Tokyo J. Math. Vol. 2, No. 2, 1979

An Analogue of Paley-Wiener Theorem on Rank 1 Semisimple Lie Groups II

Takeshi KAWAZOE

Keio University (Communicated by T. Saito)

Introduction

This paper is a continuation of the previous paper [8]. Let G be a connected semisimple Lie group with finite center. We assume that G is not compact and moreover, the real rank of G is one. In [8], we have obtained an analogue of Paley-Wiener theorem on $\mathscr{C}(G, \tau)$ (see Theorem 2 in [8]). However, in that theorem we did not consider the discrete part of $\mathscr{C}(G, \tau)$, i.e., the space of τ -spherical cusp forms on G. Therefore in this paper we shall characterize the discrete part of compactly supported functions on G. Here we note that this characterization depends on $\{E_p; 1 \leq p \leq \gamma\}$ and does not depend on any choice of $\{h_p; 1 \leq p \leq \gamma\}$ (see (4.12) and (4.15) in [8]). Next using the proof of Theorem 2 in [8], we shall obtain the relation between a size of a support of a compactly supported function on G and an exponential type of its Fourier transform. To obtain the relation we shall use the same method in the classical Paley-Wiener theorem on an Euclidean space.

In §2 using the results of Harish-Chandra [6], we shall reform the theorem of J. Arthur [1] and obtain some characterization of $\mathcal{C}(G)$. Then applying the above consideration to each K-finite subspace of $\mathcal{C}(G)$, we shall obtain an analogue of Paley-Wiener theorem on $\mathcal{C}(G)$ (see §3).

§1. More precise characterization.

For an arbitrary function g in $\mathscr{C}(G, \tau)$ we shall define g' by $\mathscr{C}_{A}^{-1}(\mathscr{C}_{A}(g))$ and g° by g-g'. Then from Theorem 1 in [8] we can easily prove that g' belongs to $\mathscr{C}_{A}(G, \tau)$ and g° to $\mathscr{C}(G, \tau)$. Let notation be as in [8].

LEMMA 1. (i) °C(G, τ) is contained in the space which is generated Received June 6, 1979

 $\begin{array}{l} by \ \{E_p; 1 \leq p \leq \gamma\}.\\ (\text{ii}) \quad ^{\circ} \mathscr{C}(G, \tau) \ is \ generated \ by \ \{h_p^{\circ}; 1 \leq p \leq \gamma\}. \end{array}$

PROOF. Let F be an arbitrary function in $C^{\infty}_{c}(G, \tau)$. Then from Theorem 2 in [8] it is obvious that $\mathscr{C}_{d}(F)$ belongs to $\mathscr{H}(\mathscr{F})^{*}_{*}$ and moreover, there exists a function H in $C^{\infty}_{c}(G, \tau)$ such that $\mathscr{C}_{d}(F) = \mathscr{C}_{d}(H)$. Thus we obtain,

$$(1.1) F' = H' .$$

On the other hand, from the proof of Theorem 2 in [8] we obtain,

(1.2)
$$H^{\circ}(x) = \sum_{1 \le p \le \gamma} C(p) h_{p}^{\circ}(x) \\ = \sum_{1 \le p \le \gamma} \frac{d^{r(p)}}{d\nu^{r(p)}} \Big|_{\nu = \nu(p)} \hat{F}(\phi_{i(p)}^{j(p)}, s(p)\nu) h_{p}^{\circ}(x) \quad (x \in G) .$$

However, since F(x) has a compact support, we have,

(1.3)
$$\frac{d^{r(p)}}{d\nu^{r(p)}}\Big|_{\nu=\nu(p)} \widehat{F}(\phi_{i(p)}^{j(p)}, s(p)\nu) \\ = \left(F, \frac{d^{r(p)}}{d\nu^{r(p)}}\Big|_{\nu=\nu(p)} E(P; \phi_{i(p)}^{j(p)}; s(p)\nu; x)\right) \\ = (F, E_p) \quad (1 \le p \le \gamma) .$$

Thus we obtain,

(1.4)
$$H^{\circ}(x) = \sum_{1 \leq p \leq \gamma} (F, E_p) h_p^{\circ}(x) \quad (x \in G) .$$

By the way, using the relation; (1.1), we can easily prove that $F-H=F^{\circ}-H^{\circ}$ and both sides belong to $C_{c}^{\infty}(G,\tau)$ and moreover, to $^{\circ}\mathscr{C}(G,\tau)$. Therefore it must be zero, i.e., F=H and $F^{\circ}=H^{\circ}$. Thus we obtain,

(1.5)
$$F^{\circ}(x) = \sum_{1 \leq p \leq \gamma} (F, E_p) h_p^{\circ}(x) \quad (x \in G) .$$

Now we note that $C^{\infty}_{\epsilon}(G, \tau)$ is dense in $\mathscr{C}(G, \tau)$. Therefore $\{g^{\circ}; g \in C^{\infty}_{\epsilon}(G, \tau)\}$ must be equal to $\mathscr{C}(G, \tau)$, because dim $\mathscr{C}(G, \tau) < \infty$ and $g \mapsto g^{\circ}$ is a continuous projection of $\mathscr{C}(G, \tau)$ onto $\mathscr{C}(G, \tau)$. Then (ii) is quite obvious from (1.2) or (1.5).

Next we shall prove (i). First of all we shall apply the arguments in §1 in [8] to the case of P=G. Then $L^{\sigma} = {}^{\circ} \mathscr{C}(G, \tau)$ can be decomposed as

(1.6)
$$L^{G} = \bigoplus_{1 \leq j \leq m'} L^{G}(\Lambda_{j})$$

410

where $\Lambda_j \in \mathscr{C}^2(G)$ and $L^{\mathcal{G}}(\Lambda_j) = L^{\mathcal{G}} \cap (\mathscr{H}_{\Lambda_j} \otimes V)$ for $1 \leq j \leq m'$. Moreover, we choose an orthonormal basis of $L^{\mathcal{G}}(\Lambda_j)$ as follows,

(1.7) $\{\psi_i^j; 1 \leq i \leq n_j'\}$, where $n_j = \dim L^d(\Lambda_j)$ for $1 \leq j \leq m'$.

For simplicity we put $e'_k = \psi_i^j$, where $k = \sum_{1 \le p \le j-1} n'_p + i(1 \le k \le n' = \sum_{1 \le j \le m'} n'_j)$. (Note that $n' \le \gamma$ by (ii).) Here we may assume that $h_p^{\circ}(1 \le p \le \gamma)$ has the following expansion,

(1.8)
$$h_p^{\circ} = \sum_{1 \leq k \leq n'} C_{pk} e'_k \quad C_{pk} \in C \quad \text{for} \quad 1 \leq p \leq \gamma \quad \text{and} \quad 1 \leq k \leq n' .$$

Here we denote by $\underline{M} = (C_{pk})$ the $\gamma \times n'$ matrix whose (p, k)-entry is equal to $C_{pk}(1 \le p \le \gamma, 1 \le k \le n')$, and in the next lemma we shall prove that M does not depend on any choice of $\{h_p; 1 \le p \le \gamma\}$.

Now let F be an arbitrary function in $C_c^{\infty}(G, \tau)$. Then from (1.5) we have

(1.9)

$$(F, e'_k) = (F^\circ, e'_k)$$

$$= \sum_{1 \le p \le \gamma} (F, E_p)(h_p^\circ, e'_k)$$

$$= \left(F, \sum_{1 \le p \le \gamma} C_{pk} E_p\right) \quad (1 \le k \le n') .$$

Thus, we have,

(1.10) $e'_{k} = \sum_{1 \leq p \leq \gamma} C_{pk} E_{p} \quad (1 \leq k \leq n') .$

Therefore (i) is obvious from this relation.

Q.E.D.

COROLLARY. Let F be in $C^{\infty}_{c}(G, \tau)$. Then F can be written as

$$F(x) = F'(x) + \sum_{1 \le p \le 7} (F, E_p) h_p^{\circ}(x) \quad (x \in G)$$

LEMMA 2. Let notation be as in the proof of Lemma 1. Then \underline{M} does not depend on any choice of $\{h_p; 1 \leq p \leq \gamma\}$.

PROOF. It is enough to prove that $C_{pk}(1 \le p \le \gamma, 1 \le k \le n')$ which satisfy the relation (1.10) are unique. Suppose there exist constants C'_{pk} for which

(1.11)
$$e'_{k} = \sum_{1 \leq p \leq \gamma} C'_{pk} E_{p} \quad C'_{pk} \in C \quad \text{for} \quad 1 \leq k \leq n' .$$

Then from (1.10) we have,

(1.12)
$$\sum_{1 \le p \le \gamma} (C_{pk} - C'_{pk}) E_p = 0 \text{ for } 1 \le k \le n'.$$

However, since $\{E_p; 1 \le p \le \gamma\}$ is a maximal linearly independent set (see the definition of $E_p(1 \le p \le \gamma)$ in [8]), we can obtain that $C_{pk} = C'_{pk}$ for all $1 \le p \le \gamma$ and $1 \le k \le n'$. This is the desired relation. Q.E.D.

Now we shall define a more precise Fourier transform on $\mathscr{C}(G, \tau)$ as follows; for $f \in \mathscr{C}(G, \tau)$,

(1.13)
$$F(f) = ((f, e'_1), (f, e'_2), \cdots, (f, e'_{n'}))$$
$$\bigoplus (\hat{f}(e_1, \nu), \hat{f}(e_2, \nu), \cdots, \hat{f}(e_n, \nu)) \text{ for } \nu \in \mathscr{F}.$$

Put $\mathscr{C}_0(f) = ((f, e'_1), (f, e'_2), \dots, (f, e'_{n'}))$. Then the mapping \mathscr{C}_0 of $\mathscr{C}(G, \tau)$ into $C^{n'}$ coincides with \mathscr{C}_A for the case of P=G in [8] and moreover F(f) can be written as $\mathscr{C}_0(f) \oplus \mathscr{C}_A(f)$. Thus, using Theorem 1 in [8], we can easily obtain the following theorem.

THEOREM 1. The mapping $F: \mathscr{C}(G, \tau) \to C^* \oplus \mathscr{C}(\mathscr{F})^*_*$ is a homeomorphism of $\mathscr{C}(G, \tau)$ onto $C^* \oplus \mathscr{C}(\mathscr{F})^*_*$.

Next we shall define a subspace of $C^{n'} \bigoplus \mathscr{C}(\mathscr{F})^n_*$ which becomes the image of compactly supported functions in $\mathscr{C}(G, \tau)$.

Let $a \oplus V$ be an arbitrary element in $C^{*'} \oplus \mathscr{C}(\mathscr{F})^{*}_{*}$. Then we can write a and V as follows.

$$(1.14) \begin{array}{l} a = (a_1, a_2, \cdots, a_{n'}) \\ = (a_1^1, a_2^1, \cdots, a_{n'_1}^1, a_1^2, a_2^2, \cdots, a_{n'_2}^2, \cdots, a_1^{m'}, a_2^{m'}, \cdots, a_{n'_{m'}}^{m'}) \\ V = (v_1^1(\nu), v_2^1(\nu), \cdots, v_{n_1}^1(\nu), v_1^2(\nu), v_2^2(\nu), \cdots, v_{n_2}^2(\nu), \cdots, v_{n_1}^m(\nu), v_2^m(\nu)) \end{array}$$

where $a_i^j \in C$ and $v_i^j \in \mathscr{C}(\mathscr{F})(1 \leq i \leq n_j, 1 \leq j \leq m)$. In this case, we shall use the following notation for simplicity,

(1.15)
$$a = (a_i^j) = (a_k) \text{ and } V = (v_i^j).$$

Let \mathscr{H} be the subspace of $C^{*'} \oplus \mathscr{C}(\mathscr{F})^*_*$ which consists of all $a \oplus V \in C^{*'} \oplus \mathscr{C}(\mathscr{F})^*_*$ satisfying the following conditions;

(1.16)
$$\begin{array}{ccc} (i) & V \in \mathscr{H}(\mathscr{F})_{*}^{n}. \\ (ii) & a_{k} = \sum_{1 \leq p \leq \gamma} C_{pk} \frac{d^{r(p)}}{d\nu^{r(p)}} \Big|_{\nu = \nu(p)} v_{i(p)}^{j(p)}(s(p)\nu) & (1 \leq k \leq n') . \end{array}$$

Then we have the following theorem.

THEOREM 2. Let f be a function in $\mathscr{C}(G, \tau)$. Then f belongs to $C^{\infty}_{c}(G, \tau)$ if and only if F(f) belongs to \mathscr{H} .

PROOF. Let f be in $C_c^{\infty}(G, \tau)$. Put $F(f) = \mathscr{C}_0(f) \oplus \mathscr{C}_A(f) = ((f, e'_k)) \oplus (\hat{f}(\phi_i^j, \nu))$. Then from Theorem 2 in [8] we have $\mathscr{C}_A(f) \in \mathscr{H}(\mathscr{F})^*_*$. Moreover, since f has a compact support, we have,

(1.17)
$$(f, e'_k) = \sum_{1 \le p \le \gamma} C_{pk}(f, E_p) \quad (\text{see } (1.9))$$
$$= \sum_{1 \le p \le \gamma} C_{pk} \frac{d^{r(p)}}{d\nu^{r(p)}} \Big|_{\nu = \nu(p)} \hat{f}(\phi^{j(p)}_{i(p)}, s(p)\nu) \quad \text{for } 1 \le k \le n' .$$

Therefore $((f, e'_k))$ satisfies the condition (ii) of \mathcal{H} . Thus we obtain that F(f) belongs to \mathcal{H} .

Next let f be in $\mathscr{C}(G, \tau)$ and F(f) belongs to \mathscr{H} . Here we shall write F(f) as $((f, e'_k)) \bigoplus (\hat{f}(\phi^i_i, \nu))$. Since $\mathscr{C}_A(f)$ belongs to $\mathscr{H}(\mathscr{F})^*_*$, there exists a compactly supported function H on G such that $\mathscr{C}_A(H) = \mathscr{C}_A(f)$ (see Theorem 2 in [8]). Moreover, H° can be written as (1.2) where we use f instead of F. Therefore we can easily prove that,

(1.18)
$$(H, e'_k) = \sum_{1 \le p \le \gamma} C_{pk} \frac{d^{r(p)}}{d\nu^{r(p)}} \Big|_{\nu = \nu(p)} \widehat{f}(\phi_{i(p)}^{j(p)}, s(p)\nu) \quad \text{for} \quad 1 \le k \le n' .$$

Thus from Theorem 1 we have H=f (note that F(H)=F(f), since F(f) belongs to \mathcal{H}). In particular, f has a compact support. This completes the proof of Theorem. Q.E.D.

Next we shall obtain the relation between a size of a support of a compactly supported function on G and an exponential type of its Fourier transform.

Let $\mathscr{H}(R)(R)$: a positive number) be the subspace of \mathscr{H} which consists of all $a \bigoplus V = (a_i^j) \bigoplus (v_i^j(\nu)) \in \mathscr{H}$ satisfying the following conditions; for each integer N, there exist constants C_N for which

(1.19)
$$|v_i^j(\nu + (-1)^{1/2}\eta)| \leq C_N (|\nu + (-1)^{1/2}\eta|)^{-N} e^{R|\nu|}$$
 for $\nu \in \mathscr{F}$ and
 $\eta \in \operatorname{CL}(\mathscr{F}^+)$ $(1 \leq i \leq n_j, 1 \leq j \leq m)$

Moreover let $C_c^{\infty}(G, \tau; R)$ denote the subspace of $C_c^{\infty}(G, \tau)$ which consists of all functions in $C_c^{\infty}(G, \tau)$ such that their supports are contained in a compact set $G_R = \{x \in G; \sigma(x) \leq R\}$ (see the definition of σ for V. S. Varadarajan [9]). Then we obtain the following theorem.

THEOREM 3. f belongs to $C^{\infty}_{c}(G, \tau; R)$ if and only if F(f) belongs to $\mathcal{H}(R)$.

PROOF. Let f be a function in $C^{\infty}_{c}(G, \tau; R)$. Then using the same method in the classical Paley-Wiener theorem on an Euclidean space and the definition of the Eisenstein integral, we can easily prove that each

component $\hat{f}(\phi_i^j, \nu)$ of $\mathscr{C}_A(f)$ satisfies the above relation (1.19) for $1 \leq i \leq n_j$, $1 \leq j \leq m$. Thus F(f) belongs to $\mathscr{H}(R)$.

Next we assume that $F(f) = \mathscr{C}_0(f) \bigoplus \mathscr{C}_A(f)$ belongs to $\mathscr{H}(R)$. Then from Theorem 2, f has a compact support. Moreover from Corollary of Lemma 1 f can be written as,

(1.20)
$$f(x) = f'(x) + \sum_{1 \le p \le \gamma} (f, E_p) h_p^{\circ}(x)$$
$$= \left\{ f'(x) - \sum_{1 \le p \le \gamma} (f, E_p) h'_p(x) \right\} + \sum_{1 \le p \le \gamma} (f, E_p) h_p(x) \quad (x \in G) .$$

Put $\underline{G}'(x) = f'(x) - \sum_{1 \le p \le 7} (f, E_p) h'_p(x)$ (this function is same as (4.22) in [8]). Here we note that the support of $h_p(1 \le p \le \gamma)$ can be taken sufficiently small (see the construction of $h_p(1 \le p \le \gamma)$ in [8]). Therefore we may assume that h_p belongs to $C_c^{\infty}(G, \tau; R)$ for $1 \le p \le \gamma$. Next we note that $\hat{f}(\phi_i^j, \nu) = \hat{f}'(\phi_i^j, \nu)(1 \le i \le n_j, 1 \le j \le m)$ satisfy the condition (1.19) by the assumption $F(f) \in \mathcal{H}(R)$ and moreover, $\hat{h}_p(\phi_i^j, \nu) = \hat{h}'_p(\phi_i^j, \nu)(1 \le i \le n_j, 1 \le j \le m)$ satisfy the same condition (1.19) for $1 \le p \le \gamma$ (because $h_p \in C_c^{\infty}(G, \tau; R)$ and we used the necessary condition). Thus we obtain that $\underline{\hat{G}}'$ satisfies the condition (1.19). However we recall that $\underline{G}'(x)$ can be written as,

(1.21)
$$\underline{G}'(x) = \sum_{1 \leq j \leq m} |W(\omega_j)|^{-1} \sum_{1 \leq i \leq n_j} \int_{\mathscr{F}} \mu(\omega_j, \nu) E(P; \phi_i^j; \nu; x) \underline{\hat{G}}'(\phi_i^j, \nu) d\nu$$

Thus, using the proof of Theorem 2 in [8] (in particular (4.7), (4.8) and (4.19)) and the condition (4.19), we can easily prove that \underline{G}' belongs to $C_c^{\infty}(G, \tau; R)$ by the same method in the classical Paley-Wiener theorem on an Euclidean space. Therefore we obtain that f belongs to $C_c^{\infty}(G, \tau; R)$. This completes the proof of Theorem 3. Q.E.D.

§2. Some results.

In this section we shall describe the results which were obtained in Harish-Chandra [6]. Then using these results, we shall reform the theorem in J. Arthur [1] and obtain some characterization of the Schwartz space $\mathscr{C}(G)$.

First of all we shall obtain a relation between an Eisenstein integral and a matrix coefficient of the principal series for G.

Put $V = C^{\infty}(K \times K)$. Then for any v_1, v_2 in V we shall define the scalar product (,) as follows;

(2.1)
$$(v_1, v_2) = \int_{K \times K} \overline{v_1(k_1; k_2)} v_2(k_1; k_2) dk_1 dk_2 .$$

Then the norm of v in V is defined as,

(2.2)
$$||v||^2 = \int_{K \times K} |v(k_1; k_2)|^2 dk_1 dk_2$$

and obviously V becames a Hilbert space under this norm. Moreover we shall define a operator \cdot , tr and anti-involution * as follows;

(2.3)
$$v_1 \cdot v_2 = \int_K v_1(k_1; k) v_2(k^{-1}; k_2) dk ,$$
$$tr(v) = \int_K v(k; k^{-1}) dk ,$$
$$v^*(k_1; k_2) = \operatorname{conj}(v(k_2^{-1}; k_1^{-1})) .$$

Next we shall define a double representation μ of K on V as follows

(2.4)
$$\mu(k)v(k_1:k_2) = v(k_1k:k_2) v(k_1:k_2)\mu(k) = v(k_1:kk_2)$$

for all $k \in K$ and $v \in V$. Then it is obvious that μ is a unitary double representation of K on V with respect to the above norm.

Now let F be a finite subset of $\mathscr{C}(K)$ and put $\alpha_F(k) = \sum_{\delta \in F} \alpha_{\delta}(k) (k \in K)$ where $\alpha_{\delta} = d(\delta) \operatorname{conj}(\chi_{\delta})(\chi_{\delta})$ is the character of the class δ and $d(\delta) = \chi_{\delta}(1)$. Then we denote by V_F the subspace of V consisting all v in V such that

(2.5)
$$v = \int_{\kappa} \alpha_F(k) \mu(k) v dk = \int_{\kappa} \alpha_F(k) v \mu(k) dk .$$

Then we can easily prove that V_F is stable under μ and $\dim(V_F) < \infty$. Then let μ_F denote the restriction of μ on V_F .

Now let ω be an element in $\mathscr{C}^2(M)$ and fix it. Let $\underline{\omega}$ be an irreducible representation of M on U_{ω} whose class belongs to ω . Moreover, let \mathfrak{F}_{ω} (resp. \mathfrak{F}_{ω}') denote the space of the representation

(2.6)
$$\pi_{\omega} = \operatorname{Ind}_{K_{M}}^{K}(\underline{\omega} \mid K_{M}) \quad (\operatorname{resp.} \pi_{\omega,\nu} = \operatorname{Ind}_{MAN}^{G}(\underline{\omega} \otimes e^{\nu} \otimes 1) \quad \nu \in \mathscr{F}_{c}) .$$

(cf. Harish-Chandra [6] §4). Then we can easily prove that the mapping: $f \mapsto f|_{\kappa}$ (the restriction of f on K) is a unitary isomorphism of \mathfrak{F}'_{ω} onto \mathfrak{F}_{ω} . Thus we 'may identify these two spaces under the above mapping. For a fixed finite subset F of $\mathscr{C}(K)$, we put

(2.7)
$$P_F = \int_K \alpha_F(k) \pi_\omega(k) dk \quad \text{and} \quad \mathfrak{F}_\omega^F = P_F(\mathfrak{F}_\omega) \; .$$

Then we define $L = {}^{\circ} \mathscr{C}(M, V_F, \mu_F)$ and $L(\omega)$ as usual and obtain the following lemmas.

LEMMA 3. For each T in $\operatorname{End}(\mathfrak{F}_{\omega}^{F})$, we can associate a Ψ_{T} in $L(\omega)$ such that the mapping: $T \mapsto d_{\omega}^{1/2} \Psi_{T}$ is a linear isometry of $\operatorname{End}(\mathfrak{F}_{\omega}^{F})$ with the Hilbert-Schmidt norm onto $L(\omega)$ with L^{2} -norm, where d_{ω} is the formal degree of the class ω .

PROOF. See Harish-Chandra [6] §7. Ψ_T is defined for $T \in \text{End}(\mathfrak{G}^F_{\omega})$ as follows;

(2.8)
$$\Psi_T(m)(k_1:k_2) = \operatorname{tr}(\kappa_T(k_2:k_1)\underline{\omega})m)) \quad (m \in M \text{ and } k_1, k_2 \in K)$$

where for an orthonormal basis $\{h_i; 1 \leq i \leq p\}$ (resp. $\{u_j; 1 \leq j \leq q\}$) of \mathfrak{F}_{ω}^F (resp. U_{ω}), κ_T is the linear transformation on U_{ω} given by

(2.9)
$$\kappa_T(k_1; k_2) u = \sum_{1 \le i \le p} h_i(k_2)((T^*h_i)(k_1), u) \text{ for } u \in U_{\omega}.$$

Thus Ψ_r can be written as

$$(2.10) \qquad \Psi_T(m)(k_1:k_2) = \sum_{1 \leq i \leq p} \sum_{1 \leq j \leq q} ((T^*h_i)(k_1), \underline{\omega}(m)u_j)(h_i(k_2), u_j) .$$

LEMMA 4. Let notation be as above. Then we have,

(2.11)
$$E(P; \Psi_T; \nu; x)(1; 1) = \operatorname{tr}(\pi_{\omega, \nu}(x)T) \quad (x \in G) .$$

PROOF. See Harish-Chandra [6].

Now let τ_1, τ_2 be arbitrary elements in $\mathscr{C}(K)$ and put $F = \{\tau_1, \tau_2\}$. Then we denote by V_{τ_1, τ_2} the subspace of V consisting of all elements v in V_F satisfying;

(2.11)
$$v = \int_{K} \alpha_{\tau_1}(k) \mu(k) v dk = \int_{K} \alpha_{\tau_2}(k) v \mu(k) dk$$

Here we choose an orthonormal basis of $\mathfrak{G}^{F}_{\omega}$ as follows;

$$(2.12) \qquad \{ \varPhi_{\tau_1,i}, \varPhi_{\tau_2,j}; 1 \leq i \leq [\tau_1:\omega] \dim \tau_1, 1 \leq j \leq [\tau_2:\omega] \dim \tau_2 \},\$$

where dim $\tau_i(i=1, 2)$ is the dimension of the representation space of τ_i . Thus, using (2.10), we can write Ψ_T as follows.

$$(2.13) \qquad \Psi_{T}(m)(k_{1}:k_{2}) = \sum_{1 \leq i \leq d_{1}} \sum_{1 \leq r \leq q} (T^{*} \Phi_{\tau_{1},i}(k_{1}), \underline{\omega}(m)u_{r})(\Phi_{\tau_{1},i}(k_{2}), u_{r}) \\ + \sum_{1 \leq j \leq d_{2}} \sum_{1 \leq r \leq q} (T^{*} \Phi_{\tau_{2},j}(k_{1}), \underline{\omega}(m)u_{r})(\Phi_{\tau_{2},j}(k_{2}), u_{r}) ,$$

where $d_1 = [\tau_1; \omega] \dim \tau_1$ and $d_2 = [\tau_2; \omega] \dim \tau_2$. Now we assume that T belongs to End $(\mathfrak{F}_{\omega}^{\tau_1}, \mathfrak{F}_{\omega}^{\tau_2})$. Then we can write Ψ_T as

$$(2.14) \qquad \Psi_{T}(m)(k_{1}:k_{2}) = \sum_{1 \leq i \leq d_{2}} \sum_{1 \leq r \leq q} (T^{*} \Phi_{\tau_{2},j}(k_{1}), \underline{\omega}(m)u_{r})(\Phi_{\tau_{2},j}(k_{2}), u_{r}) .$$

In this case we can easily prove that Ψ_T is a V_{τ_1,τ_2} -valued function on M. Therefore we obtain the following lemma.

LEMMA 5. Let notation be as in Lemma 3. If T belongs to $\operatorname{End}(\mathfrak{F}_{\omega}^{\tau_1}, \mathfrak{F}_{\omega}^{\tau_2})$, then Ψ_T belongs to $L(\omega) \cap (\mathscr{H}_{\omega} \otimes V_{\tau_1, \tau_2})$.

Note:

$$L(\boldsymbol{\omega}) \cap (\mathscr{H}_{\boldsymbol{\omega}} \otimes V_{\tau_1,\tau_2}) = {}^{\circ} \mathscr{C}(\boldsymbol{M}, \ \boldsymbol{V}_F, \ \boldsymbol{\mu}_F) \cap (\mathscr{H}_{\boldsymbol{\omega}} \otimes \boldsymbol{V}_F) \cap (\mathscr{H}_{\boldsymbol{\omega}} \otimes \boldsymbol{V}_{\tau_1,\tau_2}) \\ = {}^{\circ} \mathscr{C}(\boldsymbol{M}, \ \boldsymbol{V}_{\tau_1,\tau_3}, \ \boldsymbol{\mu}_F) \cap (\mathscr{H}_{\boldsymbol{\omega}} \otimes \boldsymbol{V}_{\tau_1,\tau_3}) .$$

Next we shall reform the results of J. Arthur [1]. Let f be a function in $\mathscr{C}(G)$ (the scalar valued Schwartz space on G). Then we can define a usual Fourier transformation; $\hat{f}(\omega, \nu)$ and $\hat{f}(\Lambda)$ as follows;

(2.15)
$$\hat{f}(\omega, \nu) = \int_{a} f(x) \pi_{\omega,\nu}^{P}(x) dx \quad (\omega \in \mathscr{C}^{2}(M), \nu \in \mathscr{F})$$
$$\hat{f}(\Lambda) = \int_{a} f(x) \pi_{\Lambda}(x) dx \quad (\Lambda \in \mathscr{C}^{2}(G)),$$

where $\pi_{\omega,\nu}^{P} = \operatorname{Ind}_{MAN}^{q}(\underline{\omega} \otimes e^{\nu} \otimes 1)$ and π_{A} is the representation of G whose class belongs to Λ . Here we denote by \mathfrak{F}_{ω} and \mathfrak{F}_{A} the representation spaces of $\pi_{\omega,\nu}^{P}$ and π_{A} respectively. Then we choose an orthonormol basis of $\mathfrak{F}_{\omega}(\operatorname{resp.} \mathfrak{F}_{A})$ which transforms under $\pi_{\omega,\nu|K}^{P}(\operatorname{resp.} \pi_{A|K})$ (the restriction of $\pi_{\omega,\nu}(\operatorname{resp.} \pi_{A})$ to K) according to the irreducible representation τ in $\mathscr{C}(K)$ as follows;

$$(2.16) \qquad \{ \varPhi_{\tau,i}; 1 \leq i \leq [\tau; \omega] \dim \tau \} \quad (\text{resp. } \{ \varPhi'_{\tau,i}; 1 \leq i \leq [\Lambda; \tau] \dim \tau \})$$

where $[\tau: \omega] = [\tau_{1M}: \omega]$, $[\Lambda: \tau] = [\Lambda_{1K}: \tau]$. Put $d_{\tau} = [\tau: \omega] \dim \tau$ and $d'_{\tau} = [\Lambda: \tau] \dim \tau$.

Now for f in $\mathscr{C}(G)$, we define $V = C^{\infty}(K \times K)$ -valued function \tilde{f} as follows.

(2.17)
$$\widetilde{f}(x)(k_1, k_2) = f(k_1xk_2)$$
 for $k_1, k_2 \in K$ and $x \in G$.

Then we can easily prove that the mapping: $f \mapsto \tilde{f}$ is a topological linear isomorphism of $\mathscr{C}(G)$ onto $\mathscr{C}(G, V)$. Here we fix a finite subset $F = \{\tau_1, \tau_2\}$ in $\mathscr{C}(K)$ and put $p_{\tau_i} = \int_{\kappa} \alpha_{\tau_i}(k) \mu(k) dk (i=1, 2)$. Then we define f_{τ_1, τ_2} as follows.

(2.18)
$$f_{\tau_1,\tau_2}(x) = p_{\tau_1}(\widetilde{f}(x))p_{\tau_2} \quad \text{for} \quad f \in \mathscr{C}(G) \quad (x \in G) .$$

Obviously, f_{τ_1,τ_2} belongs to $\mathscr{C}(G, V_{\tau_1,\tau_2}, \mu_F)$ and moreover, the mapping $f \mapsto f_{\tau_1,\tau_2}$ is a topological linear isomorphism of

$$\mathscr{C}(G)_{\tau_1,\tau_2} = \{ f \in \mathscr{C}(G); \alpha_{\tau_1} * f * \alpha_{\tau_2} = f \}$$

onto $\mathscr{C}(G, V_{\tau_1,\tau_2}, \mu_F)$. Now we apply the arguments in §1 to the pair $(V_{\tau_1,\tau_2}, \mu_{\tau_1,\tau_2})(\mu_{\tau_1,\tau_2} = \mu_F | V_{\tau_1,\tau_2})$ instead of (V, τ) . Then we can obtain the homeomorphism F_{τ_1,τ_2} of $\mathscr{C}(G, V_{\tau_1,\tau_2}, \mu_F)$ onto $C^* \oplus \mathscr{C}(\mathscr{F})^*_*$, where n, n' depend on τ_1, τ_2 (see the definition of the mapping F). Then we have the following lemma.

LEMMA 6. Let notation be as above. Then we can choose an orthonormal basis: $\{\phi_i^j; 1 \leq i \leq n_j\}$ of $L(\omega_j)(resp. \{\psi_i^j; 1 \leq i \leq n'_j\}$ of $L^{\sigma}(\Lambda_j)$) satisfying the following relations;

$$(2.19) \quad d^{1/2}_{\omega_j}(\Phi_{\tau_1,p}, \hat{f}(\omega_j, \nu)\Phi_{\tau_2,q}) = \hat{f}_{\tau_1,\tau_2}(\phi_i^j, \nu), \quad where \quad i = d_{\tau_2}(p-1) + q \\ (1 \le p \le d_{\tau_1}, 1 \le q \le d_{\tau_2}, 1 \le j \le m)$$

and

$$d^{1/2}_{j}(\varPhi'_{\tau_{1}|p}, \hat{f}(\Lambda_{j})\varPhi'_{\tau_{2},q}) = (f_{\tau_{1},\tau_{2}}, \psi^{j}_{i}), \quad where \quad i = d'_{\tau_{2}}(p-1) + q \ (1 \leq p \leq d'_{\tau_{1}}, 1 \leq q \leq d'_{\tau_{2}}, 1 \leq j \leq m')$$

for $f \in \mathscr{C}(G)$.

PROOF. For each j, p, q, we have,

$$(\varPhi_{\tau_1,p}, \hat{f}(\omega_j, \nu)\varPhi_{\tau_2,q}) = \int_{\sigma} \overline{f(x)}(\varPhi_{\tau_1,p}, \pi^P_{\omega_j,\nu}(x)\varPhi_{\tau_2,q})dx$$
$$= \int_{\sigma} \overline{f(x)} \operatorname{tr}(\pi^P_{\omega_j,\nu}(x)T(\tau_1, \tau_2; j:p, q))dx$$

where $T(\tau_1, \tau_2; j; p, q)$ is an element in $End(\mathfrak{F}^{\tau_1}_{\omega}, \mathfrak{F}^{\tau_2}_{\omega})$ given by the following conditions;

 $(2.20) \quad (T(\tau_1, \tau_2; j; p, q) \varPhi_{\tau_1, p'}, \varPhi_{\tau_2, q'}) = \delta_{pp'} \delta_{q, q'} \text{ for } 1 \leq p' \leq d_{\tau_1} \text{ and } 1 \leq q' \leq d_{\tau_2}.$ Thus using Lemma 4, the above equation can be written as

$$\begin{split} \int_{G} \overline{f(x)} E(P; \Psi_{T(\tau_{1}, \tau_{2}; j; p, q)}; \nu; x)(1; 1) dx \\ &= \int_{G} \int_{K \times K} \overline{f(x)}(k_{1}; k_{2}) E(P; \Psi_{T(\tau_{1}, \tau_{2}; j; p, q)}; \nu; x)(k_{1}; k_{2}) dk_{1} dk_{2} dx \\ &= \int_{G} (f_{\tau_{1}, \tau_{2}}(x), E(P; \Psi_{T(\tau_{1}, \tau_{2}; j; p, q)}; \nu; x))_{V} dx \\ &= \widehat{f}_{\tau_{1}, \tau_{2}}(\Psi_{T(\tau_{1}, \tau_{2}; j; p, q)}, \nu) \quad (\text{see the definition of } \widehat{f} \text{ in } [8]) \; . \end{split}$$

However from Lemma 5 and its note, we can easily prove that $\{d^{1/2}_{\omega_j} \mathcal{Y}_{T(\tau_1,\tau_2;j,p,q)}; 1 \leq p \leq d_{\tau_1} \text{ and } 1 \leq q \leq d_{\tau_2}\}$ is an orthonormal basis of $L(\omega_j)$,

where $L = \mathscr{C}(M, V_{\tau_1, \tau_2}, \mu_{\tau_1, \tau_2})(\mu_{\tau_1, \tau_2} = \mu_F | V_{\tau_1, \tau_2})$. Therefore this basis is the desired one.

For the second relation we can choose the desired basis as follows;

$$\{d_{A_i}^{1/2}(\Phi_{\tau_1,p}, \pi_{A_i}(x)\Phi_{\tau_2,q})^{\sim}(k_1:k_2); 1 \leq p \leq d_{\tau_1} \text{ and } 1 \leq q \leq d_{\tau_2}\}$$
,

(note the orthogonal relation of the matrix coefficients of the discrete series for G). Q.E.D.

Now we shall define a Fourier transformation on $\mathcal{C}(G)$. Put

(2.21)
$$\underline{\mathscr{C}}(\hat{G}) = \bigoplus_{\tau_1, \tau_2 \in \mathscr{C}(K)} (C^{n'(\tau_1, \tau_2)} \bigoplus \mathscr{C}(\mathscr{F})^{n(\tau_1, \tau_2)}_*)$$

where $n(\tau_1, \tau_2)$ and $n'(\tau_1, \tau_2)$ denote the dependence of n and n' on τ_1, τ_2 . Then we denote by $\mathscr{C}(\hat{G})$ the subspace of $\underline{\mathscr{C}}(\hat{G})$ which consists of all $\bigoplus_{\tau_1, \tau_2}(a \bigoplus V) = \bigoplus_{\tau_1, \tau_2}((a_i^j) \bigoplus (v_i^j(\nu))) \in \underline{\mathscr{C}}(\hat{G})$ (of couse, j, i depend on τ_1, τ_2) satisfying the following conditions;

(i) for each triplet (p_1, q_1, q_2) of polynomials,

(2.22)
$$\sup_{\substack{\tau_1,\tau_2\in\mathscr{C}(K)\\1\leq j\leq m'(\tau_1,\tau_2)\\1\leq i\leq n'_i(\tau_1,\tau_2)\\1\leq i\leq n'_i(\tau_1,\tau_2)}} d_{A_j}^{1/2} |a_i^j| p_1(|A_j|)q_1(|\tau_1|)q_2(|\tau_2|) < \infty ,$$

(ii) for each set (p_1, p_2, q_1, q_2, n) of polynomials p_1, p_2, q_1, q_2 and an integer n,

$$\sup_{\substack{\tau_1,\tau_2\in\mathfrak{S}(K)\\\nu\in\mathscr{F}\\1\leq j\leq\mathfrak{m}(\tau_1,\tau_2)\\1\leq i\leq n_j(\tau_1,\tau_2)}} d_{\omega_j}^{1/2} \left| \left(\frac{d}{d\nu}\right)^n v_i^j(\nu) \right| p_1(|\underline{\omega}_j|) p_2(|\nu|) q_1(|\tau_1|) q_2(|\tau_2|) < \infty$$

(see the definitions of $|\tau_1|, |\tau_2|, |\Lambda_j|$ and $|\underline{\omega}_j|$ in [1]).

Next we define a Fourier transformation $F: \mathscr{C}(G) \to \mathscr{C}(\widehat{G})$ as follows;

(2.23)
$$F(f) = \bigoplus_{\tau_1, \tau_2 \in \mathscr{C}(K)} F_{\tau_1, \tau_2}(f_{\tau_1, \tau_2}) \text{ for } f \in \mathscr{C}(G) .$$

Then using Lemma 6, we can reform the results of J. Arthur [1] to the following form.

THEOREM 4. The mapping F is a homeomorphism of $\mathscr{C}(G)$ onto $\mathscr{C}(\widehat{G})$.

§3. An analogue of Paley-Wiener theorem on $\mathcal{C}(G)$.

In this section using the results in the preceding sections, we obtain an analogue of Paley-Wiener theorem on $\mathscr{C}(G)$. First we define $C^{\infty}_{\epsilon}(G; R)$

as usual, i.e., $\{f \in C_{\epsilon}^{\infty}(G); \operatorname{supp}(f) \subset G_{R}\}$. Next we define $\mathscr{H}(\widehat{G}; R)$ as follows;

(2.24)
$$\mathscr{H}(\hat{G}; R) = \mathscr{C}(\hat{G}) \cap \bigoplus_{\tau_1, \tau_2 \in \mathscr{G}(K)} \mathscr{H}(\tau_1, \tau_2; R) ,$$

where $\mathscr{H}(\tau_1, \tau_2; R)$ is the space $\mathscr{H}(R)$ in §1 corresponding to the case of $V = V_{\tau_1, \tau_2}$ and $\tau = \mu_{\tau_1, \tau_2}$. Then we obtain the following theorem.

THEOREM 5. Let notation be as above and f be in $\mathscr{C}(G)$. Then f belongs to $C^{\infty}_{*}(G; R)$ if and only if F(f) belongs to $\mathscr{H}(\widehat{G}; R)$.

PROOF. First let f be in $C^{\infty}_{c}(G; R)$. Then we can easily prove that the support of f_{τ_1,τ_2} is contained in G_R for all $\tau_1, \tau_2 \in \mathscr{C}(K)$. Thus we obtain $f_{\tau_1,\tau_2} \in C^{\infty}_{c}(G, \mu_{\tau_1,\tau_2}; R)$ and $F_{\tau_1,\tau_2}(f_{\tau_1,\tau_2}) \in \mathscr{H}(\tau_1, \tau_2; R)$ by Theorem 3 for all $\tau_1, \tau_2 \in \mathscr{C}(K)$. Therefore F(f) belongs to $\mathscr{H}(\hat{G}; R)$.

Next let F(f) be in $\mathcal{H}(\hat{G}; R)$. Here using the Fourier expansion on $K \times K$, we can obtain,

(2.25)
$$\widetilde{f} = \sum_{\tau_1 \tau_2 \in \mathbb{Q}} \int_{\tau_1, \tau_2} f_{\tau_1, \tau_2}.$$

Then from the assumption $F(f) \in \mathscr{H}(\hat{G}; R)$ we can obtain that $F_{\tau_1,\tau_2}(f_{\tau_1,\tau_2})$ belongs to $\mathscr{H}(\tau_1, \tau_2; R)$ for $\tau_1, \tau_2 \in \mathscr{C}(K)$. Therefore using Theorem 3, we have $f_{\tau_1,\tau_2} \in C_c^{\infty}(G, \mu_{\tau_1,\tau_2}; R)$. Thus, in particular $f_{\tau_1,\tau_2}(1; 1) \in C_c^{\infty}(G; R)$ and moreover, $f = \tilde{f}(1; 1) \in C_c^{\infty}(G; R)$. This completes the proof of theorem. Q.E.D.

NOTE. From the definitions of $\mathscr{C}(\hat{G})$ and $\mathscr{H}(\tau_1, \tau_2; R)$, $\mathscr{H}(\hat{G}; R)$ is the subspace of $\underline{\mathscr{C}}(\hat{G})$ which consists of all $\bigoplus_{\tau_1, \tau_2}((a_k)\bigoplus(v_i^j(\nu))\in\underline{\mathscr{C}}(G))$ satisfying the following conditions; for each $\tau_1, \tau_2\in\mathscr{C}(K)$,

(i) $(v_i^j(\nu)) \in \mathscr{H}(\mathscr{F})^{\mathfrak{n}(\tau_1,\tau_2)}_*$

ii)
$$a_k = \sum_{1 \le p \le 7} C_{pk} (d^{r(p)}/dv^{r(p)})|_{\nu = \nu(p)} v_{i(p)}^{j(p)}(s(p)\nu) \quad (1 \le k \le n'(\tau_1, \tau_2))$$

(iii) there exist constants C_N for which

$$|v_{i}^{j}(\nu + (-1)^{1/2}\eta)| \leq C_{N}(|\nu + (-1)^{1/2}\eta|)^{-N}e^{R|\eta|} \text{ for } \nu \in \mathscr{F} \text{ and } \eta \in \mathscr{F}^{+} \\ (1 \leq j \leq m(\tau_{1}, \tau_{2}), 1 \leq i \leq n_{j}(\tau_{1}, \tau_{2}))$$

(iv) for each triplet (p_1, q_1, q_2) of polynomials,

$$\sup_{\substack{\tau_1, \tau_2 \in \mathscr{G}(K) \\ 1 \le k \le \pi'(\tau_1, \tau_2)}} \left| \sum_{\substack{1 \le p \le \gamma \\ k}} d^{1/2} C_{pk} \frac{d^{\tau(p)}}{d\nu^{\tau(p)}} v^{j(p)}_{i(p)}(s(p)\nu) \right| \\
\times p_1(|\Lambda_k|) q_1(|\tau_1|) q_2(|\tau_2|) < \infty ,$$

where $\Lambda_k = \Lambda_j$, when $e'_k \in L^a(\Lambda_j)$ for $1 \leq k \leq n'$,

420

(v) for each set (p_1, p_2, q_1, q_2, n) of polynomials p_1, p_2, q_1, q_2 and an integer n,

$$\sup_{\substack{\tau_1,\tau_2\in\mathscr{S}(K)\\\nu\in\mathscr{T}\\1\leq j\leq m_i(\tau_1,\tau_2)\\1\leq i\leq n_j(\tau_1,\tau_2)}} d_{\omega_j}^{1/2} \left| \left(\frac{d}{d\nu}\right)^n v_i^j(\nu) \right| p_1(|\underline{\omega}_j|) p_2(|\nu|) q_1(|\tau_1|) q_2(|\tau_2|) < \infty$$

References

- [1] J. ARTHUR, Harmonic analysis of tempered distributions on semisimple Lie groups of real rank 1, Thesis, Yale Univ., 1970.
- [2] L. EHRENPREIS and F. I. MAUTNER, Some properties of the Fourier transform on semisimple Lie groups I, Ann. of Math., 61 (1955), 406-439.
- [3] L. EHRENPREIS and F. I. MAUTNER, Some properties of the Fourier transform on semisimple Lie groups II, Trans. Amer. Math. Soc., 90 (1957), 1-55.
- [4] HARISH-CHANDRA, Harmonic analysis on real reductive groups I, J. Functional Analysis, 19 (1975), 104-204.
- [5] HARISH-CHANDRA, Harmonic analysis on real reductive groups II, Invent. Math., 36 (1976), 1-55.
- [6] HARISH-CHANDRA, Harmonic analysis on real reductive groups III, Ann. of Math., 104 (1976), 117-201.
- [7] T. KAWAZOE, Some characterization of the Schwartz space and an analogue of Paley-Wiener type theorem on rank 1 semisimple Lie groups, Proc. Japan Acad., 55 (1979), 205-208.
- [8]] T. KAWAZOE, An analogue of Paley-Wiener theorem on rank 1 semisimple Lie groups I, Tokyo J. Math., 2 (1979), 397-407.
- ['9]] V. S. VARADARAJAN, Harmonic analysis on real reductive groups, Lecture Notes in Math., 576, Springer-Verlag, 1977.

Present Address: DEPARTMENT OF MATHEMATICS KEIO UNIVERSITY HIYOSHI-CHO, KOHOKU-KU YOKOHAMA 223