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Introduction.

This paper originates from a question raised by Professor J. J.
Sch\"affer during the meeting on Banach spaces at Kent State University

in August, 1977. The question is this: Let $X$ and $Y$ be compact Haus-
dorff spaces, let $C(X)^{+}(resp. C(Y)^{+})$ be the lattice of non-negative continuous
functions on $X(resp. Y)$ , and let $T$ be a lattice isomorphism of $C(X)^{+}$

onto $C(Y)^{+}$ ; does $T$ preserve the strict inequality $<$ ? Here, for $f$ and
$g$ in $C(X)^{+},$ $f<g$ means that $f(x)<g(x)$ for each $x$ in $X$ . By Kaplansky’s
theorem [7], if $C(X)^{+}$ and $C(Y)^{+}$ are lattice isomorphic, then $X$ and $Y$

are homeomorphic, and so we may assume that $X=Y$. It turns out that
the answer to Schaffer’s question depends on the space $X$, and the rather
unexpected result is: Each lattice isomorphism of $C(X)^{+}$ onto $itself\forall$

preserves the strict inequality if and only if $X$ is not the Stone-Cech
compactification of a non-compact, a-compact, locally compact Hausdorff
space. If $X$ satisfies this condition, we say that the space $X$ has property
$(S)$ . (The reason for our choice of the letter $S$

’ should, by now, be
clear.) Professor E. Hewitt then started to ask us questions concerning

the case where $X$ and $Y$ are not assumed to be compact. Then we can
no longer assume that $X=Y$, and the answer to Schaffer’s question (as

generalized by Hewitt) depends on the topological properties of $X$ and
Y. Property $(S)$ , suitably generalized, again plays the central role. The
purpose of the present paper is to present the answers to the questions
of Sch\"affer and Hewitt, to investigate related questions, and to establish
further properties of spaces with $(S)$ .

The paper is organized as follows: Section 1 contains characterizations
of those compact Hausdorff spaces $X$ such that each lattice isomorphism
$C(X)^{+}\rightarrow C(X)^{+}$ preserves the strict inequality. The proofs are relatively
simple and transparent.

Section 2 contains generalizations of the results of Section 1 to non-
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compact spaces. The lack of compactness introduces various com lication
which un or unately render the section somewhat opa ue. (The reade
who is not interested in the non-compact case can proceed from SectIo $\cdot$

1 directly to Section 4.) More specifically, we first assume that, fo
Tychonoff spaces $X$ and $Y$, there exists a lattice isomor hism $C(X)^{+}-$
$C(Y)^{+}$ that does not preserve the strict inequality, and from this as
sumption we deduce certain topological properties of $X$ and Y. Thes $($

properties are subsequently shown to be sufficient for the existence $0$

non-strict lattice $i8omorphisms$ . For the convenience of organization
property $(S)$ is defined purely topologically, and it is shown that eacl
lattice isomorphism of $C(X)^{+}$ onto itself is strict if and only if $Xha|$
property $(S)$ . One indispensable tool in our analysis is the isomor
phism $\sigma$ of Boolean algebra of regular open subsets of $X$ onto thal
of $Y$ that corresponds to a lattice isomorphism $C(X)^{+}\rightarrow C(Y)^{+}$ . $Th\langle$

construction of $\sigma$ and the derivation of a few of the properties of ‘
that are needed in Section 2 are carried out in the beginning of $th_{t}$

section. Additional properties of $\sigma$ are established in Section 3. $Fol$

instance, it is shown that $\sigma$ can be described by a continuous one-to-onc
map of $X$ into the real-compactification $uY$ of Y. From this it is $\epsilon$

simple matter to recover Shirota’s theorem [10]: If $X$ and $Y$ are real.
compact and if $C(X)^{+}$ and $C(Y)^{+}$ are lattice isomorphic, then $X$ and $l$

are homeomorphic. This is a generalization of the theorem of Kaplansky
mentioned above.

In Section 4, we consider the class of topological spaces with property
$(S)$ . The product of a family of spaces with property $(S)$ has again
property $(S)$ . The notion of weakly sequential spaces is introduced, and
it is proved that a weakly sequential space has property $(S)$ and that the
product of a family of first-countable spaces is weakly sequential. Although
a quotient of a space with property $(S)$ need not have property $(S)$ , a
quotient of weakly sequential space is again weakly sequential. Finally,
we give necessary and sufficient conditions for $Y$ to satisfy the following:
$X\times Y$ has property $(S)$ for each Tychonoff space $X$.

We are grateful to Professor J. J. Schaffer for raising the original
question and for the subsequent correspondence on the subject, and to
Professor E. Hewitt for encouraging us to consider the non-compact case.
We also acknowledge with gratitude Professors W. W. Comfort, E. van
Douwen, and E. Michael for enlightening us with topological information
concerning property $(S)$ and for giving us permission to incorporate some
of their remarks into the present paper.
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\S 1. Lattice isomorphisms (the compact case).

Let $X$ and $Y$ be compact Hausdorff spaces, and let $C(X)^{+}$ and $C(Y)^{+}$

denote the lattices of all non-negative continuous real-valued functions
on $X$ and $Y$ respectively. A map $T:C(X)^{+}\rightarrow C(Y)^{+}$ is called a lattice
isomorphism if it is one-to-one, onto, and, for $f$ and $g$ in $C(X)^{+},$ $ Tf\leqq$

$Tg$ if and only if $f\leqq g$ . The last condition is equivalent to $T(f\wedge g)=$

$T(f)\wedge T(g)$ (or $T(f\vee g)=T(f)T(g)$ ) for arbitrary $f$ and $g$ in $C(X)^{+}$ .
Clearly the inverse of a lattice isomorphism is also a lattice isomorphism.
A lattice isomorphism $T:C(X)^{+}\rightarrow C(Y)^{+}$ is said to be strict if $Tf<Tg$

whenever $f<g$ , where $f<g$ means that $f(x)<g(x)$ for each $x$ in $X$. For
a real-valued function $f$ on $X$, the support of $f$ (denoted by supp $f$)

is defined by $\{x:f(x)\neq 0\}^{-}$ .
LEMMA 1.1. Let $T$ be a lattice isomorphism $C(X)^{+}\rightarrow C(Y)^{+}$ , where

$X$ and $Y$ are compact Hausdorff spaces. Then for each $y$ in $Y$, there
is a unique point $\rho(y)$ in $X$ such that $Tf(y)=0$ whenever $f\in C(X)^{+}$ and
$p(y)\not\in suppf$. $Mo$reover, the map $y$ }$\rightarrow\rho(y)$ is continuous.

PROOF. Fix a point $y$ in $Y$, and let $\mathcal{U}$ be the family of all open
subsets $U$ of $X$ such that $Tf(y)=0$ whenever $f\in C(X)^{+}$ and supp $f\subset U$.
Then $\mathcal{U}$ is closed under finite unions. In fact, suppose that $U_{1},$ $U_{2}\in \mathcal{U}$

and $suppf\subset U_{1}\cup U_{2}$ for some $f$ in $C(X)^{+}$ . Then there $aref_{1},$ $f_{2}$ in $C(X)^{+}$

such that supp $f_{i}\subset U_{i}(i=1,2)$ and $f=f_{1}\vee f_{2}$ . By the definition of $\mathcal{U}$,
$Tf_{i}(y)=0$ for $i=1,2$ , whence $Tf(y)=T(f_{1}f_{2})(y)=(Tf_{1}\vee Tf_{2})(y)=0$ . This
shows that $U_{1}UU_{2}\in \mathcal{U}$. Let $V=\cup \mathcal{U}$. If supp $f\subset V$ , then supp $ f\subset$

$U_{1}\cup\cdots UU$, where $U_{l}\in \mathcal{U}(i=1, \cdots, n)$ . Since $U_{1}\cup\cdots UU_{n}\in \mathcal{U}$, we have
$Tf(y)=0$ . Hence $V\in \mathcal{U}$. If $V=X$, then $Tf(y)=0$ for all $f$ in $C(X)^{+}$ in
contradiction to the fact that $T$ is onto. Hence $V\neq X$. Suppose that
$X\sim V$ contains two distinct points $x_{1}$ and $x_{2}$ . Then there are disjoint open
neighborhoods $W_{1}$ and $W_{2}$ of $x_{1}$ and $x_{2}$ respectively. Since $W_{1}\not\in \mathcal{U}$, there
is a $g_{1}$ in $C(X)^{+}$ such that supp $g_{1}\subset W_{1}$ and $Tg_{1}(y)>0$ . Similarly, there
is a $g_{2}$ in $C(X)^{+}$ such that supp $g_{2}\subset W_{2}$ and $Tg_{2}(y)>0$ . Since $g_{1}\wedge g_{2}=0$ ,
$0=T(g_{1}\wedge g_{2})(y)=(Tg_{1}\wedge Tg_{2})(y)>0$ . This contradiction shows that $X\sim V$

is a singleton. Let $\rho(y)$ be the unique element in $X\sim V$ , then $\rho(y)$

satisfies the condition of the lemma. Suppose that a point $x$ in $X$ also
satisfies the condition. Then $X\sim\{x\}\in \mathcal{U}$, and hence $ X\sim\{x\}\subset V=X\sim$

$\{\rho(y)\}$ . Therefore $x=\rho(y)$ . To see the continuity of $\rho$ , let $W$ be an open
neighborhood of $\rho(y)$ . Then there exists an $h$ in $C(X)^{+}$ such that supp $h\subset W$

and Th$(y)>0$ . Let $U=$ { $z:z\in Y$ and Th$(z)>0$}. Then $U$ is a neighborhood
of $y$ and $\rho[U]\subset W$.
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We call the map $\rho:Y\rightarrow X$ in Lemma 1.1 the map associated witl
the lattice isomorphism $T:C(X)^{+}\rightarrow C(Y)^{+}$ .

LEMMA 1.2. Let $T$ and $p$ be as in Lemma 1.1. Then $\rho$ is a homeo
morphism, and $\rho^{-1}:X\rightarrow Y$ is the map associated with $T^{-1}:C(Y)^{+}\rightarrow C(X)^{+}$

PROOF. Let $\tilde{\rho}$ be the map associated with $T^{-1}$ . Suppose that $p\rho(x)q$

supp $f$ for some $x$ in $X$ and $f$ in $C(X)^{+}$ . Then there is an open neigh
borhood $V$ of $\tilde{\rho}(x)$ in $Y$ such that $ p[V]\cap suppf=\emptyset$ . By the definitio]

of $p$ , we then have $Tf|V\equiv 0$ and, consequently, $\tilde{\rho}(x)\not\in supp(Tf)$ . Sinc $($

$\tilde{\rho}$ is associated with $T^{-1},0=T^{-1}T(f)(x)=f(x)$ . It follows that $\rho\tilde{\rho}$ is as
sociated with the identity: $C(X)^{+}\rightarrow C(X)^{+}$ , and consequently $\rho\tilde{\rho}=id$

Reversing the r\^oles of $T$ and $T^{-1}$ , we see also that $\tilde{\rho}\rho=id$ . Hence $\rho i|$

a homeomorphism and $\tilde{\rho}=\rho^{-1}$ .
It follows from Lemma 1.2 that, if $X$ and $Y$ are compact Hausdorf

spaces such that $C(X)^{+}$ and $C(Y)^{+}$ are isomorphic as lattices, then $Xan($
$Y$ are homeomorphic. This was proved by Kaplansky [7] and was subse
quently generalized by Shirota [10] (cf. Remark $3.8(b)$ below). Since ou]

analysis of $T$ would yield Kaplansky’s the $0$rem automatically, we begal
this section with two compact Hausdorff spaces $X$ and Y. In the resl
of the section, however, we only consider lattice isomorphisms of $C(X)^{-}$

onto itself.

LEMMA 1.3. Let $T$ and $\rho$ be as in Lemma 1.1 with $X=Y$. If $j$

and $g$ are elements of $C(X)^{+}$ such that $f(x)\leqq g(x)$ for each $x$ in an opet
subset $U$ of $X$, then $Tf(y)\leqq Tg(y)$ for each $y$ in $\rho^{-1}[U]$ . In particular
$f|U=g|U$ implies $Tf|\rho^{-1}[U]=Tg|\rho^{-1}[U]$ .

PROOF. Let $h$ be a member of $C(X)^{+}$ such that supp $h\subset\rho^{-1}[U]$ . Then
for each $x$ in $X\sim U,$ $\rho^{-1}(x)\not\in supph$ and hence $T^{-1}h(x)=0$ . It follows that
$f\wedge T^{-1}h\leqq g\wedge T^{-1}h$ , whence $h\wedge Tf\leqq h\wedge Tg$ . Therefore $Tf\leqq Tg$ on $\rho^{-1}[U]$

Let $U$ be an open subset of $X$. Then by $C^{*}(U)^{+}$ we shall denott
the lattice of all bounded continuous non-negative functions on $U$.

LEMMA 1.4. Let $T$ and $p$ be as in Lemma 1.1 with $X=Y$, let $Ub($

an open subset of $X$, and let $V=\rho^{-1}[U]$ . Then there is a lattice isomor.
phism $T_{U}:C^{*}(U)^{+}\rightarrow C^{*}(V)^{+}$ such that, for each $f$ in $C(X)^{+},$ $T_{U}(f|U)=$

$Tf|V$.
PROOF. Given $g\in C^{*}(U)^{+}$ , we define $T_{U}(g)$ as follows: Let $xeU$ and

let $W$ be an open neighborhood of $x$ such that $W^{-}\subset U$. Then $g|W^{-}$ car
be extended to an element $h$ in $C(X)^{+}$ . Define $T_{\sigma}(g)(\rho^{-1}(x))=T(h)(\rho^{-1}(x))$ ,
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Then by Lemma 1.8, $T_{U}(g)(\rho^{-1}(x))$ is well-defined. Since $T_{U}(g)$ and $T(h)$

agree on $p^{-1}[W],$ $T_{U}(g)$ is continuous at $\rho^{-1}(x)$ . From the definition it is
clear that $T_{U}(f|U)=Tf|V$ for each $f$ in $C(X)^{+}$ . Also in view of Lemma
1.3, $T_{U}$ preserves the order relation $\leqq$ . Consequently, $T_{U}(g)\in C^{*}(V)^{+}$

whenever $g\in C^{*}(U)^{+}$ . Finally by applying the same construction to $T^{-1}$

and $V$, we see immediately that $(T^{-1})_{V}T_{U}=id$ . Similarly $T_{U}(T^{-\iota})_{V}=id$ .
Therefore $T_{U}$ is a lattice isomorphism.

The next theorem is the main theorem of this section. This theorem
will be generalized in the next section with a considerably more compli-
cated proof.

THEOREM 1.5. Let $X$ be a compact Hausdorff space. Then the
following conditions are equivalent:

(1) Each lattice isomorphism of $C(X)^{+}$ onto itself is strict.
(2) $X$ is not the Stone-\v{C}ech compactification of a non-compact,

locally compact, $\sigma$-compact Hausdorff space.
(3) $X$ is not the $Stone-\check{C}ech$ compactification of a non-pseudo-

compact Tychonoff $s$pace.

PROOF. (1) $\Rightarrow(2)$ . Suppose that $X=\beta U$ where $U$ is a non-compact,
locally compact, a-compact subspace of $X$. Then $U$ is a proper dense
open $F_{\sigma}$-set in $X$. Therefore, there is a $\phi$ in $C(X)^{+}$ such that $U=$

$\{x;\phi(x)>0\}$ . We define a map $T_{0}:C^{*}(U)^{+}\rightarrow C^{*}(U)^{+}$ as follows:

$T_{0}(f)(x)=\left\{\begin{array}{l}f(x)f(x)\geqq 1\\(f\in C^{*}(U)^{+}, x\in U)\\(f(x))^{\phi(x)}f(x)\leqq 1\end{array}\right.$

The inverse $T_{0}^{-1}$ is given by a similar formula:

$T_{0}^{-1}(g)(x)=\left\{\begin{array}{l}g(x)g(x)\geqq 1\\(geC^{*}(U)^{+}, x\in U)\\(g(x))^{1/\phi(x)}g(x)\leqq 1\end{array}\right.$

Hence $T_{0}$ is a lattice isomorphism. The restriction map $\gamma;C(X)^{+}\rightarrow C^{*}(U)^{+}$

is a lattice isomorphism. Hence we can define a lattice isomorphism
$T:C(X)^{+}\rightarrow C(X)^{+}$ by $T=r^{-1}T_{0}r$ . Clearly, $T(1)=1$ and $T(1/2)(x)=(1/2)^{\phi(u)}$

for $x$ in $X$. Since $\{x;\phi(x)=0\}$ is not empty, $T(1/2)<T(1)$ is false. Thus,
if $X$ does not satisfy condition (2), then there is a non-strict lattice
isomorphism of $C(X)^{+}$ onto itself.

(2) $\Rightarrow(3)$ . Suppose that $Y$ is a non-pseudo-compact Tychonoff space
and $ X=\beta$ Y. Then there is a bounded continuous real-valued function
$f$ on $Y$ such that $f(y)>0$ for each $y$ in $Y$ and $inf\{f(y):y\in Y\}=0$ . Let

$\overline{f}$ be the continuous extension of $f$ to $X$, and let $U=\{x:\overline{f}(x)>0\}$ . Then
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$U$ is a proper dense open F.-set in $X$ , and $X=\beta U$ since $Y\subset U\subset\beta Y=X$

Hence $X$ does not satisfy condition (2).
(3) $\Rightarrow(1)$ . Assume that $X$ does not satisfy condition (1). Then ther $($

is a lattice isomorphism $T:C(X)^{+}\rightarrow C(X)^{+}$ which is not strict. Let $f,$
$\backslash |$

be members of $C(X)^{+}$ such that $f<g$ but $Tf<Tg$ is false. Let $V=$

$\{x:Tf(x)<Tg(x)\}$ . Then $V$ is a proper open F.-subset of $X$. Let $ p:X\rightarrow l\urcorner$

be the map associated with $T$, and let $U=\rho[V]$ . Then, since $\rho$ is $\{$

homeomorphism, $U$ is a proper open $F_{\sigma}$-subset of $X$. We claim that $\rceil$

and, hence, $U$ are dense in $X$. For, otherwise, there would be a non-voi $($

open set $W$ such that $ W\cap V=\emptyset$ . Then $Tf|W=Tg|W$, and therefor
$f|\rho[W]=g|\rho[W]$ by Lemma 1.3 (applied to $T^{-1}$). This contradicts th
assumption that $f<g$ . We now show that $X=\beta U$. Let $h\in C^{*}(U)^{+}$

Then there is a positive number $\epsilon>0$ such that $f|U\leqq\epsilon h+f|U\leqq g|U$. I
$\epsilon h+f|U$ can be extended to a continuous function $k$ on $X$, then $\epsilon^{-1}(k-f$

is a continuous extension of $h$ to $X$. Hence for the purpose of extendinl
$h$ continuously to $X$ , we may assume that $f\leqq h\leqq g$ on $U$. Then $b$.

Lemma 1.4, $T_{U}(h)\in C^{*}(V)^{+}$ and $Tf\leqq T_{U}(h)\leqq Tg$ on $V$. Consequently, $i$

we extend $T_{U}(h)$ to a function $l$ on $X$ in such a way that $l$ agrees wit
$Tf$ and $Tg$ outside $V$ , then $l$ is continuous and $l\in C^{*}(X)^{+}$ . Let $\overline{h}=T^{-1}(l^{\backslash }$,

Then by Lemma 1.4, $T_{U}(h)=l|V=T(\overline{h})|V=T_{U}(\overline{h}|U)$ . Since $T_{U}$ is one-tc
one, we have $h=\overline{h}|U$. Hence $h$ admits a continuous extension to X
This shows that $X=\beta U$, and, since $U$ is clearly not pseudo-compact, $1\neg$

does not satisfy condition (3).
In \S 2, condition (2) of Theorem 1.5 is generalized to an arbitrar

Tychonoff space and is called property $(S)$ .
\S 2. Lattice isomorphisms (the general case).

In this section we generalize the results of \S 1 to Tychonoff $(i.e\downarrow$

completely regular and $T_{1}$) spaces. Although the spirit of the proof fo
the general case remains the same as that of the compact case, the deta
becomes far more complicated.

One of the reasons for the complication is that, for an arbitrar
Tychonoff space $X$, we must distinguish $C(X)^{+}$ (the lattice of all cor
tinuous non-negative functions on $X$) from $C^{*}(X)^{+}$ (the lattice of a
bounded continuous non-negative functions on $X$). For Tychonoff space
$X$ and $Y$, a lattice isomorphism $T:C(X)^{+}\rightarrow C(Y)^{+}$ or $T:C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}i$

defined in the same way as in the compact case (\S 1). As before, a lattic
isomorphism is said to be strict if it preserves the strict inequality $<$

In the general case, it is not always possible to construct the ma
associated with a lattice isomorphism. The following lemma provides
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substitute in the form of an isomorphism of Boolean algebras of regular
open sets. An open subset $U$ of a topological space $X$ is called regular
if $U=U^{-0}$ . Here $A^{0}$ denotes the interior of the set $A$ . We note that if
$A$ is closed. then $A^{0}$ is regular. Let $\mathscr{G}(X)$ denote the family of all
regular open subsets of $X$. It is well-known that $\mathscr{G}(X)$ is a complete
Boolean algebra [1, p. 216]. The Boolean operations are given as follows:
For $\ovalbox{\tt\small REJECT}\subset \mathscr{G}(X),$ $\vee \mathscr{A}=(\cup \mathscr{A})^{-0}$ and $\wedge\ovalbox{\tt\small REJECT}=(\cap \mathscr{A})^{-0}$ ; and for $U\in \mathscr{G}(X)$ ,
$U^{\prime}=X\sim U^{-}$ . If $U,$ $V\in \mathscr{B}(X)$ , then $U\cap V\in \mathscr{G}(x)$ and, therefore, $U\wedge V=$

$U\cap V$. The partial ordering of $\iota \mathscr{G}(X)$ is given by the inclusion: $U\leqq V$

if and only if $U\subset V$.
Let $X$ be a Tychonoff space. For an $f$ in $C(X)^{+}$ , let $Z(f)=\{x:f(x)=0\}$ .

A subset of $X$ of the form $Z(f)$ is called a zero-set in $X$. For a regular
open subset $U$ of $X$, let $I_{U}=$ {$f:f\in C(X)^{+}$ and $U\subset Z(f)$ }. A similar object
can be defined for $C^{*}(X)^{+}$ , namely $I_{U}\cap C^{*}(X)^{+}$ , which we continue to
denote by $I_{U}$ . We note that, for $U,$ $V\in.\mathscr{G}(X),$ $V\subset U$ if and only if
$I_{U}\subset I_{V}$ . We also note that $f\in I_{U^{\prime}}$ if and only if $\{x:f(x)>0\}\subset U$.

THEOREM 2.1. Let $X$ and $Y$ be Tychonoff spaces and let $ T:C(X)^{+}\rightarrow$

$C(Y)^{+}$ (or $T:C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}$ ) be a lattice isomorphism. Then there is
a corresponding isomorphism $\sigma:\mathscr{B}(X)\rightarrow.\mathscr{G}(Y)$ of Boolean algebras such
that $T[I_{U}]=I_{\sigma(3)}$ for each $U$ in $\mathscr{G}(X)$ . The inverse isomorphism
$\sigma^{-1}:.\mathscr{G}(Y)\rightarrow.\mathscr{G}(X)$ corresponds to $T^{-1}$ .

PROOF. We give a proof only for $T:C(X)^{+}\rightarrow C(Y)^{+}$ . The proof of
the other case is essentially identical.

For $U$ in $\mathscr{B}(X)$ , let $\sigma(U)=(\cap\{Z(Tf):f\in I_{U}\})^{0}$ . Then clearly $ T[I_{U}]\subset$

$I_{\sigma(U)}$ and $\sigma(V)\subset\sigma(U)$ whenever $V\subset U$. If $f\in I_{U}$ and $g\in I_{U^{\prime}}$ , then $ T(f)\wedge$

$T(g)=T(f\wedge g)=T(O)=0$ , or equivalently $Z(Tf)\cup Z(Tg)=Y$. It follows that
$(\cap\{Z(Tf):f\in I_{U}\})\cup(\cap\{Z(Tg):g\in I_{U^{\prime}}\})=Y$ and hence $\sigma(U)\cup(\cap\{Z(Tg):g\in$

$I_{U^{\prime}}\})=Y$. Therefore $\sigma(U’)\supset(Y\sim\sigma(U))^{0}=Y\sim\sigma(U)^{-}=\sigma(U)^{\prime}$ . Suppose that
$f\not\in I_{U}$ . Then there is a $g$ in $I_{U^{\prime}}$ such that $0\neq g\leqq f$. Then $Tg\in I_{\sigma(U^{\prime})}\subset I_{\sigma(U)^{\prime}}$

and $0\neq Tg\leqq Tf$. Therefore $Tf\not\in I_{\sigma(U)}$ . This shows that $T[I_{U}]=I_{\sigma(U)}$ .
Since $T^{-1}:C(Y)^{+}\rightarrow C(X)^{+}$ is a lattice isomorphism, it follows from

what is already proved that there exists an order preserving map
$\overline{\sigma}:\mathscr{G}(Y)\rightarrow \mathscr{G}(X)$ such that $T^{-1}[I_{V}]=I_{\overline{\sigma}(V)}$ for each $V\in \mathscr{G}(Y)$ . Then for
such $V,$ $I_{V}=TT^{-1}[I_{V}]=T[I_{\overline{\sigma}(V)}]=I_{\sigma\overline{\sigma}(V)}$ . Hence $V=\sigma\overline{\sigma}(V)$ for each $V$ in
$\mathscr{G}(Y)$ , i.e., $\sigma\overline{\sigma}=id$ . Similarly $\overline{\sigma}\sigma=id$ . Consequently $\sigma$ is an isomorphism
of partially ordered sets and, hence, of Boolean algebras, and $\overline{\sigma}=\sigma^{-1}$ .
This completes the proof.

REMARK 2.2. The isomorphism $\sigma$ constructed in Theorem 2.1 neces-
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sarily preserves all the Boolean operations. In particular, if $U,$ $Ve\mathscr{B}(X)$

then $\sigma(U^{\prime})=\sigma(U)$ and $\sigma(U\cap V)=\sigma(U\wedge V)=\sigma(U)\wedge\sigma(V)=\sigma(U)\cap\sigma(V)$ . Let
$Y$ be a subfamily of $\mathscr{B}(X)$ such that $\cup\cdot X$ is dense in $X$. Then $\vee \mathscr{A}=$

$X$, and therefore $Y=\sigma(X)=\vee\{\sigma(U):U\in \mathscr{A}\}$ , i.e., $U\{\sigma(U):U\in \mathscr{A}\}$ is $dens\langle$

in Y.
In the following lemma, the notation is that of Theorem 2.1.

LEMMA 2.3. Let $f$ and $g$ be members of $C(X)^{+}(or C^{*}(X)^{+})$ such tha
$f(x)\leqq g(x)$ for each point $x$ in $U$, where $U\in \mathscr{B}(X)$ . Then $Tf(y)\leqq Tg(y$

for each $y$ in $\sigma(U)$ .
PROOF. Again the proofs for two cases are identical. Let $h$ be $al$

arbitrary function in $C^{*}(X)^{+}$ such that $\{y:h(y)>0\}\subset\sigma(U)$ . Then $heI_{\sigma(U)^{\prime}}$

and therefore $T^{-1}(h)\in I_{U^{\prime}}$ by Theorem 2.1. By hypothesis, $ f\wedge T^{-1}(h)\leqq$

$g\wedge T^{-1}(h)$ . It follows that $(Tf)$ A $h=T(f\wedge T^{-1}(h))\leqq T(g\wedge T^{-1}(h))=(Tg)$ A $h$

The conclusion now follows.
A subset $U$ of a Tychonoff space $X$ is said to be $C^{*}$-imbedded in $y$

if each bounded continuous real-valued function on $U$ admits a continuou
real-valued extension to $X$. Clearly this is the case if and only if th
restriction map $C^{*}(X)^{+}\rightarrow C^{*}(U)^{+}$ is onto.

LEMMA 2.4. Let $U$ be a $C^{*}$-embedded subspace of a Tychonoff spac
X. If $f\in C(U)^{+}$ and if $f\leqq g$ on $U$ for some $g$ in $C(X)^{+}$ , then $f$ can $b$

extended to a function in $C(X)^{+}$ .
PROOF. Let $h=f/(g+1)$ ; then $h\in C^{*}(U)^{+}$ . Let $\overline{h}$ be a continuou

non-negative extension of $h$ to $X$. Then $(g+1)\overline{h}$ extends $f$ and is
member of $C(X)^{+}$ .

A subset $U$ of a Tychonoff space $X$ is called a cozero-set if $X\sim Ui$

a zero-set. A Tychonoff space $X$ is said to have property $(S)$ if ther
is no dense proper cozero-set that is $C^{*}$ -embedded in $X$. If $X$ is compac
Hausdorff, then property $(S)$ is equivalent to condition (2) (hence, $t$

each of conditions (1), (2), and (3)) of Theorem 1.5. Corollary 2.6 beloi
generalizes Theorem 1.5 to Tychonoff spaces. The next two theorem
are the main results of this section.

THEOREM 2.5. Let $X$ and $Y$ be Tychonoff spaces. If there exists
lattice isomorphism $T:C(X)^{+}\rightarrow C(Y)^{+}$ which is not strict, then:

(i) $X$ does not have property $(S)$ ; and
(ii) $Y$ does not have property $(S)$ .
THEOREM 2.5*. Let $X$ and $Y$ be Tychonoff spaces. If there exists

lattice isomorphism $T:C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}$ which is not strict, then:
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(i) Either $X$ does not have property $(S)$ or $X$ is not pseudo-compact;
and

(ii) $Y$ does not have property $(S)$ .
PROOF. We shall give a proof for Theorem 2.5*. Modifications for

the proof of Theorem 2.5, if necessary, will be given in parentheses.
We break the proof into four steps.
I. We first prove that, by modifying the given $T$, we obtain a

lattice isomorphism $\tilde{T}:C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}$ such that $\tilde{T}1(y)=0$ for some $y$ in
Y. By hypothesis there exist elements $f$ and $g$ of $C^{*}(X)^{+}$ such that
$f<g$ and such that $Tf<Tg$ is false. We may and do assume that $f=0$ ,
because the map $h$ト\rightarrow T(f+h)-T(f) is a lattice isomorphism $C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}$ ,
which maps $g-f$ to Tg-Tf. Let $M$ be a positive number such that
$g<M$, and let $\theta(x)=$ ($\log M$-log $g(x)$ ) $/\log 2$ . Define $T_{1}:C^{*}(X)^{+}\rightarrow C^{*}(X)^{+}$ by

$T_{1}(h)(x)=\left\{\begin{array}{ll}\frac{1}{2}Mh(x) & if h(x)\geqq 2,\\M(\frac{1}{2}h(x))^{\theta(x)} & if h(x)\leqq 2.\end{array}\right.$

Then it is easy to check that $T_{1}$ is a lattice isomorphism such that
$T_{1}(1)=g$ . (For the case of Theorem 2.5, define $T_{1}:C(X)^{+}\rightarrow C(X)^{+}$ by
$T_{1}(h)=gh$ for each $h$ in $C(X)^{+}.)$ Hence $\tilde{T}=TT_{1}$ is a lattice isomorphism
such that $\tilde{T}(1)=T(g)$ , and therefore $\tilde{T}(1)(y)=0$ for some $y$ in Y.

II. By step I, we may assume that the isomorphism $T$ of the theorem
satisfies $T1(y)=0$ for some $y$ in Y. Let $\sigma:\mathscr{G}(X)\rightarrow \mathscr{G}(Y)$ be the iso-
morphism of Boolean algebras that corresponds to $T$, and let $N$ denote the
set of positive integers. For each $n$ in $N$, let $W_{n}=\{y:T1(y)\geqq n^{-1}\}^{0}$ and
$V_{n}=\sigma^{-1}(W_{n})$ , and let $W=\cup\{W.:neN\}=Y\sim Z(T1)$ and $V=\cup\{V.:neN\}$ .
Since $W_{n}\subset W_{n+1}$ and $ W_{n}^{\prime}\neq\emptyset$ for each $n$ , it follows that $V_{n}\subset V_{\iota+1}$ and
$ V_{n}^{\prime}\neq\emptyset$ . The interior of $Z(T1)$ is empty. For, otherwise, there would
be a non-void regular open set $U$ such that $U\subset Z(T1)$ . Then, by Lemma
2.3, $1=0$ on $\sigma^{-1}(U)$ , which is absurd. Therefore $W$ is dense in $Y$, and
consequently $V$ is dense in $X$ by Remark 2.2.

For each $n$ , by forming the composite of $T1$ and a suitable continuous
function on the real line, we obtain a continuous function $\psi.;Y\rightarrow[0,1]$

such that
$\psi_{n}(y)=1$ if $T1(y)\geqq n^{-1}$ , and
$\psi.(y)=0$ if $T1(y)\leqq(n+1)^{-1}$ .

Let $g.=\psi.\cdot T1$ . Then, for $m\geqq n,$ $g_{m}|W_{n}=T1|W_{n}$ . Also OS $g.\leqq T1$ and
$g_{n}\in I_{W_{n+1}^{\prime}}$ for each $n$ . Let $\phi_{n}=T^{-1}g_{n}$ . Then, from Theorem 2.1 and Lemma
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2.3, we see that:
$(a)$ $\phi_{n}|V_{n}\equiv 1$ for $m\geqq n$ ;
$(b)$ $0\leqq\phi.\leqq 1$ for each $n$ ; and
$(c)$ $\phi,$ $\in I_{V_{n+1}^{\prime}}$ , i.e., $\{x\ddagger\phi.(x)>0\}cV_{n+\iota}$ for each $n$ .
Finally, let $\phi=\sum\{2^{-n}\phi_{\iota};n\in N\}$ . By $(b),$ $\phi$ is well-defined and is con-

tinuous. It follows from $(a)$ and $(c)$ that
$(d)$ $V=\{x:\phi(x)>0\}$ .

If $x\in V_{m}^{\prime}$ , then $\phi(x)\leqq\sum\{2^{-}’: n\geqq m\}=2\cdot 2^{-m}$ from $(c)$ . Since, as noted
above, $ V_{m}^{\prime}\neq\phi$ for each $m$ , we also have

$(e)$ $inf\{\phi(x):x\in X\}=0$ .
III. Now we distinguish two cases according to $V=X$ or $V\neq X$.
Case 1. $V=X$. In this case, the existence of the function $\phi$ satisfying

$(d)$ and $(e)$ shows that $X$ is not pseudo-compact. (We show in step IV
that Case 1 cannot occur for Theorem 2.5.)

Case 2. $V\neq X$. In this case, $V$ is a proper dense cozero-set. We
shall prove that $V$ is $C^{*}$ -embedded in $X$. Let $f$ be an arbitrary element
of $C^{*}(V)^{+}$ such that $0\leqq f\leqq 1$ . For each $n$ in $N$, let $f_{n}$ be the element
of $C^{*}(X)^{+}$ defined as follows:

$f_{\pi}|V=f\cdot\phi_{n}|V$ and $f_{n}\equiv 0$ on $X\sim V$ .
Then, from $(a),$ $f_{m}|V_{n}=f,$ $V_{n}=f|V_{*}$ for $m\geqq n$ , and, from $(b)$ ,

$0\leqq f_{n}\leqq 1$ .
Therefore, by Lemma 2.3, $Tf_{m}|W_{n}=Tf_{\hslash}|W_{n}$ for $m\geqq n$ . Furthermore,
since $0\leqq Tf$. $\leqq T1,$ $Tf.\equiv 0$ on $Z(T1)=Y\sim W$. It follows that $h(y)=$
$\lim$. $Tf.(y)$ exists for all $y$ in Y. Clearly, $h|W_{n}=Tf_{n}|W_{f}$ and $0\leqq h\leqq T1$ .
Consequently $h\in C^{*}(Y)^{+}$ . (In case of Theorem 2.5, $h\in C(Y)^{+}.$ ) Let $\overline{f}=$

$T^{-1}(h)$ . Then, by Lemma 2.3 again, $\overline{f}|V_{n}=f_{n}|V,$ $=f|V$, for each $n$, i.e.,
$\overline{f}|V=f$. This proves that $V$ is $C^{*}$ -embedded in $X$, and, therefore, $X$

does not have property $(S)$ .
IV. Finally we show that the proper dense cozero-set $W$ is $C^{*}-$

embedded in Y. (We shall also rule out Case 1 of part III for Theorem
2.5.) This will complete the proof.

Let $h$ be an arbitrary member of $C(W)^{+}$ . For each $n$ , define a function
$h_{n}$ on $Y$ as follows:

$h_{n}|W=h\cdot\psi_{n}|W$ and $h_{\hslash}\equiv 0$ on $Y\sim W$ .
From the properties of $\{\psi_{n}\}$ (see part II), it follows that $h_{n}$ is continuous
and $h_{m}|W.=h_{n}|W_{n}=h|W$. for $m\geqq n$ .
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(Consider the case of Theorem 2.5. Since $T^{-1}(h_{m})|V_{n}=T^{-1}(h, )|V$, for
$m\geqq n,$ $f(x)=\lim_{n}T^{-1}(h_{n})(x)$ exists for each $x$ in $V$ and $f|V_{n}=T^{-1}(h,)|V_{n}$

for each $n$ . Hence $f$ is continuous on $V$ . Assume now that $V=X$.
Then $f\in C(X)^{+}$ , and $Tf|W_{z\iota}=h,$ $W_{n}=h|W_{n}$ for each $n$ , i.e., $Tf|W=h$ .
This shows that each function in $C(W)^{+}$ can be extended to a continuous
function on Y. This is absurd, because the function $y$ }$\rightarrow(T1(y))^{-1}$ on $W$

cannot be extended continuously to Y. This proves that Case 1 cannot
occur for Theorem 2.5.)

Now assume that the $h$ satisfies $h\leqq 1$ . Then clearly $0\leqq h_{n}\leqq 1$ for
each $n$ . As in the last paragraph, $f(x)=\lim_{n}T^{-1}(h_{n})(x)$ exists for each $x$ in
$V,$ $f$ is continuous on $V$ and $0\leqq f\leqq T^{-1}(1)|V$. Since $f\in C^{*}(V)^{+}$ and since
either $V=X$ or $V$ is $C^{*}$ -embedded in $X$, there exists an $\overline{f}$ in $C^{*}(X)^{+}$ such
that $\overline{f}|V=f$. (For the case of Theorem 2.5, we only know that $f\in C(V)^{+}$ .
However, since $f\leqq T^{-1}(1)$ on $V$, there exists an $\overline{f}$ in $C(X)^{+}$ such that
$\overline{f}|V=f$ by Lemma 2.4.) Then, as in the last paragraph, we can check
that $T\overline{f}$ extends $h$ . Hence $W$ is $C^{*}$-embedded in Y.

COROLLARY 2.6. Let $X$ be a Tychonoff space. Then the following
conditions are equivalent:

(1) $X$ has property $(S)$ .
(2) There is no proper, dense, open $F_{\sigma}$-subset of $X$ which is $C^{*}-$

embedded.
(3) Each lattice isomorphism: $C(X)^{+}\rightarrow C(X)^{+}$ is strict.
(4) Each lattice isomorphism: $C^{*}(X)^{+}\rightarrow C^{*}(X)^{+}$ is strict.

PROOF. The implications (1) $\Rightarrow(3)$ and (1) $\Rightarrow(4)$ follow from Theorem
2.5. The implication (2) $\Rightarrow(1)$ is obvious.

(1) $\Rightarrow(2)$ : Assume that $U$ is a proper, dense, open $F_{\sigma}$ in $X$ which is
$C^{*}$ -embedded in $X$. Write $U=\cup\{F_{n}:n\in N\}$ , where eaeh $F$, is a closed
subset of $X$. Let $x_{0}\in X\sim U$, and, for each $n$ , let $f_{n}$ be a continuous
function: $X\rightarrow[0,1]$ such that $f_{n}(x_{0})=0$ and $f_{n}|F_{n}\equiv 1$ . Let $f=\sum\{2^{-n}f_{n}$ :
$n\in N\}$ ; then $f$ is continuous and $\emptyset\neq Z(f)\subset X\sim U$. Therefore the cozero-
set $X\sim Z(f)$ is dense, proper and is $C^{*}$ -embedded in $X$. Thus the negation
of (2) implies the negation of (1), i.e., (1) $\Rightarrow(2)$ .

Finally assume that $X$ does not have property $(S)$ . Then there is
a $\phi$ in $C(X)^{+}$ such that $U=\{x:\phi(x)>0\}$ is a dense proper subset of $X$ which
is $C^{*}$ -embedded in $X$. We define a map $T_{0}:C(U)^{+}\rightarrow C(U)^{+}$ as in the proof
of Theorem 1.5:

$T_{0}(g)(x)=\left\{\begin{array}{l}g(x)g(x)\geqq 1\\(geC(U)^{+}, xeU)\\(g(x))^{\phi(x)}g(x)\leqq 1\end{array}\right.$
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The inverse $T_{0}^{-1}$ is given by a similar formula:

$T_{0}^{-1}(g)(x)=\left\{\begin{array}{l}g(x)g(x)\geqq 1\\(geC(U)^{+}, xeU)\\(g(x))^{1/\phi(x)}g(x)\leqq 1\end{array}\right.$

Therefore $T_{0}$ is a lattice isomorphism and the restriction of $T_{0}$ to $C^{*}(U)^{-}$

is a lattice isomorphism: $C^{*}(U)^{+}\rightarrow C^{*}(U)^{+}$ . We note that $T_{0}(g)\leqq g$ ]

and $T_{0}^{-1}(g)\leqq g$ Vl for each $g$ in $C(U)^{+}$ . Now let $f\in C(X)^{+}$ . Then $ T_{0}(f|U)\leqq$

fV1 and $T_{0}^{-1}(f|U)\leqq f1$ on $U$. Hence, by Lemma 2.4, $T_{0}(f|U)$ anc
$T_{0}^{-1}(f|U)$ extend continuously to $X$. Let $T(f)$ and $P(f)$ denote tht
extensions respectively. Then clearly $T\tilde{T}=id$ and $\tilde{T}T=id$ . Since botf
$T$ and $\tilde{T}$ preserve the partial ordering of $C(X)^{+},$ $T$ is a lattice iso
morphism. Furthermore, $T$ induces a lattice isomorphism $C^{*}(X)^{+}-$

$C^{*}(X)^{+}$ . From the definition of $T$, it is clear that $T(1/2)(x)=(1/2)^{\phi(x)}an\{$

$T(1)=1$ . Since $Z(\phi)\neq\emptyset,$ $T(1/2)<T(1)$ does not hold, and therefore, $T$ if
not strict. Hence both (3) and (4) fail. This proves that (3) $\Rightarrow(1)$ and
(4) $\Rightarrow(1)$ .

COROLLARY 2.7. Let $X$ be a $\mathcal{I}^{\prime}ychonoff$ space. Then the $ followin_{u}\iota$

two conditions are equivalent:
(1) For each Tychonoff space $Y$, if $T$ is a lattice isomorphism

$C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}$ , then $T$ is necessarily strict.
(2) The space $X$ is pseudo-compact and has property $(S)$ .
PROOF. The implication (2) $\Rightarrow(1)$ follows from Theorem 2.5. Suppost

that $X$ does not satisfy (2). Then either $X$ is non-pseudo-compact or il
fails to have property $(S)$ . In the latter case, there is a non-strict lattic
isomorphism $C^{*}(X)^{+}\rightarrow C^{*}(X)^{+}$ by Corollary 2.6. So assume that $X$ is no\dagger

pseudo-compact. Then there is an element $f$ of $C^{*}(X)^{+}$ such that $f>($

and $inf\{f(x):x\in X\}=0$ . The natural map: $C^{*}(X)^{+}\rightarrow C^{*}(\beta X)^{+}$ is obvious13
a lattice isomorphism, but it is not strict because the extension $\overline{f}$ of $f$

fails to satisfy $\overline{f}>0$ . In either case, therefore, $X$ does not satisfy (1)

The proofs of the following two corollaries are similar to the one
above.

COROLLARY 2.8. Let $X$ be a Tychonoff space. Then the followinl
two conditions are equivalent:

(1) For each Tychonoff space $Y$, if $T$ is a lattice isomorphism
$C(X)^{+}\rightarrow C(Y)^{+}$ , then $T$ is necessarily strict.

(2) The space $X$ has property $(S)$ .
COROLLARY 2.9. Let $Y$ be a Tychonoff space. Then the followin4

conditions are equivalent:
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(1) For each Tychonoff space $X$, if $T$ is a lattice isomorphism:
$C(X)^{+}\rightarrow C(Y)^{+}$ , then $T$ is necessarily strict.

(2) For each Tychonoff space $X$, if $T$ is a lattice isomorphism:
$C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}$ , then $T$ is necessarily strict.

(3) Then space $Y$ has property $(S)$ .
To conclude this section, we discuss briefly some lattices of continuous

functions other than those of non-negative functions. For a topological
space $X$, let $C(X)$ (resp. $C^{*}(X)$ ) be the lattice of all continuous (resp.

bounded continuous) real-valued functions on $X$, and let $C(X)^{++}=$

$\{f:f\in C(X)^{+}, f>0\}$ and $C^{*}(X)^{++}=\{f:f\in C^{*}(X)^{+}, f>0\}$ . The notions of
lattice isomorphisms and strict lattice isomorphisms can easily be extended
for these new lattices. The following theorem, which was communicated
to us by Professor Sch\"affer, makes it clear that we have not lost gen-
erality by considering exclusively the lattices of non-negative functions.

THEOREM 2.10. For topological spaces $X$ and $Y$, the following
statements are equivalent:

(1) Each lattice isomorphism: $C(X)\rightarrow C(Y)$ is strict.
(2) Each lattice isomorphism: $C(X)^{+}\rightarrow C(Y)^{+}$ is strict.
(3) Each lattice isomorphism: $C(X)^{++}\rightarrow C(Y)^{++}$ is strict.
Also the following statements are equivalent:
(1) Each lattice isomorphism: $C^{*}(X)\rightarrow C^{*}(Y)$ is strict.
(2) Each lattice isomorphism: $C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}$ is strict.
(3) Each lattice isomorphism: $C^{*}(X)^{++}\rightarrow C^{*}(Y)^{++}$ is strict.

PROOF. A continuous order isomorphism of $(-\infty, \infty)$ and $(0, \infty)(e.g$ .
$x\rightarrow e^{x})$ induces an order isomorphism of $C(X)$ and $C(X)^{++}$ which preserves
the strict ordering $<$ . Therefore (1) and (3) are equivalent. Assume (1)

and let $T:C(X)^{+}\rightarrow C(Y)^{+}$ be a lattice isomorphism. Extend $T$ to $C(X)$

by the formula: $\tilde{T}(f)=T(f^{+})-T(f^{-})(f\in C(X))$ , where $f^{+}=f$ VO and $f^{-}=$

$-(f\wedge O)$ . It is easy to see that $\tilde{T}$ is order preserving. Since $ T(f^{+})\wedge$

$T(f^{-})=T(f^{+}\wedge f^{-})=0,\tilde{T}(f)^{+}=T(f^{+})$ and $\tilde{T}(f)^{-}=T(f^{-})$ . If we denote by
$\tilde{T}^{-1}$ a similar extension of $T^{-1}$ to $C(Y)$ , then $\tilde{T}^{-1}\tilde{T}(f)=T^{-1}(\tilde{T}(f)^{+})-$

$T^{-1}(\tilde{T}(f)^{-})=T^{-1}(T(f^{+}))-T^{-1}(T(f^{-}))=f^{+}-f^{-}=f$. Hence $\tilde{T}^{-1}\tilde{T}=id$ , and simi-
larly $\tilde{T}\tilde{T}^{-1}=id$ . Hence $\tilde{T}$ is a lattice isomorphism, and it is strict by the
assumption. Therefore $T$ is strict. Finally assume (2), and let $ T:C(X)\rightarrow$

$C(Y)$ be a .lattice isomorphism. If $f\in C(X)$ , then $h$ }$\rightarrow T(f+h)-T(f)$ is
a lattice isomorphism: $C(X)^{+}\rightarrow C(Y)^{+}$ . Hence $T(f+h)>T(f)$ for each
$h$ such that $h>0$ . Therefore $T$ is strict. The proof of the $*$ -version is
identical.
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\S 3. The isomorphism $\sigma$.
In Section 2, the isomorphism $\sigma$ of Boolean algebras of regular $opel$

sets was introduced as a substitute for the associated map $p$ , whicl
played an important r\^ole for the compact case. For the purpose $0$ :
proving the main Theorem 2.5, it was not necessary to delve into tht
nature of $\sigma$ . In the present section we shall examine the map $\sigma mor\{$

closely. For the moment, let $X$ and $Y$ be compact Hausdorff spaces $ane$

let $T:C(X)^{+}\rightarrow C(Y)^{+}$ be a lattice isomorphism. Then the connectiol
between the associated map $\rho:Y\rightarrow X$ (Lemma 1.1) and $\sigma:\mathscr{G}(X)\rightarrow \mathscr{G}(Y$

that corresponds to $T$ (Theorem 2.1) can easily be described: If $U\in \mathscr{G}(X$

and $f\in I_{U}$ , then $ U\cap suppf=\emptyset$ . Hence, if $y\in\rho^{-1}[U]$ , then $\rho(y)\not\in supp$ ]
and, hence, $Tf(y)=0$ by the definition of the associated map. In othe]
words, $T[I_{U}]\subset I_{\rho^{-1}[U]}$ . Since $p^{-1}$ is associated with $T^{-1}$ , we also havt
$T^{-1}[I_{\rho^{-1}[U]}]\subset I_{U}$ . It follows that $T[I_{\sigma}]=I_{\rho^{-1}[U]},$ $i.e.,\sigma(U)=\rho^{-1}[U]$ . One of
the results of this section is that the map $\sigma$ can be described in terms of $g$

map $X\rightarrow\beta Y$ in case $X$ and $Y$ are only assumed to be Tychonoff spaces
Throughout the section, unless otherwise stated, $\sigma:\mathscr{G}(X)\rightarrow \mathscr{G}(Y)$ is tht
isomorphism of Boolean algebras that corresponds to a lattice isomorphism
$T:C(X)^{+}\rightarrow C(Y)^{+}$ or $T:C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}$ , where $X$ and $Y$ are Tychonofl
spaces.

Two subsets $A$ and $B$ of a topological space are said to be completely
separated in the space if there is a continuous function $f$ on the space
into $[0,1]$ such that $f|A\equiv 0$ and $f|B\equiv 1$ . The following simple lemma
is quite useful throughout this section.

LEMMA 3.1. Regular open subsets $U$ and $V$ of $X$ are completely sepa $\cdot$

rated in $X$ if and only if $\sigma(U)$ and $\sigma(V)$ are completely separated in Y.
PROOF. Suppose that $U$ and $V$ are completely separated. Then there

is a continuous function $f:X\rightarrow[0,1]$ such that $f|U\equiv 0$ and $f|V\equiv 1$ . Let
$g=f\cdot T^{-1}1$ ; then $g|U\equiv 0$ and $g|V=T^{-1}1|V$. Hence by Lemma 2.3, $ Tg|\sigma(U)\equiv$

$0$ and $Tg|\sigma(V)\equiv 1$ . Clearly this implies that $\sigma(U)$ and $\sigma(V)$ are completely
separated. Since $\sigma^{-1}$ corresponds to the lattice isomorphism $T^{-1}$ , the
converse follows from what is already proved.

Let $X$ be a dense subspace of a space $Z$ . Then there is a natural
isomorphism $\alpha:\mathscr{G}(Z)\rightarrow \mathscr{B}(X)$ . In fact $\alpha$ and $\alpha^{-1}$ are given by

$\alpha(U)=U\cap X$ $(U\in \mathscr{G}(Z))$

$\alpha^{-1}(V)=int_{Z}cl_{Z}V$ (V $e\mathscr{B}(X)$).

Here $cl_{Z}A$ and $int_{Z}$ $A$ denote respectively the closure of $A$ in $Z$ and the
interior of $A$ in $Z$ .
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LEMMA 3.2. For each $x$ in $X$, the intersection $\cap\{cl_{\beta Y}\sigma(U):x\in U\in$

$\mathscr{G}(X)\}$ is a singleton in $\beta$ Y.

PROOF. Let $A=\cap\{cl_{\beta Y}\sigma(U):x\in U\in \mathscr{B}(X)\}$ . By the compactness of
$\beta Y$, the set $A$ is non-void. Suppose that $y_{1}\in A,$ $y_{2}\in A$ , and $y_{1}\neq y_{2}$ . Then
there are open neighborhoods $U_{1}$ and $U_{2}$ of $y_{1}$ and $y_{2}$ respectively such
that $U_{i}\in \mathscr{G}(\beta Y)(i=1,2)$ and $U_{1}$ and $U_{2}$ are completely separated. By the
above remark, there are $V_{1}$ and $V_{2}$ in $\mathscr{B}(X)$ such that $\sigma(V_{1})=U_{1}\cap Y$ and
$\sigma(V_{2})=U_{2}\cap Y$. By Lemma 3.1, $V_{1}$ and $V_{2}$ are completely separated. In
particular $ V_{1}^{-}\cap V_{2}^{-}=\emptyset$ . Hence either $x\not\in V_{1}^{-}$ or $x\not\in V_{2}^{-}$ . We may, therefore,
assume that $x\not\in V_{1}^{-}$ , i.e., $x\in V_{1}^{\prime}$ . Hence $y_{1}\in A\subset cl_{\beta Y}\sigma(V_{1}^{\prime})=cl_{\beta Y}\sigma(V_{1}^{\prime})=$

$cl_{\beta Y}(U_{1}^{\prime}\cap Y)=cl_{\beta Y}U_{1}^{\prime}=\beta Y\sim U_{1}$ . This contradicts the fact that $y_{1}\in U_{1}$ .
Therefore $A$ is a singleton.

For each $x$ in $X$, let $\tau(x)$ denote the unique element in $\cap\{cl_{\beta Y}\sigma(U)$ :
$x\in U\in \mathscr{G}(X)\}$ . We say that the map $\tau:X\rightarrow\beta Y$ is induced by the lattice
isomorphism $T:C(X)^{+}\rightarrow C(Y)^{+}$ or $C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}$ . The next theorem
summarizes the properties of the map $\tau$ .

THEOREM 3.3. Let $\tau:X\rightarrow\beta Y$ be as above. Then:
(i) The map $\tau$ is continuous and one-to-one;
(ii) For each regular open subset $U$ of $X,$ $cl_{\beta Y}\sigma(U)=cl_{\beta Y}\tau[U]$ .

Moreover, $\tau$ is the unique continuous mapping: $X\rightarrow\beta Y$ that satisfies
this relation.

(iii) For each regular open subset $U$ of $X$,

$\sigma(U)=(int_{\beta Y}cl_{\beta Y}\tau[U])\cap Y$ .
PROOF. (i) Let $x\in X$, and let $V$ be an open neighborhood of $\tau(x)$

in $\beta$ Y. Then by the compactness of $\beta Y$, there exists a regular open
neighborhood $U$ of $x$ such that $cl_{\beta Y}\sigma(U)\subset V$. Then $\tau[U]\subset V$, and conse-
quently $\tau$ is continuous. Next suppose that $x_{1}$ and $x_{2}$ are two distinct
points of $X$. Then there are completely separated regular open neigh-
borhoods $U_{1}$ and $U_{2}$ of $x_{1}$ and $x_{2}$ respectively. Then by Lemma 3.1, $\sigma(U_{1})$

and $\sigma(U_{2})$ are completely separated in $Y$ and, hence, in $\beta$ Y. Therefore
$(cl_{\beta Y}\sigma(U_{1}))\cap(cl_{\rho_{Y}}\sigma(U_{2}))=\emptyset$ , and this implies that $\tau(x_{1})\neq\tau(x_{2})$ .

(ii) Let $U\in \mathscr{B}(X)$ . From the definition of $\tau,$ $\tau[U]\subset cl_{\beta Y}\sigma(U)$ and,
therefore, $cl_{\beta Y}\tau[U]\subset cl_{\beta Y}\sigma(U)$ . Suppose now that $y\in\sigma(U)$ and $V$ is a regu-
lar open neighborhood of $y$ in $\beta$ Y. Then there is a member $W$ of $\mathscr{G}(X)$

such that $\sigma(W)=V\cap Y$. Since $\sigma(U\cap W)=\sigma(U)\cap\sigma(W)\neq\emptyset,$ $ U\cap W\neq\emptyset$ .
Let $x\in U\cap W$; then $\tau(x)\in cl_{\beta Y}(\sigma(U)\cap\sigma(W))\subset cl_{\beta Y}\sigma(W)\subset cl_{\beta Y}V$. Hence
$\tau[U]\cap cl_{\beta Y}V\neq\emptyset$ , and therefore $y\in cl_{\beta Y}\tau[U]$ . This proves that $\sigma(U)\subset$

$cl_{\beta Y}\tau[U]$ . The second statement of (ii) is obvious.
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(iii) This follows from (ii) and the formula: $\sigma(U)=Y\cap int_{\beta Y}cl_{\beta Y}\sigma(U$

(cf. the remark preceding Lemma 3.2).

EXAMPLE 3.5.
$(a)$ Let $\phi;Y\rightarrow X$ be a homeomorphism. Then $\phi$ induces the lattic

isomorphisms $T_{i}:C(X)^{+}\rightarrow C(Y)^{+}$ and $T,:C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}$ , where $T_{\phi}(f)=$

$ f\circ\phi$ ($f\in C(X)^{+}$ or $f\in C^{*}(X)^{+}$). The corresponding $\sigma$ is given by $\sigma(U)--$

$\phi^{-1}[U](U\in.\mathscr{G}(X))$ . Hence the map $\tau$ induced by $T$, is $i\phi^{-1}$ , where $ i:Y\rightarrow\beta$ ]

is the inclusion map.
$(b)$ Suppose that $Y\subset X\subset\beta$ Y. Then the restriction defines a lattic

isomorphism $T:C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}$ . It can be verified easily that the corre
sponding $\sigma:\mathscr{G}(X)\rightarrow \mathscr{G}(Y)$ is given by $\sigma(U)=U\cap Y(U\in \mathscr{G}(X))$ and tha
the induced map $\tau$ is simply the inclusion: $ X\rightarrow\beta$ Y. The map $Y\rightarrow\beta_{1}\urcorner$

induced by $T^{-1}:C^{*}(Y)^{+}\rightarrow C^{*}(X^{+})$ is the composite of two inclusion maps
$Y\rightarrow X$ and $X\rightarrow\beta X$.

So far, the results are valid for lattice isomorphisms $T:C^{*}(X)^{+}-$

$C^{*}(Y)^{+}$ as well as for lattice isomorphisms $T:C(X)^{+}\rightarrow C(Y)^{+}$ . The nex
theorem, however, gives a more precise information on the ranges $0$

only those maps $\tau$ that are induced by lattice isomorphisms $C(X)^{+}\rightarrow C(Y)^{+}$

The crucial difference lies in the following lemma.

LEMMA 3.6. Let $T:C(X)^{+}\rightarrow C(Y)^{+}$ be a lattice isomorphism, and le
$\sigma:\mathscr{G}(X)\rightarrow \mathscr{G}(Y)$ be the Boolean algebra isomorphism that correspond $($

to T. If $\{U_{n}:n\in N\}$ is a sequence in $\ovalbox{\tt\small REJECT}(X)$ such that $\cap\{U_{n}:n\in N\}\neq\emptyset$

then $\cap\{\sigma(U_{n}):n\in N\}\neq\emptyset$ .
PROOF. Without loss of generality, we can assume that $U_{n}^{\prime}$ and $U_{n+}$

are completely separated for each $n$ . Then by Lemma 3.1, $\sigma(U_{n})^{\prime}$ ant
$a(U_{+1})$ are completely separated. In particular $\sigma(U_{*+1})^{-}\subset\sigma(U_{n})$ . $Assum\langle$

that $\cap\{\sigma(U_{n}):n\in N\}=\cap\{\sigma(U_{n})^{-}:neN\}=\emptyset$ . For each $n$ , let $\psi_{n}$ be $i$

continuous function on $Y$ into $[0,1]$ such that $\psi_{n}\equiv 0$ on $a(U.)$ and $\psi,\equiv$ .
on $\sigma(U_{n+1})$ . Then supp $\psi_{n}=\{y:\psi_{n}(y)>0\}^{-}\subset\sigma(U,.)^{-}$ , and the family $\{supp\psi$.
$n\in N\}$ is locally finite. Therefore the function $\phi=\sum\{\psi_{n}\cdot T(n):n\in N$

is well-defined and $\phi\in C^{+}(Y)$ . Since $\phi\geqq T(n)$ on $\sigma(U_{n+1}),$ $T^{-1}\phi\geqq n$ on $U_{n+}$

by Lemma 2.3. Therefore $\cap\{U_{n}:n\in N\}=\emptyset$ , contrary to the hypothesis
Hence $\cap\{\sigma(U.):neN\}\neq\emptyset$ .

Let $X$ be a Tychonoff space. Then each $f$ in $C(X)^{+}$ can be extende $($

to a continuous function $\overline{f}:\beta X\rightarrow[0, \infty]$ , where $[0, \infty]$ is given the order
topology under which it is compact Hausdorff. Let $R_{f}=\{x:\overline{f}(x)<\infty\}$

and let $uX=\cap\{R_{f}:f\in C(X)^{+}\}$ . Then $X\subset uX\subset\beta X$, and $uX$ is called $thl$

real-compactification of $X$. If $X=uX$, then $X$ is called real-compact
The space $uX$ itself is real-compact, i.e., $uuX=uX$. A Tychonoff spact
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which is Lindeof is real-compact, and a topological space is real-compact

if and only if it is homeomorphic to a closed subspace of the product
of a family of copies of the real line (see, for instance, [4, p. 272]).

THEOREM 3.7. Let $T:C(X)^{+}\rightarrow C(Y)^{+}$ be a lattice isomorphism, and
let $\tau;X\rightarrow\beta Y$ be the map induced by T. Then the image of $\tau$ is contained
in $uY$.

PROOF. Suppose that, for some $x_{0}\in X,$ $y_{0}=\tau(x_{0})\not\in u$ Y. Then there
exists a continuous map $f:\beta Y\rightarrow[0, \infty]$ such that $ f(y_{0})=\infty$ and $ f(y)<\infty$

for each $y$ in Y. For each positive integer $n$ , let $V_{n}=\{y:f(y)\geqq n\}$ . Then
clearly $(\cap\{V_{n}:n\in N\})\cap Y=\emptyset$ . Since $V_{n}$ is a neighborhood of $y_{0}=\tau(x_{0})$ ,
there exists a regular open neighborhood $U_{n}$ of $x_{0}$ such that $\tau[U_{n}]\subset V_{n}$ .
Then by Theorem 2.3, $\sigma(U_{n})\subset cl_{\beta Y}\tau[U,]\subset V_{n}$ . Consequently $\cap\{\sigma(U_{n})$ :
$ n\in N\}\subset(\cap\{V_{\iota}:n\in N\})\cap Y=\emptyset$ , whereas $x_{0}\in\cap\{U_{n}:n\in N\}$ . This contra-
dicts Lemma 3.6.

REMARK 3.8.
$(a)$ Both Lemma 3.6 and Theorem 3.7 are false for lattice isomor-

phisms $C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}$ . Let $X$ be a Tychonoff space which is not
pseudo-compact. Then $uX\neq\beta X$. The restriction map $T:C^{*}(\beta X)^{+}\rightarrow C^{*}(X)^{+}$

is a lattice isomorphism, and the induced map $\tau$ is the identity map:
$\beta X\rightarrow\beta X$ (Example $3.5(b)$ ). Therefore Theorem 3.7 and, hence, Lemma
3.6, are no longer valid for lattice isomorphisms $C^{*}(X)^{+}\rightarrow C^{*}(Y)^{+}$ .

$(b)$ Let $T:C(X)^{+}\rightarrow C(Y)^{+}$ be a lattice isomorphism. Then, because
of Theorem 3.7, we may regard the induced map as a map $X\rightarrow uY$ rather
than a map $ X\rightarrow\beta$ Y. Now assume that both $X$ and $Y$ are real-compact.

Then the lattice isomorphisms $T$ and $T^{-1}$ induce $\tau:X\rightarrow Y$ and $\overline{\tau}:Y\rightarrow X$

respectively, and, by using Theorem 3.3(ii), it is straight forward to
prove that $\tau\overline{\tau}=id$ and $\overline{\tau}\tau=id$ . In particular, $X$ and $Y$ are homeomorphic.

This is Shirota’s theorem [10], which generalizes a Kaplansky’s theorem
for compact $X$ and $Y[7]$ .

The next theorem explains why we need not consider lattice isomor-
phisms of the type $C^{*}(X)^{+}\rightarrow C(Y)^{+}$ .

THEOREM 3.9. Let $X$ and $Y$ be Tychonoff spaces. If $C^{*}(X)^{+}$ and
$C(Y)^{+}$ are lattice isomorphic, then $Y$ is pseudo-compact, and consequently
$C(Y)^{+}=C^{*}(Y)^{+}$ .

PROOF. If $C^{*}(X)^{+}$ and $C(Y)^{+}$ are lattice isomorphic, then $C(\beta X)^{+}$

and $C(uY)^{+}$ are lattice isomorphic. Since both $\beta X$ and $uY$ are real-
compact, they are homeomorphic by Remark $3.8(b)$ . Hence $uY$ is compact.
This implies that $uY=\beta Y$ or, equivalently, that $Y$ is pseudo-compact.
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\S 4. Spaces with property $(S)$ .
In this section we discuss a number of conditions for a Tychono

space to have property $(S)$ . We also consider the permanence of propert
$(S)$ . The most notable fact is that property $(S)$ is preserved $und\epsilon$

arbitrary products. In contrast, neither a subspace nor a continuou
image of a space with property $(S)$ has the property in general. Fina113there is a wide class of spaces $Y$ such that $X\times Y$ has property $(S)$ fo
an arbitrary Tychonoff space $X$.

LEMMA 4.1. Let $U$ be a cozero-set in a Tychonoff space X. If $the7$

is a sequence in $U$ that converges to a point outside $U$, then $U$ is no
$C^{*}$ -embedded in $X$.

PROOF. Let $\phi$ be a continuous function on $X$ into $[0,1]$ such tha
$U=\{x;\phi(x)>0\}$ , and let $\{x_{*}:n\in N\}$ be a sequence in $U$ which converge
to a point $x_{0}$ in $X\sim U$. We may assume that $\phi(x_{i})\neq\phi(x_{j})$ if $i\neq j$ . Le
$t.=\phi(x.)$ , and let $g$ be a bounded continuous real-valued function on $(0,1$

such that $g(t_{n})=(-1)^{n}$ . Then the function $ g\circ\phi$ cannot be $continuousl\urcorner$

extended to $X$. Hence $U$ is not $C^{*}$-embedded in $X$.
It follows immediately from the lemma that each first countabl $($

Tychonoff space has property $(S)$ . We shall see that this fact can $b_{t}$

considerably generalized. Let $A$ be a subset of the product $X\times Y$. Then
for each $x$ in $X$, the section $A_{x}$ of $A$ at $x$ is the set $\{y:(x, y)\in A\}$ .

LEMMA 4.2. Let $U$ be a cozero-subset of the product $X\times Y$ of Tychono.$t$

spaces $X$ and Y. If $U$ is $C^{*}$ -embedded in $X\times Y$, then for each $x$ in $X$

the section $U_{x}$ is $C^{*}$-embedded in Y. If, furthermore, $U$ is dense $i_{7_{1}}$

$X\times Y$, then the closure $U_{x}^{-}$ is open in Y.

PROOF. Let $\phi$ be a continuous function on $X\times Y$ into $[0,1]$ such that
$U=\{(x, y);\phi(x, y)>0\}$ . Fix a point $x_{0}$ in $X$, and for each $(x, y)$ in $U$, lel
$\psi(x, y)=|(\phi(x_{0}, y)/\phi(x, y))|\wedge 1$ . Then $\psi$ is a continuous function on $U$ such
that $\psi(x_{0}, y)=1$ whenever $y\in U_{x_{0}}$ and such that $\psi\equiv 0$ on $U\cap[X\times(Y\sim U_{x})]$ .
Let $f$ be a bounded real-valued continuous function on $U_{x_{0}}$ . Then $defin\epsilon 0$

a function $\tilde{f}$ on $U$ as follows:

$\tilde{f}(x, y)=\left\{\begin{array}{ll}\psi(x, y)f(y) & if (x, y)eU\cap(X\times U_{x_{0}}),\\0 & if (x, y)eU\cap[X\times(Y\sim U_{x_{0}})].\end{array}\right.$

Then $\tilde{f}$ is bounded and continuous on $U$, and $\tilde{f}(x_{0}, y)=f(y)$ for each $y$

in $U_{x_{0}}$ . Since $U$ is $C^{*}$-embedded in $X\times Y$, $\tilde{f}$ can be extended to a con-
tinuous function $\overline{f}$ on $X\times Y$, and the function $y->\overline{f}(x_{0}, y)$ is a continuous
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extension of $f$ to Y. Thus $U_{x_{0}}$ is $C^{*}$-embedded in Y.
Assume next that $U$ is dense, and let $\overline{\psi}$ be a continuous extension

of $\psi$ to $X\times Y$. Since $U\cap[X\times(Y\sim U_{x_{0}}^{-})]$ is dense in $x\times(Y\sim U_{x_{0}}^{-})$ and
since $\psi\equiv 0$ on $U\cap[X\times(Y\sim U_{x_{0}})],$ $\psi(x, y)=0$ whenever $y\not\in U_{x_{0}}^{-}$ . By the
continuity of $\overline{\psi},\overline{\psi}(x_{0}, y)=1$ for each $y$ in $U_{x_{0}}^{-}$ . It follows that $y->\overline{\psi}(x_{0}, y)$

is the characteristic function of the set $U_{x_{0}}^{-}$ . Hence $U_{x_{0}}^{-}$ is open.

THEOREM 4.3. Let $\{X_{\gamma};\gamma\in\Gamma\}$ be a family of Tychonoff spaces with
$prope\gamma ty(S)$ . Then the product $\times\{X_{\gamma};\gamma\in\Gamma\}$ has $p\gamma operty(S)$ .

PROOF. Let $X=\times\{X_{\gamma};\gamma\in\Gamma\}$ , and assume that $X$ does not have
property $(S)$ . Then there is a dense proper cozero-subset $U$ of $X$ which
is $C^{*}$ -embedded. Since $U$ is an $F_{\sigma},$ $U=\cup\{C_{n}:n\in N\}$ , where $\{C_{n}:n\in N\}$

is a sequence of closed subsets of $X$. Fix a point $v$ in $X\sim U$. For each
$n$ , there exists a closed neighborhood $F_{n}$ of $v$ which is disjoint from $C_{n}$ .
We may assume that $F_{n}$ can be expressed as $F_{n}=\times\{F_{n},\gamma;\gamma\in\Gamma\}$ , where
$F_{n},\gamma=X_{\gamma}$ for all but a finite number of $\gamma’ s$ and each $F_{n^{\gamma}}$, is a zero-set in
$X_{\gamma}$ . Then $F_{n}$ is a zero-set in $X$. Let $F=\cap\{F_{n}:n\in N\}$ . Then $ F\cap U=\emptyset$ ,
$v\in F$, and $F=\times\{F_{\gamma}:\gamma\in\Gamma\}$ where $F_{\gamma}=\cap\{F_{n^{\gamma}},:n\in N\}$ . Obviously $F$ and
each $F_{\gamma}$ are zero-sets in $X$ and $X_{\gamma}$ respectively. Since $U\subset X\sim F\subset X$,
$X\sim F$ is $C^{*}$ -embedded in $X$. Also $X\sim F$ is a dense proper cozero-set in
X. Hence we may and do assume that $U=X\sim F$ . Fix a $\gamma_{0}$ in $\Gamma$ . Then
$X_{\gamma_{0}}\sim F_{\gamma_{0}}$ is a certain section of $U$, where we regard $X$ as $(X\{X_{\gamma}:\gamma\neq\gamma_{0}\})\times$

$X_{\gamma_{0}}$ . Hence by Lemma 4.2, $X_{\gamma_{0}}\sim F_{\gamma_{0}}$ is $C^{*}$ -embedded in $X_{\gamma_{0}}$ . Since $X_{\gamma_{0}}$

has property $(S)$ , the cozero-set $X_{\gamma_{0}}\sim F_{\gamma_{0}}$ cannot be dense in $X_{\gamma_{0}}$ . Hence
the interior of $F_{\gamma_{0}}$ in $X_{\gamma_{0}}$ is non-void for each $\gamma_{0}$ in $\Gamma$ .

Now, since $U$ is dense in $X$, the interior of $F$ in $X$ must be empty.
It follows that $\{\gamma;F_{\gamma}\neq X_{\gamma}\}$ cannot be finite. Let $\{\gamma_{n}:n\in N\}$ be a sequence
in $\Gamma$ such that $F_{\gamma_{n}}\neq X_{\gamma_{n}}$ for each $n$ and such that $\gamma_{n}\neq\gamma_{m}$ if $n\neq m$ . For
each $n$ , choose an $a_{n}$ in $X_{\gamma_{n}}\sim F_{r_{n}}$ . Define a sequence $\{x_{n}\}$ in $X$ as follows:

$x_{n}(\gamma)=\left\{\begin{array}{ll}a_{n} & if \gamma=\gamma_{n}\\v(\gamma) & if \gamma\neq\gamma_{n}.\end{array}\right.$

Then $x_{n}\in X\sim F=U$ and the sequence $\{x_{n}\}$ converges to $v$ , which is outside
$U$. In view of Lemma 4.1, the set $U$ cannot be $C^{*}$ -embedded in $X$. This
contradiction establishes the theorem.

A subset $A$ of a topological space $X$ is called sequentially closed if
$A$ contains the limits of each convergent sequence in $A$ . If each sequen-
tially closed subset of $X$ is closed, then $X$ is said to be sequential. A
topological space $X$ is said to be weakly sequential if each sequentially
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closed open subset of $X$ is closed. Equivalently, a topological space 3
is weakly sequential if and only if, whenever $U$ is a non-closed $opel$

subset of $X$, there is a sequence in $U$ that converges to a point outsid $($

$U$. The following theorem is clear from Lemma 4.1 and the definitio]

of property $(S)$ .
THEOREM 4.4. A weakly sequential Tychonoff space has property $(S)$

The proof of the following theorem is straight forward and is omitted

THEOREM 4.5. A quotient of a weakly sequential space is weakly
sequential.

The following theorem in the present generality was observed $b$]

Professor E. Michael. The proof is also due to him.

THEOREM 4.6. Let $\{X_{\gamma};\gamma\in\Gamma\}$ be a family offirst countable topologica
spaces. Then the product $X=\times\{X_{\gamma};\gamma\in\Gamma\}$ has the following property
If $U$ is an open subset of $X$ and if $x\in U^{-}$ , then there is a sequence it
$U$ that converges to $x$ . In particular, $X$ is weakly sequential.

PROOF. Let $\Sigma$ be the subspace of $X$ consisting of all points $y$ sucl
that $\{\gamma;x(\gamma)\neq y(\gamma)\}$ is countable. Then by Noble [9], $\Sigma$ is a Fr\’echet space
i.e., whenever $ A\subset\Sigma$ and $ y\in\overline{A}\cap\Sigma$ , there is a sequence in $A$ that $converge\{$

to $y$ . Since $\Sigma$ is dense in $X,$ $ x\in U^{-}\cap\Sigma=(U\cap\Sigma)^{-}\cap\Sigma$ . Hence there is ‘

sequence in $U$ (in fact, in $ U\cap\Sigma$) which converges to $x$ .
By combining Theorems 4.4, 4.5, and 4.6, we obtain the following

corollary.

COROLLARY 4.7. Let $\{X_{\gamma};\gamma\in\Gamma\}$ be a family offirst countable Tychono.t
spaces. Then the product $X=X\{X_{r}:\gamma e\Gamma\}$ and each quotient space $oj$

$X$ that is Tychonoff has property $(S)$ .
REMARK 4.8.
$(a)$ Professor E. Michael remarked that the conclusions of Theorem

4.6 and Corollary 4.7 are valid when first countable spaces are replacec
by “bi-sequential spaces” or “ W-spaces.” See Michael [8] for the definitior
and the properties of bi-sequential spaces, and see Gruenhage [6] for the
definition and the properties of W-spaces.

$(b)$ It follows from Corollary 4.7 that $[0,1]^{A}$ has property $(S)$ for
an arbitrary index set $A$ . Hence each Tychonoff space can be embedded
in a compact Hausdorff space with property $(S)$ . This shows, in par.
ticular, that property $(S)$ is not hereditary.
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$(c)$ Let $X$ be the product of a family of first countable compact
Hausdorff spaces. Then, by Corollary 4.7, each continuous image of $X$

has property $(S)$ . Suppose that $Y$ is a Tychonoff space such that $\beta Y$ is
a continuous image of $X$. Then, $\beta Y$ has property $(S)$ , and hence $Y$ is
pseudo-compact by Theorem 1.5. This fact generalizes a theorem of
Engelking and Pelczy\’{n}ski [5], who prove this result under the assumption
that $X$ be a Cantor cube, that is, $X=\{0,1\}^{A}$ for some index set $A$ .

The next theorem shows, in part, that for $x\times Y$ to have property
$(S)$ it is not necessary that both spaces $X$ and $Y$ have property $(S)$ .

THEOREM 4.9. Let $Y$ be a Tychonoff space with property $(S)$ . Then
the following conditions are equivalent:

(1) The product $x\times Y$ has property $(S)$ for each Tychonoff space $X$.
(2) The product $(\beta N)\times Y$ has property $(S)$ , where $N$ is the space

of positive integers with the discrete topology.
(3) Each non-void open and closed subset of $Y$ contains a $G_{\delta}$-set

which is not open.

PROOF. The implication (1) $\Rightarrow(2)$ is trivial. Now assume condition
(2). Let $Y_{0}$ be an open and closed subset of Y. Then $(\beta N)\times Y_{0}$ is an
open and closed subset of $(\beta N)\times Y$, and, therefore, it has property $(S)$ .
Hence in order to prove (3), it is sufficient to prove that, if each $G_{\delta}$-set
in $Y$ is open, then $(\beta N)\times Y$ does not have property $(S)$ . In fact, we
show that, if each $G_{\delta}$-set in $Y$ is open, then $N\times Y$ is $c*$ -embedded in
$(\beta N)\times Y$. (Note that $N\times Y$ is a cozero-set in $(\beta N)\times Y.$ ) Let $f$ be a
continuous bounded real-valued function on $N\times Y$. We can extend $f$ to
a real-valued function $\overline{f}$ on $(\beta N)\times Y$ in such a way that, for each fixed
$y$ in $Y$, the function $x-’\overline{f}(x, y)$ on $\beta N$ is the continuous extension of the
function $n\mapsto f(n, y)$ on $N$. We show that $\overline{f}$ is in fact continuous on
$(\beta N)\times Y$. Let $(x_{0}, y_{0})\in(\beta N)\times Y$, and let $\epsilon>0$ . For each $n$ in $N$, let
$U_{n}=\{y:|f(n, y)-f(n, y_{0})|<\epsilon/2\}$ . Then by assumption, $V=\cap\{U_{n}:n(vN\}$ is
an open neighborhood of $y_{0}$ . By the definition of $\overline{f,}|\overline{f}(x, y)-\overline{f}(x, y_{0})|\leqq\epsilon/2$

for all $x$ in $\beta N$ and $y$ in $V$. Let $W=\{x:|\overline{f}(x, y_{0})-\overline{f}(x_{0}, y_{0})|<\epsilon/2\}$ ; then $W$ is
an open neighborhood of $x_{0}$ . If $(x, y)\in W\times V$, then $|\overline{f}(x, y)-\overline{f}(x_{0}, y_{0})|\leqq$

$|\overline{f}(x, y)-\overline{f}(x, y_{0})|+|\overline{f}(x, y_{0})-\overline{f}(x_{0}, y_{0})|<\epsilon/2+\epsilon/2=\epsilon$ . Thus $\overline{f}$ is continuous
on $(\beta N)\times Y$.

Finally assume condition (3), and assume that the product $X\times Y$ does
not have property $(S)$ for some Tychonoff space $X$. Then there is a
proper dense cozero-set $U$ in $X\times Y$ which is $C^{*}$-embedded. As in the
proof of Theorem 4.3, we may assume that $U=X\times Y\sim(A\times B)$ , where $A$

(resp. $B$) is a non-void zero-set in $X$ (resp. Y). The cozero-set $Y\sim B$ in
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$Y$ is a section of $U$ and, therefore, is $C^{*}$-embedded in $Y$ by Lemma 4.2
Since $Y$ has property $(S)$ , this implies that $(Y\sim B)^{-}=Y\sim B^{0}\neq Y$, i.e.
$ B^{0}\neq\emptyset$ . Because $U$ is dense, it then follows that $ A^{0}=\emptyset$ . By Lemmg

4.2, $Y\sim B^{0}$ and, hence, $B^{0}$ are open and closed. Consequently $U\cap(X\times B^{0})=$

$(X\sim A)\times B^{0}$ is $C^{*}$-embedded in $X\times B^{0}$ . By condition (3), there is a sequenct
$\{W,.:n\in N\}$ of open subsets of $B^{0}$ such that $W_{\pi}\supset W_{n+1}$ for each $n$ anc
such that the intersection $C=\cap\{W_{\pi}:n\in N\}$ is not open. Let $y_{0}\in C\sim C^{0}$

and, for each $n$ , let $g$, be a continuous function on $B^{0}$ into $[0,1]$ such
that $g_{*}(y_{0})=1$ and $g_{n}\equiv 0$ on $B^{0}\sim W_{n}$ . Let $g=\Sigma\{2^{-\iota}g_{n}:n\in N\}$ . Then $g$ is $\epsilon$

continuous function on $B^{0}$ such that $0\leqq g\leqq 1,$ $g(y_{0})=1$ and each neighborhooc
of $y_{0}$ contains a point $y$ with $g(y)<1$ . Let $f$ be a continuous non-negativ $\langle$

function on $X$ such that $A=Z(f)$ , and define a continuous function $h$ on
$(X\sim A)\times B^{0}$ by

$h(x, y)=(g(y))^{1/f(x)}(x\in X\sim A, y\in B^{0})$ .
Since $(X\sim A)\times B^{0}$ is $C^{*}$-embedded in $X\times B^{0}$ , there is a continuous extension
$\overline{h}$ of $h$ on $X\times B^{0}$ . Sinoe $h(x, y_{0})=1$ for each $x$ in $X\sim A$ and since $ X\sim\Delta$

is dense in $X,\overline{h}(x_{0}, y_{0})=1$ . On the other hand, an arbitrary neighborhood
of $y_{0}$ contains a point $y$ such that $g(y)<1$ and, therefore, $\overline{h}(x_{0}, y)=0$

This contradicts the continuity of $\overline{h}$ .
EXAMPLES AND REMARKS 4.10.
$(a)$ By Theorem 4.9, the product $X\times[0,1]$ has property $(S)$ for eacl

Tychonoff space $X$. Since $x\times[0,1]\rightarrow X$ is a continuous open map, it
follows that property $(S)$ is not preserved by continuous open maps in
general.

$(b)$ Let $\Omega$ be the first uncountable ordinal number, and let $X$ be th $($

space of all ordinal numbers $\alpha$ such that $ 0\leqq\alpha\leqq\Omega$ with the order topology
Then $X$ has property $(S)$ . For, if not, then there would be a prope]

open dense $F_{\sigma}$-set $U$ in $X$ such that $X=\beta U$. If $\Omega\not\in U$, then the F.-set $[$

cannot be dense in $X$. Hence $\Omega\in U$. This implies that there is an ordina
number $\alpha$ such that $\alpha\not\in U$ and $ 0\leqq\alpha<\Omega$ . Since $\alpha$ has a countable $bas($

of neighborhoods, there is a sequence in $U$ that converges to $\alpha$ . $The\iota$

by Lemma 4.1, $U$ cannot be $C^{*}$-embedded in $X$. Therefore $X$ has propert]
$(S)$ . Let $Y=\{\alpha:0\leqq\alpha<\Omega\}$ , then $ X=\beta$ Y. Therefore the Stone-Cechv com
pactification of a locally compact normal space can have property $(S)$ .

$(c)$ The space $\beta N$, of course, lacks property $(S)$ . However $\beta N\sim J$

has property $(S)$ . For, according to [11, Corollary 3.27], no proper $F_{\sigma}- se$
.

in $\beta N\sim N$ can be dense. Professor Comfort pointed out a generalization
Let $X$ be a locally compact and real-compact Hausdorff space. Then
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$\beta X\sim X$ has property $(S)$ . This follows from [2, Theorem $15.18(b)$ ].
$(d)$ We owe the following remarks to Professor van Douwen: If $Y$

is non-pseudo-compact Tychonoff space, then $\beta Y$ contains a copy of $\beta N$.
(In fact, let $f$ be a continuous function on $Y$ into $[0, \infty]$ such that
$sup\{f(y):y\in Y\}=\infty$ . Then there is a countable subset $A$ of $Y$ such that
$f[A]$ is a closed discrete subset of $[0, \infty$ ). The closure $\overline{A}$ of $A$ in $\beta Y$

is homeomorphic to $\beta N.$ ) Since $\beta N$ contains a non-normal subspace (see
e.g. [4; Example 3.6.19]), $\beta Y$ is not hereditarily normal. Furthemore,
since $|\beta N|=2^{c},$ $|\beta Y|\geqq 2^{c}$ . In view of Theorem 1.5, we can conclude that
a compact Hausdorff space has property $(S)$ if either (i) $X$ is hereditarily
normal, or (ii) $|X|<2^{e}$ . Condition (ii) was also communicated to us by
Professor Comfort.

$(e)$ In a forthcoming paper [3], Professor van Douwen proves the
following theorem: If $\{X_{\gamma};\gamma\in\Gamma\}$ is a family of compact Hausdorff spaces
such that $X_{\gamma}$ is perfect for at least two $\gamma s$ or such that $X_{\gamma}$ has at least
two points for an infinite number of $\gamma s$ , then each subspace $Z$ of
X $\{X_{\gamma};\gamma\in\Gamma\}$ such that $\beta Z=\times\{X_{r};\gamma\in\Gamma\}$ must be pseudo-compact. By
Theorem 1.5, the product space $\times\{X_{r};\gamma\in\Gamma\}$ has property $(S)$ . Thus,
for instance, $\beta R\times\beta R$ has property $(S)$ although $\beta R$ does not have the
property. Here, $R$ denotes the real line.
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