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Introduction

In part II we consider the general unimodal linear transformations,
that is, a family of maps from $[0,1]$ into itself which take the extrem-
um at $c$ for some $c\in(O, 1)$ and are linear on each intervals $[0, c]$ and
$[c, 1]$ . It is not difficult to show that, except for some trivial exceptions,
the consideration of the general unimodal linear transformations defined
above can be reduced to that of the special class $\{f_{a,b};b>1,$ $ab>1$ ,
$a+b\geqq ab\}$ defined in the following way:

$f_{a,b}(x)=\left\{\begin{array}{ll}ax+\frac{a+b-}{b}ab & for 0\leqq x\leqq 1-\frac{1}{b}\\-b(x-1) & for 1-\frac{1}{b}\leqq x\leqq 1.\end{array}\right.$

In the cases which will be discussed below there will appear phe-
nomena called “window” and “islands”, which did not occur in the case
$a=b$ of part I. Let us explain these cases, dividing the case $b=4$ into
several classes according to the behavior of the corresponding $f_{a,b}$ .
1) The case of $0<a<1/4$ (that is, the case of $ab<1$).

In this case, there exists a unique periodic orbit with period 2 and
all points except the fixed point approach this periodic orbit. So this
class is a stable class, and we omit this class from further consideration.
2) The case of $a=1/4$ (that is, the case of $ab=1$).

Let $A_{0}=[0,3/4]$ and $A_{1}=[13/16,1]$ , then we have $f_{a,b}A_{0}=A_{1},$ $f_{a,b}A_{1}=$

$A_{0}$ , and $f_{a,b}^{4}|_{A_{i}}$ is the identity map on $A_{i}(i=0,1)$ and every orbit starting
from $(3/4, 13/16)-\{4/5\}$ enters into $A_{0}\cup A_{1}$ . So, this class is also stable.
3) $Thecaseofl/4<a\leqq 4/15$ (that is, the case of ab $>1,$ $(a+b-ab)/b\geqq b/(b+1)$).

There exist a natural number $m$ and intervals $A_{0},$ $A_{1},$
$\cdots,$

$A_{2^{m}-1}$ such
that $f_{a,b}A_{i}=A_{i+1}$ for $0\leqq i\leqq 2^{m}-2$ and $f_{a,b}A_{2^{m}-1}=A_{0}$ , and every orbit start-
ing from $[0,1]-\bigcup_{i=0}^{2^{m}-1}A_{l}$ (except the fixed point of $f_{a,b}^{2^{m}}$ ) enters into
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$\bigcup_{i=0}^{2^{m}-1}A_{i}$ . In this case, $f_{a,b}$ has an invariant measure (absolutely conti
nuous with respect to the Lebesgue measure) whose support is equal $t($

$\bigcup_{i=0}^{2^{m}-1}A_{i}$ , and, with respect to this measure, $f_{a,b}$ is ergodic but not
weakly mixing. But $f_{a,b}^{2^{\prime\hslash}}|_{A_{i}}$ is weak Bernoulli. And $f_{a.b}$ has period $ 2^{m}\times$

odd $(\neq 1)$ as the maximal period (in the sense of $6arkovskii[8]$). Wc
denote by $D_{0}$ the domain of parameters $(a, b)$ with above properties
(See Figure 1.)
4) The case of $4/15<a\leqq 1/3$ (that is, the case of $ b/(b+1)>(a+b-ab)/b\geqq$ ]

$-1/b)$ .
In the case $a=1/3,$ $f_{a,b}$ has period 3 as the maximal period. Tht

interval $4/15<a<1/3$ can be divided into sub-intervals $a_{n}.\leqq a<a_{n-1}$ , in
which $f_{a,b}$ has period $2m+1$ as the maximal period, for $m\geqq 2$ . For $a$ in

FIGURE 1

each of these intervals, $f_{a,b}$ has an invariant measure (absolutely continuouf
with respect to the Lebesgue measure) whose support is equal to $[0,1]$

and with respect to this measure, $f_{a,b}$ is weak Bernoulli. We denote b3
$D_{1}$ the domain of parameters with these properties.

These cases mentioned above are essentially the same as those of
part I $(a=b)$ ; that is, case 3) (resp. case 4)) corresponds to the case
$1<a\leqq\sqrt{2}$ (resp. $\sqrt{2}<a\leqq(\sqrt{5}+1)/2$) of part I. But as we mention in
the following, phenomena quite different from those for the case $a=l$

will appear in general.
5) The case of $1/3<a\leqq 1/2$ (that is, the case of $a^{2}b\leqq 1,$ $(a+b-ab)/b<1-1/b$)

In this case, there exists a stable periodic orbit with period 3 and
almost all orbits approach this periodic orbit, and so $f_{a,b}$ does not $hav\epsilon$

an absolutely continuous invariant measure. We call this case window’ $ $
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The topological entropy of $f_{a,b}$ is equal to log $(\sqrt{5}+1)/2$ in this case. We
denote this domain of parameters by $D_{2}^{(1)}$ . (The case $a=1/2$ is a little
bit different, but essentially the same as mentioned above.) (See Figure
2.)
6) The case of $1/2<a\leqq(1+\sqrt{257})/32$ (that is, the case of $a^{2}b>1$ ,
$a+b\geqq a^{2}b^{2},$ $(a+b-ab)/b<1-1/b)$ .

In this case there exist sub-intervals $J_{0},$ $J_{1},$ $J_{2}$ of $[0,1]$ which satis-

FIGURE 2

fy that $f_{a.b}J_{i}=J_{i+1}$ for $i=0,1,$ $f_{a,b}J_{2}=J_{0}$ and almost all orbits starting
from $[0,1]-\bigcup_{l=0}^{2}J_{l}$ enter into $\bigcup_{i=0}^{2}J_{i}$ . And $f_{a,b}$ has an absolutely conti-
nuous invariant measure whose support is equal to $U_{i=0}^{2}J_{i}$ . With re-
spect to this measure, $f_{a.b}$ is ergodic but not weakly mixing. In this
sense these intervals $J_{i}$ behave like islands of stability. So, we will call
this case “islands”. On the other hand, in $[0,1]-\bigcup_{i=0}^{2}J_{i}$ there exists an
uncountable subset $B$ of Lebesgue measure $0$ , invariant under $f_{a,b}$ , on
which $f_{a,b}$ behaves chaotically. In this case the topological entropy of
$f_{a,b}$ is also equal to log $(\sqrt{5}+1)/2$ . We denote this case by $D_{2}^{(2)}$ . (See
Figure 3.)
7) The case of $(1+\sqrt{257})/32<a<4/3$ (that is, the case of $a+b<a^{2}b^{2}$ ,
$(a+b-ab)/b<1-1/b)$ .

In this case truly chaotic phenomenon appears, that is, $f_{a,b}$ has
period 3, and has an absolutely continuous invariant measure with its
support $[0,1]$ and with respect to this measure, $f_{a,b}$ is weak Bernoulli.

The Table 1 summarizes these phenomena mentioned above.
As we have indicated in the remarks above we see that these uni-

modal linear transformations (though they represent quite simple models)
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FIGURE 3

show much complicated behavior. (cf. [6], [7].)
Finally, we explain the organization of this paper. In \S 1, we wil
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divide the domain of parameters into several subdomains for the sake
of subsequent discussions. In \S 2, we will treat the cases of ”window”
and “islands“, which are the characteristic features of the cases in dis-
cussion. In \S 3, we will give the explicit form of the density function
of an absolutely continuous invariant measure of $f_{a,b}$ (cf. [3]), and in-
vestigate the ergodicity of $f_{a,b}$ with respect to this measure.

\S 1. Definitions and fundamental properties.

In part II, we consider the transformation $f_{\alpha,b}$ on $[0,1]$ defined by

(1) $f_{a,b}(x)=\left\{\begin{array}{l}ax+\frac{a+b}{b}\\-b(x-1)\end{array}\right.$

$($

for $0\leqq x\leqq 1-\frac{1}{b}$

for $1-\frac{1}{b}\leqq x\leqq 1$ ,

for a pair of parameters $(a, b)$ which satisfies $b>1,$ $ab>1$ , and $a+b\geqq ab$ .
We notice that $b/(b+1)$ is a fixed point of $f_{a,b}$ for any $(a, b)$ .

Let us define the fundamental partition $\{I_{0}, I_{1}\}$ of $f_{a,b}$ in the same
manner as in part I, that is, let $I_{0}=[0,1-1/b]$ and $I_{1}=(1-1/b, 1$] in the
case when, for some natural number $n,$ $f_{a,b}^{n}(0)=0,$ $f_{a,b}^{i}(0)\neq 0$ for
$1\leqq i\leqq n-1$ and the number

(2) $k=\#\{i;0\leqq i\leqq n-2,$ $f_{a,b}^{i}(0)>1-\frac{1}{b}\}$

is odd, and let $I_{0}=[0,1-1/b$) and $I_{1}=[1-1/b, 1]$ otherwise.
The reason why we define the fundamental partition in two different

ways is, as in part I, that we can prove the following Theorem 1.1 by
using this $\{I_{0}, I_{1}\}$ , and that this distinction is convenient for representa-
tion of $f_{a,b}$ by a symbolic dynamical system. But to consider measure
theoretical problems, the difference of the fundamental partitions in the
two cases are not essential.

Let us represent $f_{a.b}$ by a symbolic dynamical system. Let us de-
fine the space $\Omega$ , the shift operator $\sigma$ on $\Omega$ and the order relation in $\Omega$

as in part I. Let $\pi_{\alpha,b}$ be a map from $[0,1]$ into $\Omega$ defined by

(3) $\pi_{a,b}(x)(n)=j$ , if $f_{a,b}^{n}(x)\in I_{j}$ ($j=0$ or 1).

Let $Y_{a,b}=\pi_{a.b}[0,1]$ and let $X_{a,b}$ be the closure of $Y_{a,b}$ . Then we can
prove the following theorem in the same way as in the proof of
Theorem 3.1 of part I.
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THEOREM 1.1. We can characterize $X_{a,b}$ as follows:
(4) $X_{a.b}=$ {$\omega e\Omega;\sigma^{\pi}\omega\geqq\omega_{a,b}^{0}$ for every $n\geqq 0$},

where we denote by $\omega_{a,b}^{x}$ the image of $x$ under $\pi_{a,b}$ .
Now we divide the domain $D=\{(a, b);b>1, ab>1, a+b\geqq ab\}$ into sub-

domains depending on the behavior of $f_{a,b}$ . Let

(5) $D_{0}=\{(a, b)\in D;\frac{a+b-ab}{b}\geqq\frac{b}{b+1}\}$ ,

(6) $D_{1}=\{(a, b)\in D;\frac{b}{b+1}>\frac{a+b-ab}{b}\geqq 1-\frac{1}{b}\}$ .

In $D_{0}\cup D_{1}$ we have

(7) $\omega_{a,b}^{0}(0)=0,$ $\omega_{a,b}^{0}(1)=1$ ,

that is, $f_{a,b}(0)\in I_{1}$ . For $k\geqq 2$ let

(8) $D_{k}=\{(a, b)\in D;a<1,1+a^{-1}+\cdots+a^{-(k-1)}<b\leqq 1+a^{-1}+\cdots+a^{-k}\}$ .
The relation $1+a^{-1}+\cdots+a^{-(k-1)}<b\leqq 1+a^{-1}+\cdots+a^{-k}$ is equivalent to

(9) $f_{a,b}^{i}(0)\in I_{0}$ for $1\leqq i\leqq k-1$ , $f_{a,b}^{k}(0)\in I_{1}$ .
We divide $D_{k}$ into three subdomains as follows:

(10) $D_{k}^{(1)}=\{(a, b)\in D_{k};a^{k}b\leqq 1\}$ ,

(11) $D_{k}^{(2)}=\{(a, b)eD_{k};a^{k}b>1, a+b\geqq a^{k}b^{2}\}$ ,

(12) $D_{k}^{*}=D_{k}-(D_{k}^{(1)}\cup D_{k}^{(8)})$ .
And finally, let

(13) $D^{*}=\{(a, b)\in D;a>1,$ $\frac{a+b-ab}{b}<\frac{b}{b+1}\}$ .

(See Figure 4.)
In the remainder of this section, we sub-divide $D_{0}$ and $D_{1}$ further,

and investigate the behavior of $f_{a.b}$ in detail. The results for these
domains $D_{0}$ and $D_{1}$ are essentially the same as those for the case
$1<a\leqq(1+\sqrt{5})/2$ of part I. So, with each result, we mention the cor-
responding result of part I and omit the proof. First of all we notice
that $f_{a,b}$ has no periodic point of odd period (except the fixed point
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FIGURE 4

$b/(b+1))$ in the case $D_{0}$ , which follows from the relation

(14) $f_{a,b}[0,$ $\frac{b}{b+1}]=[\frac{b}{b+1}$ $1]$ , $f_{a,b}[\frac{b}{b+1},1]=[0,$ $\frac{b}{b+1}]$ .

LEMMA 1.1 (Lemmas 2.1 and 2.2 of part $I$). Let $(a, b)\in D_{0}$ and let

$A_{0}=[f_{a,b}(0), 1]$ and $A_{1}=[0, f_{a,b}^{2}(0)]$ . Then

(15) $f_{a,b}A_{0}=A_{1},$ $f_{a,b}A_{1}=A_{0}$ ,



248 SHUNJI ITO, SHIGERU TANAKA AND HITOSHI NAKADA

and $f_{a,b}^{2}|_{A_{j}}$($j=0$ or 1) is linearly conjugate to $f_{b^{2},ab}$ , that is, there exists
a linear isomorphism $\varphi$ from $A_{j}$ onto $[0,1]$ such that $\varphi\circ f_{a,b}^{2}\circ\varphi^{-1}=f_{b^{2},ab}$ .

Let us define the numbers $p(m)$ for $m\geqq 1$ inductively as follows:

(16) $\left\{\begin{array}{ll}p(1)=1, & \\p(m)=[Case] & ifif mmisisoddeven.\end{array}\right.$

For $m\geqq 1$ let

(17) $D_{0}^{(f\hslash)}=\{(a, b)\in D_{0};a^{p(n)}b^{p(m+1)}\leqq a+b<a^{p(m+1)}b^{p(n+2)}\}$ .
Then we have

THEOREM 1.2. (Theorem 2.3 of part I. Also see (63).)
(i) If $(a, b)\in D_{0}^{(n)}$ , then $f_{a,b}$ has no periodic point with period

$2^{k}\times odd$ for $0\leqq k<m$ .
(ii) $(a, b)\in D_{0^{\prime}}^{(n)}$ implies $(b^{2}, ab)\in D_{0}^{(m-1)}$ for $m\geqq 2$ and $(a, b)\in D_{0}^{(1)}$

implies $(b^{2}, ab)\in D^{*}$ .
We note the following facts concerning the location of $D_{0}^{(m)}$ in $D_{0}$ .

First of all, the curve $a+b=ab^{2}$ (which is a part of the boundary of $D_{0}$ ,
and equivalent to $(a+b-ab)/b=b/(b+1))$ does not intersect the curves $ab=1$

and $b=1$ . The curve $a+b=a^{p(m)}b^{p(n\cdot+1)}$ intersects the curve $ab=1$ at
$(\rho_{1,m}^{-1}, \rho_{1,m})$ and meets the line $b=1$ at $(\rho_{2},., 1)$ , where $p_{1,,n}(\rho_{2.n})$ is the max-
imal root of the equation $b^{p(m+1)-p(m)+1}-b^{2}-1=0(a^{p(m)}-a-1=0$ , respective-
ly). We also notice that $\rho_{1,f\hslash}$ and $\rho_{2,m}$ are decreasing to 1 as $ m\rightarrow\infty$ .

For $m\geqq 1$ , let

(18) $D_{1}^{(2m+)}1=\{(a, b)\in D_{1};ab^{2m}-b^{2m-1}-ab^{2m-2}-1\geqq 0$ ,
$ab^{2m-2}-b^{2m-3}-ab^{2n-4}-1<0\}$ .

Then we have

THEOREM 1.3 (Theorem 2.2 of part I). If $(a, b)\in D_{1}^{(2*+1)}$ , then the
maximal period (in the sense of Sarkovskii) of $f_{a,b}$ is $2m+1$ .

\S 2. The case of “window” and “islands”.

In this section, we show that the fundamental partition is not a
generator of $f_{a,b}$ if and only if $(a, b)\in\bigcup_{k=2}^{\infty}D_{k}^{(1)}$ , and show that $D_{k}^{(1)}$ is the
case of “window” and $D_{k}^{(2)}$ is the case of “islands”.

Let $(a, b)\in D_{k}$ for some $k$ and let
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(19) $x_{0}=1-\frac{1}{b}-\frac{1}{ab}-\cdots-\frac{1}{a^{k-1}b}$ ;

then we can easily show that $x_{0}\geqq 0,$ $f_{a,b}^{i}(x_{0})\in I_{0}$ for $0\leqq i\leqq k-2$ and
$f_{a,b}^{k-1}(x_{0})=1-1/b$ . In the case $(a, b)\in D_{k}^{(1)}$ , we have

(20) $f_{a,b}^{k}(0)\in I_{1}$ , $f_{a,b}^{\prime t+1}(0)\in I_{0}$ and $f_{a,b}^{k+1}(0)\leqq x_{0}$ .

On the other hand in the case $(a, b)\in D_{k}^{t2)}$ , we have

(21) $\left\{\begin{array}{ll}f_{a,b}^{k}(0)\in I_{1}, & f_{a,b}^{k+1}(0)eI_{0}, x_{0}<f_{a,b}^{k+1}(0)<f_{\alpha,b}(x_{0}),\\f_{a,b}^{i}(0)\in I_{0} for & +2\leqq i\leqq 2k-1, f_{a,b}^{2k}(0)\in I_{1} and f_{a,b}^{2k+1}(0)\geqq f_{a,b}^{k}(0).\end{array}\right.$

THEOREM 2.1. The fundamental partition of $f_{a,b}$ is a generator of
$f_{a,b}$ if and only if $(a, b)\not\in\bigcup_{k=2}^{\infty}D_{k}^{(1)}$ .

PROOF. Let $(a, b)\in D_{k}^{(1)}$ for some $k$ , then from (20) we obtain that
$f_{ab}^{k+1}[0, x_{0}]\subset[0, x_{0}]$ and that any $x\in[0, x_{0}$) has the same symbolic represen-

tation $\pi_{\alpha,b}(x)=\dot{0}0\cdots 0i$ with period $k+1$ . So $\{I_{0}, I_{1}\}$ is not a generator.
Let $(a, b)\in D_{0}\cup D_{1}$ . If $\pi_{a,b}(x)=\pi_{a.b}(x^{\prime})$ for some $x\neq x^{\prime}$ , then we can show
that $|f_{\alpha,b}^{2i}(x)-f_{a,b}^{2i}(x^{\prime})|\geqq(ab)^{i}|x-x^{\prime}|$ for every $i\geqq 0$ , which contradicts the
inequality $ab>1$ . And so $\{I_{0}, I_{1}\}$ is a generator in these cases. Next let

$wecansh_{oW}asabovethat|f_{a,b}^{tk+1)i}(x)-f_{a,b}^{(k+1)i}(x^{\prime})|\geqq(a^{k}b)^{i}|x-x’|forevery(a,b)\in D_{k}^{(2)}\cup D_{k}^{\star}forsomek\geqq 2.If\pi_{a,b}(x)=\pi_{a,b}(x^{\prime})forsomex\neq x^{\prime},then$

$i\geqq 0$ , which contradicts the inequality $a^{k}b>1$ . So $\{I_{0}, I_{1}\}$ is a generator.
In the case of $D^{*}$ , it is clear that $\{I_{0}, I_{1}\}$ is a generator.

Now let us investigate the case $D_{k}^{(1)}\cup D_{k}^{(2)}$ more precisely. In the
remainder of this section we assume that $(a, b)\in D_{k}^{(1)}\cup D_{k}^{(2)}$ . Let

(22) $\left\{\begin{array}{l}x^{*}=\frac{a^{k-1}b^{2}-a^{k-1}b-a^{k-2}b-\cdots-a^{2}b-ab-b}{a^{k-1}b^{2}-1}\\x_{*}=\frac{a^{k}b-a^{k}-a^{k-1}-\cdots-a^{2}-a}{a^{k}b+1}\end{array}\right.$

We can easily show that $x^{*}>x_{0}>x_{*}$ and that $x^{*}$ and $x_{*}$ are periodic
points of $f_{a,b}$ with period $k+1$ with the following symbolic representa-
tions:

(23) $\pi_{a,b}(x^{*})=\dot{0}0\cdots 01i$ , $\pi_{a,b}(x_{*})=\dot{0}0\cdots 00i$ .

LEMMA 2.1. Let $C_{0}=[0, x^{*}]$ , then $f_{a.b}^{i}C_{0}(0\leqq i\leqq k)$ are disjoint and
$f_{a,b}^{k+1}C_{0}=C_{0}$ .

PROOF. From (9) we obtain
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(24) $f_{a,b}^{k}(0)=\frac{a^{k}+a^{k-1}+\cdots+a^{2}+a+b-a^{k}b}{b}$ ,

and by the definition of $x^{*}$ we obtain

(25) $f_{a.b}^{k}(x^{*})=1-\frac{a^{k-1}b-a^{k-1}-a^{k-2}-\cdots-a^{2}-a-1}{a^{k-1}b^{2}-1}$ .

And so we obtain

(26) $f_{a.b}^{k}(0)-f_{a,b}^{k}(x^{*})=^{a^{k-2}(b-1-a^{-1}-\cdots-a^{-(k-1)})(a+b-a^{k}b^{2})}\ovalbox{\tt\small REJECT}_{b(a^{k-1}b^{2}-1)}\geqq 0$ .

If we notice that $f_{ab}^{k-1}C_{0}\ni 1-1/b$ , then we can show that $f_{a,b}^{k}C_{0}=$

$[f_{a,b}^{k}(x^{*}), 1]$ , which completes the proof.
Let $\alpha,$ $\beta$ be a pair of real numbers which satisfy $\alpha>1,$ $\beta>0ane$

$1/\alpha+1/\beta\leqq 1$ . We denote by $g_{\alpha,\beta}$ the map from $[0,1]$ into itself define $($

by

(27) $g_{\alpha,\beta}(x)=\left\{\begin{array}{ll}\alpha x & for 0\leqq x\leqq\frac{1}{\alpha}\\-\beta x+\frac{\alpha+\beta}{\alpha} & for \frac{1}{\alpha}\leqq x\leqq 1.\end{array}\right.$

Then we have

LEMMA 2.2. (i) If $\beta<1$ , then any orbit of $g_{\alpha,\beta}$ approaches $th_{t}$

fixed point $(\alpha+\beta)/\alpha(\beta+1)$ of $g_{a.\beta}$ .
(ii) If $\beta=1$ , then every point of $[1/\alpha, 1]-\{(\alpha+\beta)/\alpha(\beta+1)\}$ is periodil

point with period 2 and, for any $xe(0,1/a),$ $g:_{p}(x)e[1/a, 1]$ for some $n$

(iii) If $\beta>1$ , then $g_{\alpha,\beta}|_{ft\alpha+\beta-\alpha\beta)/\alpha,1l}$ is linearly conjugate to $f_{\alpha,\beta}and_{1}$

for any $x\in(O, (\alpha+\beta-\alpha\beta)/\alpha),$ $g_{\alpha,\beta}^{l}(x)\in[(\alpha+\beta-\alpha\beta)/\alpha, 1]$ for some $n$ .
PROOF. All assertions are clear from the definition of $g_{\alpha,\beta}$ .
LEMMA 2.3. $f_{a,b}^{k+1}|_{c_{0}}$ is linearly conjugate to $g_{a^{k-1}b^{2}.a^{k}b}$ .
PROOF. It is clear if we notice that $f_{a,b}^{k-1}C_{0}\ni 1-1/b$ .
LEMMA 2.4. Denote by $\lambda$ the Lebesgue measure on $[0,1]$ . Then we

have $\lambda(\bigcup_{=0}^{\infty}f_{a,b^{*}}^{-\prime}C_{0})=1$ .
PROOF. Let

(28) $C_{1}=f_{a.b}^{-1}C_{0}$ , $C_{2}=f_{a}^{-1}{}_{\iota}C_{1}$ , $C_{j}=f_{a}^{-1}{}_{b}C_{\dot{g}-1}\cap I_{0}$ for $3\leqq j\leqq k$ .
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We can easily show that these sets are disjoint and

(29) $\left\{\begin{array}{ll}\lambda(C_{0})=, & ,\\\lambda(C_{1})=\frac{1}{b}\lambda(C_{0}), & \lambda(C_{2})=\frac{a+b}{ab}\lambda(C_{1}),\\x(C_{j})=\frac{1}{a^{j-2}}\lambda(C_{2}) f & r 3\leqq j\leqq k.\end{array}\right.$

Let us define intervals $C(a_{0}, a_{1}, \cdots, a_{n})$ for $n\geqq 0$ and for sequences
$(a_{0}, a_{1}, \cdots, a_{n})$ of $0$ and 1 inductively as follows:

$C(a_{0})=f_{a,b}^{-1}(\bigcup_{j=2}^{k}C_{j})\cap I_{a_{0}}$ ,
(30)

$C(a_{0}, a_{1}, \cdots, a_{n})=f_{a.b}^{-1}C(a_{0}, a_{1}, \cdots, a_{n-1})\cap I_{a_{n}}$ .
Then we have

(31) $\bigcup_{n=0}^{\infty}f_{a,b}^{-n}C_{0}=\bigcup_{=0}^{\infty}\bigcup_{(a_{1}.a_{2},\ldots,a_{n})\in\Omega_{\tilde{n}}}C(1, a_{1}, a_{2}, \cdots, a_{n})\cup(\bigcup_{\dot{g}=0}^{k}C_{j})$

where $\Omega_{n}^{\sim}$ is the set of all sequences $(a_{1}, a_{2}, \cdots, a_{n})$ such that each $a_{i}$ is
equal to $0$ or 1 and that no more than $kO’ s$ appear consecutively. More-
over the sets appearing in the union of the right-hand side of (31) are
disjoint. For each $(a_{1}, a_{2}, \cdots, a_{n})\in\Omega_{n}^{*}$ ,

(32) $\lambda(C(1, a_{1}, a_{2}, \cdots, a_{n}))=a^{-n(0)}b^{-n(1)-1}x(\bigcup_{j=2}^{k}C_{j})$ ,

where $n(1)=\sum_{i=1}^{n}a_{l}$ and $n(O)=n-n(1)$ . So it follows that

(33) $\lambda(\bigcup_{\iota=0}^{\infty}\bigcup_{(a_{1},a_{2},\ldots,a_{n})e\Omega_{n}},$ $C(1, a_{1}, a_{2}, \cdots, a_{n}))$

$=\sum_{m=1m_{0_{m_{1}}^{m_{1}\cdots..’ m_{k-1}\geq 0}}}^{\infty}\sum_{+m_{0^{\dotplus\dotplus}}\cdot m_{k-1}=m}\frac{m.!}{m_{0}!m_{1}!\cdot\cdot m_{k-1}!}a^{-m_{1}-2m_{2}-\cdots-(k-1)m_{k-1}}b^{-m}x(\bigcup_{j=2}^{k}C_{j})$

$=\sum_{m=1}^{\infty}(1+a^{-1}+a^{-2}+\cdots+a^{-(k-1)})^{m}b^{-m}x(\bigcup_{j=2}^{k}C_{j})$ .

Using (29) and (30) we obtain

(34) $\lambda(\bigcup_{n=0}^{\infty}f_{a,b}^{-\iota}C_{0})=\lambda(C_{0})+\lambda(C_{1})+x(\bigcup_{j=2}^{k}c_{j})\frac{1}{1-(1+a^{-1}+a^{-2}+\cdots+a^{-(k-1)})b^{-1}}$

$=1$ .
THEOREM 2.2. In the case of $D_{k}^{(1)}$ , almost all points of $[0,1]$ are
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asymptotically periodic. Especially, in the case $a^{k}b<1$ , almost all (wit
respect to the Lebesgue measure) orbits approach the periodic $orb\{$

starting from $x_{*}$ .
PROOF. This theorem follows from Lemmas 2.1, 2.2 ((i) and (ii)), 2.

and 2.4.

THEOREM 2.3. In the case of $D_{k}^{(2)}$ , let $J_{j}=[f_{a,b}^{\dot{f}}(0), f_{a,b}^{k+\dot{g}+1}(0)]fo$

$0\leqq j\leqq k-1$ and $J_{k}=[f_{a,b}^{k}(0), 1]$ . Then we have
(i) $J_{j}\subset f_{a.b}^{\dot{f}}C_{0}$ for $0\leqq j\leqq k$ , and so $J_{j}’ s$ are disjoint.
(ii) $f_{a.b}J_{\dot{f}}=J_{\dot{s}+1}$ for $0\leqq j\leqq k-1$ and $f_{a.b}J_{k}=J_{0}$ .
(iii) $f_{a.b}^{k+1}|_{J_{\dot{f}}}$ is linearly conjugate to $f_{a^{k}}-1_{b^{2},a^{k}b}$ .
(iv) For almost all $x\in[0,1]-\bigcup_{j=0}^{k}J_{\dot{f}},$ $f_{a,b}^{n}(x)\in\bigcup_{\dot{g}=0}^{k}J_{j}$ for some $n$ .

PROOF. $(i)\sim(iii)$ follow from Lemmas 2.1, 2.2 $((iii)),$ $2.3$ and 2.4. $T$

prove (iv) it is sufficient to show that, for all $x\in(f_{a,b}^{k+1}(0), x^{*}),$ $f_{a,b}^{n}(x)\in 0$

for some $n$ . But this is easy to see if we notice that $|f_{a,b}^{k+1}(x)-x^{*}|=$

$a^{k-1}b^{2}|x-x^{*}|$ and $a^{k}b>1$ .
Next, we give a proposition concerning $(a^{k-1}b^{2}, a^{k}b)$ .
PROPOSITION 2.1. Let $(a, b)\in D_{k}^{(2)}$ . If $a+b<a^{2k}b^{3}$ , then $(a^{k-1}b^{2}, a^{k}b)$ $[$

$D_{1}\cup D^{*}$ . On the other hand, if $a+b\geqq a^{2k}b^{3}$ , then $(a^{k-1}b^{2}, a^{k}b)\in D_{0}^{(1)}$ .
PROOF. By definitions of $D_{1},$ $D^{*}$ and $D_{0}^{(1)}$ , we can easily show tha

$(a^{k-1}b^{2}, a^{k}b)\in D_{1}\cup D^{*}$ if and only if $a+b<a^{2k}b^{3}$ and that $(a^{k-1}b^{2}, a^{k}b)\in D_{0}^{(}$

if and only if $a^{2k}b^{8}\leqq a+b<a^{4k-1}b^{6}$ . But it is clear that $a+b<a^{4k-1}b^{6}$ fo
lows from $(a, b)\in D_{k}^{(2)}$ , so we have Proposition 2.1.

REMARK. It is evident that $f_{a.b}$ has a periodic point with period
in the case $D-(D_{0}\cup D_{1})$ . So, Theorem 2.2 shows that $D_{k}^{(1)}$ is the case $0$

“window” and Theorem 2.3 shows that $D_{k}^{(2)}$ is the case of “islands”.
Finally, we will give a result concerning the topological entropy $i$

the case $D_{k}^{(1)}\cup D_{k}^{(2)}$ . Let $\gamma_{k}$ be the maximal root of the equatio
$\gamma^{k}-\gamma^{k-1}-\cdots-\gamma-1=0$ . We can easily show that $1<\gamma_{k}<2$ and $\gamma_{k}$ increase
to 2 as $ k\rightarrow\infty$ .

THEOREM 2.4 (cf. [2]). The topological entropy of $f_{a,b}$ is equal $t$

log $\gamma_{k}$ for the case of $D_{k}^{(1)}\cup D_{k}^{(2)}$ .
PROOF. Denote by $h_{top}(f_{a,b})$ the topological entropy of $f_{a,b}$ $an|$

denote by $N_{ab}^{(n)}$ the number of $f_{a,b}$-admissible words of length $n$ , that is
(35) $ N_{a,b}^{(n)}=\#${ $(a_{0},$ $a_{1},$ $\cdots,$ $a_{n-1});\pi_{a,b}(x)(i)=a_{i}$ for $0\leqq i\leqq n-1$ , for some $x$} $ $
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It is well known that $h_{top}(f_{a,b})=\lim_{n\rightarrow\infty}(1/n)\log N_{a,b}^{(n)}$ . We can easily show
that

$\pi_{a,b}(0)(i)=0$ for $0\leqq i\leqq k-1$ , $\pi_{a,b}(0)(k)=1$

(36)
and $\pi_{\gamma_{k},\gamma_{k}}(0)=\dot{0}0\cdots 01i=\pi_{a.b}(x^{*})$ .

And therefore $X_{a.b}\supseteqq X_{\gamma_{k},\gamma_{k}}$ , which implies $h_{top}(f_{a,b})\geqq h_{top}(f_{\gamma_{k},\gamma_{k}})=\log\gamma_{k}$ . But
it is easy to see by virtue of Lemma 2.1 that

(37) $X_{\alpha,b}-X_{\gamma_{k},\gamma_{k}}=$ {$\omega\in X_{a,b};\sigma^{n}\omega=\pi_{a,b}(x)$ for some $n$ and some $x\in C_{0}$}

and $\pi_{\alpha,b}(x)=00\cdots 0*100\cdots 0*1\cdots$ for every $x\in C_{0}$ . So we get

(38) $N^{(n_{b})}\leqq\sum_{m=0}^{n}N_{\gamma_{k}\gamma_{k}}^{(n-m)}2^{[m/(k+1)]+1}\leqq C\gamma_{k}^{n}$ .

The last inequality follows from the inequality $N_{\gamma_{k},\gamma_{k}}^{(n)}\leqq C^{\prime}\gamma_{k}^{n}$ , which has
been shown in \S 4 of part I. So we obtain $h_{top}(f_{a,b})\leqq\log\gamma_{k}$ , which com-
pletes the proof.

\S 3. $f_{a}$ , $b$-expansion and the density of invariant measure.

In this section we consider the case when the fundamental partition
is a generator, that is, the case $D-(\bigcup_{k=2}^{\infty}D_{k}^{(1)})$ .

Let us define $N_{0}(x, n)$ and $N_{1}(x, n)$ for $x\in[0,1]$ and $n\geqq 0$ by

(39) $N_{j}(x, n)=\left\{\begin{array}{ll}1 & if n=0\\\#\{i; & 0\leqq i\leqq n-1, \omega_{\alpha,b}^{x}(i)=j\} if n\geqq 1.\end{array}\right.$

Then we have

LEMMA 3.1 ( $f_{a,b}$-expansion). If $(a, b)\in D-(\bigcup_{k=2}^{\infty}D_{k}^{(1)})$ , then we have
the so-called $f_{a,b}$-expansion for $x\in[0,1]$ as follows

(40) $x=1-\frac{1}{b}\sum_{q=0}^{\infty}(\frac{1}{a})^{N_{0}(x,n)}(-\frac{1}{b})^{N_{1}(x,n)}$ ,

where the sum in the right-hand side converges absolutely.

PROOF. Let us define $\epsilon(j)$ and $\delta(j)$ for $j=0$ or 1 by

(41) $\epsilon(j)=\left\{\begin{array}{ll}\frac{1}{a} & for j=0\\-\frac{1}{b} & for j=1,\end{array}\right.$
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(42) $\delta(j)=\left\{\begin{array}{ll}1 & for j=0\\0 & for j=1.\end{array}\right.$

Then it follows from (1) that

(43) $x=\epsilon(\omega_{a,b}^{x}(0))f_{a,b}(x)+1-\frac{a+b}{ab}\delta(\omega_{a,b}^{x}(0))$ .

By using (43) successively we obtain, for any natural number $N$,

(44) $x=\sum_{*=0}^{N-1}(1-\frac{a+b}{ab}\delta(\omega_{a,b}^{x}(n)))\prod_{i=0}^{n-1}\epsilon(\omega_{a,b}^{x}(i))+\prod_{l=0}^{N-1}\epsilon(\omega_{a,b}^{x}(i))f_{a,b}^{N+1}(x)$ .
It is easy to see that

$-\frac{a+b}{ab}\delta(\omega_{a,b}^{x}(n))\prod_{i=0}^{\alpha-1}\epsilon(\omega_{u,b}^{x}(i))+\prod_{=}^{n}\epsilon(\omega_{a,b}^{x}(i))i0$

$=-\frac{1}{b}i\prod_{=}^{\sim-1}0\epsilon(\omega_{a,b}^{l}(i))=-\frac{1}{b}(\frac{1}{a})^{N_{0}(ae,n)}(-\frac{1}{b})^{N_{1}(x,*)}$ ,

and so we get (40) by letting $N$ go to infinity in (44). The absolut
convergence is proved as follows. In the case $D_{k}^{\{2)}\cup D_{k}^{l},$ $\pi_{a.b}(x)$ has $n($

consecutive $O’ s$ of length longer than $k$ for any $x\in[0,1]$ ; so by usinl
the inequality $a^{k}b>1$ we obtain the absolute convergence. We can shoy
this in the same manner in the case $D_{0}UD_{1}\cup D^{*}$ .

Define a function $h_{a,b}(x)$ on $[0,1]$ by

(45) $h_{a.b}(x)=\sum_{\sim=0}^{\infty}(\frac{1}{a})^{N_{0}(0,*)}(-\frac{1}{b})^{N_{1}(0,\prime\cdot)}I_{\iota f_{a.b^{(0).1J}}^{*}},(x)$ .

By the absolute convergence of (40), we see that $h_{a,b}(x)$ is a functiox
of bounded variation. Now let us prove that $h_{a,b}$ is the density of $a\iota$

invariant measure for $f_{a.b}$ .
LEMMA 3.2. For any Borel set $A\subset[0,1]$ , we have

(46) $\int_{A}h_{a.b}(x)dx=\int_{f_{a,b^{A}}^{-1}}h_{a,b}(x)dx$ .

PROOF. It is enough to show that

(47) $h_{a,b}(x)=\frac{1}{a}h_{a,b}(\frac{1}{a}x-\frac{a+b-ab}{ab})I_{[(a+b-ab)/ab,1]}(x)+\frac{1}{b}h_{a,b}(-\frac{1}{b}x+1)$ .
We can show (47) in the same manner as for the proof of Theorem 2.1
in part I.
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To prove $h_{a,b}(x)\geqq 0$ , we prepare several lemmas as follows:

LEMMA 3.3 (Li-Yorke [5]). Let an integrable function $h(x)$ on $[0,1]$

satisfy (46). Denote by $P(N, Z)$ the set of $x\in[0,1]$ which $s$atisfies
$h(x)>0$( $<0,$ $=0$ , respectively). Then we have that

(48) $f_{a},{}_{b}P=P$ a.e. and $f_{a,b}N=N$ a.e.,

where a.e. means almost everywhere with respect to the Lebesgue
measure.

PROOF. To simplify the notation, we write $f$ for $f_{a,b}$ in this proof.
From the assumption we have

(49) $\int_{P}h(x)dx=\int_{f^{-1}P}h(x)dx$

$=\int_{f^{-1}P\cap P}h(x)dx+\int_{f^{-1}P\cap N}h(x)dx+\int_{f^{-1}P\cap Z}h(x)dx$

$\leqq\int_{f^{-J}P\cap P}h(x)dx\leqq\int_{P}h(x)dx$ .

So we obtain that

(50) $f^{-1}P\supset P$ a.e. and $ f^{-1}P\cap N=\emptyset$ a.e.,

which imply that

(51) $fP\subset P\subset f^{-1}(fP)\subset f^{-1}P$ .
From (46), (50) and (51) it is easy to see that

(52) $0=\int_{f^{-1}(fP)-fP}h(x)dx$

$=\int_{f^{-1}(fP)-P}h(x)dx+\int_{P-fP}h(x)dx$

$=\int_{P-fP}h(x)dx$ ,

so we obtain that $fP=P$ a.e. The assertion $fN=N$ a.e. can be proved
in the same manner.

LEMMA 3.4. Let $h(x)$ satisfy the same assumption as in Lemma
3.4 and let a Borel set $B\subset[0,1]$ satisfy, for some $n_{0}$ ,

(53) $ f_{a,b}^{n}B\cap B=\emptyset$ a.e. for every $n\geqq n_{0}$ .

Then we have that
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(54) $h(x)=0$ a.e. $x\in B$ .
PROOF. Let $B_{p}=\{xeB;h(x)>0\}$ and let $B_{p}^{l}=\bigcup_{=}^{\infty}\hslash_{0}f_{a,b}B_{p}$ . Then $i$

is easy to show that

(55) $ B_{p}^{*}\cap B_{p}=\emptyset$ a.e. and $f_{a,b^{0}}^{-\#}B_{p}^{\star}\supset B_{p}^{\prime}\cup B_{p}$ .
Using (55) and the assumption of lemma, we obtain that

(56) $\int_{B_{\hat{p}}}h(x)dx=\int_{f_{a,b\dot{p}}^{-\alpha_{B}}}.h(x)dx$

$\geqq\int_{B_{\tilde{p}}}h(x)dx+\int_{B_{p}}h(x)dx$ ,

which implies $\int_{B_{p}}h(x)dx=0$ , and so we obtain $ B_{P}=\emptyset$ a.e. We can shov
that $ B_{n}=\{x\in B;h(x)<0\}=\emptyset$ a.e. in the same manner.

LEMMA 3.5. Let $(a, b)\in D_{1}\cup D^{*}\cup(\bigcup_{k=2}^{\infty}D_{k}^{\prime})$ . For every interva $($

$I\subset[0,1]$ with positive length, there exists an $n$ which satisfes
(57) $f_{a,b}^{\hslash}I=[0,1]$ .

PROOF. It is sufficient to prove that $f_{a,b}^{m}I\ni b/(b+1)$ for some $m$ , since
it is easy to see that $f_{a.b}^{n}I=[0,1]$ for some $n\geqq m$ in this case. We car
easily show that if, for some interval $J,$ $1-1/b\in J$ then

(58) $|f_{a,b}J|\geqq\frac{ab}{a+b}|J|$ ,

where $||$ denote the length of interval.
In the case $D_{1}$ , we have that

(59) $|f_{a,b}^{2}I|\geqq\min\{\frac{ab^{2}}{a+b}$ , ab, $b^{2}\}|I|=\frac{ab^{2}}{a+b}|I|$

except in the case when

(60) $I\cap f_{a,b}I\ni 1-\frac{1}{b}$ or $f_{a,b}I\cap f_{a,b}^{s}I\ni 1-\frac{1}{b}$

is satisfied. Using (59) repeatedly we get the desired conclusion if we
notice that $ab^{2}/(a+b)>1$ . (Note that $b/(b+1)>(a+b-ab)/b.$ ) In the case
of (60), it is easy to see that $f_{a,b}^{2}I\ni b/(b+1)$ .

In the case $D_{k}^{\sim}$ , we have that
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(61) $|f_{a,b}^{k+1}I|\geqq\min\{\frac{a^{k}b^{2}}{a+b},$ $a^{k}b,$ $a^{k-1}b^{2},$
$\cdots,$

$ab^{k},$ $b^{k+1}\}|I|$

$=^{\underline{a^{k}b^{2}}}|I|$ ,
$a+b$

if at most one interval among $I,$ $f_{a.b}I,$ $\cdots,$
$f_{a,b}^{k}I$ contains $1-1/b$ . If

$f_{a,b}^{m}I$ and $f_{a,b}^{m+i}I$ contain $1-1/b$ for some $0\leqq m<m+i\leqq k$, then we can show
that $f_{a,b}^{m+i+1}I\ni b/(b+1)$ . Using (61) repeatedly we get the desired conclusion
if we notice that $a^{k}b^{2}/(a+b)>1$ in the case $D_{k}^{\sim}$ .

In the case $D^{*}$ , we can prove the lemma in the same manner.

THEOREM 3.1. Let $(a, b)\in D_{1}\cup(\bigcup_{k=2}^{\infty}D_{k}^{\star})\cup D^{*}$ . Then $h_{a.b}$ is the
density function of an invariant measure for $f_{a,b}$ and $h_{a,b}(x)>0$ a.e.
$x\in[0,1]$ .

PROOF. From Lemmas 3.2 and 3.5, it is sufficient to prove that
$h_{\alpha,b}(x)>0$ on $[0, \epsilon]$ for some $\epsilon>0$ . By the definition of $h_{a,b}$ , we have
$h_{a,b}(0)>0$ . In the case when $0$ is periodic for $f_{a,b}$ , we have $ h_{a,b}(x)=h_{a,b}(0\rangle$

on $[0, \epsilon]$ for sufficiently small $\epsilon$ . Otherwise, let $h_{a,b}(0)=s$ . By Lemma
3.1, we have that, for some $n_{0}$ ,

(62) $\sum_{n=n_{0}}^{\infty}(\frac{1}{a})^{N_{0}(0,n)}(\frac{1}{b})^{N_{1}(0,n)}<\frac{s}{2}$ .

So if we pick a positive $\epsilon$ satisfying $\epsilon<f_{a,b}^{fl}(0)$ for $1\leqq n<n_{0}$ , we can
show $h_{a,b}(x)>s/2$ on $[0, \epsilon]$ .

THEOREM 3.2. Let $(a, b)\in D_{1}\cup(\bigcup_{k=2}^{\infty}D_{k}^{*})\cup D^{*}$ . Then the dynamical
system $(f_{a,b}, h_{a,b}(x)dx)$ is weak Bernoulli.

PROOF. Using Lemma 3.5, it is easy to see that $f_{\alpha,b}^{2}(resp$ . $f_{a,b}^{k},$ $ f_{a,b}\rangle$

satisfies the condition of Bowen [1] in the case of $D_{1}(resp. D_{k}^{*}, D^{*})$ . So
we can apply the result of Bowen to get the desired conclusion.

Now let us investigate the support of $h_{a,b}$ in the case $D_{0}$ . Let
$(a, b)eD_{0}^{(m)}$ for some $m\geqq 1$ and denote by $A_{i}$ for $0\leqq i\leqq 2^{f*}-1$ the inter-
vals defined by

(63) $A=\left\{\begin{array}{ll}[f_{a.b}^{2^{m}+i}(1), f_{a,b}(1)] & if N_{1}(1, i) is even\\[f_{a,b}^{i}(1), f_{a,b}^{2^{m}+i}(1)] & if N_{1}(1, i) is odd.\end{array}\right.$

As in part I, we can show that $A_{i}’ s$ are disjoint and that

(64) $f_{a,b}A_{i}=A_{i+1}$ for $0\leqq i\leqq 2^{m}-2$ , $f_{a}$ , $bA_{2^{m}-1}=A_{0}$ .
COROLLARY 3.1. Let $(a, b)\in D_{0}^{(m)}$ for some $m\geqq 1$ . Then
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(i) $h_{a,b}$ is the density function of an invariant measure for $f_{a}$ ,
and the support of $h_{a,b}$ is equal to $\bigcup_{i=0}^{\epsilon^{n}-1}A_{i}$ .

(ii) The dynamical 8ystem $(f_{a,b}, h_{a,b}(x)dx)$ is ergodic but not weaklv
mixing.

PROOF. This corollary follows from Theorems 1.2, 3.1, 3.2, Lemma:
3.2, 3.3, 3.4 and (64).

COROLLARY 3.2. Let $(a, b)\in D_{k}^{(2)}$ for some $k\geqq 2$ . Then $h_{a,b}$ is $th_{t}$

density function of an invariant measure for $f_{\alpha,b}$ and
(i) if $a+b<a^{2k}b^{S}$, then the support of $h_{a,b}$ is equal to $\bigcup_{i=0}^{k}J_{i}$

where $J_{i}$ is defined in Theorem 2.3.
(ii) If $a+b\geqq a^{2k}b^{3}$ , then the support of $h_{a,b}$ is equal to $\bigcup_{=0}^{k}(J_{i,1}\cup$

$J_{i,2})$ for some sub-intervals $J_{i,1}$ and $J_{i,2}$ of $J_{i}(0\leqq i\leqq k)$ which satisfy

(65) $f_{ab}^{k+1}J_{i,1}=J_{\ell,2}$ and $f_{a,b}^{k+1}J_{l,2}=J,1$ .
And the dynamical system $(f_{a,b}, h_{a,b}(x)dx)$ is ergodic but not weaklg
mixing.

PROOF. This corollary follows from Theorems 2.3, 3.1, 3.2, Lemmas
3.2, 3.3 and 3.4.
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