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A finite algebraic number field $K$ is said to be euclidean if, for any
integers $\alpha$ and $\beta(\neq 0)$ of $K$, there is an integer $\gamma$ of $K$ such that
$|N_{K}(\alpha-\beta\gamma)|<|N_{K}\beta|$ . It is well-known that there are exactly 21 quadratic
euclidean fields (see E. S. Bernes and H. P. F. Swinnerton-Dyer [1]).
As for cubic fields H. Davenport [4] showed that there are only a finite
number of euclidean fields which are not totally real. There are several
finiteness theorems like this. H. Heilbronn [2], [3], showed that, if $p$ is
a prime then the number of cyclic euclidean fields of degree $p$ is finite.
H. Davenport [5] (cf. J. W. S. Cassels [6]) also proved the finiteness of
the number of totally imaginary quartic euclidean fields.

In this paper we shall prove the following

THEOREM. There exist only a finite number of quartic euclidean
fields of the form $Q(\sqrt[4]{m})$ , where $m$ is $a$ 4th power-free rational integer
not expressible as 2 $p^{2}$ with a prime $p\equiv 3(mod 8)$ .

In proving Theorem we can restrict our consideration to some special
forms of quartic fields. Indeed for the fields $Q(\sqrt[4]{-m})$ , where $m$ is a
positive integer, the finiteness follows from the result of Davenport
mentioned above. Further C. J. Parry [7] proved that the class number
of the field $Q(\sqrt[4]{m})$ with a positive integer $m$ is even except those of
the following forms

(I) $Q(\sqrt[4]{p})p\equiv 5(mod 8),$ $Q(\sqrt[4]{4p})p\equiv 5(mod 8)$ ,
(II) $Q(\#\overline{p})p\equiv 3(mod 8),$ $Q(\sqrt[4]{2p})p\equiv 3(mod 8)$ ,

$Q(\sqrt[4]{4p})p\equiv 3,7(mod 8),$ $Q(\sqrt{8p})p\equiv 3(mod 8)$ ,
(III) $Q(\sqrt[4]{2p^{2}})p\equiv 3(mod 8),$ $Q(\forall\overline{2})$ ,

where $p$ is a rational prime. Thus our theorem is reduced to the state-
ment that the number of euclidean fields of the form (I) or (II) is finite,
since an algebraic number field of class number greater than one is not
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euclidean. (As for the remaining case (III) the problem is still $opeIl$

Our method, which is similar to that of Heilbronn [2], [3], can not $b$

available for this case; see Remark of Lemma 2.)
For the proof we prepare two lemmas.

LEMMA 1. If $d$ is a sufficiently large positive integer of one of th
following form $s$

(i) $d=p,$ $p\equiv 1(mod 4)$ ,
(ii) $d=4p$ or $8p,$ $p\equiv 3(mod 4)$ ,

where $p$ is a prime, then there exist two rational primes $q_{1}=q_{1}(d),$ $q_{2}=$

$q_{2}(d)$ satisfying

$(\frac{d}{q_{1}})=(\frac{d}{q_{2}})=-1$ ,

were $(\frac{d}{q})$ denotes the Kronecker symbol, and

(1) $7\leqq q_{1}<q_{2}<p^{1/0}$ , if $d$ is of the form (i) ,
$3\leqq q_{1}<q_{2}<p^{1/3}$ , if $d$ is of the form (ii).

To prove this lemma we need an estimate for character sums obtaine $($

by D. A. Burgess [8]: For any $\epsilon>0$ there exists a $\delta>0$ such that if $ $

is a non-principal character to a (sufficiently large) prime modulus $X$

and if $H$ is an integer satisfying $H>p^{1/4+\epsilon}$ , then

(2) $|,\sum_{*=N+1}^{N+H}\chi(m)|<Hp^{-\delta}$

for every $N$.
PROOF OF LEMMA 1. Let $d$ be of the form (i). Then the Kronecke

symbol is a non-principal character $\chi(n)$ modulo $p$ . Assume that th
number of primes $l$ satisfying $\chi(l)=-1$ and $7\leqq l<p^{1/6}$ is at most one
Put

$x=p^{1/4+0.01},$
$R=R(p)=\prod_{/q<p^{10},\chi(q)=-1}q$ .

Note that $R$ is a product of at most 2, 3, 5, and a prime $l$ . First $W^{(}$

observe

(3)
$(\#,R)=1\sum_{\#\leqq x}\chi(n)=\sum_{r|R}\mu(r)\sum_{\leqq x}\chi(n)=o(x)r|\#$ ’

where $\mu(r)$ denotes Mobius function. In fact for $r\leqq p^{0\cdot 00f}$ we have $b^{7}$.
(2) with $\epsilon=0.005$
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$n\leqq x\sum_{r|n}\chi(n)=\chi(r)\sum_{n\xi x/r}\chi(n)=O(p^{1/4+0\cdot 01-\delta})$
.

And for $r>p^{0\cdot 006}$ ,

$|$

$\sum_{r|f\iota,n\leqq x}\chi(n)|\leqq$
$\sum_{r\}\prime l,n\leqq x}1=O(p^{1/+0\cdot 00b})$

,

which proves (3). On the other hand,

$tnR)=1\sum_{\dot{n}\leqq x}\chi(n)=\sum_{n\leqq x}1-2\sum_{\chi(n)=-1}1(n,R)=1(\iota,R)=1$

$n\leqq x$

$=\sum_{r|R}\mu(r)[\frac{x}{r}]-2\sum_{/p^{1}\leq q<x}\sum_{(6,,R)=1}1$

$\chi(q)---1q\uparrow R$ $n\xi xq|n$

since $p^{2/6}>p^{1/4+0\cdot 01}=x$ and $\chi(q)=1$ for every prime $q\uparrow R$ less than $p^{1/6}$ .
Here

$\sum_{(\iota,R)=1}1=\sum_{r|R}\mu(r)\frac{x}{qr}+O(1)$

$ q|’\iota$

$n\leqq x$

so that

$(\cdot,R)=1\sum_{\sim\leqq x}\chi(n)=\{x+O(1)-2xp^{1/\mathfrak{g}}\leqq q\leqq x$

where $\pi(x)$ denotes as usual the number of primes not exceeding $x$ .
Combining this with (3) we obtain

(4)
$p^{1/6}<q\leqq x\chi(q)=-1\sum_{q*R}\frac{1}{q}=\frac{1}{2}+o(1)$

as $ p\rightarrow\infty$ since

$\sum_{r|R}\frac{\mu(r)}{r}\geqq\prod_{q|R}(1-\frac{1}{q})$

2 $(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{5})(1-\frac{1}{7})$

and

$\pi(x)=o(\frac{x}{\log x})$ .
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But from Mertens’ theorem

$\sum_{q\leqq a}\frac{1}{q}=\log$ log $x+C+o(\frac{1}{\log x})$ ,

where $C$ is an absolute constant, we have

$p^{1/0}\sum_{\leq q\leq x}\frac{1}{q}=\log(\frac{\log x}{\log p^{1/0}})+o(1)$

$=\log 1.56+o(1)=0.44\cdots+o(1)$ ;

which contradicts to (4).
For $d$ of the form (ii) the proof is similar but easier. In this $cas\{$

we can do in place of Burgess’ estimate with the weaker one obtaine $($

by Polya and Vinogradov;

(5) $\sum_{m=N+1}^{N+H}\chi(m)=O(\sqrt{M}\log M)$

where $N,$ $H$ are arbitrary integers and $\chi$ is a non-principal character $te$

a (not nesessary prime) modulus $M$.
Next we give a criterion for non-euclidean fields.

LEMMA 2. Let $K$ be an algebraic number field of degree $n$ . If ther
exist a rational prime $p$ which is totally ramified in $K$ and positive
integers $a,$ $b$ with $a+b=p$ such that $a$ is $a$ nth power residue mod $X$

and both $a$ and $-b$ are not norms of integers of $K$, then $K$ is not
euclidean.

PROOF. Suppose that $K$ is euclidean. Since the ring of all integers
in $K$ is a principal ideal domain, there is a prime $\pi$ of $K$ such that
$(p)=(\pi)^{*}$ . Choose a rational integer $u$ satisfying

(6) $u^{*}\equiv a(mod p)$ .
Applying the euclidean algorithm in $K$ to $u$ and $\pi$ , we have
(7) $u\equiv\alpha(mod \pi)$ , $|N_{K}\alpha|<|N_{K}\pi|$

for some integer $\alpha$ of $K$. Let $\overline{K}$ be the Galois closure of $K$ over $Q$ , and
denote by $\varphi$ an arbitrary conjugate map of $K$ into $\overline{K}$, and by $(\overline{\beta})$ a
principal ideal of $\overline{K}$ generated by $\beta$ . $(\overline{\pi})=(\overline{p})=(\overline{\varphi(\pi)})$ , so that $(\overline{\pi})=\overline{(\varphi(\pi}))$ ,
we have $u\equiv\varphi(\alpha)(mod (\overline{\pi}))$ in $\overline{K}$. Multiplying over all the conjugate maps
$\varphi$, we get $u\equiv\prod_{\varphi}\varphi(\alpha)=N_{K}\alpha(mod (\overline{\pi}))$ , so that $u^{\prime\prime}\equiv N_{K}\alpha(mod p)$ . Hence we
have by (6) $N_{K}\alpha=a+rp$ for some rational integer $r$ . It follows therefore



EUCLID $S$ ALGORITHM 383

from (7) that $|a+rp|=|N_{K}\alpha|<|N_{K}\pi|=p$ . Hence $r$ must be $0$ or $-1$ ,
which yields $ a=N_{K}\alpha$ or $-b=N_{K}\alpha$ ; a contradiction.

REMARK. Lemma 2 is not applicable to a field of the form (III),

since 2 is the only rational prime which is totally ramified in $K/Q$ .
PROOF OF THEOREM. As have already pointed out we can restrict

our argument to the fields of the form (I) and (II). Our proof is to give
a decomposition $p=a+b$ in Lemma 2 for all sufficiently large $p$ .

We consider first the case (II). But to avoid the complexities of
notations we shall prove here the finiteness only for the fields of the form
$Q(\sqrt[4]{p}),$ $p\equiv 3(mod 8)$ . The following arguments are also valid for the
remaining cases in (II).

Now according to Lemma 1, there exist two primes $q_{1},$ $q_{2}$ satisfying

$(\frac{4p}{q_{1}})=(\frac{4p}{q_{2}})=-1$ , $3\leqq q_{1}<q_{2}<p^{1/3}$ ,

for sufficiently large $p$ . Choose rational integers 8, $t$ such that

(8) $p=sq_{1}+tq_{2}$ , $0<t<q_{1}$

so that $s>0$ since $tq_{2}<p^{2/8}$ . If $(q_{1}, s)=1,$ $sq_{1}$ is not a norm of an ideal
of $K$, since $q_{1}$ is not a norm of an ideal of the quadratic subfield
$Q(\sqrt{p})$ of $K$. Similarly for $tq_{2}$ . Otherwise i.e., $(q_{1}, s)\neq 1$ , we write

(9) $p=sq_{1}+t^{\prime}q_{2}$

where $s’=s-tq_{2},$ $t^{\prime}=t(q_{1}+1)$ . Then $sq_{1},$ $t^{\prime}q_{2}$ are positive since $0<t^{\prime}q_{2}<$

$q_{1}^{2}q_{2}<p$ . Furthermore $(q_{1}, s^{\prime})=(q_{1}, s-q_{2}t)=1$ and $(q_{2}, t^{\prime})=(q_{2}, t(q_{1}+1))=1$

since $q_{1}\neq 2$ , and so both $s’ q_{1}$ and $tq_{2}$ are not norms of ideals of $K$ as in
the previous case. Thus we have a decomposition $p=a+b$ defined by
(8) or (9). In order to apply Lemma 2 we have only to show that either
$a$ or $b$ is a 4th power residue mod $p$ . But this follows immediately from
the relations

$(\frac{a}{p})=(\frac{-b}{p})=(-1)^{(p-1)/2}(\frac{b}{p})$

and $p=3(mod 4)$ . Therefore $K$ is not euclidean.
Now let $K$ be a field of the form (I) with $p$ sufficiently large.

According to Lemma 1, there exist two primes $q_{1},$ $q_{2}$ satisfying

$(\frac{p}{q_{1}})=(\frac{p}{q_{2}})=-1$ , $7\leqq q_{1}<q_{2}<p^{1/6}$ .
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Choose positive integers $\epsilon,$
$t$ such that $p=sq_{1}+tq_{2},0<t<q_{1}$ . Let $S$ denott

the set of all the non-negative integers $n$ not exceeding $x=(p/q_{1}q_{g})-(t/q_{1}$

such that $q_{1}(s-nq_{2})$ is a 4th power residue mod $p$ and $satisfyin\xi$

$(q_{1}, s-nq_{2})=1,$ $(q_{2}, t+nq_{1})=1$ . Since, as in the previous case, $q_{1},$ $q_{2}ar($

not norms of ideals of $K,$ $p,$ $a=q_{1}(s-nq_{2})$ , and $b=q_{l}(t+nq_{1})$ with $nei$

satisfy all the conditions required in Lemma 2. Therefore it is sufficient
to show that $S$ is not empty. It is easy to see that

$|S|=\sum_{0\leqq n\leqq x}\frac{1}{4}\sum_{x^{4}(q_{1},\epsilon-q_{2})=1=\iota}\chi(q_{1}(s-nq_{2}))$
,

where $|S|$ is the cardinality of $S$ and $\sum_{x^{4}}=1$ denotes the sum ranging
over all the characters mod $p$ of order 4. Thus

$|S|=\sum_{0\leqq n\leqq x}\frac{1}{4}\sum_{\chi^{4}=1}\chi(q_{1}(s-nq_{2}))$

$-$ $\sum_{q_{1}1\cdot-\hslash q_{2}}\frac{1}{4}\sum_{\chi^{4}=1}\chi(q_{1}(s-nq_{2}))$

or $q_{2}|t+q_{1}$

$0\leqq n\leqq x$

$\geqq\frac{x}{4}-\frac{1}{4}|$
$\sum_{=,\chi^{4}1\chi\neq 1}\sum_{0\leqq n\leq x}\chi(q_{1}(s-nq_{2}))|$

$-\sum_{0\leqq\iota\leqq x^{2}}1-\sum_{q_{2}q_{1}|\cdot-nq|t+*q}1-O(1)$
.

Noticing that $q_{1}\geqq 7,$ $q_{2}\geqq 11$ and using Polya-Vinogradov’s estimate (5)
we obtain

$|S|\geqq x(\frac{1}{4}-\frac{1}{7}-\frac{1}{11})-O\sqrt{p}$ log $p$)

$\geqq\frac{5}{308}p^{2/\$}-O$($\sqrt{p}$ log p)

and hence $|S|>0$ if $p$ is sufficiently large. This $proves_{-}^{\sim}the$ theorem for
the case (I).
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