C^{\infty}$-topology. Let $\tilde{\mathcal{D}}(L$

be the group of all $C^{\infty}$-diffeomorphisms $\tilde{\varphi}$ on $D$ such that $\tilde{\varphi}\equiv identityo$

a neighborhood of $\partial D.\tilde{\mathcal{D}}(D)$ is a topological group under the $C^{\infty}$-topology
Let $T$ be a compact subset of a $C^{\infty}$-manifold $N^{\prime}$ such that $\overline{T}=T$ . $\lrcorner$

mapping $\psi:T\rightarrow\tilde{\mathcal{D}}(D)$ is said to be smooth, if $\psi\in \mathscr{M}\swarrow(T, \mathcal{D}(D))$ . $B$

$\mathscr{M}(T, \Leftrightarrow\tilde{\leftrightarrow z}^{f}(D))$ we denote the space of all smooth mappings of $T$ into $\tilde{\mathcal{D}}(L$

with the $C^{\infty}$-topology. Let $\tilde{Z}_{0}$ be a $C^{\infty}$-vector field on $D$ such that $\tilde{Z}_{0}(0)=$

and the eigenvalues of the linear part of $\tilde{Z_{0}}$ at $0$ are real and positivt
The next lemma plays the role of bricks in the proof of Proposition 4.]

LEMMA 4.2. Let $g:T\rightarrow\tilde{\ovalbox{\tt\small REJECT}}$ be an arbitrarily fixed smooth $mappin(*$

Suppose $h:\sigma^{k}\rightarrow\leftarrow/\ovalbox{\tt\small REJECT}(\tau,\tilde{\pi})$ is a continuous mapping such that $h(q)(t)\equiv g(($

on $\sigma^{k}\times U_{\partial T}$ , where $U_{\partial T}$ is a neighborhood of $\partial T=T-T$ in T. $The7$

there is a continuous mapping $H$‘ : $\delta^{k+1}\rightarrow\leftarrow \mathscr{A}(T,\tilde{\mathcal{D}}(D))$ and a neighborhoo
$W^{(0)}$ of $0$ in $D$ satisfying the following:

(a) $H^{\prime}(O)(t)=identity$ for any $teT$ ,
(b) $H^{\prime}(d)(t)=identity$ for $(d, t)e\delta^{k+1}\times U_{\partial T}$ ,
(c) $H^{\prime}(q)(t)^{*}g(t)\equiv h(q)(t)$ on $W^{(0)}$ for any $(q, t)\in\sigma^{k}\times T$ .

(If $T$ is a single point, then we put $\partial T=\emptyset.$ )

PROOF. For any $dV\in\tilde{\Psi}$ there is a smooth local coordinate syste]

$(y^{1}, \cdots, y^{n-r})$ at $0$ in $D$ such that $dV=dy^{1}\wedge\cdots\wedge dy^{n-r}$ . By using th
coordinate system, the Lie derivative $Z_{z_{0}}^{\sim}dV$ is given by

(12) $\subset \mathscr{G}_{\tilde{Z}_{0}}dV=(div\tilde{Z}_{0})dV=(\sum_{i=1}^{n-r}\partial\tilde{Z}_{0}^{i}/\partial y^{i})dV$

Thus, there is an $\epsilon$-neighborhood $W^{\epsilon}$ of $0$ such that (i) $\mathscr{L}_{\tilde{Z}_{0}}dV=\rho d1$

$\rho\geqq a(>0)$ on $\overline{W^{\epsilon}}$ and (ii) $\lim_{\theta\rightarrow-\infty}(\exp\theta\tilde{Z}_{0})(x)=0$ for every $xeW^{\epsilon}$ . $S($

$dV_{t}=g(t)$ and $dV_{q,t}=h(q)(t)$ . We set further $dV_{q,t,\lambda}=(1-\lambda)dV_{t}+\lambda dV_{l}$
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for $\lambda\in[0,1]$ . Obviously, $dV_{q,*,*}$ defines a continuous mapping of $\sigma^{k}$ into
$\mathscr{M}(T\times[0,1],\tilde{\Psi})$ . Since $\sigma^{k}\times\tau\times[0,1]$ is compact, we can choose $W^{\epsilon}$ so
that the above properties (i) and (ii) may be fulfilled by every $dV_{q,t,\lambda}$ .
We set $\mathscr{L}_{\tilde{z}_{0}}dV_{q,t,\lambda}=\rho_{q,t,\lambda}dV_{q,t,\lambda}$ on $W^{\epsilon}$ . Then, $\rho_{q,t,\lambda}\geqq a(>0)$ , and by an
appropriate use of Lemma 1.1, we see that $\rho_{q,*,*}$ defines a continuous
mapping of $\sigma^{k}$ into $\mathscr{M}(T\times[0,1], \Gamma(1_{\overline{W^{\text{\’{e}}}}}))$ .

Now, set $dV_{q,t}-dV_{t}=h_{q,t,\lambda}dV_{q,t,\lambda}$ . Then, by Lemma 1.1 again, we
get that $h_{q,*,*}$ defines a continuous mapping of $\sigma^{k}$ into $\mathscr{M}\swarrow(T\times[0,1], \Gamma(1_{D}))$ .
We want to solve the equation

(13) $\Leftarrow \mathscr{G}_{fZ_{0}}^{\sim}dV_{q,t,\lambda}=h_{q,t,\lambda}dV_{q,t,\lambda}$

on $W^{\epsilon}$ . The above equation is equivalent to

(14) $\tilde{Z_{0}}f+\rho_{q,t,\lambda}f=h_{q,t,\lambda}$ ,

and hence the continuous solution on $W^{\epsilon}$ is given by

(15) $ f_{q,t,\lambda}=\int_{0}^{\infty}\rho_{q,t,\lambda}e^{-\theta\rho_{q,t,\lambda}}(\exp-\theta\tilde{Z}_{0})^{*}\frac{h_{q,t,\lambda}}{\rho_{q,t,\lambda}}d\theta$ ,

because

$\tilde{Z}_{0}f=\tilde{Z}_{0}\int_{0}^{\infty}e^{-\theta}(\exp-\frac{\theta}{\rho}\tilde{z}_{0})^{*}\frac{h}{\rho}d\theta=\rho\int_{0}^{\infty}e^{-\theta}\frac{\tilde{Z_{0}}}{\rho}(\exp-\frac{\theta}{\rho}\tilde{z}_{0})^{*}\frac{h}{\rho}d\theta$

$=-\rho\int_{0}^{\infty}e^{-\theta}\frac{d}{d\theta}(\exp-\theta\frac{\tilde{Z_{0}}}{\rho})^{*}\frac{h}{\rho}d\theta$

$=-[e^{-\theta}(\exp-\theta\frac{\tilde{Z}_{0}}{\rho})^{*}\frac{h}{\rho}]_{0}^{\infty}-\rho f=h-\rho f$ .

Since the integration (15) converges uniformly with its all derivatives
with respect to $(t, \lambda, x)eT\times[0,1]\times\overline{W^{\epsilon}}$ , we see that $f=f_{q,t,\lambda}$ is an element
of $\mathscr{M}\swarrow(T\times[0,1], \Gamma(1_{\overline{W^{\text{{\it \’{e}}}}}}))$ . Moreover, it is easy to see that $f_{q,*,*}$ defines a
continuous mapping of $\sigma^{k}$ into $\mathscr{M}l(T\times[0,1], \Gamma(1_{\overline{W^{\epsilon}}}))$ .

Let $\phi$ be a $C^{\infty}$-function on $D$ such that supp $\phi\subset W^{\epsilon}$ and $\phi\equiv 1$ on a
neighborhood $W^{\delta}$ of $0$ in $D$ . Let $\tilde{u}_{q,t,\lambda}=\phi f_{q,t,\lambda}\tilde{Z}_{0}$ . Then, $\tilde{u}_{q,t,\lambda}$ is a $C^{\infty}-$

vector field on $D$ such that $\tilde{u}_{q,t,\lambda}\equiv 0$ on a neighborhood of $\partial D,$ $u_{q,t,\lambda}(0)=0$

and that

(16) $Z_{u_{q,t,\lambda}}^{\sim}dV_{q,t,\lambda}=h_{q,t,\lambda}dV_{q,t,\lambda}=dV_{q,t}-dV_{t}$

on $W^{\delta}$ . Solve the equation

(17) $(d/d\lambda)\tilde{\psi}_{q,t,\lambda}=-\tilde{u}_{q,t,\lambda}\tilde{\psi}_{q,t,\lambda}$
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with the initial condition $\tilde{\psi}_{q,t,0}=identity$ . Then, by Lemma 2.8, $\tilde{\psi}_{q,*,*}$

defines a continuous mapping of $\sigma^{k}$ into . $\nearrow\swarrow(T\times[0,1],\tilde{\mathcal{D}}(D))$ . Since
$\sigma^{k}\times\tau\times[0,1]$ is compact and $\tilde{\psi}_{q,t,\lambda}(0)=0$ , there is a neighborhood $W^{(0)}$ of
$0$ such that $W^{(0)}\subset\tilde{\psi}_{q,t,\lambda}(W^{\delta})$ for any $(q, t, \lambda)$ . Since by (16)

(18) $(d/d\lambda)\tilde{\psi}_{q,t,\lambda}^{\sim}dV_{q,t,\lambda}=-\tilde{\psi}_{q,t,\lambda}^{*}\mathscr{L}_{u_{q,t,\lambda}}dV_{q,t,\lambda}+\tilde{\psi}_{q,t,\lambda}^{*}(dV_{q,t}-dV_{t})=0$

on $W^{(0)}$ , we have $\tilde{\psi}_{q,t,\lambda}^{*}dV_{q,t,\lambda}\equiv dV_{t}$ on $W^{(0)}$ . Set $H’(\lambda q, t)=\tilde{\psi}_{q.t.\lambda}^{-1}$ for every
$(q, t, \lambda)e\sigma^{k}\times\tau\times[0,1]$ . Then, $H^{\prime}(O, t)=identity$ . If $teU_{\partial T}$ , then $dV_{q,t}=$

$dV_{t}$ , hence $h_{q.t,\lambda}=0$ . Therefore $f_{q,t,\lambda}=0$ and hence $\tilde{\psi}_{q,t,\lambda}=identity$ . It is
clear that $dV_{q,t}=dV_{q,t,1}=\tilde{\psi}_{q.t,1}^{-1}dV_{t}=H^{\prime}(q, t)*g(t)$ .

Apply the above lemma to the case $T=\{0\}$ , and we have

COROLLARY 4.3. Let $\{p\}$ be a zero-dimensional orbit of $\mathcal{D}(S)_{0}$ .
Notations and assumptions being as in Proposition 4.1, there is an open
neighborhood $W^{(0)}$ of $p$ and a continuous mapping $H’:\delta^{k+1}\rightarrow \mathcal{D}(S)$ such
that $H^{\prime}(O)=identity$ and that $H^{\prime}(q)*dV_{0}\equiv h(q)$ on $W^{(0)}$ for any $q\in\sigma^{k}$ ,
where $dV_{0}=g(p)$ .

Now, assume that $T$ has an orientable neighborhood in $N’$ . Let $ d\mu$

be a $C^{\infty}$-volume form on $T$. Let $\Psi\sim$ be the space of all $C^{\infty}$-volume forms
on $T\times D$ , and $d\mu\wedge dV_{t}$ be a fixed element of 7, where the volume form
$dV_{t}$ on $D$ may depend on the variable $t\in T$. Let $h:\sigma^{k}\rightarrow\tilde{\ovalbox{\tt\small REJECT}}$ be a con-
tinuous mapping such that $h(q)\equiv d\mu\wedge dV_{t}$ on $U_{\partial T}\times D$, where $U_{\partial T}$ is a
neighborhood of $\partial T$ in $T$. The following is an immediate conclusion
from Lemma 4.2:

COROLLARY 4.4. Notations and assumptions being as above, there is
a continuous mapping $H^{\prime}$ of $\delta^{k+1}$ into the group of diffeomorphisms on
$T\times D$ satisfying the following:

(i) $H^{\prime}(O)=identity$

(ii) $H’(d)(t, x)=(t, H^{\prime}(d, t)(x))$ and $H^{\prime}’(d, *)$ defines a continuous
mapping of $\delta^{k+1}into\swarrow f(T,\tilde{\mathcal{D}}(D))$

(iii) $H^{\prime}(d, t)=identity$ if $(d, t)\in\delta^{k+1}\times U_{\partial T}$

(iv) $H^{\prime}(q)^{*}d\mu\wedge dV_{t}\equiv h(q)$ on $\tau\times W^{(0)}$ for any $q\in\sigma^{k}$ .
Proposition 4.1 will be proved by induction, but before that we need

the following:

LEMMA 4.5. Let $S_{\mu}$ be a $\mathcal{D}(S)_{0}$-orbit, and $\partial S_{u}$ the boundary of $S_{\mu}$ .
Let $U_{\partial S_{\mu}}$ be an open neighborhood of $\partial S_{\mu}$ in $S_{\mu}$ . Then, there is a compact
connected submanifold $\overline{Q}$ of $S_{\mu}$ such that $\partial\overline{Q}$ is a smooth submanifold
contained in $U_{\partial S_{\mu}}$ and that $\overline{Q}\supset S_{\mu}-U_{\partial s_{\mu}}$ .
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PROOF. There is a smooth function $f:S_{\mu}\rightarrow R$ such that $f^{-1}((-\infty, c$ ])
is compact and $\lim_{n\rightarrow\infty}f(x_{n})=\infty$ for any sequence $\{x_{n}\}$ converging to a
point in $\partial S_{\mu}$ . By a slight change of $f$ if necessary, one may assume
that $f$ has countably many critical values. Let $c$ be a sufficiently large
number which is not a critical value of $f$. Then, $f^{-1}(c)\subset U_{\partial S}$ and a
smooth submanifold of $S_{\mu}$ . Take the connected component of $f^{-1}((-\infty, c$])

$\mu$

containing $S_{\mu}-U_{\partial S_{u}}$ .
PROOF OF PROPOSITION 4.1. Notations and assumptions are as in

Proposition 4.1. The desired mapping $H:\delta^{k-1}\rightarrow \mathcal{D}(S)$ will be obtained by
a composition $H(d)=H_{l}(d)\circ H_{l-1}(d)\circ\cdots\circ H_{1}(d)$ of continuous mappings
$H_{l}:\delta^{k+1}\rightarrow \mathcal{D}(S)$ . Let $H^{\prime}:\delta^{k+1}\rightarrow \mathcal{D}(S)$ be the mapping obtained in Corollary
4.3. Then, $H’(q)^{-1*}h(q)\equiv dV_{0}$ on a neighborhood $W^{(0)}$ of $p$ in $S$ . Thus,
putting $H(d)=H’(d)\circ H^{\prime}(d)$ we have only to make $H^{\prime}:\delta^{k+1}\rightarrow \mathcal{D}(S)$ under
the assumption that $h(q)\equiv dV_{0}$ on $W^{(0)}$ . Since $\Lambda_{0}$ is finite (Lemma 3.1),
we may assume $h(q)\equiv dV_{0}$ on a neighborhood of $S^{(0)}=\bigcup_{\lambda e\Lambda_{0}}S_{\lambda}$ by the same
procedure as above.

Now, we use induction procedure, and assume that $h(q)\equiv dV_{0}$ on a
neighborhood of $S^{(r-1)}=\bigcup_{\lambda e\Lambda_{r-1}}S_{\lambda}$ . Let $S_{\ell\ell}$ be an r-dimensional orbit.
Then, by the assumption, $h(q)\equiv dV_{0}$ on a neighborhood $U_{\partial S}$ of $\partial S_{\mu}$ because
of Corollary 3.3. By Lemma 4.5, there is a compact $sub^{\mu}manifold\overline{Q}$ with
smooth boundary $\partial\overline{Q}$ which is contained in $U_{\partial S_{\mu}}$ and $Q\supset S_{\mu}-U_{\partial S_{\mu}}$ .

Take a sufficiently small triangulation of $\overline{Q}$ so that every $ r\cdot$-dimen-
sional simplex $\tau$ may be contained in a local coordinate neighborhood $U$

of $N$. Let $(x^{1}, \cdots, x^{r}, x^{r+1}, \cdots, x^{n})$ be a coordinate system on $U$. By
Proposition 2.6, we may assume that $\partial/\partial x^{i}\in$

loc $\Gamma_{S}(T_{N})$ for $1\leqq i\leqq r$ , and
hence one can apply Corollary 2.7 and Lemma 3.2. Note that $\tau$ is an
r-dimensional compact expansive set such that $\overline{\tau}=\tau$ . Therefore, applying
Corollary 4.4 successively for the faces of dimension $\leqq\gamma-1$ we obtain
that there is a continuous mapping $H^{(1)}$ : $\delta^{k+1}\rightarrow\ovalbox{\tt\small REJECT}(S)$ such that $H^{(1)}(0)=$

identity, $H^{(1)}(d)=identity$ on $U_{\partial S_{\mu}}$ for any $de\delta^{k+1}$ and $H^{(1)}(q)^{*}dV_{0}\equiv h(q)$

for any $qe\sigma^{k}$ on a neighborhood $V_{\partial\tau}$ of $\tau$ in $S$ . Thus, for the proof,
one may assume that $h(q)\equiv dV_{0}$ on a neighborhood of the $r-1$-dimen-
sional skelton of the triangulated $\overline{Q}$ . Apply Corollary 4.4 again to each
$\tau$ . We have, then, the desired result.

\S 5. Control of the volume forms in the interior.

Throughout this section, notations and assumptions are as in the
previous section. The proof of Theorem in \S 1 will be given in this
section. So recall the statement of Theorem in \S 1 first of all.
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By Proposition 4.1 we may assume that $h(q)\equiv dV_{0}$ on a neighborhoo $($

$U_{\partial S}$ of $\partial S$ in $S$ , and by Lemma 4.5 there is a connected compact $C^{\infty}$

submanifold $\overline{Q}$ of $\prime s$ such that $\partial\overline{Q}\subset U_{\partial S}$ and $\overline{Q}\supset S-U_{\partial s}$ . By the $bicollarin\{$

theorem (cf. p. 23 [4]), there is a neighborhood $V_{\partial\overline{Q}}$ of $\partial\overline{Q}$ such tha
$V_{\partial\overline{Q}}\subset U_{\partial\overline{S}}$ and $V_{\partial\overline{Q}}$ is diffeomorphic to the direct product $\partial\overline{Q}\times(-\delta, \delta)$ . Fi:
a smooth riemannian metric $g^{\prime}$ on $\partial\overline{Q}$ and let $ d\mu$ be the riemannian volum
form on $\partial\overline{Q}$ . On $V_{\partial\overline{Q}}=\partial\overline{Q}\times(-\delta, \delta)$ , the volume form $dV_{0}$ can be writte]

in the form $dV_{0}=d\mu\wedge f(x^{\prime}, t)dt$ . Hence by putting $x^{n}=|_{0}f(x’, t)dt$ , on
may assume that

(19) $ dV_{0}=d\mu$A $dx^{n}$ on $\partial\overline{Q}\times(-\delta, \delta)$ .
We fix a product riemannian metric $g=g’\times(dx’)^{2}$ on $\partial\overline{Q}\times(-\delta, \delta)$ . Ther
$dV_{0}$ is the riemannian volume form with respect to $g$ . We take
suitable extension of $g$ to a neighborhood of $\overline{Q}$ and denote it by th
same notation $g$ . Set $dV_{q}=h(q)$ for $q\in\sigma^{k}$ and set $dV_{q,\lambda}=(1-\lambda)dV_{0}+\lambda dV_{t}$

Then, $dV_{q,*}$ defines a continuous mapping of $\sigma^{k}$ into $\mathscr{M}([0,1],$ $\ovalbox{\tt\small REJECT}_{S}^{\wedge}$

Define a $C^{\infty}$-function $\rho_{q,\lambda}$ by $dV_{q,\lambda}=\rho_{q,\lambda}dV_{0}$ . Let $g_{q,\lambda}=\rho_{q,\lambda}^{2/}g$ . Then, $g_{q}$

is a $C^{\infty}$-riemannian metric on a neighborhood of $\overline{Q}$ such that $dV_{q,\lambda}$ is tb
riemannian volume form with respect to $g_{q,\lambda}$ . Since $\rho_{q,\lambda}\equiv 1$ on $\partial\overline{Q}\times(-\delta,$ $\delta$

we have $g_{q,\lambda}\equiv g$ on it. Let $\Delta_{q,\lambda}$ be the Laplacian with respect to $g_{q,\lambda}$ , an
let $\Gamma(1_{\overline{Q}})$ is the space of all $C^{\infty}$-functions of $\overline{Q}$ and $\Gamma^{k}(1_{\overline{Q}})$ the completio
of $\Gamma(1_{\overline{Q}})$ by the norm $||||_{k}$ given by

$||f||_{k}^{2}=\sum_{\epsilon=0}^{k}|_{\overline{Q}}\langle\nabla^{\epsilon}f, \nabla^{\iota}f\rangle dV_{0}$ .
Then, $\{\Gamma(1_{\overline{Q}}), \Gamma^{k}(1_{\overline{Q}}), k\geqq 0\}$ is an ILB-system and $\Delta_{q,\lambda}$ is a linear mappio
of order 2. It is not hard to see that $\Delta_{q.*}$ defines a continuous mappin
of $\sigma^{k}$ into $\mathscr{M}\swarrow([0,1],$ $L_{2}(\Gamma(\overline{Q}), \Gamma(1_{\overline{Q}}))$ . Let

$\Gamma_{\partial\overline{Q}}(1_{\overline{Q}})=\{fe\Gamma(1_{\overline{Q}});\int_{\overline{Q}}fdV_{0}=0$ , $(\partial/\partial x^{n})f\equiv 0$ on $\partial\overline{Q}\}$ ,

and $\Gamma_{\partial\overline{Q}}^{k}$ its closure in $\Gamma^{k}(1_{\overline{Q}})$ . $\{\Gamma_{\partial\overline{Q}}(1_{\overline{Q}}), \Gamma_{\partial\overline{Q}}^{k}, k\geqq 0\}$ is also an ILB-system

Let $\Gamma_{0}=\{f\in\Gamma(1_{\overline{Q}});\int_{\overline{Q}}fdV_{0}=0\}$ , and $\Gamma_{0}^{k}$ its closure in $\Gamma^{k}(1_{\overline{Q}})$ . For tl

above $\rho_{q,\lambda}$ we denote by $\rho_{q,\lambda}^{-1}\Gamma_{0}$ (resp. $\rho_{q,\lambda}^{-1}\Gamma_{0}^{k}$ ) the space $\{\rho_{q,\lambda}^{-1}f;f\in\Gamma_{0}(res$

$\Gamma_{0}^{k})\}$ . Since $\rho_{q,\lambda}>0$ , we see that $\{\rho_{q,\lambda}^{-1}\Gamma_{0}, \rho_{q,\lambda}^{-1}\Gamma_{0}^{k}, k\geqq 0\}$ is an ILB-systeI
which is naturally isomorphic to the IBL-system $\{\Gamma_{0}, \Gamma_{0}^{k}, k\geqq 0\}$ . No
that $\Delta_{q,\lambda}$ is an isomorphism of $\Gamma_{\partial\overline{Q}}(1_{\overline{Q}})$ onto $\rho_{q,\lambda}^{-1}\Gamma_{0}$ (cf. [5]), which can
extended to an isomorphism of $\Gamma_{\partial^{\frac{+}{Q}}}^{k2}$ onto $\rho_{q,\lambda}^{-1}\Gamma_{0}^{k}$ . The next lemma is $\{$

immediate conclusion from Lemma 1.2:
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LEMMA 5.1. Define a $C^{\infty}$-function $h_{q,\lambda}$ by $dV_{q}-dV_{0}=h_{q.\lambda}dV_{q,\lambda}$

$(=h_{q,\lambda}\rho_{q,\lambda}dV_{0})$ . Then, $h_{q,\lambda}\in\rho_{q,\lambda}^{-1}\Gamma_{0}$ and there exists uniquely $f_{q,\lambda}\in\Gamma_{\partial\overline{Q}}(1_{\overline{Q}})$

such that $\Delta_{q,\lambda}f_{q,\lambda}=h_{q,\lambda}$ on Q. Moreover, $f_{q,*}$ defines a continuous mapping
of $\sigma^{k}$ into $\mathscr{M}’\swarrow([0,1], \Gamma_{\partial\overline{Q}}(1_{\overline{Q}}))$ .

Let $u_{q,\lambda}=grad_{q,\lambda}f_{q,\lambda}$ be the gradient vector field of $f_{q,\lambda}$ with respect
to the riemannian metric $g_{q,\lambda}$ . Since $grad_{q,*}$ defines a continuous mapping
of $\sigma^{k}$ into $\vee\ovalbox{\tt\small REJECT}([0,1],$ $L_{1}(\Gamma(1_{\overline{Q}})\Gamma(1_{\overline{Q}}))$ , we see that $u_{q,*}$ defines a continuous
mapping of $\sigma^{k}$ into $\mathscr{M}([0,1], \Gamma(T_{\overline{Q}}^{\prime}))$ . Since $h_{q.\lambda}\equiv 0$ on a neighborhood of
$\partial\overline{Q}$ , there is a positive number $\delta_{1}$ such that $div_{q,\lambda}u_{q,\lambda}\equiv 0$ on $\partial\overline{Q}\times[0, \delta_{1}]$ ,
where $div_{q,\lambda}$ is the divergent with respect to $g_{q,\lambda}$ .

LEMMA 5.2. Set $u_{q,\lambda}=u_{q,\lambda}^{\prime}+u_{q,\lambda}^{n}\partial/\partial x^{n},$ $u_{q,\lambda}^{\prime}=\sum_{i=1}^{x-1}u_{q,\lambda}^{\prime_{i}}\partial/\partial x^{i}$ . Then,

$\int_{\partial\overline{Q}}u_{q,\lambda}^{n}(x^{\prime}, x^{n})d\mu=0$ , $|_{\partial\overline{Q}}(\partial/\partial x^{n})u_{q,\lambda}^{n}(x^{\prime}, x^{n})d\mu=0$

for $0\leqq x^{\prime}<\delta_{1}$ , where $ 0<\delta_{1}\leqq\delta$ is assumed.

PROOF. Set $\partial Q^{\prime}=\partial\overline{Q}\times\{x^{n}\},$ $R=\partial Q\times[0, x^{n}]$ . Since $div_{q,\lambda}u_{q,\lambda}\equiv 0$ on $R$ ,
we have

$0=\int_{R}div_{q,\lambda}u_{q,\lambda}d\mu\wedge dx^{n}=-\int_{\partial\overline{Q}}u_{q,\lambda}^{n}d\mu+\int_{\partial Q},$ $ u_{q,\lambda}^{n}d\mu$ .

Since $u_{q,\lambda}^{n}=\partial f_{q,\lambda}/\partial x^{n}$ , we have $\int_{\partial\overline{Q}}u_{q,\lambda}^{n}d\mu=0$ , hence $\int_{\partial Q},$ $u_{q,\lambda}^{n}d\mu=0$ . On the

other hand, since
$div_{q,\lambda}u_{q,\lambda}=div_{\partial Q}-u_{q,\lambda}^{\prime}+(\partial/\partial x^{n})u_{q,\lambda}^{n}=0$

on $\partial Q\times[0, \delta_{1}$), where $div_{\partial\overline{Q}}$ is the divergence on $\partial\overline{Q}$ , we have

$\int_{\partial\overline{Q}}(\partial/\partial x^{\hslash})u_{q,\lambda}(x^{\prime}, x^{n})d\mu=-\int_{\partial\overline{Q}}div_{\partial Q}u_{q,\lambda}^{\prime}d\mu=0$ .
Let $\phi(x^{n})$ be a $C^{\infty}$-function on $[0, \infty$ ) such that $\phi\geqq 0,$ $\phi\equiv 1$ on $[0, \delta_{1}/2]$

and $\phi\equiv 0$ on $[\delta_{1}, \infty$ ). Let $\Delta^{\prime}$ be the Laplacian on $\partial\overline{Q}$ with respect to $g’$ .
LEMMA 5.3. Regarding $ x^{n}e[0, \infty$ ) as a parameter, there exists

uniquely a smooth function $F_{q,\lambda}(x^{\prime}, x^{n})$ on $\partial Q\times[0, \infty$ ) such that

(20) $\left\{\begin{array}{l}\Delta^{\prime}F_{q,\lambda}(x’, x^{n})=(\partial/\partial x^{n})\phi(x^{n})u_{q,\lambda}^{n}(x’, x’)\\\int_{\partial\overline{Q}}F_{q,\lambda}(x^{\prime}, x^{\#})d\mu=0\end{array}\right.$

Moreover, $F_{q,*}$ defines a continuous mapping of $\sigma^{k}$ into $\mathscr{M}([0,1]$ ,
$\Gamma(1_{\partial Q\times[0,2\delta_{1}]}))$ .
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PROOF. Since

$\int_{\partial\overline{Q}}(\partial/\partial x^{n}\rangle\phi(x^{n})u_{q,\lambda}^{n}(x’, x’)d\mu=\phi^{\prime}(x^{\pi})\int_{\partial\overline{Q}}u_{q,\lambda}^{n}d\mu+\phi\int_{\partial\overline{Q}}(\partial/\partial x’)u_{q,\lambda}^{n}d\mu=0$ ,

the equation (20) can be solved uniquely and by Lemma 1.2 $F_{q,*}$ define:
a continuous mapping of $\sigma^{k}$ into $\mathscr{M}([0,1],$ $\Gamma(1_{\partial Qx[0,2\delta_{1}]})$ .

Let $v_{q.\lambda}$ be the gradient vector field of $F_{q,\lambda}$ on $\partial Q$ with respect to $g$
’

Since $v_{q,\lambda}$ contains the parameter $x^{n}$ , we may regard $v_{q.\lambda}$ as a smootf
vector field on $\partial Q\times[0, \infty$ ). Note that $v_{q,\lambda}\equiv 0$ , if $x^{n}\geqq\delta_{1}$ . Hence $v_{q.\lambda}$ can
be regarded as a stricly tangent vector field on $\overline{Q}$ .

Set

(21) $w_{q.\lambda}=(1-\phi)u_{q,\lambda}+\phi u_{q,\lambda}^{\prime}+v_{q,\lambda}$

and $w_{q,\lambda}$ is a strictly tangent vector field on $\overline{Q}$ , because

$w_{q,\lambda}=u_{q,\lambda}+(1-\phi)u_{q,\lambda}\partial/\partial x^{t}+v_{q,\lambda}$

and hence has no $\partial/\partial x^{\#}$-component on $\partial Q\times[0, \delta_{1}/2]$ . Note that $w_{q,*}$ definef
a continuous mapping of $\sigma^{k}$ into $\mathscr{M}([0,1], \Gamma(T_{\overline{Q}}))$ .

LEMMA 5.4. $div_{q,\lambda}w_{q,\lambda}\equiv h_{q.\lambda}$ on $\overline{Q}$ .
PROOF. If $0\leqq x^{n}<\delta_{1}$ , then $w_{q.\lambda}=u_{q,\lambda}-\phi u_{q,i}^{n}\partial/\partial x^{n}+v_{q,\lambda}$ . Thus,

$div_{q,\lambda}w_{q,\lambda}=div_{q.\lambda}u_{q,\lambda}-(\partial/\partial x^{n})\phi u_{q.\lambda}+div_{q,\lambda}v_{q,\lambda}$ .
Since

$div_{q,\lambda}v_{q,\lambda}=div_{\partial Q}v_{q.\lambda}=\Delta F_{q,\lambda}=(\partial/\partial x^{n})\phi u_{q.\lambda}^{n}$ ,

we have $div_{q.\lambda}w_{q,\lambda}\equiv div_{q.\lambda}u_{q,\lambda}\equiv 0$ on $\partial\overline{Q}\times[0, \delta_{1}$).
On the complement of $\partial\overline{Q}\times[0, \delta_{1}$ ) in $\overline{Q}$ , we have $w_{q,\lambda}\equiv u_{q,\lambda}$ . Therefore

$div_{q,\lambda}w_{q,\lambda}\equiv div_{q,\lambda}u_{q,\lambda}\equiv\Delta_{q,\lambda}f_{q,\lambda}\equiv h_{q,\lambda}$ .
Let $\psi$ be a $C^{\infty}$-function on $[0, \infty$ ) such that $\psi\equiv 1$ on $[0, \delta_{1}/4]$ and

$\psi\equiv 0$ on $[\delta_{1}/2, \infty$ ). Set $\tilde{w}_{q,\lambda}=(1-\psi(x^{n}))w_{q.\lambda}$ . Since $\tilde{w}_{q,\lambda}\equiv 0$ on a neighbor.
hood of $\partial\overline{Q}$ , we may regard $\tilde{w}_{q.\lambda}$ as an element of $\Gamma_{S}(T_{N})$ . Obviously $($

$\tilde{w}_{q,*}$ defines a continuous mapping of $\sigma^{k}$ into $\swarrow Z([0,1], \Gamma_{S}(T_{N}))$ . Note
that $h_{q,\lambda}\equiv 0$ on $\partial\overline{Q}\times[0, \delta_{1}$ ) and $\tilde{w}_{q,\lambda}$ has no $\partial/\partial x^{*}$-component on $\partial Q\times[0, \delta_{1}/2]($

Hence, we have

LEMMA 5.5. $div_{q,\lambda}\tilde{w}_{q,\lambda}=h_{q,\lambda}$ on $S$ , and $\tilde{w}_{q,\lambda}e\Gamma_{S}(T_{N})$ .
Solve the equation

(22) $(d/d\lambda)\tilde{\psi}_{q,\lambda}=-\tilde{w}_{q,\lambda}\tilde{\psi}_{q,\lambda}$
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with the initial condition $\tilde{\psi}_{q,0}=identity$ . Then, $\tilde{\psi}_{q,\lambda}$ is a $C^{\infty}$-diffeomorphism
on $S$ such that $\tilde{\psi}_{q,\lambda}\equiv identity$ on a neighborhood of $\partial S$ . Now, by the
same computation as in (18), we see that

$\tilde{\psi}_{q.\lambda}^{*}dV_{q,\lambda}=dV_{0}$ , $qe\sigma^{k},$ $\lambda\in[0,1]$ .
Set $\tilde{H}(\lambda q)=\tilde{\psi}_{q.\lambda}^{-1}$ . Then by Lemma 2.8 $\tilde{H}$ is a continuous mapping of $\delta^{k+1}$

into $\mathcal{D}_{s}(N)$ . Thus, restricting $\tilde{H}$ onto $S$ we have a desired mapping.
This completes the proof of Theorem in \S 1.
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