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Introduction.

For a strongly mixing transformation defined on a Lebesgue measure
space, it is quite frequently the case that each point of the space pos-
sesses a neighborhood which can be decomposed into two kinds of fibres
(expansive and contractive) and that each fibre is left fixed by the
strongly mixing transformation. It was Y. G. Sinai who formulated
the concept of transversal fields (transversal fibres) for a transforma-
tion and tried to describe this type of phenomenon precisely. Using this
behavior of transversal fields, Sinai succeeded in giving a useful suf-
ficient condition for a transformation to be a K-automorphism [1].

Subsequently, generalizing the above results of Sinai I. Kubo gave
a useful formulation which could be applied to many concrete situations
[2]. M. Kowada pointed out the importance of considering the pair of
a transformation and its transversal fields, and investigated a number
of properties of such pairs [3], [4].

Most basic examples of transformations possessing transversal fields
are ergodic group automorphisms on an n-dimensional torus and Ber-
noulli shifts. These examples share the following characteristic fea-
tures. First of all, every such transformation is known to be iso-
morphic to a Markov automorphism [5]. Secondly, the metric entropy
for each of these transformations coincides with the topological entropy.
Thirdly, the transversal fields for each of these automorphisms are flows
which are ergodic and have the discrete spectrum.

In this paper, we shall show that ergodic Markov automorphisms
for which the metric entropy coincides with the topological entropy
always possess transversal flows. In §1, we shall define Markov sub-
shifts [6], maximal Markov automorphisms and transversal flows, and
discuss some basic properties. In §2, we shall prove a representation
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theorem which represents a maximal Markov automorphism as a trans-
formation on some subset D of [0, 1)x[0,1). This transformation is a
generalization of the well-known Baker’s transformation and will be
called the generalized Baker’s transformation of Markov type. In §3,
we shall construct transversal flows on the subset D as special flows in
the sense of Ambrose-Kakutani [7]. The base transformations for the
transversal flows constructed above are deseribed in full and are shown
to be an analogue of the well known “adding machine” transformations.
Finally, in §4 we shall show that the transversal flows constructed in
§ 8 are ergodic and have zero entropy if the maximal Markov auto-
morphism is strongly mixing.

ACKNOWLEDGMENT. The author expresses his deep gratitude to
Professors Yuji Ito, M. Kowada, and H. Totoki for their encouragement
and valuable advices extended to him during the course of preparation
of this paper.

S1. Definitions and discussion of basic properties.

In this section we first give the definition of a Markov automorphism
and then discuss several notions associated with it.

Let us denote by Z the set of all integers and by N the set of all
non-negative integers. We shall call the finite ordered set
s={0,1,2, ---,3—1} the state space, and elements of S is called
symbols. We put the discrete topology on the set S and put the
product topology on the product spaces SZ and S*, which are compact
Hausdorff spaces. For each n€Z or n e N, we shall denote by w(n) the
n-th coordinate of an element w e S? or S*.

The two-sided shift operator o on the space S? is defined by the
relation

(cw)n)=w(n+1) for neZ.

The system (SZ% o) will be called the two-sided shift on S. The one-
sided shift (S", o) on S is defined similarly.

An sXs matrix M will be called a symbolic matrix if every entry
m(i, j) of M equals 0 or 1. An n-tuple (a(0), a(l), ---, a(n—1)) of
symbols a(k)e S is said to be admissible with respect to a symbolic
matrix M if m(a(k), a(k+1))=1 holds for k=0,1,2, ---, —2. A two-
sided infinite sequence w=(---, @(—1), ®(0), w(1), ---) € S% is said to be
admissible with respect to a symbolic matrix M if m(w(®n), w(®+1))=1
holds for all n€Z. We shall denote by X, the set of all elements in
S? which are admissible with respect to a fixed symbolic matrix M;



A CONSTRUCTION OF TRANSVERSAL FLOWS 307
namely,
X, ={weS?|m(w(n), on+1))=1 for all neZ}.
It is easy to see that X, is a closed and shift invariant subset of S“.

DEFINITION 1.1. For a symbolic matrix M, we call the subsystem
(X,, 0) of the system (S? o) a Markov subshift corresponding to M.
The matrix M will be called the structure matrix of the Markov sub-
shift (X,, o). ‘

We can similarly consider a subsystem (Xj, o) (called a one-sided
Markov subshift) of the system (S¥ o) by considering the set

={we SV | m(w(i), w(1+1))=1 for all i€ N}.

DEFINITION 1.2. A structure matrix M will be called (i) irreducible
if for each 14, j €S there exists an integer n=1 such that m™(, j)=1
where m™(i, 5) denotes the (i, 7)-th entry of the matrix M",

(ii) aperiodic if there exists an integer n=1 such that m'™(i, H=1
for all ¢, 7€ 8.

For an irreducible structure matrix M, one can construct an invariant
. Markov measure p, for the Markov subshift (X,, o) in the following
manner (cf. the Perron-Frobenius theorem). Namely, corresponding to
the largest positive characteristic value » we choose a positive char-
acteristic column vector x=(,, «,, *--, %,_,) and a positive characteristic
row vector y= "y, ¥, * **, ¥,—,) Normalized in such a way that 332 zy,=1.
If we put p(, 5)=x;m(i, 5)/Ax, and &, =xy,, then P=(p(, j)) becomes a
stochastic matrix and the vector #=(x,, - -+, 7,_,) becomes a row vector
of stationary probabilities. The pair (P, w) induces a o-invariant Markov
measure on X,, which will be denoted by g,.

We shall list some properties of the dynamical system (X,, g, ¢ty)
which reflect properties of the matrix M.

PROPOSITION 1.3.

(i) The dynamical system (XM, g, tty) 18 ergodic if and only if
M is wrreducible.

(ii) The dynamical system (X, 0, tty) 18 strongly mixing of and
only if M is aperiodic.

(iii) If we denote by hu.(X,, 0) the entropy of (X 0) wv,th respect
to a g-invariant measure pt and denote by h.p (Xu, 0) the topological
entropy of (X, o), then

(a) sUD h(Xy, 0)=max bl Xy 0)=huy( X, 0)
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where the supremum and the maximum are taken over all c-imvariant
probability measures on X,.

(b) Pry(Xay 0)=hop(X,, 0)=log N\ ,

where N\ 18 the largeét positive characteristic value of M. And we have
() b Xy 0)<hu,(Xu, 0) ,

Jor any o-invariant probability measure Lt on X, such that p=p,.

Next, we shall give the definition for a transversal flow for an .
automorphism, which is a speclal case of a transversal field in the sense
of Y. G. Sinai.

DEFINITION 1.4. Let T be an automorphisms of a Lebesgue space
(X, &7, 1. If let {Z"}(i=1, 2) be flows (i.e., one- parameter groups of
measure preserving transformation) on (X, &, p). {Z"} (resp. {Z{®}) is
called a contractive (resp. an expansive) transversal flow for the auto-
morphism T with expansive constant A (resp. 1/x) if the following con-
ditions are satisfied:

(i) TZ =ZPT (modO0) holds for every tc R.

(ii) TZ(2’=Z£";’2T (mod 0) holds for every te R.

(iii) R« (X, T)=log .

§2. Representation of Markov subshifts (X, o) and (X,, o).

In the remainder of this paper, we shall assume that the maximal
Markov measure p, for the subshift (X,, 0) is non-atomic and that the
dynamical system (X, o, ¢t,) is ergodic. These assumptions are equi-
valent to the assumptions that the structure matrix M is irreducible
and that the largest positive characteric value A of M be greater than 1.

Let (x,, @, ---, x,_,) be the positive characteristic column vector
corresponding to the largest characteristic value )\ of M satisfying

iox;=1. Let us define a right continuous mapping f, on the unit
interval [0, 1) to itself by

Ju@®) =X\ (t—f?:l xi—wk’i zem(l, @) i)\)+§ x,
i=0 i=0 ATy, i=0
for

k-t i=1 y k—1 1 .
te [g_‘a Tt T 3, EL”[)"V@L) , Szt 3 &k, z))

x,, =0 ka

and for 0<k<s—1,0<j<s—1, where we set 3 x,=0 for convenience.
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Next, we define f by fi(t)=t for all t€[0,1) and define inductively
fi' @) =fu(fu@) for n=0,1,2, ---. Using the f2’s, one can define a
mapping 7, of the unit interval [0, 1) into the product space S" in the
following way:

FOIOE I WIS, TORS PR

-

One can also define a mapping 0, of S¥ into [0, ) by

w(0)~1 ©M)=1 . .
Pu(®)= 3, Xj+Tuo 2. zm(@(0), 7) Ralil
j=0 J=0 )'ww(o)

ww(l)m(w(o)r 0)(1)) X oo
7\'xa)(ﬁ)

s o )

X

ZomMm(@(n—1), ®(n)) ‘”‘”i‘"l zm(@m), ) . ..
ALyin—1) i=0 Ao (n)

If we X}, we see that p,(w) is written as

w(0)—1 w(l)—1

Ou(®)= 3, x,%—%— >, m(w(0), ja;+---

]ZO J=

~ <

—1

1 w(n+1 .
+ >, m(wn), HT;+---

)\an-i-l i=0

and that 0=p,(@w)<1.
The following proposition can be proved easily:

ProrosITION 2.1.

(1) @yofy=0c°my on [0, 1)

(i) pyomy ()=t for te[0, 1)

(iii) fucOu=pxo0o on Yi=m,([0, 1)).

We can introduce a linear order in the space S™ by considering the
lexicographic order; namely, we say w>®’ for w, ' € SV if there exists
an integer n=0 such that w(k)=w’'(k) for 0=k<n and w(n)>w®'(n). For
1=0,1,2, -+-,8—1, we shall denote by w, the largest element of Xj
with respect to the lexicographic order among all the elements of X3
whose 0-th coordinate is i. Namely, w;,=max., {® € X5 | w(0)=1}. It is
easy to see that p,(w,)=3_,x; and that @, does not belong to the set
Y.

PROPOSITION 2.2.
(1) The closure of Yi in the product space S" is Xj.
(2) 7, (t)<my(s) holds if and only if 0=t<s<l.
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(3) If w<o', then Py (@)=py(®") holds for w, ' € X}.

(4) The subset E=X%—Y% of Xf i8 countable and the mapping
Oy 18 1—1 on Y% onto [0,1). Furthermore, for every te p,(E), the
inverse image Px'({t}) consists of exactly two points 7w ,(t) and sup,., 7,(8).

PrROOF. From the definition of =, it follows that for any n>0
there exists a ¢, e[0, 1) such that

wy(t)k)=w(lk) for 0Zk=n.

This implies that there exists a sequence {w,} of elements of Y con-
verging to w. This proves the assertion (1). The assertions (2) and
(8) follow easily from the definition of =, and p,.

We now proceed to prove the assertion (4). We first note that for
any te€|0, 1)

0x' () ={w € X3 | sup w,(s) Sw <inf 7,(s)} .
<t >t

Since the function f3 is right continuous for each n=0, we have
inf,., 7,(8)=my,(t). As is shown from an argument similar to the proof
of the assertion (1), the relations we X; and w<m,(t) imply that
W=sup,, 74(8). Consequently, 0x'(t)={sup,<, 7u(s), Tx()}. ’
Assume now @=sup,; T4(8)<7y(t)=w’'. Then, there exists an >0
such that w(k)=w'(k) for 0k <n, o(n)<®'(n) and w(n)=max {l| m(w(n—1),
l)=1and I<w'(n)}. From the fact that p,(w)=p,(@)=t it follows that

1 o/ (n+1)—1 , . 1 ' (n42)—1 , .
xmm+¥ > m(e'(n), 3)x;+ >, m(w(n+l), Hr;+---

7=0 AP G=o

w(n+1)—1

1 . 1 (n+2)—1 .
= m(w(n), j)xj+7\7 Y, ml@n+l), e+

=0

Therefore,

@’/ (n)—1

Ou(0"@)— 3, x;=0,(0"®) .
>on)

On the other hand,

, w’{n)—-1 w’(n)
Pu(o"®’) € i, 2, %),
F=0 J=0

while

outrrare| 3 a;, Bayl,

=0 =0
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from which it follows that o,(c"®)=33"""'2; and
pﬂ(a"w)=w§ x;. This implies that o*w=w,. e Xi—Yi=FE.
i=o

The set E can be written as
E={we X} |o"w=w; for some n€ N and some t€{0,1, ---, s—1}}

and therefore, it is countable. This proves the assertion (4). We will
state as a remark the following fact established in the proof of asser-
tion (4).

REMARK 1. An element w e X3 belongs to Xj;— Y if and only if
there exists an integer n and a state 7€ S such that c"w=w,.

In order to construct an f,-invariant measure on [0, 1), let us define
a function A(t) on the unit interval [0, 1) as follows:

k-1 k
W)=y, if te[Zx,-, zx>
i=o0 i=

where (Yo, ¥ ***, ¥,—,) is the positive characteristic row vector of M
corresponding to the largest positive characteristic value M\ satisfying
the condition >)iZ{ z,¥;=1.

We define the measure v, on the unit interval [0, 1) by putting

v, (A)= L h(t)dt

for any Borel set A. Let P={p;}iz} be the partition of the unit interval
[0,1) into sets p;=[icix, 3i.2),0=<j=<s—1. Then the relation
v (fut A)=p,(A) is easily verified for every atom of the partition
Vi, fz*(P), neN. Since Vi-, fx*(P) generates the o-algebra of Borel
subsets of [0, 1), we can conclude that v, is an f,-invariant measure,
and hence, that the system ([0, 1), fu, Vx) gives an endomorphism.

THEOREM 2.1. (Representation Theorem) Suppose the maximal
Markov endomorphism (X, 0, tt,y) 18 non-atomic and ergodic, then the
system (X%, o, tty) 18 isomorphic to the system ([0, 1), fu, Vi) under the
isomorphism Py. More precisely the following assertions hold:

(1) MuoOPu=Yy.

(ii) The map p,: Yi—[0,1) is one-to-one and onto, and hence
O X5—]0, 1] 28 an isomorphism (mod 0).

({il) OuoO=Fuop0u on Yi.
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Before we prove a representation theorem for the maximal Markov
automorphism, we need several notations. Let N’ be the set {—1, —2,
-8, -+, —m, ---} and we denote by M*=(m*(i, )01, j<s—1) the
transpose of the structure matrix M. We now define Xy and Xj. as

Xi={(-++, (=), - - - 0(—=2), ®(—1)) € 8" | m(w(—n—1), o(—n))=1
for each positive integer n}
and
Xi={(w(—-1), @(—2), -+, @(—mn), +-+) e S¥ | m*(@w(—n), ®(—n—1))=1
for each positive integer =} .

The space X3 can be identified naturally with Xj.. The shift operator
o on Xj. is defined by

(ow)(—n)=w(—n—1) for every positive integer = .

Let @=(q(4, 7)) be the transition matrix and let n'=(z), x, ---, @._,) be
the stationary probability vector associated with the structure matrix
M?* constructed by the Perron-Frobenius theorem. Then, it is easy to
see that

w,=n; for each 71, 0=<:i<s-1,
and ,
ati, )= p(j, i) =L )
T, AY;

for each pair (4, 7),0=1, 7<s—1. Here, (Y, ¥y, *-*, ¥,—,) denotes the
positive characteristic column vector of M* with 32t y,=1; W, ¥y ***, Yuy)
is considered to be the positive characteristic row wvector of M cor-
responding to the largest positive characteristic value. As was done
for (X3, o), the o-invariant measure p,., the set Y. and the mappings
Ty Pus fu» can be constructed for the one-sided Markov subshift
(X3, 0), so that the system (X., o) is isomorphic with the endomorphism
([0, 1), furs Vurs)-

We will now represent the space X, as a kind of product of the
spaces X#. and Xj. Let us define the following two spaces:

1 RXt={(w, ) e S" xS |we Xi., » € Xi and m(w(—1), @' (0)=1},
QY ={(w, ®)eS¥xS"|we Yi., 0 e Yi and mw(—1), @ (0)=1}.

The space X, of all M-admissible two-sided sequences can be naturally
identified with the space X7.XX; and the shift operator ¢ on X, can
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be identified with the operatdr (denoted again by o) on X;.Q X defined by
| o(w, @)= (0'(0) -, cw’),
where the symbol - denotes the concatiﬁation, i.e.,
u-v=(ud), u(2), -+, u(n), v(1), v(2), - -+, v(m)) ,

if w=w@), u@), -, u(n)) and v=_vQ), v(2), +++, v(m)) (m may be infinite).
We note that the inverse o' of ¢ on X#®X5 is given by

o Y(w, ®)=(w, o(—1)-»') .
In what follows we shall call the system (X#.QXj, o) the two-sided
Markov subshift associated with the structure matrix M. It follows
easily from Proposition 2.2 that the closure of Y;7.®Yy in the product

space SV x S” is X#.®X; and that the set X;.QX;— Y#.Q Y} is countable.
The mapping O, X 0, defined on X;.QRX; by

(Os+ X P2)(@, @) = (0y+(®), Pu(@"))
is one-to-one on the set Y#.X® Yy and the image D=(0,. X0, (YR Y3
[0, 1) X[0, 1) can be represented as
g—1 J k—1 k
p=_U {exPie=[Sv. $v), PA=|Ew. Xw),
0=7,kss—1 =0 i=0 7=0 3=0
m(F, k)=1} .
Let 7,.X7, be the mapping from D onto Y}.Q Y5 defined by
(T ype X T p) (0, ") = (TT,0:(2), wy(x)) ,
and f,.xfy be the mapping from D to D defined by
(fur X fa) (@, )= (¥, fu(®)) ,

where y is the unique number in the set

mar(z’) (0 —1 737 (") (0) i
S v, TS v )nsee
J= =

0

It is easy to / see that f,.Xfx is a one-to-one map of D onto itself.
From Proposition 2.1, we obtain the following:

PRrROPOSITION 2.3. ,
(1) (Oue X Pu) © (Tos X ) (20, ') = (2, &) for (w, x’)€D.
(2) (@yeXTor) o (fas X Sfa) =00 (T 3 X TTop)-
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(3) (fausXSau)o(0us X 01) =(0ss X Py) o0 on Y4.QYH.

We note that in the construction of the Markov transition pro-
babilities »(¢, 7) (resp. q(z, 7)) associated with the structure matrices M
(resp. M*), we adopted the normalization 3icix,=1 and Sy:ziy,=1,
instead of the normalization Y.:Zj«x,y,=1 as was done in §1. Therefore,
the stationary probability vector (=, x,, ---, m,_,) for the shift invariant
maximal Markov measure f,. x ¢, defined on X.QXj; satisfies the equality

s—1

=Y 2%y, 0=i<s—1.
=0

Let h(x, «') be the constant function on D with the value (33:Z! ZY) TN
and define a measure y,.xy, on D by putting (v,,. xv,,)(A)=S h(x, «')dxdx'
for every Borel subset A of D. Then, for a éylinder set
[w(—1), -+, @(—D]X[@'(0), - -+, ®'(k)] of X;.RX} we have

W X Vi) (Oss X 0) [@(—1), <+, @(— )] x[@'(0), -+ -, @ (K)])

w(~-1)—1 w(—~2)—1
=)D v 3 mi@(-D), Dyt
1 w(—-J)-1 *
+— m*(@(—J+1), )y, ,
L-’ 1=0

m*(@(—3+1), Dy,

A
w’(0)—1 1 w’(1)—1 , .
x[ > o+ >, m(w'(0), i)z, + - - -

+=0 Y +=0
1 w’(k)—1
+-7-\‘—,—‘ > m(w' (k—1), V), ,
w’(0)—1 1 w’(1)—
r+— m(co ©0), D+ - -

A
+_;_z;;" m(e' (b—1), z)x,))

1 Yoi—i) Lot

= s—1 i—1 k
(G ¥

’

while Lo X Py([0(—1), + <+, @(—DN]X[@(0), - -, &' (k)]
=To—5P(@(— ), @(—j+1))- - - p(@’'(k—1), @' (k)))
Yot—5)Lor ) '

B (’21 TY. )7\*’+k
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Thus, s X thy and V0 X V,) o (0, X 04) coincide on cylinder sets in X3.Q X7,
and therefore, we conclude that

Page X Pag = Vaee X V) © (Ogn X Os)

Summarizing the discussion above, we obtain the following theorem
corresponding to Theorem 2.1.

THEOREM 2.2. (Representation Theorem) If the maximal Markov
automorphism (X, o, tty) (which is isomorphic to (X7 QXi, 0, My X ty))
i8 non-atomic and ergodic, then it i3 isomorphic to the system (D,
Sare X [ary YVax X Vi) under the 180morphism 0y.X 0y.

In the sequel we shall call the automorphism (D, fysX i Vir X Vi)
the Baker’s transformation of Markov type.”

§3. A construction of transversal flows.

In this section we shall construct a transversal flow for the maximal
Markov automorphism in the form of a special flow (Ambrose-Kakutani
flow) with the base transformation defined on the unit interval [0, 1).

Let (Xi., ) be the Markov subshift associated with a structure
matrix M* and denote by Wi the set of all the words of length n
admissible with respect to M*. Namely, '

W ={(@(—=1), -+, ®(—n)) | m*(@(—1), o(—i—1)=1 for 1=i=n—1}.

Next, we introduce another linear order > in Wiv for each n=1, 2---
as follows. For (w(—1), +++, w(—n)) and (@'(—1), ---, ®'(—n)) in W2,
we define > as

(G)(‘—l), ) w(—%))>((l)'(—1), Tty w'(_n)) ’

if there exists j(0<j<n—1) such that w(—n+k)=0'(—n+k) for
0<k<j—1 and w(—n+37)>®'(—n+j) hold. Using this linear order>we
introduce a stopping time z(w) for w in Y. in the following manner:
We define 7(w) to be the smallest positive integer = for which there
exists an element (w*(—1), ®*(—2), ++-, ®*(—n)) in W which is minimal
with respect to the order>among the elements (@'(—1), -+, ®'(—n)) in

™ satisfying the properties w'(—n)=w(—n) and (®'(—1), +-+, @®'(—n))
>(@(—1), +++, @(—n)). We put t(®w)=oco, if such an n does not exist.
We see that the set {we Yi.|t(w)=c0} is py.~null and its image under
the map p,. is a set of Lebesgue measure zero in [0,1). We define a
mapping B,. on Yi. N {w]|7(@)< =~} into Y. by
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B, (w)=(0*(—1), -+, ®*(—t(w))- 07 (@))
=@*(=1), - -+, 0*(—7(®) , O(—t(@)~1), O(—7(®)—2), ).

On the other hand the Lebesgue measure of the Borel set p,.(w(—1), ---,
@(—mn)]) is equal to y,_./A*"'. So it follows that the mapping

B=0,.0By.omy.: [0, 1) —[0, 1) (mod 0)

is Lebesgue measure-preserving.

This automorphism B (defined on [0,1) except on some Lebesgue-
null set) can be considered to be a generalization of the so-called “ad-
ding-machine” transformation.

REMARK 3. It can be seen that thq mapping B,. satisfies the fol-
lowing commutation relation:

B0y (@)=0y.By.(®) if 3=Zt(w)<oo .

We now construct a transversal flow for the Baker’s transformation
of Markov type (D, fu«Xfu» VusXVy). Let e=min,, ;< (z, Y¥;}/2. For
tel0, ¢] and (z, ') € @; x P, D, we define Z,(x, 2’) by putting

(x, x+1) if (x, 2'+t) e D.
(z, x'+t+k,>2, kx,-) if (x,2'+t)¢ D and if there exists
Z 1 such that m(j, 9)=1, i>k. Here
k' is the smallest ¢>k such that
Z(x, 2')= m(J, 7)=1.

k j’—1
(Bz, o' +t—2 2 +% ) i @#+0)eD, and if m(,H=0
i=0 =
for all ¢(s—1=i>k). Here j' is
defined to be
7'=min{i: m(zy.(Bx)(0), 1)=1} .
For te[—e¢, 0] and (z, ') € @; X P, D, we define Z,(x, «’) as
(x, ' +1) if (x, ' +t)e D.
(@, ' +t— >, ) if (z, «'+t)¢ D, and if there exists
Freisk i such that m(j, i)=1, i<k. Here
k' is the largest 7<k such that
m(J, ©)=1.
k_ M 3 4 3
(B“x, m’+t—£‘:xi+tz",x,) if (x,c’+t)e¢D and if m(j, 1)=0
i=o =0 oo
for all 2 (0=i<k). Here 7' is de-

fined by
3 =max{i: m (7,.(B'x)(0), i)=1}.

Zt(x, x') =
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Let us now define Z, for other values of ¢ in order to define a one-
parameter group {Z,: —co<t<o} on D: For a positive number ¢, we
write

t=me+6 where nz[—z-:'

and let
Zx, &' )y=ZZ" (x, x)) ,

where Z™ denotes the n-th iterate of Z,, i.e., Z"=Z, and Z™ = Z,(Z" ")
n=1,2,3, ---. We define Z, for negative ¢ in a similar manner.

The following three types may occur by considering the behavior
of Z_,(x,«’) as s 0. If (z,2") is in the interior of D, then Z_,(x, z') is
continuous at s=0. If (x, 2') lies on the boundary of D, then Z_,(x, z")
may be discontinuous at s=0. A point (z, 2') is called a point of dis-
continuity of the first type if (x, ") e Q;x P, 2'=3Ftx;, and if there
exists an ¢ <k such that m(j, ©)=1. In this case we put ¥’ =max{i: m(J, i)=1,
1<k} and we will identify the point (x, ') with the limit

lim Z_,(z, )=lim (x, 2'— 3, «,—s),
slo slo0 k’<i<k

* which is a point of D. A point (x, #') is called a point of discontinuity
of the second type if

k-1
((l?, x') € QiXPk ’ w':; X;
=0
and if there exists no i<k such that m(j, i)=1. In this case we put
ky,=max{i: m(7 (B 'x)(—1), 1) =1}
and we will identify the point (x, ') with the limit
k
lim Z_,(«, x')=lim(B“1x, 20:, xr-s) ,
8lo 8l0 =0
which again lies in D.
For any two-sided sequence w € Y1#.Q Y3, we will write (w(n), n=—k)
for the one-sided sequence (w(—k), w(—k-+1),---, ®(0), w(1), ---) belonging
to Y7.

LemmA 3.1. (1) If (x,2') i8 a point of discontinuity of the first
type, then
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ljfrol Ou(T e X Ty (Z_ (2, ))(m) , n=—1)
== 0 (T e X Ty, 2"))(M) , n=—1).
(2) If (x,x') 18 a point of discontinuity of the second type, then
ljff)l Ou(T s X Ty (Z_ (2, '))(m); m=—mn)
=Pu(T o X Ty(, 2"))(M); m=—mn),
where the integer m 18 given by n=n(x)=1(7,.(B7'x)), not smaller than 2.

PROOF. Let (x, ') be a point of discontinuity of the first type and
suppose (x, 2') € Q; X Py, ' =% x; and k' =max{i: m(J, t)=1, i<k}. Then,
for any s>0, the z-coodinate of Z_,(x, «') equals x, and therefore,

Tax XTy(Z_ (2, B )(—1) =T pe X7, (2, ") (—1)=17 .

Since a'=Xtiz;, the one-sided sequence (7,.X7,(x, x')(n); n=—1) is
minimal with respect to the order in Y3 among the elements satisfying
o(—1)=73, ®(0)=k. On the other hand, for any '€ Y; with &' (—1)=j
and w'(0)=Fk’, there exists an 8,>0 such that

@ <(Tye X Ty (Z_ (2, &'))(n); n=—1)
for every s, 0<s<s,. If we set
@ =Sup{(7 e X Tp(Z_ (2, 2"))(n); n=—1|0<8<58} ,

where the supremum is taken with respect to the order in Yj;, then it
follows from Proposition 2.2 that

and that 0,(®)= 04Ty X T4(x, 2")(n); n= —1), which proves the assertion(1).

Next, let (x, ') be a point of discontinuity of the second type.
From the definition of the mapping B, it follows that there exists the
smallest integer n =n(x) =7(7 (B 'x))(=2) such that (7. X Ty(x, ") (—n+k);
0<k<n) is minimal with respect to the order in W,» among such
elements (W(—n), ---, @(—1)) e Wi that (@(—n), -+, O(—1)>(Ty X Ty
(Z_(x, 2))(—m+k); 0<k<n) and that &@(—n)=7y. X T, (Z_,(x, '))(—n) for
each s with ¢>8>0. Since (x,2’) is a point of discontinuity of the
second type, the one-sided sequence (7. X Tu(x, 2')(m); m= —n) is minimal
with respect to the order of Y; among the elements of Y, whose first
n entries coincide with (7. X7@y(x, ') (—n+k); 0<k=n—1). Therefore,
for any ' € Y;} with @' (0)=7r,.Xx7y(z, ') (—n) and
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@ <(Tye X 7T (0, ") (M); M= —m) ,

there exists an 8,>0 such that ' <(7,.x7,(Z_,(x, x'))(m); m=—mn) for
every s with 0<s<s,. So, we obtain

Hm (7. X T3(Z_4(x, @))(m) ; m= —n)
= 04(T e X Ty, ') (M) ; M= —m) ,
proving the assertion (2).

LEemMMA 3.2. (1) If (x,2) 4s a continuity point, Ii.e., if
lim,,, Z_,(x, )= (z, 2'), or if it is a point of discontinuity of the first
type, then

l,if? Z_(fur X ) (2, ") =18ig1 (fae X ) 2@, &)= (fu X fa) (@, ')

(2) If (x, 2') ©s a point of discontinuity of the second type and
tf n=n(@)=1(w,(B %)) =2, then the point (fiXfu) (x, &') i a point of
discontinuity of the first type, and we have

i 0. X Tl Z o (fiue X Fu) (@, 2))(m); M= —1)
= lsifl.} Ou(T s X o far X fo) T Z_ (0, @)(m); m=—1)
:pM(nM*Xﬂ:M(fM* X )TNz, m’)(’m’); mz=—1).

(3) If (x,2") is a point of discontinuity of the second type and
tf n=n(x)=7(w(B7'x))>2, then the point (fi.Xfx) '(x, ') is a point of
discontinuity of the second type and we get

I 04(Tae X T B e X Fu) (2, 2))(m); M= —mt-1)
T Slim 0y (e X fae X ) Bty )Yz~ D)
= 03Ty X Ty (Foe X o) 7' (20, ') (mM); M= —n+1) .

REMARK 3.2. The above lemma implies that almost every orbit of
the flow {Z,; — < <t<} is mapped onto another orbit; namely, for
almost all (z, x")e D

(fae X fr) {2y, &); — 00 <t < o0}
:{Zt(fM*XfM)—l(xy x') ; —oo Lt o},

ProOF. From Proposition 2.3 (2), it follows that if (x, «') is either
a continuity point or a point of discontinuity of the first type, then
(furXfu) '@, ') is a continuity point. If (x, #') is a point of disconti-
nuity of the second type and if z(7,.(B7'x))=2, then (fu:Xfu) (z, z') is
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a point of discontinuity of the first type. It follows also that if (z, x')
is a point of discontinuity of the second type and if 7(w,.(B™'%))>2,
then (fy.Xfy) '(x, 2') is a point of discontinuity of the second type. In
this case we have T(Ty(B 'Y))=t(y(B'x))—1, where y denotes the
z-coordinate of the point (fusXfu) '(x, «'). Therefore, from Lemma 3.1
we have the following three identities '

1,1}101 Z(fue X )@, @)= (fae X fu) (2, &)
ligl O (Tare X Tp(Z_y 0 (f X fu) (&, 2'))(m); m=—1)

= 03 (Tye X T fiaee X o) " (=, ") (M); m=—1)
and

]i}? Ox(Tare X T3 (Z_y 0 (foge X fu) (2, 2))(m); m=—n+1)
= 0y (T ye X Tag(frue X ) 7' (, ") (M); M= —nm+1) .

The remaining identities in the assertion (1) and (2) are easy to verify
directly, while the remaining identity in the assertion (3) follows from
Remark 3.1.

The following lemma can be easily obtained:
LEMMA 3.3. For almost all (z, ') € D,
(Far X Fu) U Z (=, &) 0=8=t}={Z,(fu= X Sa) ', &') 0=8=<t/N}.

PROPOSITION 3.3. The ome-parameter group {Z,; —oo<t<o} con-
structed above satisfies the following properties:

(1) Each Z, is a measure-preserving automorphism of (D, Yy« XVy).

(2) (FusXfu) " Zy=Z)i(fas X Su)™" holds Yy X Vy-almost everywhere.

PrOOF. (1) follows easily from the fact that the measure vy. Xy,
is a constant multiple of the restriction to D of the Lebesgue measure
on [0, 1) %[0, 1). The assertion (2) follows from Lemmas 3.2 and 3.3.

By starting with Y3 in place of Y. and going through the same
procedure as above, we can construct another base transformation on
[0, 1) and a corresponding one-parameter flow {Z,; — oo <t<o} on D. The
orbits of {Z); —co <t< =} are transversal to the orbits of {Z,; — c0c <t <o},
Therefore, we obtain the following main theorem of this paper, using
the fact that the mapping 7. X7y D—X5.QXi(=Xy) is injective.

THEOREM 3.4. Suppose that the maximal Markov automorphism
(X, O, tty) associated with a structure matric M is non-atomic and
ergodic. Then there exist two measure-preserving flows {Z{"; — oo <t oo}
and {Z®; — oo <t< oo} satisfying the following properties:
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cZP=Z%o for every te R for almost all we X,
and
0ZP=272%0 for every te R for almost all we X, .

§4. Ergodic properties of a transversal flow for the maximal
Markov automorphism.

In this section, we study some ergodic properties of the transversal
flow for the maximal Markov automorphism constructed in §3. For
this purpose, we first investigate the properties of the base transform-
ation B.

Let (e(—1),e(—2), ---,e(—n)) be an element of W, and let us
denote by 4(e(—1),e(—2), ---,e(—n)) the image of the cylinder set
[e(—1), e(—2), «-+, e(—n)]C Y. by the mapping p,.. Then, the subset
A4(e(—1), &(—2), +++, e(—n)) of the unit interval is also an interval and
its length equals y.._,,/A""'. We will denote by {&,: n=2} the sequence
of partitions of the unit interval defined by

E.={d(e(—1), &(—2), - -+, e(—m)|(e(—=1), -+, e(—m)) € W'} .
For each k with 0<k<s—1, and n=2, let us define ¢* by
e*(—n+1)=min{i: m*(, k)=1},
and define inductively for —1<j<—n+2 by
e*(J)=min{i: m*(z, e*(j—1))=1} .
Denoting by Ci*} the sub-interval 4(¢*(—1), e*(—2), +--, e*(—n+1), k) of
the unit interval (0<k<s—1 and n=2), we define C";, 0=j=<7r.—1,
ro= S m* (3, k) by
Ciry=BiCK, .
Note that the number 7, represents the number of M *-admissible words

of length n having the last entry k. It is easy to verify that for each
n=2

Enz{cy,‘;loékés_l: Oé."g’rk_l}'

LEMMA 4.1. The number of ergodic components for the mapping
B is less than the mumber 1/min,c,,_{x.y.}.

ProoF. For Borel measurable subsets 4 and B of [0, 1), we will
denote by AAB the symmetric difference AUB—ANB and by |A| the
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Lebesgue measure of A. Now suppose that F' is a set of positive
measure in [0,1) invariant under B. The sequence of partitions
{¢,; n=2} increases to the partition ¢ of [0,1) into individual points.
Hence, for any 6>0, we can find an integer =, such that for n=n,
there exists a £,-measurable subset F'* of [0, 1) satisfyng |[FAF "™ |/|F ™| <é.
Thus, there exists a set Ci%) €&, such that |[C N F|>Q—08)y./A
Since the set F is B-invariant, it follows that

[ ,‘,’,‘}ﬂF|>(1—3)xffl holds for every j(0<j<r.,—1),

from which we have
FIZ'S (0 Flza—s Ll ;
0 being arbitrary, one has
|F|g%§f_ for some k(0<k<s—1).

From the fact that >zt x;m*"V(J, k)=N"""x, and that >iiz;=1, it is
seen that |F|=x,y.,. This implies the assertion of the lemma.

ProPOSITION 4.1. If a structure matrix M is aperiodic, then the
base tramsformation B associated with M 1is ergodic.

ProOOF. Suppose that the number of ergodic components for the
transformation B is k>1. Then, the transversal flow {Z{": —co <t< o}
for (X,, o, tty) constructed by the transformation B has k ergodic com-
ponents F,, F',, - - -, F,, where we assume that p,(F)< pu(F.), 1<i<k—1.
From the relation Z{Yo=0Z" it follows that the equalities

o?F,=0*ZMF,= Z®,0°F,

aPt

holds for every p>0 and t. This implies that the set o°F, is Z{-in-
variant for each 7 (1<i¢<k) and thus o?F,;e{F, F,, ---, F,}. This means
that we can find an integer p, and a suffix 7, such that

o"F, =F, (a..).
This contradicts to the fact that (X,, o, ¢ty) is mixing.

PrOPOSITION 4.2. If a structure matrix M is irreducible and
periodic with period d>1, then the transformation B associated with
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M is not ergodic and the number of the ergodic components of B is at
least d.

ProoF. Let {D,:a=1,2, ---, d} be the periodic decomposition of the
state space S={0, 1, ---, s—1} with respect to M and let us denote by
D, the subset of [0, 1) defined by

D,={4w(-1)|o(-1)eD,} (1=sa=d).
From the definition of the transformation B it follows that, for each
we Y, Bpw)(—1eD, if w(—1)eD, and if t(w) <.

Therefore, we have BD,c D, for each o 1<a=d).

Note that the transformation B associated with M gives a concrete
example of transformations admitting simple approximation multiplicity
s in the sense of R. V. Chacon [8], where s is the number of states in
S. The spectral multiplicity for the unitary operator induced by the
transformation B is at most s; so the metric entropy of B must be 0.
We summarize these results in the following:

THEOREM 4.1. Let (X, 0, tty) be the maximal Markov automorphism
which is non-atomic and ergodic, and let {Z{": —oco <t o} (1=1, 2) be
the transversal flows for (X, o, tty) constructed in §3. Then,

(1) the flows {Z{": —cc<t< =} are ergodic if the structure matrix
M is aperiodic. They are mnom-ergodic if M 1is irreducible but mot
aperiodic and

(2) the entropy of the transversal flow {Z{P: — o <t} 18 equal
to 0 for 1=1, 2.

It is an interesting question to determine the spectral types of the
transversal flows for a maximal Markov automorphism. The maximal

Markov automorphism associated with the structure matrix M= i (1)) is

nothing but the simple g-automorphism discussed in [6]. In this case it
is known that the transversal flows have the discrete spectrum, (See
[9]). However, for more general structure matrices, the question seems
to be quite difficult to settle.
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