On the Volume Elements on an Expansive Set

Hideki OMORI

Tokyo Metropolitan University

In [6], J. Moser proved that the group $\mathscr{O}(M)$ of all C^{∞}-diffeomorphisms of a compact connected C^{∞}-manifold M with $\partial M=\varnothing$ acts transitively on the space \mathscr{V} of all C^{∞}-volume elements with total volume one, where the action is of course given by the pullback $\varphi^{*} d V$ for $\varphi \in \mathscr{D}(M)$ and $d V \in \mathscr{V}$.

Moreover the mapping $\Phi: \mathscr{D}(M) \rightarrow \mathscr{V}$ given by $\Phi(\varphi)=\varphi^{*} d V$ for any fixed $d V \in \mathscr{Y}$ defines a structure of principal fibre bundle with the fibre $\mathscr{D}_{d V}(M)=\left\{\varphi \in \mathscr{D}(M) ; \varphi^{*} d V=d V\right\}$, where the topologies are given by the C^{∞}-topology. Since \mathscr{V} is convex, the above principal bundle turns out to be trivial, and hence $\mathscr{D}(M)$ is homeomorphic to $\mathscr{D}_{d V}(M) \times \mathscr{V}$ (cf. [8], [1], [9]). Especially, $\mathscr{D}_{d V}(\boldsymbol{M})$ is homotopically equivalent with $\mathscr{D}(\boldsymbol{M})$.

The purpose of this note is to show that a little weaker theorem holds for a wider class of compact sets, i.e., orientable expansive sets with nonvoid connected interior ${ }^{\prime} S$ such that $S={ }^{\bar{S}} S$. Namely, in such a compact set S, the inclusion $i: \mathscr{D}_{d V}(S) \rightarrow \mathscr{D}(S)$ gives a weak homotopy equivalence.

§ 1. Preliminaries and the precise statement of the theorem.

Let N be an n-dimesional smooth (C^{∞}-) manifold and S a compact subset of N. By T_{S}^{\prime} we denote the restriction of the tangent bundle T_{N} onto S. Functions, vector fields (sections of T_{S}^{\prime}) or p-forms (sections of the exterior product $\Lambda^{p} T_{S}^{\prime}$) are said to be smooth if they can be extended smoothly on a neighborhood of S in N. A smooth vector field u on S is called a strictly tangent vector field on S if the integral curves of an extension \tilde{u} of u with initial points in S are contained in S for $-\infty<t<\infty$. This property for u does not depend on the choice of extension \tilde{u}. By $\Gamma\left(T_{S}\right)$, we denote the totality of smooth strictly tangent vector fields on S. As it will be proved in the next section, $\Gamma\left(T_{S}\right)$ is a Lie algebra under the usual Lie bracket product and a $\Gamma\left(1_{S}\right)$-module, where $\Gamma\left(1_{S}\right)$ is the ring of all C^{∞}-functions on S.

[^0]
HIDEKI OMORI

A mapping φ of S onto S is said to be a C^{∞}-diffeomorphism of S if φ can be extended to a C^{∞}-diffeomorphism of a neighborhood of S onto another one of S. The group of all C^{∞}-diffeomorphisms of S will be denoted by $\mathscr{O}(S)$. A compact subset S of N will be called an expansive set, if for each $x \in S$ there is $X_{x} \in \Gamma\left(T_{S}\right)$ such that $X_{x}(x)=0$ and there is an extension \tilde{X}_{x} of X_{x} with the following property (P):
(P) The eigenvalues of the linear part of \tilde{X}_{x} at x are real and positive.

We call such X_{x} an expansive vector field on S at x. Remark at first that for any $x \in^{\prime} S$, there is an expansive vector field on S at x. Therefore the above condition for expansive sets is only related to the shape of $S-^{\prime} S$. However, if $S \neq^{\overline{ }} S$, then the property (P) may depend on the choice of extension X_{x}. A compact cornered manifold is an important example of expansive set. Moreover a subset such as $\left\{(x, y) \in \boldsymbol{R}^{2} ; x^{3}-y^{2} \geqq 0\right.$, $\left.x^{2}+y^{2} \leqq 1\right\}$ is an expansive set. An expansive vector field at the origin is given by

$$
\frac{1}{3} x \frac{\partial}{\partial x}+\frac{1}{2} y \frac{\partial}{\partial y}
$$

multiplied by an appropriate cut off function.
Note that if $\bar{S} \neq S$, then it is rather hard to define the C^{∞}-topology on $\Gamma\left(T_{S}\right), \Gamma\left(1_{s}\right)$ or $\mathscr{D}(S)$. So, for the simplicity we assume $\bar{S}=S$ throughout this note. Under this condition, $\mathscr{D}(S)$ is a topological group in the C^{∞}-topology. Now, assume that S has an orientable neighborhood in N, and let $\widetilde{\mathscr{V}}_{S}$ be the totality of C^{∞}-volume forms on S with the C^{∞}-topology. If S is an expansive set, then it is not hard to see that S is a measurable set by every $d V \in \widetilde{\mathscr{V}}_{S}$. (See §3.) Let $\mathscr{V}_{s}=\left\{d V \in \widetilde{\mathscr{V}}_{S}\right.$; $\left.\int_{S} d V=1\right\}$. Then \mathscr{V}_{S} is a closed convex subset of $\widetilde{\mathscr{V}}_{S}$.

Let δ^{k+1} be the unit closed disk in R^{k+1} with the origin 0 as the center, and σ^{k} the boundary of δ^{k+1}. The statement to be proved in this note is as follows:

Theorem. Let S be a compact expansive set in N with orientable neighborhood and with nonvoid connected interior 'S such that $\bar{\top}=S$. For an arbitrary k, let $h: \sigma^{k} \rightarrow \mathscr{V}_{s}$ be a continuous mapping. Then there is a continuous mapping $H: \delta^{k+1} \rightarrow \mathscr{O}(S)$ such that $H(0)=$ identity and $H(q)^{*} d V_{0}=h(q)$ for $q \in \sigma^{k}$, where $d V_{0}$ is a prescribed element in \mathscr{V}_{S}.

Apply the above theorem to the case $k=0$, and we have that the group $\mathscr{D}(S)$ acts transitively on \mathscr{V}_{S}. Moreover it is not hard to see the following:

Corollary. Let $\mathscr{D}_{d V_{0}}(S)=\left\{\varphi \in \mathscr{D}(S) ; \varphi^{*} d V_{0}=d V_{0}\right\}$. Notations and assumptions being as above, the inclusion $i: \mathscr{D}_{d V_{0}}(S) \rightarrow \mathscr{D}(S)$ gives a weak homotopy equivalence, i.e., $\pi_{*}\left(\mathscr{D}_{\mathrm{dV}_{0}}^{0}(S)\right) \rightarrow \pi_{*}(\mathscr{D}(S))$ is an isomorphism.

Remark. If $\mathscr{D}_{d V_{0}}(S)$ and $\mathscr{D}(S)$ are ANR (absolute neighborhood retract), then Theorem 15 in [11] shows that the above i gives a homotopy equivalence. However, there is no simple method to prove $\mathscr{\mathscr { P }}_{d V_{0}}(S)$ or $\mathscr{D}(S)$ is ANR.

For the later use, we shall define notions of smoothness of mappings in the remainder of this section. Let W be an open subset of a C^{∞}-manifold N^{\prime}. A mapping $\varphi: W \rightarrow \mathscr{D}(S)$ is said to be smooth if there are open neighborhoods U, U^{\prime} of $W \times S$ in $W \times N$, and a smooth diffeomorphism $\widetilde{\Phi}: U \rightarrow U^{\prime}$ such that (a) Φ can be written in the form $\Phi(w, x)=$ $(w, \widetilde{\varphi}(w)(x))$, and (b) $\widetilde{\varphi}(w): U_{w} \rightarrow U_{w}^{\prime}$ is an extension of $\varphi(w)$, where $U_{w}=$ $U \cap(\{w\} \times N), U_{w}^{\prime}=U^{\prime} \cap(\{w\} \times N)$. Let T be a compact subset of N^{\prime}. A mapping $\psi: T \rightarrow \mathscr{D}(S)$ is said to be smooth if ψ can be extended to a smooth mapping of an open neighborhood of T into $\mathscr{D}(S)$. We denote by $\mathscr{L}(T, \mathscr{D}(S))$ the totality of smooth mappings of T into $\mathscr{D}(S)$. If T is an interval $[a, b], \psi$ is called a smooth arc in $\mathscr{D}(S)$.

Let E be a C^{∞}-vector bundle on N and E_{s}^{\prime} the restriction of E onto S. By $\boldsymbol{\Gamma}\left(\boldsymbol{E}_{S}^{\prime}\right)$ we denote the space of all C^{∞}-sections of E_{S}^{\prime}. A mapping $\psi: T \rightarrow \Gamma\left(E_{S}^{\prime}\right)$ is said to be smooth, if there are neighborhoods W_{T}, V_{S} of T, S respectively in N^{\prime}, N and a mapping $\tilde{\psi}$ of W_{T} into $\Gamma\left(E_{S}^{\prime}\right)$ which extends ψ such that $\tilde{\psi}(w)(x)$ is smooth with respect to $(w, x) \in W_{T} \times V_{S}$. By $\mathscr{I}\left(T, \Gamma\left(E_{S}^{\prime}\right)\right)$ we denote the totality of smooth mappings of T into $\Gamma\left(E_{S}^{\prime}\right)$.

Let E_{1}, E_{2} are C^{∞}-vector bundles on N and $F=E_{1} \otimes E_{2}^{*}$. Then there is a natural evaluation mapping ev: $\mathscr{M}\left(T, \Gamma\left(F_{s}^{\prime}\right)\right) \times \mathscr{M}\left(T, \Gamma\left(E_{2, s}^{\prime}\right)\right) \rightarrow$ $\mathscr{A}\left(T, \Gamma\left(E_{1, s}^{\prime}\right)\right.$, defined by $e v(A, v)(t)(x)=A(t)(x) v(t)(x)$, where $t \in T$ and $x \in S$. Let $G L(E)$ be the bundle of the fibre isomorphisms of E onto itself, and $G L\left(E_{S}^{\prime}\right)$ its restriction to S. The space $\mathscr{M}\left(T, \Gamma\left(G L\left(E_{S}^{\prime}\right)\right)\right.$) is defined by the same manner as above. The group inversion defines naturally a mapping i of $\mathscr{L}\left(T, \Gamma\left(G L\left(E_{s}^{\prime}\right)\right)\right)$ onto itself. Now, assume that $\bar{T}=T, \bar{S}=S$. Then, the C^{∞}-topologies can be well-defined on $\mathscr{M}(T, \mathscr{O}(S)), \mathscr{M}\left(T, \Gamma\left(E_{S}^{\prime}\right)\right)$ and $\mathscr{M}\left(T, \Gamma\left(G L\left(E_{S}^{\prime}\right)\right)\right)$ by regarding each element as a mapping from $T \times S$. The following continuity lemma is easy to prove:

Lemma 1.1. Notations and assumptions being as above, ev and i are continuous in the C^{∞}-topology.

A system $\left\{E, E^{k}, k \geqq 0\right\}$ (k 's are integers) is called an ILB-system if each E^{k} is a Banach space, E^{k+1} is bounded-linearly and densely imbedded in E^{k} and E is the intersection of all E^{k} with the inverse limit topology (cf. [10] Chap. I). By $\mathscr{M}^{r}\left(T, E^{k}\right)$ we denote the space of all C^{r}-mappings of T into E^{k}, where the smoothness should be understood by the same manner as in the case of C^{∞}. Since ${ }^{\prime} \bar{T}=T, \mathscr{M}^{r}\left(T, E^{k}\right)$ is a Banach space in the C^{r}-uniform topology, and $\mathscr{M}^{r}\left(T, E^{k+1}\right)$ is bounded-linearly and densely imbedded in $\mathscr{M}^{r}\left(T, E^{k}\right)$. Let $\mathscr{M}(T, E)$ be the intersection of all $\mathscr{M}^{k}\left(T, E^{k}\right)$ with the inverse limit topology. Then $\left\{\mathscr{M}(T, E), \mathscr{M}^{k}\left(T, E^{k}\right)\right.$, $k \geqq 0\}$ is an ILB-system. An element of $\mathscr{M}(T, E)$ will be called a smooth mapping of T into E. Let $\left\{\boldsymbol{F}, F^{k}, k \geqq 0\right\}$ be another ILB-system. A linear mapping $A: E \rightarrow \boldsymbol{F}$ is said to be order r if A can be extended to a continuous mapping $A: E^{k+r} \rightarrow F^{k}$ for every k such that $k+r, k \geqq 0$. We denote by $L_{r}(\boldsymbol{E}, \boldsymbol{F})$ the linear space of all linear mappings of order r, and by L_{r}^{k} its completion by the norm $\||A|\|_{k}=\max \left\{\|A\|_{i} ; \max (0, r) \leqq i \leqq k\right\}$, where $\|A\|_{i}$ is the operator norm of $A: E^{i+r} \rightarrow F^{i}$. Obviously, $\left\{L_{r}(E, F)\right.$, $\left.L_{r}^{k}, k \geqq \max (r, 0)\right\}$ is an ILB-system. Therefore one can define the space $\mathscr{M}\left(T, L_{r}(\boldsymbol{E}, \boldsymbol{F})\right)$. Let $G L_{r}(\boldsymbol{E}, \boldsymbol{F})$ be the totality of $A \in L_{r}(\boldsymbol{E}, \boldsymbol{F})$ such that A can be extended to a continuous bijection of E^{k+r} onto F^{k} for every k such that $k+r, k \geqq 0$. A mapping $\varphi: T \rightarrow G L_{r}(\boldsymbol{E}, \boldsymbol{F})$ is said to be smooth, if $\rho: T \rightarrow L_{r}(E, F)$ is smooth. The following lemma is not hard to prove:

Lemma 1.2. Notations and assumptions being as above,

$$
\begin{aligned}
& e v: \mathscr{A}\left(T, L_{r}(E, F)\right) \times \mathscr{M}(T, E) \longrightarrow \mathscr{M}(T, F) \\
& i: \mathscr{H}\left(T, G L_{r}(E, F)\right) \longrightarrow \mathscr{M}\left(T, G L_{-r}(F, E)\right)
\end{aligned}
$$

are continuous, where ev $(A, u)(t)=A(t) u(t)$ and $(i A)(t)=A(t)^{-1}$.
$\S 2$. The group $\mathscr{D}(S)$ and the Lie algebra $\Gamma\left(T_{S}\right)$.
Let S be a compact subset of N. Without loss of generality, one may assume that N is a compact manifold with C^{∞} boundary ∂N such that $S \cap \partial N=\varnothing$. Since N itself is an expansive set, the group $\mathscr{D}(N)$ is defined by the same manner as above. $\mathscr{D}(N)$ is a strong ILB-Lie group (cf. [9]) with the Lie algebra $\Gamma\left(T_{N}\right)$, where $\Gamma\left(T_{N}\right)$ is the totality of C^{∞}-vector fields \tilde{u} on N such that $\tilde{u} \mid \partial N$ are tangent vector fields on ∂N (cf. [9] II. 4 or [10] Chap. 8, §7). We denote by $\mathscr{D}_{s}(N)$ the group $\{\widetilde{\mathscr{P}} \in \mathscr{D}(N) ; \widetilde{\mathscr{\varphi}}(S)=S\}$, and by $\mathscr{D}_{s, 0}(N)$ the group $\left\{\widetilde{\mathscr{\varphi}} \in \mathscr{D}_{s}(N) ; \widetilde{\varphi}(x)=x\right.$ for every $x \in S\}$. $\quad \mathscr{D}_{s, 0}(N)$ is a closed normal subgroup of $\mathscr{D}_{S}(N)$. Let $\Gamma_{S}\left(T_{N}\right)$ be the totality of $\tilde{u} \in \Gamma\left(T_{N}\right)$ such that $\exp t \tilde{u} \in \mathscr{D}_{S}(N)$ for $-\infty<t<\infty$, where $\exp t \tilde{u}$ is the one parameter subgroup generated by \tilde{u}. Since
$\mathscr{D}_{s}(N)$ is a closed subgroup of $\mathscr{D}(N), \Gamma_{S}\left(T_{N}\right)$ is a closed Lie subalgebra of $\boldsymbol{\Gamma}\left(T_{N}\right)$ (cf. 1.4.1 Theorem [9]). Set $\Gamma_{S, 0}\left(T_{N}\right)=\left\{\tilde{u} \in \Gamma_{S}\left(T_{N}\right) ; \widetilde{u} \mid S \equiv 0\right\}$. It is clear that $\Gamma_{s, 0}\left(T_{N}\right)=\left\{\tilde{u} \in \Gamma\left(T_{N}\right) ; \exp t \tilde{u} \in \mathscr{D}_{S, 0}(N)\right.$ for $\left.-\infty<t<\infty\right\}$. Therefore, $\Gamma_{s, 0}\left(T_{N}\right)$ is a closed Lie subalgebra of $\boldsymbol{\Gamma}\left(T_{N}\right)$ and in fact a closed ideal of $\boldsymbol{\Gamma}_{s}\left(\boldsymbol{T}_{N}\right)$. We denote by $\boldsymbol{\Gamma}_{s}$ the factor space $\boldsymbol{\Gamma}_{s}\left(\boldsymbol{T}_{N}\right) / \boldsymbol{\Gamma}_{s, 0}\left(\boldsymbol{T}_{N}\right)$. Let $\Gamma\left(1_{S}\right)$ be the ring of all C^{∞}-functions on S.

Lemma 2.1. Γ_{S} can be canonically identified with $\Gamma\left(T_{S}\right)$, and $\Gamma\left(T_{S}\right)$ is a $\Gamma\left(1_{s}\right)$-module.

Proof. Let $u \in \Gamma\left(T_{S}\right)$. Then, u can be extended to a smooth vector field \tilde{u} on N such that $\tilde{u} \equiv 0$ on a neighborhgod of ∂N. Thus, $\tilde{u} \in \Gamma_{s}\left(T_{N}\right)$. Let $\pi \tilde{u}=\widehat{u}$, where $\pi: \Gamma_{S}\left(T_{N}\right) \rightarrow \Gamma_{S}$ is the canonical projection. It is clear that \hat{u} depends only on u, and the mapping $u m \rightarrow \hat{u}$ is injective. The converse is trivial. Thus, $\Gamma\left(T_{S}\right)$ is a Lie algebra. The bracket product defined on $\Gamma\left(T_{s}\right)$ is obviously the usual Lie bracket product. Looking at every integral curve, we get easily the second assertion.

By the above result, we can make $\Gamma\left(T_{S}\right)$ a topological Lie algebra by the factor space topology. If ${ }^{\top} S=S$, then it coincides with the C^{∞} topology. So, we assume $\bar{S}=S$ in the remainder of this section. Let \mathscr{N} be a basis of neighborhoods of the identity of $\mathscr{D}(S)$ in the C^{∞} topology. For any $W \in \mathscr{N}$, we denote by W_{0} the points in W which can be joined to the identity by piecewise smooth arcs in W. Set $\mathscr{N}_{0}=$ $\left\{W_{0} ; W \in \mathscr{N}\right\}$. Then, \mathscr{N}_{0} satisfies the axioms of a basis of neighborhoods of the identity of a topological group, hence by \mathscr{N}_{0} one can define a topology on $\mathscr{D}(S)$, making $\mathscr{D}(S)$ a topological group. This topology will be called LPSAC-topology, where LPSAC means "Locally-Piecewise-Smooth-Arcwise Connected". (See also [9] p. 13.)

Lemma 2.2. Let \mathscr{D}_{s} be the factor group $\mathscr{D}_{S}(N) / \mathscr{D}_{s, 0}(N)$ Then, \mathscr{D}_{s} can be canonically identified with an open subgroup of $\mathscr{D}(S)$ in LPSACtopology.

Proof. Evidently, \mathscr{D}_{S} can be canonically imbedded in $\mathscr{D}(S)$. Thus, for the proof we have only to show that \mathscr{D}_{s} contains the identity component of $\mathscr{D}(S)$ in LPSAC-topology. Let $\varphi_{t}, t \in[0,1]$ be a piecewise smooth arc joining φ_{1} and the identity φ_{0}. By definition, there is a division $0=t_{0}<t_{1}<\cdots<t_{m}=1$ of [0,1$]$ such that $\varphi_{t}, t \in\left[t_{i}, t_{i+1}\right]$, are smooth arc in $\mathscr{D}(S)$. Hence, there is an extension $\tilde{\varphi}_{t}$ of φ_{t} on each $\left[t_{i}, t_{i+1}\right]$. Define \tilde{u}_{t} by $(d / d t) \widetilde{\Phi}_{t}=\tilde{u}_{t} \widetilde{\Phi}_{t}$. Then, \tilde{u}_{t} is a C^{∞}-vector field defined on a neighborhood U_{t} of S for every $t \in\left[t_{i}, t_{i+1}\right]$. Since $\left[t_{i}, t_{i+1}\right] \times S$ is compact, $V=\bigcap_{t \in\left[t_{i}, t_{i+1}\right]} U_{t}$ is a neighborhood of S. One may assume $\bar{V} \cap \partial N=\varnothing$
without loss of generality. Hence multipying a C^{∞}-function g on N such that supp $g \subset V$ and $g \equiv 1$ on a neighborhood of $S, \widetilde{v}_{t}=g \widetilde{u}_{t}$ is a smooth vector field on N. Solve the equation $(d / d t) \tilde{\psi}_{t}=\widetilde{v}_{t} \tilde{\psi}_{t}$ on $\left[t_{i}, t_{i+1}\right]$ with the initial condition $\tilde{\psi}_{t_{i}}$ which is obtained by solving the same equation on $\left[t_{i-1}, t_{i}\right]$, where we set $\tilde{\psi}_{0}=$ identity. Then, $\tilde{\psi}_{t} \equiv \widetilde{\phi}_{t}$ on some neighborhood of S. Since $\widetilde{\psi}_{t} \in \mathscr{D}_{S}(N)$ for $t \in[0,1]$ and $\tilde{\psi}_{t} \mid S=\varphi_{t}$, we get $\varphi_{t} \in \mathscr{D}_{S}$ for $t \in[0,1]$.

For any $\tilde{\varphi} \in \mathscr{D}(N), \tilde{u} \in \Gamma\left(T_{N}\right)$, we define $\operatorname{Ad}(\widetilde{\mathscr{D}}) \tilde{u}$ by $d /\left.d t\right|_{t=0} \tilde{\varphi} \cdot \exp t \tilde{u}$. $\tilde{\varphi}^{-1}$. Then by a simple computation, we see

$$
(A d(\widetilde{\mathscr{P}}) \widetilde{u})(x)=d \widetilde{\varphi} u\left(\widetilde{\mathscr{P}}^{-1}(x)\right) .
$$

Now, recall the definition of $\Gamma_{s}\left(T_{N}\right)$. If $\widetilde{\mathscr{P}} \in \mathscr{D}_{s}(N)$, then obviously

$$
\begin{equation*}
\operatorname{Ad}(\widetilde{\mathscr{P}}) \Gamma_{S}\left(T_{N}\right)=\Gamma_{S}\left(T_{N}\right) \tag{1}
\end{equation*}
$$

Let $\mathscr{D}_{S}(N)_{0}$ be the identity component of $\mathscr{D}_{S}(N)$ in LPSAC-topology. Then, by the same proof as in Lemma 2.2 [2], we see that every orbit $\mathscr{D}_{s}(N)_{0}(x)$ of $x \in N$ is a C^{∞}-immersed submanifold of N. Moreover, if $x \in S$, then

$$
\begin{equation*}
\mathscr{D}_{S}(N)_{0}(x)=\mathscr{D}(S)_{0}(x) \tag{2}
\end{equation*}
$$

where $\mathscr{D}(S)_{0}$ is the identity component of $\mathscr{D}(S)$ in LPSAC-topology. Therefore we get the following:

Lemma 2.3. S is a disjoint union of connected C^{∞}-immersed submanifolds $S_{\lambda}: \lambda \in \Lambda$. Each S_{λ} is an orbit $\mathscr{D}(S)_{0}$.

Note that if $u \in \Gamma\left(T_{S}\right)$, then $u \mid S_{\lambda}$ is a smooth tangent vector field on S_{λ} for each $\lambda \in \Lambda$. Since every $u \in \Gamma\left(T_{s}^{\prime}\right)$ can be extended to a complete vector field \tilde{u} on N, we have easily the following:

Corollary 2.4. A smooth vector field u on S is a strictly tangent vector field on S if and only if $u(x) \in T_{x} S_{\lambda}$ for any $x \in S$, where S_{λ} is the orbit which contains x and $T_{x} S_{\lambda}$ is the tangent space of S_{λ} at x.

Let $\Lambda_{r}=\left\{\lambda \in \Lambda ; \operatorname{dim} S_{\lambda} \leqq r\right\}$, and let $S^{(r)}=\bigcup_{\lambda \in \Lambda_{r}} S_{\lambda}$. In general, the structure of $S^{(r)}$ is very complicated. However, if there is an orbit S_{μ} with $\operatorname{dim} S_{\mu} \geqq 1$, we can see a local product structure of S at every $x \in S_{\mu}$. To do this, we need at first the following:

Lemma 2.5. Let $\mathfrak{\mathfrak { M }}$ be a Lie subalgebra of $\Gamma\left(T_{N}\right)$. Suppose there is $\tilde{u} \in \Gamma\left(T_{N}\right)$ such that
(a) $\quad A d(\exp t \tilde{u}) \tilde{\mathfrak{U}}=\tilde{\mathfrak{U}}$
(b) $\int_{a}^{b} A d(\exp t \tilde{u}) \widetilde{v} d t \in \tilde{\mathfrak{A}}$ for any $\tilde{v} \in \tilde{\mathfrak{A}}$ and $-\infty<a \leqq b<\infty$.

Suppose \widetilde{u} does not vanish at $p \in N$. Then, there is a relatively compact open neighborhood V_{p} of p in N satisfying the following: For any $\widetilde{w} \in \tilde{\mathfrak{A}}$ with supp $\tilde{w} \subset V_{p}$, the integral

$$
I(\widetilde{w})=\int_{0}^{2 c} A d(\exp t \tilde{u}) \tilde{w} d t \quad(\epsilon \tilde{\mathfrak{M}} \text { by }(\mathrm{b}))
$$

satisfies $[u, I(\widetilde{w})] \equiv \widetilde{w}$ on V_{p}, where $c>0$ depends only on V_{p}.
The proof is seen in Lemma 1.3 [2]. However, it should be remarked that if $\tilde{u}=\partial / \partial x^{1}$ on a local coordinate system, then

$$
\begin{equation*}
I(\widetilde{w})=\sum_{i=1}^{n} \int_{0}^{2 c} \widetilde{w}^{i}\left(x^{1}-t, x^{2}, \cdots, x^{n}\right) d t \partial / \partial x^{i} \tag{3}
\end{equation*}
$$

where $\widetilde{w}=\sum_{i=1}^{n} \widetilde{w}^{i} \partial / \partial x^{i}$. Remark also that if $\tilde{\mathscr{A}}$ is closed in the C^{∞}-topology, then the assumed property (b) is obtained by (a). Thus, by (1), we can apply this lemma for $\tilde{u} \in \Gamma_{S}\left(T_{N}\right)$, replacing $\tilde{\mathscr{U}}$ by $\Gamma_{S}\left(T_{N}\right)$.

Note that $\Gamma_{S}\left(T_{N}\right)$ is an $\boldsymbol{\Gamma}\left(1_{N}\right)$-module (cf. Lemma 2.1). For a vector field \tilde{u} defined on an open subset of N, we denote by $\tilde{u} \epsilon_{\text {loc }} \Gamma_{S}\left(T_{N}\right)$ if a suitable extension of \tilde{x} is contained in $\Gamma_{S}\left(T_{N}\right)$, and we use the notation $\epsilon_{\text {loc }}$ throughout this note.

Proposition 2.6. Suppose $\operatorname{dim} S_{\mu}=r \geqq 1$. Then for every point $p \in S_{\mu}$, there is a C^{∞}-local coordinate system $\left(x^{1}, \cdots, x^{n}\right)$ on a neighborhood U of p in N such that $\partial / \partial x^{i} \in_{1 \mathrm{oc}} \Gamma_{S}\left(T_{N}\right)$ for $1 \leqq i \leqq r$.

Proof. Since S_{μ} is an orbit of $\mathscr{D}(S)_{0}$, the tangent space $T_{p} S_{\mu}$ is given by $\Gamma_{S}\left(T_{N}\right)(p)$. Since $r \geqq 1$, there is $v_{1} \in \Gamma_{S}\left(T_{N}\right)$ such that $v_{1}(p) \neq 0$. By a suitable choice of a local coordinate system (x^{1}, \cdots, x^{n}), we may assume that $v_{1} \equiv \partial / \partial x^{1}$ on that coordinate neighborhood. Moreover, we may assume without loss of generality that $\partial /\left.\partial x^{1}\right|_{p}, \cdots, \partial /\left.\partial x^{r}\right|_{p}$ span the tangent space $T_{p} S_{\mu}$. Since $\Gamma_{S}\left(T_{N}\right)$ is an $\Gamma\left(1_{N}\right)$-module, one can find r vector fields $v_{1}, \cdots, v_{r} \in_{\text {loc }} \Gamma_{S}\left(T_{N}\right)$ such that

$$
\left\{\begin{array}{l}
v_{1}=\partial / \partial x^{1} \tag{4}\\
v_{i}=\partial / \partial x^{i}+\sum_{j=r+1}^{n} g_{i}^{j}\left(x^{1}, \cdots, x^{n}\right) \partial / \partial x^{j} \quad(2 \leqq i \leqq r)
\end{array}\right.
$$

Now, assume that there is an integer $s(1 \leqq s \leqq r)$ such that

$$
\left\{\begin{array}{l}
v_{i}=\partial / \partial x^{i} \quad(1 \leqq i \leqq s) \tag{5}\\
v_{j}=\partial / \partial x^{j}+\sum_{k=r+1}^{n} g_{j}^{k}\left(x^{s}, \cdots, x^{n}\right) \partial / \partial x^{k} \quad(s+1 \leqq j \leqq r)
\end{array}\right.
$$

on a neighborhood U of p. Replacing \tilde{u} in Lemma 2.5 by v_{s}, we choose a neighborhood V_{p} of p in U with the same property as in Lemma 2.5. Let $f\left(x^{1}, \cdots, x^{s-1}\right) h\left(x^{s}, \cdots, x^{n}\right)$ be a C^{∞}-function on N such that supp $f h \subset V_{p}$ and $f \equiv 1, h \equiv 1$ on neighborhoods V_{1}, V_{2} of zeros of $\boldsymbol{R}^{s-1}, \boldsymbol{R}^{n-s+1}$ respectively. Set

$$
u_{j}=v_{j}-I\left(f h\left[\partial / \partial x^{s}, v_{j}\right]\right), \quad s+1 \leqq j \leqq r
$$

and we see that $\left[\partial / \partial x^{s}, u_{j}\right] \equiv 0$ on $V_{1} \times V_{2} \subset V_{p}$. Moreover, since I is merely an integration (cf. (3)), $\left[\partial / \partial x^{i}, u_{j}\right] \equiv 0$ on $V_{1} \times V_{2}$ for every i, j such that $1 \leqq i \leqq s-1, s+1 \leqq j \leqq r$. Thus, u_{s+1}, \cdots, u_{r} do not depend on the variable x^{s} on $V_{1} \times V_{2}$. Therefore by a suitable change of variables x^{s+1}, \cdots, x^{n}, one may assume that $u_{s+1} \equiv \partial / \partial x^{s+1}$ on a neighborhood of p, hence one has vector fields

$$
\left\{\begin{array}{l}
v_{i}^{\prime}=\partial / \partial x^{i} \quad(1 \leqq i \leqq s+1) \tag{6}\\
v_{\jmath}^{\prime}=\partial / \partial x^{j}+\sum_{k=r+1}^{n} g_{j}^{\prime k}\left(x^{s+1}, \cdots, x^{n}\right) \partial / \partial x^{k} \quad(s+2 \leqq j \leqq r)
\end{array}\right.
$$

on a neighborhood of p such that $v_{1}^{\prime}, \cdots, v_{r}^{\prime} \in_{1 \mathrm{loc}} \Gamma_{S}\left(T_{N}\right)$. Thus, by induction we obtain the desired result.

Let ($x^{1}, \cdots, x^{r}, x^{r+1}, \cdots, x^{n}$) be a smooth local coordinate system at $p \in S_{\mu}$ obtained by the above proposition. Let $\boldsymbol{R}^{r}, R^{n-r}$ be $r, n-r$ dimensional cartesian spaces respectively. By the above result, we have the following local product structure of S :

Corollary 2.7. There are neighborhoods V, W of zeros of $\boldsymbol{R}^{r}, \boldsymbol{R}^{n-r}$ respectively such that $(V \times W) \cap S=V \times(W \cap S)$ regarding $V \times W$ as a local coordinate neighborhood at p.

In the remainder of this section, we shall give another smoothness lemma for the the later use. Let $\Gamma\left(T_{S}\right), \Gamma\left(T_{S}^{\prime}\right)$ be as in $\S 1$ and assume $\bar{S}=S$. A mapping ψ of T into $\Gamma\left(T_{S}\right)$ is said to be smooth if $\psi \in \mathscr{M}(T$, $\left.\Gamma\left(T_{s}^{\prime}\right)\right)$. Thus, one can define the space $\mathscr{M}\left(T, \Gamma\left(T_{S}\right)\right)$ with C^{∞}-topology, where $\bar{T}=T$ is assumed as in $\S 1$. Let Σ be a compact topological space, and $u: \Sigma \rightarrow \mathscr{M}\left(T \times[0,1], \Gamma\left(T_{s}\right)\right)$ a continuous mapping. We denote the image by $u_{\alpha, t, \lambda}$ for $(\alpha, t, \lambda) \in \Sigma \times T \times[0,1]$. Solve that equation

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} \psi_{\alpha, t, \lambda}=u_{\alpha, t, \lambda} \psi_{\alpha, t, \lambda} \tag{7}
\end{equation*}
$$

with the initial condition $\psi_{\alpha, t, 0}=$ identity. Then, we have
Lemma 2.8. Notations and assumptions being as above, $\psi_{\alpha, t, 1} \in \mathscr{D}(S)$ and $\psi_{\alpha, *, *}$ defines a continuous mapping of Σ into $\mathscr{M}(T \times[0,1], \mathscr{D}(S))$.

Proof. $v_{\alpha}=\left(0, \partial / \partial \lambda, u_{\alpha, t, \lambda}\right)$ can be regarded as a tangent vector field on $T \times[0,1] \times S$. Let ϕ be a C^{∞}-function on $(-\infty, \infty)$ such that $\phi \equiv 1$ on $[0,1]$, and $\operatorname{supp} \phi \subset(-\varepsilon, 1+\varepsilon)$. For a sufficiently small $\varepsilon, \widetilde{v}_{\alpha}=(0, \phi \partial / \partial \lambda$, $\left.u_{\alpha, t, 2}\right)$ is defined on $T \times[-\varepsilon, 1+\varepsilon] \times S$, and by Corollary $2.4 \tilde{v}_{\alpha}$ is a smooth strictly tangent vector field on $T \times[-\varepsilon, 1+\varepsilon] \times S$. Let $\Psi_{\alpha, 2}$ be the one parameter subgroup generated by \tilde{v}_{α}. Then, $\Psi_{\alpha, \lambda} \in \mathscr{D}(T \times[-\varepsilon, 1+\varepsilon] \times S)$, and $\Psi_{\alpha, *}$ defines a continuous mapping of Σ into $\mathscr{M}([0,1], \mathscr{D}(T \times[-\varepsilon$, $1+\varepsilon] \times S$) by the well-known continuity theorem (cf. [7], p. 22 and p. 41). Now set

$$
\begin{equation*}
\Psi_{\alpha, \lambda}(t, 0, x)=\left(t, \lambda, \psi_{\alpha, t, \lambda}(x)\right), \quad \lambda \in[0,1] \tag{8}
\end{equation*}
$$

Then, $\psi_{\alpha, t, \lambda}$ is the solution of (7), $\psi_{\alpha, t, \lambda} \in \mathscr{D}(S)$ and by definition $\psi_{\alpha, *, *} \in$ $\mathscr{M}(T \times[0,1], \mathscr{D}(S))$. It is now obvious that $\psi_{\alpha, *, *}$ defines a continuous mapping of Σ into $\mathscr{C}(T \times[0,1], \mathscr{D}(S))$.
§ 3. Several properties of expansive sets.
Throughout this section, we assume that S is an expansive subset of N. By Lemma 2.3, S is a disjoint union of $\mathscr{O}(S)_{0}$-orbits $S_{\lambda}, \lambda \in \Lambda$. Let $\Lambda_{r}=\left\{\lambda \in \Lambda ; \operatorname{dim} S_{\lambda} \leqq r\right\}$.

Lemma 3.1. Λ_{0} is a finite set.
Proof. Let S_{λ} be an orbit with $\operatorname{dim} S_{\lambda}=0$. Then S_{λ} is a single point $\{p\}$. Let X_{p} be an expansive vector field on S at p and \tilde{X}_{p} an extension of X_{p} with property (P) in $\S 1$. We may assume $\widetilde{X}_{p} \in_{10 \mathrm{c}} \Gamma_{S}\left(T_{N}\right)$ without loss of generality. Since p is an isolated zero of X_{p}, we see that $\bigcap_{\lambda \in \Lambda_{0}} S_{\lambda}$ is discrete, hence finite.

Let S_{μ} be an orbit of $\mathscr{D}(S)_{0}$ with $\operatorname{dim} S_{\mu}=r \geqq 1$, and p a point in S_{μ}. We choose a local coordinate system ($x^{1}, \cdots, x^{r}, x^{r+1}, \cdots, x^{n}$) on an open neighborhood U of p by the same manner as in Proposition 2.6. Obviously, ($x^{1}, \cdots, x^{r}, 0, \cdots, 0$) gives a local coordinate system of immersed submanifold S_{μ}. Let X_{p} be an expansive vector field on S at p, and \widetilde{X}_{p} an extension of X_{p} with property (P). Let

$$
\widetilde{X}_{p}^{(1)}=\sum_{i, j=1}^{n} a_{j}^{i} x^{j} \partial / \partial x^{i}
$$

be the linear part of \tilde{X}_{p} at p. Since $\widetilde{X}_{p}^{(1)}$ leaves the tangent space $T_{p} S_{\mu}$ invariant, we have $a_{j}^{i}=0$ for $r+1 \leqq i \leqq n, 1 \leqq j \leqq r$. Set

$$
\widetilde{X}_{p}=\sum_{i=1}^{n} h^{i}\left(x^{1}, \cdots, x^{n}\right) \partial / \partial x^{i}
$$

by using the above local coordinate system, and let

$$
\begin{equation*}
\widetilde{Y}_{p}=\sum_{i=r+1}^{n} h^{i}\left(x^{1}, \cdots, x^{n}\right) \partial / \partial x^{i} \tag{9}
\end{equation*}
$$

Since $\widetilde{X}_{p} \in_{1 \mathrm{oc}} \Gamma_{S}\left(T_{N}\right)$ and $\Gamma_{S}\left(T_{N}\right)$ is an $\Gamma\left(1_{N}\right)$-module, we have $\tilde{Y}_{p} \in_{1 \mathrm{oc}} \Gamma_{S}\left(T_{N}\right)$ by using Proposition 2.6. The linear part of \bar{Y}_{p} is given by

$$
\begin{equation*}
\tilde{Y}_{p}^{(1)}=\sum_{i, j=r+1}^{n} a_{j}^{i} x^{j} \partial / \partial x^{i} \tag{10}
\end{equation*}
$$

The eigenvalues of $\left(a_{j}^{i}\right)_{r+1 \leq i, j \leq n}$ are real and positive. Using the same notation as in Corollary 2.7, we see easily that $\tilde{Y}_{p} \mid W=\sum_{i=r+1}^{n} h^{i}(0, \cdots, 0$, $\left.x^{r+1}, \cdots, x^{n}\right) \partial / \partial x^{i}$ is strictly tangent to $W \cap S$. Hence, regarding $\widetilde{Y}_{p} \mid W$ as a local vector field \widetilde{Z}_{p} on a neighborhood of p, we have the following:

Lemma 3.2. Notations and assumptions being as above, there is a vector field \widetilde{Z}_{p} on a local coordinate neighborhood of p such that
(i) $\widetilde{Z}_{p} \in_{1 \mathrm{oc}} \Gamma_{s}\left(T_{N}\right)$ and $Z_{p}(p)=0$,
(ii) $\tilde{Z}_{p}=\sum_{i=r+1}^{n} h^{i}\left(x^{r+1}, \cdots, x^{n}\right) \partial / \partial x^{i}$ on a neighborhood of p,
(iii) the linear part of \widetilde{Z}_{p} at p with respect to the variables x^{r+1}, \cdots, x^{n} are real and positive.

By the above result combined with Corollary 2.4 we have
Corollary 3.3. Let S_{μ} be an r-dimesional orbit of $\mathscr{D}(S)_{0}$. Then, the boundary $\overline{S_{\mu}}-S_{\mu}$ is a disjoint union of orbits S_{λ} such that $\operatorname{dim} S_{\lambda}<r$. In particular, if ${ }^{\bar{\prime}} \mathbf{S}=S, S$ is measurable with respect to any smooth volume element on S.

Under the same notations, the following is also easy, but shows the locally-closedness of each orbit:

Corollary 3.4. For any $p \in S_{\mu}$, there are neighborhood V, W of zeros of $\boldsymbol{R}^{r}, \boldsymbol{R}^{n-r}$ respectively such that, regarding $V \times W$ as a neighborhood of p by the same manner as in Corollary 2.7, V is a local coordinate neighborhood of S_{μ} and $W \cap S_{\mu}=\{0\}$.

Proof. We have only to show $W \cap S_{\mu}=\{0\}$. If there is not such W, then there is a sequence $\left\{q_{m}\right\}$ in \boldsymbol{R}^{n-r} converging to 0 such that $q_{m} \in \boldsymbol{S}_{\mu}$. By Corollary 2.7, $V \times\left\{q_{m}\right\}$ is an open subset of the immersed submanifold S_{μ}. Now, consider the integral curves of \widetilde{Z}_{p} with initial point q_{m}. This must be contained in S_{μ}, but this is a contradiction, because $\operatorname{dim} S_{\mu}=r$.

Now, the goal of the remainder of this section is the following:

Proposition 3.5. Λ is a finite set.
Proof. Since S is compact, we have only to show the locallyfiniteness of $\left\{S_{\lambda}\right\}_{\lambda \in A}$. Assume that there is an s-dimensional orbit S_{μ} with following property (*):
(*) There is a point $p \in S_{\mu}$ and infinitely many $\bar{S}_{\lambda}, \lambda \in \Lambda^{\prime}$ such that $S_{\lambda} \ni p$.
We may assume that s is the maximum among the dimensions of S_{μ} with property (*). By Proposition 2.6 and Lemma 3.2, there is a local coordinate system ($x^{1}, \cdots, x^{s}, \cdots, x^{n}$) such that $\partial / \partial x^{i} \in_{1 \mathrm{oc}} \Gamma_{s}\left(T_{N}\right)$ for $1 \leqq i \leqq s$, and that there is a local vector field \widetilde{Z}_{p} with properties (i)-(iii) in Lemma 3.2 replacing r by s. By an appropriate change of the variables x^{s+1}, \cdots, x^{n} in accordance with Sternberg's normalization theorem (cf. Corollary 1.5 [3]), we may assume that \widetilde{Z}_{p} can be written in the form

$$
\begin{equation*}
\widetilde{Z}_{p}=\sum_{i=s+1}^{n} \mu_{i} x^{i} \partial / \partial x^{i}+\sum_{i=s+1}^{n} \varphi^{i}\left(x^{s+1}, \cdots, x^{i-1}\right) \partial / \partial x^{i}, \tag{11}
\end{equation*}
$$

where $\mu_{s+1} \leqq \mu_{s+2} \cdots \leqq \mu_{n}$ are the eigenvalues of the linear part of \widetilde{Z}_{p} and $\varphi^{i}\left(x^{s+1}, \cdots, x^{i-1}\right)=\sum a_{\alpha}^{i} x^{\alpha}$ are polynomial such that $\alpha_{s+1} \mu_{s+1}+\cdots+$ $\alpha_{i-1} \mu_{i-1}=\mu_{i}$ and $|\alpha|=\alpha_{s+1}+\cdots+\alpha_{i-1} \geqq 1$. By a suitable change of coordinate $x^{i} \mapsto \lambda_{i} x^{i}$ if necessary, we may assume that the linear part of the second term of (11) has sufficiently small coefficients, say $<\delta$. The second term of (11) is called the nilpotent part of \widetilde{Z}_{p}.

Let $f_{0}\left(x^{s+1}, \cdots, x^{n}\right)=\sum_{i=s+1}^{n}\left(x^{i}\right)^{2}$. Since μ_{i} are posistive and δ is sufficiently small, we see that there is a neighborhood W of 0 of \boldsymbol{R}^{n-s} such that $\widetilde{Z}_{p} f_{0}>0$ on $W-\{0\}$. Let $\Sigma_{p}(\varepsilon)$ be an ε-sphere with the center 0 such that $\Sigma_{p}(\varepsilon) \subset W$. The inequality $\widetilde{Z}_{p} f_{0}>0$ means that the integral curves of \widetilde{Z}_{p} intersect $\Sigma_{p}(\varepsilon)$ transversally. Choose a point q_{λ} in $S_{\lambda} \cap \Sigma_{p}(\varepsilon)$ for each $\lambda \in \Lambda^{\prime}$. Since $S \cap \Sigma_{p}(\varepsilon)$ is compact, there is an infinite but countable subset $\Lambda^{\prime \prime}$ of Λ^{\prime} such that $\left\{q_{\lambda} ; \lambda \in \Lambda^{\prime \prime}\right\}$ converges to a point $q \in S \cap \Sigma_{p}(\varepsilon)$. Let S_{σ} be the $\mathscr{O}(S)_{0}$-orbit of q. Considering an expansive vector field X_{q} on S at q, we see that $\overline{S_{\lambda}} \ni q$, for infinitely many λ of $\Lambda^{\prime \prime}$. Thus, S_{σ} has property (*). Since $\overline{S_{\sigma}} \ni p$, we have $\operatorname{dim} S_{o}>s$ by Corollary 3.3. This contradicts the maximality of s. Thus, $\left\{S_{\lambda} ; \lambda \in \Lambda\right\}$ is locally finite and hence Λ is a finite set.

§4. Control of the volume forms near the boundary.

Throughout this section, S means always a compact expansive subset of N such that (i) S has an orientable neighborhood in N, and (ii) the interior ' S is nonvoid and connected. We also assume that ${ }^{\prime} \bar{S}=S$. Let
\mathscr{V}_{S} be the space of all C^{∞}-volume forms $d V$ on S such that $\int_{S} d V=1$. The goal of this section is the following:

Proposition 4.1. Let $d V_{0}$ be an arbitrarily fixed volume form in \mathscr{V}_{S}, and let $h: \sigma^{k} \rightarrow \mathscr{V}_{S}$ be a continuous mapping. Then, there is a continuous mapping $H: \delta^{k+1} \rightarrow \mathscr{D}(S)$ satisfying that $H(0)=$ identity and that there is neighborhood W of $\partial S=S-' S$ in S such that $H(q)^{*} d V_{0} \equiv h(q)$ on W for every $q \in \sigma^{k}$.

The proof will be given in several lemmas below.
Let D be an n-r-dimensional closed disk with the center, 0 , and $\widetilde{\mathscr{V}}$ the space of all C^{∞}-volume forms on D with the C^{∞}-topology. Let $\widetilde{\mathscr{D}}(D)$ be the group of all C^{∞}-diffeomorphisms $\tilde{\varphi}$ on D such that $\tilde{\mathcal{P}} \equiv$ identity on a neighborhood of $\partial D . \widetilde{\mathscr{D}}(D)$ is a topological group under the C^{∞}-topology. Let T be a compact subset of a C^{∞}-manifold N^{\prime} such that ${ }^{\prime} \bar{T}=T$. A mapping $\psi: T \rightarrow \widetilde{\mathscr{D}}(D)$ is said to be smooth, if $\psi \in \mathscr{M}(T, \mathscr{D}(D))$. By $\mathscr{M}(T, \widetilde{\mathscr{D}}(D))$ we denote the space of all smooth mappings of T into $\widetilde{\mathscr{D}}(D)$ with the C^{∞}-topology. Let \widetilde{Z}_{0} be a C^{∞}-vector field on D such that $\widetilde{Z}_{0}(0)=0$ and the eigenvalues of the linear part of \widetilde{Z}_{0} at 0 are real and positive. The next lemma plays the role of bricks in the proof of Proposition 4.1.

Lemma 4.2. Let $g: T \rightarrow \widetilde{\mathscr{V}}$ be an arbitrarily fixed smooth mapping. Suppose $h: \sigma^{k} \rightarrow \mathscr{M}(T, \widetilde{\mathscr{V}})$ is a continuous mapping such that $h(q)(t) \equiv g(t)$ on $\sigma^{k} \times U_{\partial T}$, where $U_{\partial T}$ is a neighborhood of $\partial T=T-{ }^{\prime} T$ in T. Then, there is a continuous mapping $H^{\prime}: \delta^{k+1} \rightarrow \mathscr{M}(T, \widetilde{\mathscr{D}}(D))$ and a neighborhood $W^{(0)}$ of 0 in D satisfying the following:
(a) $H^{\prime}(0)(t)=$ identity for any $t \in T$,
(b) $H^{\prime}(d)(t)=$ identity for $(d, t) \in \delta^{k+1} \times U_{\partial T}$,
(c) $H^{\prime}(q)(t)^{*} g(t) \equiv h(q)(t)$ on $W^{(0)}$ for any $(q, t) \in \sigma^{k} \times T$.
(If T is a single point, then we put $\partial T=\varnothing$.)
Proof. For any $d V \in \widetilde{\mathscr{V}}$, there is a smooth local coordinate system $\left(y^{1}, \cdots, y^{n-r}\right)$ at 0 in D such that $d V=d y^{1} \wedge \cdots \wedge d y^{n-r}$. By using this coordinate system, the Lie derivative $\mathscr{L}_{\tilde{z}_{0}} d V$ is given by

$$
\begin{equation*}
\mathscr{L}_{\widetilde{z}_{0}} d V=\left(\operatorname{div} \widetilde{Z}_{0}\right) d V=\left(\sum_{i=1}^{n-r} \partial \widetilde{Z}_{0}^{i} / \partial y^{i}\right) d V \tag{12}
\end{equation*}
$$

Thus, there is an ε-neighborhood W^{ε} of 0 such that (i) $\mathscr{L}_{\tilde{z}_{0}} d V=\rho d V$, $\rho \geqq a(>0)$ on $\overline{W^{\varepsilon}}$ and (ii) $\lim _{\theta \rightarrow-\infty}\left(\exp \theta \widetilde{Z}_{0}\right)(x)=0$ for every $x \in W^{\varepsilon}$. Set $d V_{t}=g(t)$ and $d V_{q, t}=h(q)(t)$. We set further $d V_{q, t, \lambda}=(1-\lambda) d V_{t}+\lambda d V_{q, t}$
for $\lambda \in[0,1]$. Obviously, $d V_{q, *, *}$ defines a continuous mapping of σ^{k} into $\mathscr{M}(T \times[0,1], \widetilde{\mathscr{V}})$. Since $\sigma^{k} \times T \times[0,1]$ is compact, we can choose W^{ε} so that the above properties (i) and (ii) may be fulfilled by every $d V_{q, t, 2}$. We set $\mathscr{L}_{\tilde{Z}_{0}} d V_{q, t, \lambda}=\rho_{q, t, \lambda} d V_{q, t, \lambda}$ on W^{ϵ}. Then, $\rho_{q, t, \lambda} \geqq a(>0)$, and by an appropriate use of Lemma 1.1, we see that $\rho_{q, *, *}$ defines a continuous mapping of σ^{k} into $\mathscr{M}\left(T \times[0,1], \Gamma\left(1_{\overline{W c}}\right)\right)$.

Now, set $d V_{q, t}-d V_{t}=h_{q, t, 2} d V_{q, t, 2}$. Then, by Lemma 1.1 again, we get that $h_{q, *, *}$ defines a continuous mapping of σ^{k} into $\mathscr{M}\left(T \times[0,1], \Gamma\left(1_{D}\right)\right)$. We want to solve the equation

$$
\begin{equation*}
\mathscr{L}_{f} \tilde{Z}_{0} d V_{q, t, \lambda}=h_{q, t, \lambda} d V_{q, t, \lambda} \tag{13}
\end{equation*}
$$

on W^{ε}. The above equation is equivalent to

$$
\begin{equation*}
\widetilde{Z}_{0} f+\rho_{q, t, 2} f=h_{q, t, 2} \tag{14}
\end{equation*}
$$

and hence the continuous solution on W^{ε} is given by
because

$$
\begin{aligned}
\widetilde{Z}_{0} f & =\widetilde{Z}_{0} \int_{0}^{\infty} e^{-\theta}\left(\exp -\frac{\theta}{\rho} \widetilde{Z}_{0}\right)^{*} \frac{h}{\rho} d \theta=\rho \int_{0}^{\infty} e^{-\theta} \frac{\widetilde{Z}_{0}}{\rho}\left(\exp -\frac{\theta}{\rho} \widetilde{Z}_{0}\right)^{*} \frac{h}{\rho} d \theta \\
& =-\rho \int_{0}^{\infty} e^{-\theta} \frac{d}{d \theta}\left(\exp -\theta \frac{\widetilde{Z}_{0}}{\rho}\right)^{*} \frac{h}{\rho} d \theta \\
& =-\left[e^{-\theta}\left(\exp -\theta \frac{\widetilde{Z}_{0}}{\rho}\right)^{*} \frac{h}{\rho}\right]_{0}^{\infty}-\rho f=h-\rho f .
\end{aligned}
$$

Since the integration (15) converges uniformly with its all derivatives with respect to $(t, \lambda, x) \in T \times[0,1] \times \overline{W^{\varepsilon}}$, we see that $f=f_{q, t, \lambda}$ is an element of $\mathscr{M}\left(T \times[0,1], \Gamma\left(1_{\overline{W^{\varepsilon}}}\right)\right)$. Moreover, it is easy to see that $f_{q, *, *}$ defines a continuous mapping of σ^{k} into $\mathscr{M}\left(T \times[0,1], \Gamma\left(1_{\overline{W^{\varepsilon}}}\right)\right)$.

Let ϕ be a C^{∞}-function on D such that supp $\phi \subset W^{\varepsilon}$ and $\phi \equiv 1$ on a neighborhood W^{δ} of 0 in D. Let $\widetilde{u}_{q, t, \lambda}=\phi f_{q, t, \lambda} \widetilde{Z}_{0}$. Then, $\widetilde{u}_{q, t, \lambda}$ is a C^{∞} vector field on D such that $\tilde{u}_{q, t, \lambda} \equiv 0$ on a neighborhood of $\partial D, u_{q, t, \lambda}(0)=0$ and that

$$
\begin{equation*}
\mathscr{L}_{\tilde{u}_{q, t, \lambda}} d V_{q, t, \lambda}=h_{q, t, \lambda} d V_{q, t, \lambda}=d V_{q, t}-d V_{t} \tag{16}
\end{equation*}
$$

on W^{δ}. Solve the equation

$$
\begin{equation*}
(d / d \lambda) \tilde{\psi}_{q, t, \lambda}=-\tilde{u}_{q, t, \lambda} \tilde{\psi}_{q, t, \lambda} \tag{17}
\end{equation*}
$$

with the initial condition $\tilde{\psi}_{q, t, 0}=$ identity. Then, by Lemma 2.8, $\tilde{\psi}_{q, *, *}$ defines a continuous mapping of σ^{k} into $\mathscr{C}(T \times[0,1], \tilde{\mathscr{D}}(D))$. Since $\sigma^{k} \times T \times[0,1]$ is compact and $\tilde{\psi}_{q, t, \lambda}(0)=0$, there is a neighborhood $W^{(0)}$ of 0 such that $W^{(0)} \subset \widetilde{\psi}_{q, t, \lambda}\left(W^{\delta}\right)$ for any (q, t, λ). Since by (16)

$$
\begin{equation*}
(d / d \lambda) \tilde{\psi}_{q, t, \lambda}^{*} d V_{q, t, \lambda}=-\tilde{\psi}_{q, t, \lambda}^{*} \mathscr{L}_{u_{q, t, \lambda}} d V_{q, t, \lambda}+\tilde{\psi}_{q, t, \lambda}^{*}\left(d V_{q, t}-d V_{t}\right)=0 \tag{18}
\end{equation*}
$$

on $W^{(0)}$, we have $\widetilde{\psi}_{q, t, \lambda}^{*} d V_{q, t, \lambda} \equiv d V_{t}$ on $W^{(0)}$. Set $H^{\prime}(\lambda q, t)=\widetilde{\psi}_{q, t, \lambda}^{-1}$ for every $(q, t, \lambda) \in \sigma^{k} \times T \times[0,1]$. Then, $H^{\prime}(0, t)=$ identity. If $t \in U_{\partial T}$, then $d V_{q, t}=$ $d V_{t}$, hence $h_{q, t, \lambda}=0$. Therefore $f_{q, t, \lambda}=0$ and hence $\tilde{\psi}_{q, t, \lambda}=$ identity. It is clear that $d V_{q, t}=d V_{q, t, 1}=\widetilde{\psi}_{q, t, 1}^{-1} d V_{t}=H^{\prime}(q, t) * g(t)$.

Apply the above lemma to the case $T=\{0\}$, and we have
Corollary 4.3. Let $\{p\}$ be a zero-dimensional orbit of $\mathscr{D}(S)_{0}$. Notations and assumptions being as in Proposition 4.1, there is an open neighborhood $W^{(0)}$ of p and a continuous mapping $H^{\prime}: \delta^{k+1} \rightarrow \mathscr{D}(S)$ such that $H^{\prime}(0)=$ identity and that $H^{\prime}(q) * d V_{0} \equiv h(q)$ on $W^{(0)}$ for any $q \in \sigma^{k}$, where $d V_{9}=g(p)$.

Now, assume that T has an orientable neighborhood in N^{\prime}. Let $d \rho$ be a C^{∞}-volume form on T. Let $\widetilde{\mathscr{V}}$ be the space of all C^{∞}-volume forms on $T \times D$, and $d \mu \wedge d V_{t}$ be a fixed element of $\widetilde{\mathscr{V}}$, where the volume form $d V_{t}$ on D may depend on the variable $t \in T$. Let $h: \sigma^{k} \rightarrow \widetilde{\mathscr{V}}$ be a continuous mapping such that $h(q) \equiv d \mu \wedge d V_{t}$ on $U_{\partial T} \times D$, where $U_{\partial T}$ is a neighborhood of ∂T in T. The following is an immediate conclusion from Lemma 4.2:

Corollary 4.4. Notations and assumptions being as above, there is a continuous mapping H^{\prime} of δ^{k+1} into the group of diffeomorphisms on $T \times D$ satisfying the following:
(i) $H^{\prime}(0)=$ identity
(ii) $H^{\prime}(d)(t, x)=\left(t, H^{\prime \prime}(d, t)(x)\right)$ and $H^{\prime \prime}(d, *)$ defines a continuous mapping of δ^{k+1} into $\mathscr{M}(T, \widetilde{\mathscr{O}}(D))$
(iii) $H^{\prime \prime}(d, t)=$ identity if $(d, t) \in \delta^{k+1} \times U_{\partial T}$
(iv) $H^{\prime}(q)^{*} d \mu \wedge d V_{t} \equiv h(q)$ on $T \times W^{(0)}$ for any $q \in \sigma^{k}$.

Proposition 4.1 will be proved by induction, but before that we need the following:

Lemma 4.5. Let S_{μ} be a $\mathscr{O}(S)_{0}$-orbit, and ∂S_{μ} the boundary of S_{μ}. Let $U_{\partial S_{\mu}}$ be an open neighborhood of ∂S_{μ} in $\overline{S_{\mu}}$. Then, there is a compact connected submanifold \bar{Q} of S_{μ} such that $\partial \bar{Q}$ is a smooth submanifold contained in $U_{\partial S_{\mu}}$ and that $\bar{Q} \supset S_{\mu}-U_{\partial S_{\mu}}$.

Proof. There is a smooth function $f: S_{\mu} \rightarrow \boldsymbol{R}$ such that $f^{-1}((-\infty, c])$ is compact and $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\infty$ for any sequence $\left\{x_{n}\right\}$ converging to a point in ∂S_{μ}. By a slight change of f if necessary, one may assume that f has countably many critical values. Let c be a sufficiently large number which is not a critical value of f. Then, $f^{-1}(c) \subset U_{\partial s_{\mu}}$ and a smooth submanifold of S_{μ}. Take the connected component of $f^{-1}((-\infty, c])$ containing $S_{\mu}-U_{\partial S_{\mu}}$.

Proof of Proposition 4.1. Notations and assumptions are as in Proposition 4.1. The desired mapping $H: \delta^{k-1} \rightarrow \mathscr{D}(S)$ will be obtained by a composition $H(d)=H_{l}(d) \circ H_{l-1}(d) \circ \cdots \circ H_{1}(d)$ of continuous mappings $H_{i}: \delta^{k+1} \rightarrow \mathscr{O}(S)$. Let $H^{\prime}: \delta^{k+1} \rightarrow \mathscr{D}(S)$ be the mapping obtained in Corollary 4.3. Then, $H^{\prime}(q)^{-1 *} h(q) \equiv d V_{0}$ on a neighborhood $W^{(0)}$ of p in S. Thus, putting $H(d)=H^{\prime \prime}(d) \circ H^{\prime}(d)$ we have only to make $H^{\prime \prime}: \delta^{k+1} \rightarrow \mathscr{D}(S)$ under the assumption that $h(q) \equiv d V_{0}$ on $W^{(0)}$. Since Λ_{0} is finite (Lemma 3.1), we may assume $h(q) \equiv d V_{0}$ on a neighborhood of $S^{(0)}=\bigcup_{\lambda \in \Lambda_{0}} S_{\lambda}$ by the same procedure as above.

Now, we use induction procedure, and assume that $h(q) \equiv d V_{0}$ on a neighborhood of $S^{(r-1)}=\bigcup_{\lambda \in A_{r-1}} S_{\lambda}$. Let S_{μ} be an r-dimensional orbit. Then, by the assumption, $h(q) \equiv d V_{0}$ on a neighborhood $U_{\partial S_{\mu}}$ of ∂S_{μ} because of Corollary 3.3. By Lemma 4.5, there is a compact submanifold \bar{Q} with smooth boundary $\partial \bar{Q}$ which is contained in $U_{\partial S_{\mu}}$ and $Q \supset S_{\mu}-U_{\partial S_{\mu}}$.

Take a sufficiently small triangulation of \bar{Q} so that every γ-dimensional simplex τ may be contained in a local coordinate neighborhood U of N. Let $\left(x^{1}, \cdots, x^{r}, x^{r+1}, \cdots, x^{n}\right)$ be a coordinate system on U. By Proposition 2.6, we may assume that $\partial / \partial x^{i} \epsilon_{1 o \mathrm{oc}} \Gamma_{S}\left(T_{N}\right)$ for $1 \leqq i \leqq r$, and hence one can apply Corollary 2.7 and Lemma 3.2. Note that τ is an r-dimensional compact expansive set such that ${ }^{\overline{ }} \tau=\tau$. Therefore, applying Corollary 4.4 successively for the faces of dimension $\leqq r-1$ we obtain that there is a continuous mapping $H^{(1)}: \delta^{k+1} \rightarrow \mathscr{D}(S)$ such that $H^{(1)}(0)=$ identity, $H^{(1)}(d)=$ identity on $U_{\partial S_{\mu}}$ for any $d \in \delta^{k+1}$ and $H^{(1)}(q)^{*} d V_{0} \equiv h(q)$ for any $q \in \sigma^{k}$ on a neighborhood $V_{\partial \tau}$ of τ in S. Thus, for the proof, one may assume that $h(q) \equiv d V_{0}$ on a neighborhood of the r-1-dimensional skelton of the triangulated \bar{Q}. Apply Corollary 4.4 again to each τ. We have, then, the desired result.

§ 5. Control of the volume forms in the interior.

Throughout this section, notations and assumptions are as in the previous section. The proof of Theorem in $\S 1$ will be given in this section. So recall the statement of Theorem in $\S 1$ first of all.

By Proposition 4.1 we may assume that $h(q) \equiv d V_{0}$ on a neighborhood $U_{\partial S}$ of ∂S in S, and by Lemma 4.5 there is a connected compact $C^{\infty}{ }_{-}$ submanifold \bar{Q} of ' S such that $\partial \bar{Q} \subset U_{\partial S}$ and $\bar{Q} \supset S-U_{\partial S}$. By the bicollaring theorem (cf. p. 23 [4]), there is a neighborhood $V_{\partial \bar{Q}}$ of $\partial \bar{Q}$ such that $V_{\partial \bar{Q}} \subset U_{\partial \bar{S}}$ and $V_{\partial \bar{Q}}$ is diffeomorphic to the direct product $\partial \bar{Q} \times(-\delta, \delta)$. Fix a smooth riemannian metric g^{\prime} on $\partial \bar{Q}$ and let $d \mu$ be the riemannian volume form on $\partial \bar{Q}$. On $V_{\partial \bar{Q}}=\partial \bar{Q} \times(-\delta, \delta)$, the volume form $d V_{0}$ can be written in the form $d V_{0}=d \mu \wedge f\left(x^{\prime}, t\right) d t$. Hence by putting $x^{n}=\int_{0} f\left(x^{\prime}, t\right) d t$, one may assume that

$$
\begin{equation*}
d V_{0}=d \mu \wedge d x^{n} \quad \text { on } \quad \partial \bar{Q} \times(-\delta, \delta) . \tag{19}
\end{equation*}
$$

We fix a product riemannian metric $g=g^{\prime} \times\left(d x^{n}\right)^{2}$ on $\partial \bar{Q} \times(-\delta, \delta)$. Then, $d V_{0}$ is the riemannian volume form with respect to g. We take a suitable extension of g to a neighborhood of \bar{Q} and denote it by the same notation g. Set $d V_{q}=h(q)$ for $q \in \sigma^{k}$ and set $d V_{q, \lambda}=(1-\lambda) d V_{0}+\lambda d V_{q}$. Then, $d V_{q, *}$ defines a continuous mapping of σ^{k} into $\mathscr{M}\left([0,1], \mathscr{V}_{S}\right)$. Define a C^{∞}-function $\rho_{q, 2}$ by $d V_{q, 2}=\rho_{q, 2} d V_{0}$. Let $g_{q, 2}=\rho_{q, 2}^{2 / n} g$. Then, $g_{q, 2}$ is a C^{∞}-riemannian metric on a neighborhood of \bar{Q} such that $d V_{q, 2}$ is the riemannian volume form with respect to $g_{q, \lambda}$. Since $\rho_{q, \lambda} \equiv 1$ on $\partial \bar{Q} \times(-\delta, \delta)$, we have $g_{q, \lambda} \equiv g$ on it. Let $\Delta_{q, \lambda}$ be the Laplacian with respect to $g_{q, \lambda}$, and let $\Gamma\left(1_{\bar{Q}}\right)$ is the space of all C^{∞}-functions of \bar{Q} and $\Gamma^{k}\left(1_{\bar{Q}}\right)$ the completion of $\Gamma\left(1_{\bar{Q}}\right)$ by the norm $\left\|\|_{k}\right.$ given by

$$
\|f\|_{k}^{2}=\sum_{s=0}^{k} \int_{\bar{Q}}\left\langle V^{s} f, \nabla^{s} f\right\rangle d V_{0}
$$

Then, $\left\{\Gamma\left(1_{\bar{Q}}\right), \Gamma^{k}\left(1_{\bar{Q}}\right), k \geqq 0\right\}$ is an ILB-system and $\Delta_{q, \lambda}$ is a linear mapping of order 2. It is not hard to see that $\Delta_{q, *}$ defines a continuous mapping of σ^{k} into $\mathscr{M}\left([0,1], L_{2}\left(\Gamma(\bar{Q}), \Gamma\left(1_{\bar{Q}}\right)\right)\right.$. Let

$$
\Gamma_{\partial \bar{Q}}\left(\mathbf{1}_{\bar{Q}}\right)=\left\{f \in \Gamma\left(1_{\bar{Q}}\right) ; \int_{\bar{Q}} f d V_{0}=0, \quad\left(\partial / \partial x^{n}\right) f \equiv 0 \quad \text { on } \quad \partial \bar{Q}\right\},
$$

and $\Gamma_{\partial \bar{Q}}^{k}$ its closure in $\Gamma^{k}\left(1_{\bar{Q}}\right) . \quad\left\{\Gamma_{\partial \bar{Q}}\left(1_{\bar{Q}}\right), \Gamma_{\partial \bar{Q}}^{k}, k \geqq 0\right\}$ is also an ILB-system. Let $\Gamma_{0}=\left\{f \in \Gamma\left(1_{\bar{Q}}\right) ; \int_{\bar{Q}} f d V_{0}=0\right\}$, and Γ_{0}^{k} its closure in $\Gamma^{k}\left(1_{\bar{Q}}\right)$. For the above $\rho_{q, \lambda}$ we denote by $\rho_{q, \lambda}^{-1} \Gamma_{0}$ (resp. $\rho_{q, \lambda}^{-1} \Gamma_{0}^{k}$) the space $\left\{\rho_{q, \lambda}^{-1} f ; f \in \Gamma_{0}\right.$ (resp. $\left.\left.\Gamma_{0}^{k}\right)\right\}$. Since $\rho_{q, 2}>0$, we see that $\left\{\rho_{q, \lambda}^{-1} \Gamma_{0}, \rho_{q, \lambda}^{-1} \Gamma_{0}^{k}, k \geqq 0\right\}$ is an ILB-system, which is naturally isomorphic to the IBL-system $\left\{\Gamma_{0}, \Gamma_{0}^{k}, k \geqq 0\right\}$. Note that $\Delta_{q, \lambda}$ is an isomorphism of $\boldsymbol{\Gamma}_{\partial \bar{Q}}\left(\mathbf{1}_{\bar{Q}}\right)$ onto $\rho_{q, 2}^{-1} \Gamma_{0}$ (cf. [5]), which can be extended to an isomorphism of $\Gamma_{\partial \bar{Q}}^{k+2}$ onto $\rho_{q, 2}^{-1} \Gamma_{0}^{k}$. The next lemma is an immediate conclusion from Lemma 1.2:

Lemma 5.1. Define a C^{∞}-function $h_{q, \lambda}$ by $d V_{q}-d V_{0}=h_{q, \lambda} d V_{q, \lambda}$ $\left(=h_{q, \lambda} \rho_{q, \lambda} d V_{0}\right)$. Then, $h_{q, \lambda} \in \rho_{q, \lambda}^{-1} \Gamma_{0}$ and there exists uniquely $f_{q, \lambda} \in \Gamma_{\partial \bar{Q}}\left(1_{\bar{Q}}\right)$ such that $\Delta_{q, 2} f_{q, 2}=h_{q, 2}$ on \bar{Q}. Moreover, $f_{q, *}$ defines a continuous mapping of σ^{k} into $\mathscr{N}\left([0,1], \Gamma_{\partial \bar{Q}}\left(1_{\bar{Q}}\right)\right)$.

Let $u_{q, 2}=\operatorname{grad}_{q, 2} f_{q, 2}$ be the gradient vector field of $f_{q, 2}$ with respect to the riemannian metric $g_{q, 2}$. Since $\operatorname{grad}_{q, *}$ defines a continuous mapping of σ^{k} into $\mathscr{M}\left([0,1], L_{1}\left(\Gamma\left(1_{\bar{Q}}\right) \Gamma\left(1_{\bar{Q}}\right)\right)\right.$, we see that $u_{q, *}$ defines a continuous mapping of σ^{k} into $\mathscr{M}\left([0,1], \Gamma\left(T_{\bar{Q}}^{\prime}\right)\right)$. Since $h_{q, 2} \equiv 0$ on a neighborhood of $\partial \bar{Q}$, there is a positive number δ_{1} such that $\operatorname{div}_{q, 2} u_{q, 2} \equiv 0$ on $\partial \bar{Q} \times\left[0, \delta_{1}\right]$, where $\operatorname{div}_{q, 2}$ is the divergent with respect to $g_{q, \lambda}$.

Lemma 5.2. Set $u_{q, \lambda}=u_{q, \lambda}^{\prime}+u_{q, \lambda}^{n} \partial / \partial x^{n}, u_{q, \lambda}^{\prime}=\sum_{i=1}^{n-1} u_{q, \lambda}^{\prime i} \partial / \partial x^{i}$. Then,

$$
\int_{\partial \bar{Q}} u_{q, \lambda}^{n}\left(x^{\prime}, x^{n}\right) d \mu=0, \quad \int_{\partial \bar{Q}}\left(\partial / \partial x^{n}\right) u_{q, \lambda}^{n}\left(x^{\prime}, x^{n}\right) d \mu=0
$$

for $0 \leqq x^{\prime}<\delta_{1}$, where $0<\delta_{1} \leqq \delta$ is assumed.
Proof. Set $\partial Q^{\prime}=\partial \bar{Q} \times\left\{x^{n}\right\}, R=\partial Q \times\left[0, x^{n}\right]$. Since $\operatorname{div}_{q, \lambda} u_{q, \lambda} \equiv 0$ on R, we have

$$
0=\int_{R} \operatorname{div}_{q, \lambda} u_{q, \lambda} d \mu \wedge d x^{n}=-\int_{\partial \bar{Q}} u_{q, \lambda}^{n} d \mu+\int_{\partial Q^{\prime}} u_{q, \lambda}^{n} d \mu
$$

Since $u_{q, \lambda}^{n}=\partial f_{q, \lambda} / \partial x^{n}$, we have $\int_{\partial \bar{Q}} u_{q, \lambda}^{n} d \mu=0$, hence $\int_{\partial Q^{\prime}} u_{q, \lambda}^{n} d \mu=0$. On the other hand, since

$$
\operatorname{div}_{q, \lambda} u_{q, \lambda}=\operatorname{div}_{\partial \bar{Q}} u_{q, \lambda}^{\prime}+\left(\partial / \partial x^{n}\right) u_{q, \lambda}^{n}=0
$$

on $\partial Q \times\left[0, \delta_{1}\right)$, where $\operatorname{div}_{\partial \bar{Q}}$ is the divergence on $\partial \bar{Q}$, we have

$$
\int_{\partial \bar{Q}}\left(\partial / \partial x^{n}\right) u_{q, \lambda}^{n}\left(x^{\prime}, x^{n}\right) d \mu=-\int_{\partial \bar{Q}} \operatorname{div}_{\partial Q} u_{q, \lambda}^{\prime} d \mu=0
$$

Let $\phi\left(x^{n}\right)$ be a C^{∞}-function on $[0, \infty)$ such that $\phi \geqq 0, \phi \equiv 1$ on [0, $\left.\delta_{1} / 2\right]$ and $\phi \equiv 0$ on $\left[\delta_{1}, \infty\right)$. Let Δ^{\prime} be the Laplacian on $\partial \bar{Q}$ with respect to g^{\prime}.

Lemma 5.3. Regarding $x^{n} \in[0, \infty)$ as a parameter, there exists uniquely a smooth function $F_{q, 2}\left(x^{\prime}, x^{n}\right)$ on $\partial Q \times[0, \infty)$ such that

$$
\left\{\begin{array}{l}
\Delta^{\prime} F_{q, \lambda}\left(x^{\prime}, x^{n}\right)=\left(\partial / \partial x^{n}\right) \dot{\phi}\left(x^{n}\right) u_{q, \lambda}^{n}\left(x^{\prime}, x^{n}\right) \tag{20}\\
\int_{\partial \bar{Q}} F_{q, \lambda}\left(x^{\prime}, x^{n}\right) d \mu=0 .
\end{array}\right.
$$

Moreover, $F_{q, *}$ defines a continuous mapping of σ^{k} into $\mathscr{M}([0,1]$, $\left.\boldsymbol{\Gamma}\left(\mathbf{1}_{\partial Q \times\left[0,2 \delta_{1}\right]}\right)\right)$.

Proof. Since

$$
\int_{\partial \bar{Q}}\left(\partial / \partial x^{n}\right) \phi\left(x^{n}\right) u_{q, \lambda}^{n}\left(x^{\prime}, x^{n}\right) d \mu=\phi^{\prime}\left(x^{n}\right) \int_{\partial \bar{Q}} u_{q, \lambda}^{n} d \mu+\phi \int_{\partial \bar{Q}}\left(\partial / \partial x^{n}\right) u_{q, \lambda}^{n} d \mu=0
$$

the equation (20) can be solved uniquely and by Lemma $1.2 F_{q, *}$ defines a continuous mapping of σ^{k} into $\mathscr{L}\left([0,1], \Gamma\left(1_{\partial Q \times\left[0,2 \delta_{1}\right]}\right)\right.$.

Let $v_{q, \lambda}$ be the gradient vector field of $F_{q, 2}$ on ∂Q with respect to g^{\prime}. Since $v_{q, \lambda}$ contains the parameter x^{n}, we may regard $v_{q, \lambda}$ as a smooth vector field on $\partial Q \times[0, \infty)$. Note that $v_{q, 2} \equiv 0$, if $x^{n} \geqq \delta_{1}$. Hence $v_{q, 2}$ can be regarded as a stricly tangent vector field on \bar{Q}.

Set

$$
\begin{equation*}
w_{q, \lambda}=(1-\phi) u_{q, \lambda}+\phi u_{q, \lambda}^{\prime}+v_{q, \lambda} \tag{21}
\end{equation*}
$$

and $w_{q, \lambda}$ is a strictly tangent vector field on \bar{Q}, because

$$
w_{q, \lambda}=u_{q, \lambda}^{\prime}+(1-\phi) u_{q, \lambda}^{n} \partial / \partial x^{n}+v_{q, \lambda}
$$

and hence has no $\partial / \partial x^{n}$-component on $\partial Q \times\left[0, \delta_{1} / 2\right]$. Note that $w_{q, *}$ defines a continuous mapping of σ^{k} into $\mathscr{M}\left([0,1], \Gamma\left(T_{\bar{Q}}\right)\right)$.

Lemma 5.4. $\operatorname{div}_{q, 2} w_{q, 2} \equiv h_{q, \lambda}$ on \bar{Q}.
Proof. If $0 \leqq x^{n}<\delta_{1}$, then $w_{q, \lambda}=u_{q, \lambda}-\phi u_{q, \lambda}^{n} \partial / \partial x^{n}+v_{q, 2}$. Thus,

$$
\operatorname{div}_{q, \lambda} w_{q, \lambda}=\operatorname{div}_{q, \lambda} u_{q, \lambda}-\left(\partial / \partial x^{n}\right) \phi u_{q, \lambda}^{n}+\operatorname{div}_{q, \lambda} v_{q, \lambda} .
$$

Since

$$
\operatorname{div}_{q, \lambda} v_{q, \lambda}=\operatorname{div}_{\partial Q} v_{q, \lambda}=\Delta^{\prime} F_{q, 2}=\left(\partial / \partial x^{n}\right) \phi u_{q, \lambda}^{n}
$$

we have $\operatorname{div}_{q, \lambda} w_{q, \lambda} \equiv \operatorname{div}_{q, \lambda} u_{q, \lambda} \equiv 0$ on $\partial \bar{Q} \times\left[0, \delta_{1}\right)$.
On the complement of $\partial \bar{Q} \times\left[0, \delta_{1}\right)$ in \bar{Q}, we have $w_{q, \lambda} \equiv u_{q, \lambda}$. Therefore $\operatorname{div}_{q, \lambda} \boldsymbol{w}_{q, 2} \equiv \operatorname{div}_{q, 2} u_{q, 2} \equiv \Delta_{q, 2} f_{q, 2} \equiv h_{q, 2}$.

Let ψ be a C^{∞}-function on $[0, \infty)$ such that $\psi \equiv 1$ on $\left[0, \delta_{1} / 4\right]$ and $\psi \equiv 0$ on $\left[\delta_{1} / 2, \infty\right)$. Set $\widetilde{w}_{q, 2}=\left(1-\psi\left(x^{n}\right)\right) w_{q, 2}$. Since $\widetilde{w}_{q, 2} \equiv 0$ on a neighborhood of $\partial \bar{Q}$, we may regard $\widetilde{w}_{q, \lambda}$ as an element of $\Gamma_{s}\left(T_{N}\right)$. Obviously, $\widetilde{w}_{q, *}$ defines a continuous mapping of σ^{k} into $\mathscr{M}\left([0,1], \Gamma_{S}\left(T_{N}\right)\right)$. Note that $h_{q, \lambda} \equiv 0$ on $\partial \bar{Q} \times\left[0, \delta_{1}\right)$ and $\widetilde{w}_{q, 2}$ has no $\partial / \partial x^{n}$-component on $\partial Q \times\left[0, \delta_{1} / 2\right]$. Hence, we have

LEMMA 5.5. $\operatorname{div}_{q, 2} \tilde{w}_{q, 2}=h_{q, 2}$ on S, and $\tilde{w}_{q, 2} \in \Gamma_{S}\left(T_{N}\right)$.
Solve the equation

$$
\begin{equation*}
(d / d \lambda) \tilde{\psi}_{q, \lambda}=-\widetilde{w}_{q, \lambda} \tilde{\psi}_{q, \lambda} \tag{22}
\end{equation*}
$$

with the initial condition $\tilde{\psi}_{q, 0}=$ identity. Then, $\tilde{\psi}_{q, \lambda}$ is a C^{∞}-diffeomorphism on S such that $\tilde{\psi}_{q, \lambda} \equiv$ identity on a neighborhood of ∂S. Now, by the same computation as in (18), we see that

$$
\tilde{\psi}_{q, \lambda}^{*} d V_{q, \lambda}=d V_{0}, \quad q \in \sigma^{k}, \lambda \in[0,1] .
$$

Set $\tilde{H}(\lambda q)=\tilde{\psi}_{q, \lambda}^{-1}$. \quad Then by Lemma $2.8 \tilde{H}$ is a continuous mapping of δ^{k+1} into $\mathscr{D}_{S}(N)$. Thus, restricting \widetilde{H} onto S we have a desired mapping. This completes the proof of Theorem in $\S 1$.

References

[1] D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), 102-163.
[2] A. Koriyama, Y. Maeda and H. Omori, On Lie algebras of vector fields, Trans. Amer. Math. Soc., 226 (1977), 89-117.
[3] A. Koriyama, Y. Maeda and H. Omori, On Lie algebras of vector fields on expansive sets, Japan. J. Math., 3 (1977), 57-80.
[4] J. Milnor, Lectures on h-cobordism theorem, Princeton University Press, 1965.
[5] S. Mizohata, Theory of partial differential equations (in Japanese) Iwanami, 1965.
[6] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965), 286-294.
[7] E. Nelson, Topics in dynamics I, flows, Math., Notes, Princeton University Press, 1969.
[8] H. Omori, On the group of diffeomorphisms on a compact manifold, Proc. Symp. Pure Math. XV, Amer. Math. Soc., (1970), 167-183.
[9] H. Omori, Infinite dimensional Lie transformation groups, Lecture Notes Math., 427, Springer, 1974.
[10] H. Omori, Theory of infinite dimensional Lie groups (in Japanese), Kinokuniya Press, to appear.
[11] R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology, 5 (1966), 1-16.

Present Address:

Department of Mathematics
Faculty of Science
Tokyo Metropolitan University
Furazawa, Setagaya, Tokyo 158

[^0]: Received January 26, 1978

