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Introduction

Let $G$ be a locally compact group and $\sigma$ be a bicontinuous auto-
morphism of $G$ . We call the automorphism $a$ expansive if there exists
an open neighborhood $U$ of the identity $e$ in $G$ such that $x\in U$ and $x\neq e$

imply $\sigma^{n}(x)\not\in U$ for some integer $n$ . Obviously, $\sigma$ is expansive if and
only if $\bigcap_{i=-\infty}^{\infty}\sigma(U)=\{e\}$ holds.

The structures of expansive automorphisms and of compact groups
admitting them have been investigated by several authors, including
Eisenberg $[4, 5]$ , Wu [12], Lam [8], Lawton [9] and Dateyama and the
present author [2]. However the structure of locally compact groups
which admit expansive automorphisms are yet unknown, except in special
cases. For example, if a locally compact almost maximal group admits
an expansive automorphism, then it is abelian [8]. But there exists a
locally compact connected nilpotent group which admits an expansive
automorphism [1].

It will be interesting to investigate what kind of locally compact
connected groups admit expansive automorphisms. Our aim is to discuss
this problem. However the nilpotent case has been already examined
in [1].

Throughout this paper, all subgroups of the group $G$ are closed
subgroups and all automorphisms are onto and bicontinuous. The
restriction and the factor of an automorphism will be denoted by the
same symbols if there is no risk of confusion.

\S 1. Main results.

We shall show the following Theorems 1 and 2 which are main results
of this paper.
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THEOREM 1. Let $G$ be a locally compact connected group and $\sigma b6$

an automorphism of G. Assume that $G$ is solvable. If $a$ is $expansive_{l}$

then $G$ is nilpotent.

It is known (Lemma 4.2 of [7]) that there exists in $G$ the maximum
compact normal subgroup $K$ such that $G/K$ is an analytic group. Since
$K$ is maximal normal in $G$ , it is strictly invariant with respect to every
automorphism. If $\sigma:G\rightarrow G$ is an expansive automorphism, then $\sigma:K\rightarrow R$

is also expansive. Hence $K$ is metrizable (cf. see [3]), whence so is $G$ .
It is unknown yet whether every factor automorphism is expansive

whenever an automorphism $a:G\rightarrow G$ is expansive. However, in case $G$

is compact, it is proved in [2] that if an automorphism is expansive,
then every factor automorphism is also expansive. In the locally compact
case we have

THEOREM 2. Let $G$ be a locally compact connected solvable group
and $K$ be as above. If $\sigma:G\rightarrow G$ is an expansive automorphism, then
the factor automorphism $a:G/K\rightarrow G/K$ is also expansive.

For the proof of Theorems 1 and 2, we need a structure theorem
of a locally compact connected group (Theorem 13 of [7]). Since $G$ is
locally compact connected and solvable, it has maximal compact subgroups,
and all such subgroups are connected and are conjugate to each other.
Let $A$ denote one of them. Then $G$ contains subgroups $H_{1},$

$\cdots,$
$H_{r}$ all

isomorphic to the vector group and such that any element $g\in G$ can be
split uniquely and continuously in the form

\langle 1) $g=h_{1}\cdots h_{r}a$ , $h_{i}eH_{l}$ , $a\in A$ .
In particular, the space of $G$ is the direct product of the compact space
of $A$ and that of $H_{1}\times\cdots\times H_{r}$ , which is homeomorphic to the r-dimensional
Euclidean space. It is obvious that the subgroup $K$ is contained in $A$ .
Since $K$ is a normal abelian subgroup of $G$ , it is central in $G$ (see
Theorem 4 of [7]).

PROOF OF THEOREM 1. Using Theorem 2 and the following Lemma
1, we obtain easily Theorem 1. Indeed, under the notations of Theorem
2, $G/K$ is analytic and $\sigma:G/K\rightarrow G/K$ is expansive. Since $G$ is solvable,
$G/K$ is also solvable and hence it is nilpotent by the following Lemma 1.
Let $K_{o}$ be the connected component of the identity of $K$, then $K_{o}$ is
normal and by Lemma 2.2 of [7] it is abelian. Thus $K_{o}$ is central in $G$

(Theorem 4 of [7]). Since $K/K_{o}$ is totally disconnected and normal, $K/K$.
is also central in $G/K.$ . Therefore $G$ is nilpotent.
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Let $X$ be an analytic group and $\sigma$ be an automorphism of $X$. We
denote by $\mathscr{L}(X)$ the Lie algebra of $X$ and by $ d\sigma$ the differential of $\sigma$ .
The exponential map $\mathscr{L}(X)\rightarrow X$ is a real analytic diffeomorphism of
some open connected neighborhood of the zero vector in $Z(X)$ onto an
open connected neighborhood of the identity in $X$, and $\sigma\circ$ exp $=\exp\circ da$

holds.

LEMMA 1. With the above notations, if $X$ is solvable and $\sigma$ is ex-
pansive, then $X$ is nilpotent.

PROOF. Since $-\mathscr{G}(X)$ is a finite-dimensional vector space, it follows
from [4] that $d\sigma:\mathscr{L}(X)\rightarrow \mathscr{L}(X)$ is expansive if and only if all the
eigenvalues of $ d\sigma$ are off the unit circle.

It will be enough to show that $\mathscr{L}(X)$ is nilpotent to get the con-
clusion of the lemma. For the proof we shall use the technique in [6]
(p. 151). Let $ \mathscr{G}(X)=\sum_{\alpha eA}\mathfrak{G}^{\alpha}$ be the decomposition of $\mathscr{L}(X)$ into
generalized eigenspaces with respect to $ d\sigma$ , that is, $\Lambda$ is a suitable
indexing set and

$\mathfrak{G}^{\alpha}=$ { $Ye\mathscr{L}(X):f_{\alpha}^{r}(d\sigma)Y=0$ for some $\gamma>0$}

where $f_{\alpha},$ $\alpha\in\Lambda$ , are irreducible polynomials with real coefficients. It is
easy to see that for any $\alpha e\Lambda$ all the eigenvalues of $d\sigma_{1\mathfrak{G}^{\alpha}}$ have the same
absolute value, say, $\lambda_{\alpha}$ . We now put $\mathfrak{G}^{+}=\sum_{\lambda_{\alpha}>1}\mathfrak{G}^{\alpha}$ and $\mathfrak{G}^{-}=\sum_{\lambda_{\alpha}<1}\mathfrak{G}^{\alpha}$ .
Then it is easy to see that $\mathfrak{G}^{+}$ and $\mathfrak{G}^{-}$ are nilpotent Lie subalgebras of
$\mathscr{L}(X)$ . Since $\mathscr{L}(X)$ is solvable, it follows from Lie’s theorem that the
nilradical of .E4(X) contains $\mathfrak{G}^{+}$ and $\mathfrak{G}^{-}$ . On the other hand, since all
the eigenvalues of $ d\sigma$ are off the unit circle, we get $-\mathscr{G}(X)=\mathfrak{G}^{+}+\mathfrak{G}^{-}$ ,
and hence $X$ is nilpotent.

We shall show Theorem 2 in the remainder of this section.

PROOF OF THEOREM 2. We consider the following cases: (i) $K$ is
totally disconnected, (ii) $K$ is not so.

We first show Case (i). Since $G$ is a locally compact connected
metrizable group and $K$ is totally disconnected, $G$ is locally the direct
product of $K$ and $L$ where $L$ is some local Lie group (cf. pp. 182\sim 183

of [10]). Let $W$ be an expansive neighborhood for $(G, \sigma)$ . Then $L\cap W$

is open in $L$ and it is a local Lie subgroup of $L$ . Since $K$ is totally
disconnected, $\sigma$ induces a local automorphism of $L\cap W$. Thus there is
an open neighborhood $U$ of $L\cap W$ such that $\sigma^{-1}(U)$ and $\sigma(U)$ are con-
tained in $L\cap W$. Since $U_{1}=\sigma^{-1}(U)\cap U\cap a(U)$ is open in $L,$ $U_{1}K$ is also
open in $G$ and
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$\bigcap_{i=-1}^{1}a(U_{1})K=\{\bigcap_{=-}^{2}\sigma^{i}(U)\}K$ (since $\sigma^{-1}(U_{1}),$ $\sigma(U_{1})\subset U_{1}$)

$=\{\bigcap_{=-1}^{1}\sigma^{i}(U_{1})\}K$ .
By induction we now have

$\bigcap_{-\infty}^{\infty}\sigma^{i}(U_{1})K=\{\bigcap_{-\infty}^{\infty}\sigma^{i}(U_{1})\}K$

$=K$ (since $U_{1}\subset W$).

Since $U_{1}$ is open in $L$ and $U_{1}K$ is also open in $G$ , $\dot{U}=\{xK:xeU_{1}\}$ is ar
open neighborhood of the identity of $G/K$ such that $\bigcap_{-\infty}^{\infty}\sigma^{t}(\dot{U})=\{K\}$

This implies that $\sigma:G/K\rightarrow G/K$ is expansive.
It remains to show Case (ii). To do this, we shall prepare the

following

LEMMA 2. Let $A$ and $K$ be as above. Then there exists a subgroup
$K_{1}$ such that $A=KK_{1}$ and $N=K\cap K_{1}$ is totally disconnected.

PROOF. As before we denote by $K_{o}$ the connected component of the
identity of $K$. Let $A^{*}$ denote the character group of $A$ and $K_{o}^{*}$ the
annihilator of $K_{0}$ in $A^{*}$ , then $K_{o}^{*}$ is the character group of the factor
group $A/K_{0}$ . On the other hand, $A^{*}/K_{o}^{*}$ is the character group of $K_{O^{}}$

Since $K_{o}$ is known to be finite-dimensional ([9]), $A^{*}/K_{0}^{\star}$ must be torsion
free and rank $(A^{*}/K_{o}^{*})=\dim(K_{o})<\infty$ . Hence we can find a subgroup $K_{1}^{\iota}$

of $A^{*}$ such that $K_{1}^{*}\cap K_{0}^{*}=\{1\}$ and rank $(K_{1}^{*})=rank(A^{*}/K_{0}^{*})$ . From those,
we have

rank $(A^{*})=rank(A^{*}/K_{o}^{*})+rank(K_{0}^{*})$

$=rank(K_{1}^{*})+rank(K_{0}^{*})$

$=rank(K_{1}^{*}\times K_{2}^{*})$ ,

so that $A^{*}/(K_{o}^{*}\times K_{1}^{*})$ is a torsion group. Take the annihilator of $K_{o}^{*}$

and $K_{1}^{*}$ in $A$ respectively. Then we have at once the conclusion of
the lemma.

Since $A/K\subset G/K$ and $G/K$ is analytic, $A/K$ is a torus and by Lemma
2 so is $K_{1}/N$ where $N=K\cap K_{1}$ . Thus $K_{1}$ is locally the direct product of
$N$ and $L$ where $L$ is some local Lie group. So we have that $LK$ is
open in $A$ . We write $H=(\prod_{i=1}^{r}H_{i})L$ , where each $H$ is the subgroup in
the splitting (1). Since $HK$ is homeomorphic to the product space $H\times R$

with the product topology, $H$ has an open subset $V$ of $H$ such that
$\sigma^{-1}(V)$ and $a(V)$ are contained in $HK$. It is easy to verify that $\sigma$
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induces open maps $\sigma_{1}$ and $a_{1}^{-1}$ , each from $V$ into $H$, such that $a_{1}(V)K=$

$a(V)K$ and $a_{1}^{-1}(V)K=a^{-1}(V)K$.
Let $W$ be an expansive neighborhood for $(G, \sigma)$ . Then $V_{1}=W\cap V$

is open in $H$, and $W_{1}=a_{1}^{-1}(V_{1})\cap V_{1}\cap a_{1}(V_{1})$ is also open in $H$. Hence
$W_{1}K$ is open in $G$ . We now have

$\bigcap_{i=-1}^{1}a^{i}(W_{1})K=\{\bigcap_{i=-1}^{1}\sigma_{1}^{l}(W_{1})\}K=\{\bigcap_{i=-1}^{1}\sigma(W_{1})\}K$ ,

and by induction

$\bigcap_{i=-\infty}^{\infty}\sigma^{i}(W_{1})K=\{\bigcap_{i=-\infty}^{\infty}a^{i}(W_{1})\}K=K$ .
Since $W_{1}K$ is open in $G,\dot{W}=\{xK:xeW_{1}\}$ is an open neighborhood of the
identity of $G/K$ such that $\bigcap_{i=-\infty}^{\infty}a^{i}(\dot{W})=\{K\}$ . Therefore $\sigma:G/K\rightarrow G/K$

is expansive.
The proof of Theorem 1 is completed.
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