On Unimodal Linear Transformations and Chaos II

Shunji ITO, Shigeru TANAKA and Hitoshi NAKADA
Tsuda College and Keio University

Introduction

In part II we consider the general unimodal linear transformations, that is, a family of maps from [0, 1] into itself which take the extremum at c for some $c \in(0,1)$ and are linear on each intervals [0, c] and $[c, 1]$. It is not difficult to show that, except for some trivial exceptions, the consideration of the general unimodal linear transformations defined above can be reduced to that of the special class $\left\{f_{a, b} ; b>1, a b>1\right.$, $a+b \geqq a b\}$ defined in the following way:

$$
f_{a, b}(x)=\left\{\begin{array}{ccc}
a x+\frac{a+b-a b}{b} & \text { for } & 0 \leqq x \leqq 1-\frac{1}{b} \\
-b(x-1) & \text { for } & 1-\frac{1}{b} \leqq x \leqq 1
\end{array}\right.
$$

In the cases which will be discussed below there will appear phenomena called "window" and "islands", which did not occur in the case $a=b$ of part I. Let us explain these cases, dividing the case $b=4$ into several classes according to the behavior of the corresponding $f_{a, b}$.

1) The case of $0<a<1 / 4$ (that is, the case of $a b<1$).

In this case, there exists a unique periodic orbit with period 2 and all points except the fixed point approach this periodic orbit. So this class is a stable class, and we omit this class from further consideration. 2) The case of $a=1 / 4$ (that is, the case of $a b=1$).

Let $A_{0}=[0,3 / 4]$ and $A_{1}=[13 / 16,1]$, then we have $f_{a, b} A_{0}=A_{1}, f_{a, b} A_{1}=$ A_{0}, and $\left.f_{a, b}^{4}\right|_{A_{i}}$ is the identity map on $A_{i}(i=0,1)$ and every orbit starting from ($3 / 4,13 / 16$) - $\{4 / 5\}$ enters into $A_{0} \cup A_{1}$. So, this class is also stable. 3) The case of $1 / 4<a \leqq 4 / 15$ (that is, the case of $a b>1,(a+b-a b) / b \geqq b /(b+1)$).

There exist a natural number m and intervals $A_{0}, A_{1}, \cdots, A_{2^{m}-1}$ such that $f_{a, b} A_{i}=A_{i+1}$ for $0 \leqq i \leqq 2^{m}-2$ and $f_{a, b} A_{2^{m}-1}=A_{0}$, and every orbit starting from $[0,1]-\bigcup_{i=0}^{2 m-1} A_{i}$ (except the fixed point of $f_{a, b}^{2 m}$) enters into
$\bigcup_{i=0}^{2_{m}^{m}} A_{i}$. In this case, $f_{a, b}$ has an invariant measure (absolutely continuous with respect to the Lebesgue measure) whose support is equal to $\bigcup_{i=0}^{2^{m}-1} A_{i}$, and, with respect to this measure, $f_{a, b}$ is ergodic but not weakly mixing. But $\left.f_{a, b}^{2 m}\right|_{A_{i}}$ is weak Bernoulli. And $f_{a, b}$ has period $2^{m} \times$ odd $(\neq 1)$ as the maximal period (in the sense of Šarkovskii [8]). We denote by D_{0} the domain of parameters (a, b) with above properties. (See Figure 1.)
4) The case of $4 / 15<a \leqq 1 / 3$ (that is, the case of $b /(b+1)>(a+b-a b) / b \geqq 1$ $-1 / b)$.

In the case $a=1 / 3, f_{a, b}$ has period 3 as the maximal period. The interval $4 / 15<a<1 / 3$ can be divided into sub-intervals $a_{m} \leqq a<a_{m-1}$, in which $f_{a, b}$ has period $2 m+1$ as the maximal period, for $m \geqq 2$. For a in

Figure 1
each of these intervals, $f_{a, b}$ has an invariant measure (absolutely continuous with respect to the Lebesgue measure) whose support is equal to [0,1], and with respect to this measure, $f_{a, b}$ is weak Bernoulli. We denote by D_{1} the domain of parameters with these properties.

These cases mentioned above are essentially the same as those of part I ($a=b$); that is, case 3) (resp. case 4)) corresponds to the case $1<a \leqq \sqrt{2}$ (resp. $\sqrt{2}<a \leqq(\sqrt{5}+1) / 2$) of part I. But as we mention in the following, phenomena quite different from those for the case $a=b$ will appear in general.
5) The case of $1 / 3<a \leqq 1 / 2$ (that is, the case of $a^{2} b \leqq 1$, $\left.(a+b-a b) / b<1-1 / b\right)$.

In this case, there exists a stable periodic orbit with period 3 and almost all orbits approach this periodic orbit, and so $f_{a, b}$ does not have an absolutely continuous invariant measure. We call this case "window".

The topological entropy of $f_{a, b}$ is equal to $\log (\sqrt{5}+1) / 2$ in this case. We denote this domain of parameters by $D_{2}^{(1)}$. (The case $a=1 / 2$ is a little bit different, but essentially the same as mentioned above.) (See Figure 2.)
6) The case of $1 / 2<a \leqq(1+\sqrt{257}) / 32$ (that is, the case of $a^{2} b>1$, $\left.a+b \geqq a^{2} b^{2},(a+b-a b) / b<1-1 / b\right)$.

In this case there exist sub-intervals J_{0}, J_{1}, J_{2} of $[0,1]$ which satis-

Figure 2
fy that $f_{a . b} J_{i}=J_{i+1}$ for $i=0,1, f_{a, b} J_{2}=J_{0}$ and almost all orbits starting from [0, 1] - $\bigcup_{i=0}^{2} J_{i}$ enter into $\bigcup_{i=0}^{2} J_{i}$. And $f_{a, b}$ has an absolutely continuous invariant measure whose support is equal to $\bigcup_{i=0}^{2} J_{i}$. With respect to this measure, $f_{a, b}$ is ergodic but not weakly mixing. In this sense these intervals J_{i} behave like islands of stability. So, we will call this case "islands". On the other hand, in $[0,1]-\bigcup_{i=0}^{2} J_{i}$ there exists an uncountable subset B of Lebesgue measure 0 , invariant under $f_{a, b}$, on which $f_{a, b}$ behaves chaotically. In this case the topological entropy of $f_{a, b}$ is also equal to $\log (\sqrt{5}+1) / 2$. We denote this case by $D_{2}^{(2)}$. (See Figure 3.)
7) The case of $(1+\sqrt{257}) / 32<a<4 / 3$ (that is, the case of $a+b<a^{2} b^{2}$, $(a+b-a b) / b<1-1 / b)$.

In this case truly chaotic phenomenon appears, that is, $f_{a, b}$ has period 3, and has an absolutely continuous invariant measure with its support [0,1] and with respect to this measure, $f_{a, b}$ is weak Bernoulli.

The Table 1 summarizes these phenomena mentioned above.
As we have indicated in the remarks above we see that these unimodal linear transformations (though they represent quite simple models)

Figure 3

Table 1

	maximal period	topological entropy	$\underset{\text { (cf. [5], }}{\sup _{a, b}(x)}$	ergodicity w. r. t. $h_{a, b}(x) d x$
$D_{0}^{(m)}$	$2^{m} \times$ odd		$A_{0} \cup A_{1} \cup \cdots \cup A_{2} m_{-1}$	ergodic but not weakly mixing
∂D_{0}	6	$\log \sqrt{2}$	[0,1]	ergodic but not weakly mixing
$D_{1}^{(2 m+1)}$	$2 m+1$		[0,1]	weak Bernoulli
∂D_{1}	3	$\log \frac{1+\sqrt{5}}{2}$	[0,1]	weak Bernoulli
$\stackrel{\circ}{D}_{k}^{(1)}$	3	$\log \gamma_{k}$	there exists no a.c.	invariant measure
$\partial D_{k}^{(1)}$	3	$\log \gamma_{k}$	$J_{0} \cup J_{1} \cup \cdots \cup J_{k}$	not ergodic
$\stackrel{\circ}{D}_{k}^{(2)}$	3	$\log \gamma_{k}$	$J_{0} \cup J_{1} \cup \cdots \cup J_{k}$ or $\bigcup_{i=0}^{k}\left(J_{i, 1} \cup J_{i, 2}\right)$	ergodic but not weakly mixing
$\partial D_{k}^{(2)}$	3	$\log \gamma_{k}$	$J_{0} \cup J_{1} \cup \cdots \cup J_{k}$	ergodic but not weakly mixing
D_{k}^{*}	3		[0,1]	weak Bernoulli
D*			[0,1]	weak Bernoulli

show much complicated behavior. (cf. [6], [7].)
Finally, we explain the organization of this paper. In §1, we will
divide the domain of parameters into several subdomains for the sake of subsequent discussions. In §2, we will treat the cases of "window" and "islands", which are the characteristic features of the cases in discussion. In §3, we will give the explicit form of the density function of an absolutely continuous invariant measure of $f_{a, b}$ (cf. [3]), and investigate the ergodicity of $f_{a, b}$ with respect to this measure.

§1. Definitions and fundamental properties.

In part II, we consider the transformation $f_{a, b}$ on $[0,1]$ defined by

$$
f_{a, b}(x)=\left\{\begin{array}{cll}
a x+\frac{a+b-a b}{b} & \text { for } & 0 \leqq x \leqq 1-\frac{1}{b} \tag{1}\\
-b(x-1) & \text { for } & 1-\frac{1}{b} \leqq x \leqq 1,
\end{array}\right.
$$

for a pair of parameters (a, b) which satisfies $b>1, a b>1$, and $a+b \geqq a b$. We notice that $b /(b+1)$ is a fixed point of $f_{a, b}$ for any (a, b).

Let us define the fundamental partition $\left\{I_{0}, I_{1}\right\}$ of $f_{a, b}$ in the same manner as in part I, that is, let $I_{0}=[0,1-1 / b]$ and $I_{1}=(1-1 / b, 1]$ in the case when, for some natural number $n, f_{a, b}^{n}(0)=0, f_{a, b}^{i}(0) \neq 0$ for $1 \leqq i \leqq n-1$ and the number

$$
\begin{equation*}
k=\#\left\{i ; 0 \leqq i \leqq n-2, f_{a, b}^{i}(0)>1-\frac{1}{b}\right\} \tag{2}
\end{equation*}
$$

is odd, and let $I_{0}=[0,1-1 / b)$ and $I_{1}=[1-1 / b, 1]$ otherwise.
The reason why we define the fundamental partition in two different ways is, as in part I, that we can prove the following Theorem 1.1 by using this $\left\{I_{0}, I_{1}\right\}$, and that this distinction is convenient for representation of $f_{a, b}$ by a symbolic dynamical system. But to consider measure theoretical problems, the difference of the fundamental partitions in the two cases are not essential.

Let us represent $f_{a, b}$ by a symbolic dynamical system. Let us define the space Ω, the shift operator σ on Ω and the order relation in Ω as in part I. Let $\pi_{a, b}$ be a map from [0,1] into Ω defined by

$$
\begin{equation*}
\pi_{a, b}(x)(n)=j, \quad \text { if } \quad f_{a, b}^{n}(x) \in I_{j} \quad(j=0 \text { or } 1) . \tag{3}
\end{equation*}
$$

Let $Y_{a, b}=\pi_{a, b}[0,1]$ and let $X_{a, b}$ be the closure of $Y_{a, b}$. Then we can prove the following theorem in the same way as in the proof of Theorem 3.1 of part I.

Theorem 1.1. We can characterize $X_{a, b}$ as follows:

$$
\begin{equation*}
X_{a, b}=\left\{\omega \in \Omega ; \sigma^{n} \omega \geqq \omega_{a, b}^{0} \quad \text { for every } \quad n \geqq 0\right\} \tag{4}
\end{equation*}
$$

where we denote by $\omega_{a, b}^{x}$ the image of x under $\pi_{a, b}$.
Now we divide the domain $D=\{(a, b) ; b>1, a b>1, a+b \geqq a b\}$ into subdomains depending on the behavior of $f_{a, b}$. Let

$$
\begin{gather*}
D_{0}=\left\{(a, b) \in D ; \frac{a+b-a b}{b} \geqq \frac{b}{b+1}\right\}, \tag{5}\\
D_{1}=\left\{(a, b) \in D ; \frac{b}{b+1}>\frac{a+b-a b}{b} \geqq 1-\frac{1}{b}\right\} . \tag{6}
\end{gather*}
$$

In $D_{0} \cup D_{1}$ we have

$$
\begin{equation*}
\omega_{a, b}^{0}(0)=0, \omega_{a, b}^{0}(1)=1 \tag{7}
\end{equation*}
$$

that is, $f_{a, b}(0) \in I_{1}$. For $k \geqq 2$ let
(8) $D_{k}=\left\{(a, b) \in D ; a<1,1+a^{-1}+\cdots+a^{-(k-1)}<b \leqq 1+a^{-1}+\cdots+a^{-k}\right\}$.

The relation $1+a^{-1}+\cdots+a^{-(k-1)}<b \leqq 1+a^{-1}+\cdots+a^{-k}$ is equivalent to

$$
\begin{equation*}
f_{a, b}^{i}(0) \in I_{0} \quad \text { for } \quad 1 \leqq i \leqq k-1, \quad f_{a, b}^{k}(0) \in I_{1} \tag{9}
\end{equation*}
$$

We divide D_{k} into three subdomains as follows:

$$
\begin{gather*}
D_{k}^{(1)}=\left\{(a, b) \in D_{k} ; a^{k} b \leqq 1\right\}, \tag{10}\\
D_{k}^{(2)}=\left\{(a, b) \in D_{k} ; a^{k} b>1, a+b \geqq a^{k} b^{2}\right\}, \tag{11}\\
D_{k}^{*}=D_{k}-\left(D_{k}^{(1)} \cup D_{k}^{(2)}\right) . \tag{12}
\end{gather*}
$$

And finally, let

$$
\begin{equation*}
D^{*}=\left\{(a, b) \in D ; a>1, \frac{a+b-a b}{b}<\frac{b}{b+1}\right\} \tag{13}
\end{equation*}
$$

(See Figure 4.)
In the remainder of this section, we sub-divide D_{0} and D_{1} further, and investigate the behavior of $f_{a, b}$ in detail. The results for these domains D_{0} and D_{1} are essentially the same as those for the case $1<a \leqq(1+\sqrt{5}) / 2$ of part I. So, with each result, we mention the corresponding result of part I and omit the proof. First of all we notice that $f_{a, b}$ has no periodic point of odd period (except the fixed point

$b /(b+1))$ in the case D_{0}, which follows from the relation

$$
\begin{equation*}
f_{a, b}\left[0, \frac{b}{b+1}\right]=\left[\frac{b}{b+1}, 1\right], \quad f_{a, b}\left[\frac{b}{b+1}, 1\right]=\left[0, \frac{b}{b+1}\right] . \tag{14}
\end{equation*}
$$

Lemma 1.1 (Lemmas 2.1 and 2.2 of part I). Let $(a, b) \in D_{0}$ and let $A_{0}=\left[f_{a, b}(0), 1\right]$ and $A_{1}=\left[0, f_{a, b}^{2}(0)\right]$. Then

$$
\begin{equation*}
f_{a, b} A_{0}=A_{1}, f_{a, b} A_{1}=A_{0}, \tag{15}
\end{equation*}
$$

and $\left.f_{a, b}^{2}\right|_{A_{j}}(j=0$ or 1$)$ is linearly conjugate to $f_{b^{2}, a b}$, that is, there exists a linear isomorphism ρ from A_{j} onto $[0,1]$ such that $\varphi \circ f_{a, b}^{2} \circ \varphi^{-1}=f_{b^{2}, a b}$.

Let us define the numbers $p(m)$ for $m \geqq 1$ inductively as follows:

$$
\left\{\begin{array}{l}
p(1)=1, \tag{16}\\
p(m)= \begin{cases}2 p(m-1) & \text { if } m \text { is even } \\
2 p(m-1)-1 & \text { if } m \text { is odd }\end{cases}
\end{array}\right.
$$

For $m \geqq 1$ let

$$
\begin{equation*}
D_{0}^{(m)}=\left\{(a, b) \in D_{0} ; a^{p(m)} b^{p(m+1)} \leqq a+b<a^{p(m+1)} b^{p(m+2)}\right\} \tag{17}
\end{equation*}
$$

Then we have
Theorem 1.2. (Theorem 2.3 of part I. Also see (63).)
(i) If $(a, b) \in D_{0}^{(m)}$, then $f_{a, b}$ has no periodic point with period $2^{k} \times o d d$ for $0 \leqq k<m$.
(ii) $(a, b) \in D_{0}^{(m)}$ implies $\left(b^{2}, a b\right) \in D_{0}^{(m-1)}$ for $m \geqq 2$ and $(a, b) \in D_{0}^{(1)}$ implies $\left(b^{2}, a b\right) \in D^{*}$.

We note the following facts concerning the location of $D_{0}^{(m)}$ in D_{0}. First of all, the curve $a+b=a b^{2}$ (which is a part of the boundary of D_{0}, and equivalent to $(a+b-a b) / b=b /(b+1))$ does not intersect the curves $a b=1$ and $b=1$. The curve $a+b=a^{p(m)} b^{p(m+1)}$ intersects the curve $a b=1$ at ($\rho_{1, m}^{-1}, \rho_{1, m}$) and meets the line $b=1$ at ($\rho_{2, m}, 1$), where $\rho_{1, m}\left(\rho_{2, m}\right)$ is the maximal root of the equation $b^{p(m+1)-p(m)+1}-b^{2}-1=0\left(a^{p(m)}-a-1=0\right.$, respectively). We also notice that $\rho_{1, m}$ and $\rho_{2, m}$ are decreasing to 1 as $m \rightarrow \infty$.

For $m \geqq 1$, let

$$
\begin{align*}
& D_{1}^{(2 m+1)}=\left\{(a, b) \in D_{1} ; a b^{2 m}-b^{2 m-1}-a b^{2 m-2}-1 \geqq 0,\right. \tag{18}\\
& \left.\quad a b^{2 m-2}-b^{2 m-3}-a b^{2 m-4}-1<0\right\} .
\end{align*}
$$

Then we have
Theorem 1.3 (Theorem 2.2 of part I). If $(a, b) \in D_{1}^{(2 m+1)}$, then the maximal period (in the sense of Šarkovskii) of $f_{a, b}$ is $2 m+1$.
§ 2. The case of "window" and "islands".
In this section, we show that the fundamental partition is not a generator of $f_{a, b}$ if and only if $(a, b) \in \bigcup_{k=2}^{\infty} D_{k}^{(1)}$, and show that $D_{k}^{(1)}$ is the case of "window" and $D_{k}^{(2)}$ is the case of "islands".

Let $(a, b) \in D_{k}$ for some k and let

$$
\begin{equation*}
x_{0}=1-\frac{1}{b}-\frac{1}{a b}-\cdots-\frac{1}{a^{k-1} b} ; \tag{19}
\end{equation*}
$$

then we can easily show that $x_{0} \geqq 0, f_{a, b}^{i}\left(x_{0}\right) \in I_{0}$ for $0 \leqq i \leqq k-2$ and $f_{a, b}^{k-1}\left(x_{0}\right)=1-1 / b$. In the case $(a, b) \in D_{k}^{(1)}$, we have

$$
\begin{equation*}
f_{a, b}^{k}(0) \in I_{1}, \quad f_{a, b}^{\kappa+1}(0) \in I_{0} \quad \text { and } \quad f_{a, b}^{k+1}(0) \leqq x_{0} \tag{20}
\end{equation*}
$$

On the other hand in the case $(a, b) \in D_{k}^{(2)}$, we have

$$
\left\{\begin{array}{l}
f_{a, b}^{k}(0) \in I_{1}, \quad f_{a, b}^{k+1}(0) \in I_{0}, \quad x_{0}<f_{a, b}^{k+1}(0)<f_{a, b}\left(x_{0}\right), \tag{21}\\
f_{a, b}^{i}(0) \in I_{0} \text { for } k+2 \leqq i \leqq 2 k-1, \quad f_{a, b}^{2 k}(0) \in I_{1} \text { and } f_{a, b}^{2 k+1}(0) \geqq f_{a, b}^{k}(0) .
\end{array}\right.
$$

Theorem 2.1. The fundamental partition of $f_{a, b}$ is a generator of $f_{a, b}$ if and only if $(a, b) \notin \bigcup_{k=2}^{\infty} D_{k}^{(1)}$.

Proof. Let $(a, b) \in D_{k}^{(1)}$ for some k, then from (20) we obtain that $f_{a b}^{k+1}\left[0, x_{0}\right] \subset\left[0, x_{0}\right]$ and that any $x \in\left[0, x_{0}\right)$ has the same symbolic representation $\pi_{a, b}(x)=\dot{0} 0 \cdots 0 \dot{1}$ with period $k+1$. So $\left\{I_{0}, I_{1}\right\}$ is not a generator. Let $(a, b) \in D_{0} \cup D_{1}$. If $\pi_{a, b}(x)=\pi_{a, b}\left(x^{\prime}\right)$ for some $x \neq x^{\prime}$, then we can show that $\left|f_{a, b}^{2 i}(x)-f_{a, b}^{2 i}\left(x^{\prime}\right)\right| \geqq(a b)^{i}\left|x-x^{\prime}\right|$ for every $i \geqq 0$, which contradicts the inequality $a b>1$. And so $\left\{I_{0}, I_{1}\right\}$ is a generator in these cases. Next let $(a, b) \in D_{k}^{(2)} \cup D_{k}^{*}$ for some $k \geqq 2$. If $\pi_{a, b}(x)=\pi_{a, b}\left(x^{\prime}\right)$ for some $x \neq x^{\prime}$, then we can show as above that $\left|f_{a, b}^{(k+1) i}(x)-f_{a, b}^{(k+1) i}\left(x^{\prime}\right)\right| \geqq\left(a^{k} b\right)^{i}\left|x-x^{\prime}\right|$ for every $i \geqq 0$, which contradicts the inequality $a^{k} b>1$. So $\left\{I_{0}, I_{1}\right\}$ is a generator. In the case of D^{*}, it is clear that $\left\{I_{0}, I_{1}\right\}$ is a generator.

Now let us investigate the case $D_{k}^{(1)} \cup D_{k}^{(2)}$ more precisely. In the remainder of this section we assume that $(a, b) \in D_{k}^{(1)} \cup D_{k}^{(2)}$. Let

$$
\left\{\begin{array}{l}
x^{*}=\frac{a^{k-1} b^{2}-a^{k-1} b-a^{k-2} b-\cdots-a^{2} b-a b-b}{a^{k-1} b^{2}-1} \tag{22}\\
x_{*}=\frac{a^{k} b-a^{k}-a^{k-1}-\cdots-a^{2}-a}{a^{k} b+1}
\end{array}\right.
$$

We can easily show that $x^{*}>x_{0}>x_{*}$ and that x^{*} and x_{*} are periodic points of $f_{a, b}$ with period $k+1$ with the following symbolic representations:

$$
\begin{equation*}
\pi_{a, b}\left(x^{*}\right)=\dot{0} 0 \cdots 01 i, \quad \pi_{a, b}\left(x_{*}\right)=\dot{0} 0 \cdots 00 i \tag{23}
\end{equation*}
$$

Lemma 2.1. Let $C_{0}=\left[0, x^{*}\right]$, then $f_{a, b}^{i} C_{0}(0 \leqq i \leqq k)$ are disjoint and $f_{a, b}^{k+1} C_{0}=C_{0}$.

Proof. From (9) we obtain

$$
\begin{equation*}
f_{a, b}^{k}(0)=\frac{a^{k}+a^{k-1}+\cdots+a^{2}+a+b-a^{k} b}{b} \tag{24}
\end{equation*}
$$

and by the definition of x^{*} we obtain

$$
\begin{equation*}
f_{a, b}^{k}\left(x^{*}\right)=1-\frac{a^{k-1} b-a^{k-1}-a^{k-2}-\cdots-a^{2}-a-1}{a^{k-1} b^{2}-1} \tag{25}
\end{equation*}
$$

And so we obtain

$$
\begin{equation*}
f_{a, b}^{k}(0)-f_{a, b}^{k}\left(x^{*}\right)=\frac{a^{k-2}\left(b-1-a^{-1}-\cdots-a^{-(k-1)}\right)\left(a+b-a^{k} b^{2}\right)}{b\left(a^{k-1} b^{2}-1\right)} \geqq 0 \tag{26}
\end{equation*}
$$

If we notice that $f_{a b}^{k-1} C_{0} \ni 1-1 / b$, then we can show that $f_{a, b}^{k} C_{0}=$ [$\left.f_{a, b}^{k}\left(x^{*}\right), 1\right]$, which completes the proof.

Let α, β be a pair of real numbers which satisfy $\alpha>1, \beta>0$ and $1 / \alpha+1 / \beta \leqq 1$. We denote by $g_{\alpha, \beta}$ the map from $[0,1]$ into itself defined by

$$
g_{\alpha, \beta}(x)=\left\{\begin{array}{ll}
\alpha x & \text { for } \tag{27}\\
0 \leqq x \leqq \frac{1}{\alpha} \\
-\beta x+\frac{\alpha+\beta}{\alpha} & \text { for }
\end{array} \frac{1}{\alpha} \leqq x \leqq 1\right.
$$

Then we have
Lemma 2.2. (i) If $\beta<1$, then any orbit of $g_{\alpha, \beta}$ approaches the fixed point $(\alpha+\beta) / \alpha(\beta+1)$ of $g_{\alpha, \beta}$.
(ii) If $\beta=1$, then every point of $[1 / \alpha, 1]-\{(\alpha+\beta) / \alpha(\beta+1)\}$ is periodic point with period 2 and, for any $x \in(0,1 / \alpha), g_{\alpha, \beta}^{n}(x) \in[1 / \alpha, 1]$ for some n.
(iii) If $\beta>1$, then $\left.g_{\alpha, \beta}\right|_{[(\alpha+\beta-\alpha \beta) / \alpha, 1]}$ is linearly conjugate to $f_{\alpha, \beta}$ and, for any $x \in(0,(\alpha+\beta-\alpha \beta) / \alpha), g_{\alpha, \beta}^{n}(x) \in[(\alpha+\beta-\alpha \beta) / \alpha, 1]$ for some n.

Proof. All assertions are clear from the definition of $g_{\alpha, \beta}$.
Lemma 2.3. $\left.f_{a, b}^{k+1}\right|_{c_{0}}$ is linearly conjugate to $g_{a^{k-1} b^{2}, a k_{b}}$.
Proof. It is clear if we notice that $f_{a, b}^{k-1} C_{0} \ni 1-1 / b$.
Lemma 2.4. Denote by λ the Lebesgue measure on $[0,1]$. Then we have $\lambda\left(\bigcup_{n=0}^{\infty} f_{a, b}^{-n} C_{0}\right)=1$.

Proof. Let
(28) $\quad C_{1}=f_{a, b}^{-1} C_{0}, \quad C_{2}=f_{a, b}^{-1} C_{1}, \quad C_{j}=f_{a, b}^{-1} C_{j-1} \cap I_{0}$ for $3 \leqq j \leqq k$.

We can easily show that these sets are disjoint and

$$
\left\{\begin{array}{l}
\lambda\left(C_{0}\right)=\frac{b\left(a^{k-1} b-a^{k-1}-a^{k-2}-\cdots-a-1\right)}{a^{k-1} b^{2}-1} \tag{29}\\
\lambda\left(C_{1}\right)=\frac{1}{b} \lambda\left(C_{0}\right), \quad \lambda\left(C_{2}\right)=\frac{a+b}{a b} \lambda\left(C_{1}\right) \\
\lambda\left(C_{j}\right)=\frac{1}{a^{j-2}} \lambda\left(C_{2}\right) \quad \text { for } \quad 3 \leqq j \leqq k
\end{array}\right.
$$

Let us define intervals $C\left(a_{0}, a_{1}, \cdots, a_{n}\right)$ for $n \geqq 0$ and for sequences ($a_{0}, a_{1}, \cdots, a_{n}$) of 0 and 1 inductively as follows:

$$
\begin{align*}
& C\left(a_{0}\right)=f_{a, b}^{-1}\left(\bigcup_{j=2}^{k} C_{j}\right) \cap I_{a_{0}} \tag{30}\\
& C\left(a_{0}, a_{1}, \cdots, a_{n}\right)=f_{a, b}^{-1} C\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) \cap I_{a_{n}} .
\end{align*}
$$

Then we have

$$
\begin{equation*}
\bigcup_{n=0}^{\infty} f_{a, b}^{-n} C_{0}=\bigcup_{n=0}^{\infty} \bigcup_{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \Omega_{n}^{*}} C\left(1, a_{1}, a_{2}, \cdots, a_{n}\right) \cup\left(\bigcup_{j=0}^{k} C_{j}\right) \tag{31}
\end{equation*}
$$

where Ω_{n}^{*} is the set of all sequences $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ such that each a_{i} is equal to 0 or 1 and that no more than $k 0$'s appear consecutively. Moreover the sets appearing in the union of the right-hand side of (31) are disjoint. For each $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \Omega_{n}^{*}$,

$$
\begin{equation*}
\lambda\left(C\left(1, a_{1}, a_{2}, \cdots, a_{n}\right)\right)=a^{-n(0)} b^{-n(1)-1} \lambda\left(\bigcup_{j=2}^{k} C_{j}\right), \tag{32}
\end{equation*}
$$

where $n(1)=\sum_{i=1}^{n} a_{i}$ and $n(0)=n-n(1)$. So it follows that

$$
\begin{align*}
& \lambda\left(\bigcup_{n=0}^{\infty} \bigcup_{\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \Omega_{n}^{*}} C\left(1, a_{1}, a_{2}, \cdots, a_{n}\right)\right) \tag{33}\\
& \quad=\sum_{m=1}^{\infty} \sum_{\substack{m_{0}, m_{1}, \ldots, m_{k-1} \geq 0 \\
m_{0}+m_{1}+\cdots+m_{k-1}=m}} \frac{m!}{m_{0}!m_{1}!\cdots m_{k-1}!} a^{-m_{1}-2 m_{2}-\cdots-(k-1) m_{k-1} b^{-m} \lambda\left(\bigcup_{j=2}^{k} C_{j}\right)} \\
& \quad=\sum_{m=1}^{\infty}\left(1+a^{-1}+a^{-2}+\cdots+a^{-(k-1)}\right)^{m} b^{-m} \lambda\left(\bigcup_{j=2}^{k} C_{j}\right) .
\end{align*}
$$

Using (29) and (30) we obtain

$$
\begin{align*}
\lambda\left(\bigcup_{n=0}^{\infty} f_{a, b}^{-n} C_{0}\right) & =\lambda\left(C_{0}\right)+\lambda\left(C_{1}\right)+\lambda\left(\bigcup_{j=2}^{k} C_{j}\right) \frac{1}{1-\left(1+a^{-1}+a^{-2}+\cdots+a^{-(k-1)}\right) b^{-1}} \tag{34}\\
& =1
\end{align*}
$$

THEOREM 2.2. In the case of $D_{k}^{(1)}$, almost all points of $[0,1]$ are
asymptotically periodic. Especially, in the case $a^{k} b<1$, almost all (with respect to the Lebesgue measure) orbits approach the periodic orbit starting from x_{*}.

Proof. This theorem follows from Lemmas 2.1, 2.2 ((i) and (ii)), 2.3 and 2.4.

TheOREM 2.3. In the case of $D_{k}^{(2)}$, let $J_{j}=\left[f_{a, b}^{j}(0), f_{a, b}^{k+j+1}(0)\right]$ for $0 \leqq j \leqq k-1$ and $J_{k}=\left[f_{a, b}^{k}(0), 1\right]$. Then we have
(i) $J_{j} \subset f_{a, b}^{j} C_{0}$ for $0 \leqq j \leqq k$, and so J_{j} 's are disjoint.
(ii) $f_{a, b} J_{j}=J_{j+1}$ for $0 \leqq j \leqq k-1$ and $f_{a, b} J_{k}=J_{0}$.
(iii) $\left.f_{a, b}^{k+1}\right|_{J_{j}}$ is linearly conjugate to $f_{a^{k-1} b^{2}, a^{k} b}$.
(iv) For almost all $x \in[0,1]-\bigcup_{j=0}^{k} J_{j}, f_{a, b}^{n}(x) \in \bigcup_{j=0}^{k} J_{j}$ for some n.

Proof. (i)~(iii) follow from Lemmas 2.1, 2.2 ((iii)), 2.3 and 2.4. To prove (iv) it is sufficient to show that, for all $x \in\left(f_{a, b}^{k+1}(0), x^{*}\right), f_{a, b}^{n}(x) \in J_{0}$ for some n. But this is easy to see if we notice that $\left|f_{a, b}^{k+1}(x)-x^{*}\right|=$ $a^{k-1} b^{2}\left|x-x^{*}\right|$ and $a^{k} b>1$.

Next, we give a proposition concerning ($a^{k-1} b^{2}, a^{k} b$).
Proposition 2.1. Let $(a, b) \in D_{k}^{(2)}$. If $a+b<a^{2 k} b^{3}$, then $\left(a^{k-1} b^{2}, a^{k} b\right) \in$ $D_{1} \cup D^{*}$. On the other hand, if $a+b \geqq a^{2 k} b^{3}$, then $\left(a^{k-1} b^{2}, a^{k} b\right) \in D_{0}^{(1)}$.

Proof. By definitions of D_{1}, D^{*} and $D_{0}^{(1)}$, we can easily show that $\left(a^{k-1} b^{2}, a^{k} b\right) \in D_{1} \cup D^{*}$ if and only if $a+b<a^{2 k} b^{3}$ and that ($a^{k-1} b^{2}, a^{k} b$) $\in D_{0}^{(1)}$ if and only if $a^{2 k} b^{3} \leqq a+b<a^{4 k-1} b^{6}$. But it is clear that $a+b<a^{4 k-1} b^{6}$ follows from $(a, b) \in D_{k}^{(2)}$, so we have Proposition 2.1.

Remark. It is evident that $f_{a, b}$ has a periodic point with period 3 in the case $D-\left(D_{0} \cup D_{1}\right)$. So, Theorem 2.2 shows that $D_{k}^{(1)}$ is the case of "window" and Theorem 2.3 shows that $D_{k}^{(2)}$ is the case of "islands".

Finally, we will give a result concerning the topological entropy in the case $D_{k}^{(1)} \cup D_{k}^{(2)}$. Let γ_{k} be the maximal root of the equation $\gamma^{k}-\gamma^{k-1}-\cdots-\gamma-1=0$. We can easily show that $1<\gamma_{k}<2$ and γ_{k} increases to 2 as $k \rightarrow \infty$.

Theorem 2.4 (cf. [2]). The topological entropy of $f_{a, b}$ is equal to $\log \gamma_{k}$ for the case of $D_{k}^{(1)} \cup D_{k}^{(2)}$.

Proof. Denote by $h_{\text {top }}\left(f_{a, b}\right)$ the topological entropy of $f_{a, b}$ and denote by $N_{a}^{(n)}$ the number of $f_{a, b}$-admissible words of length n, that is,

$$
\begin{equation*}
N_{a, b}^{(n)}=\#\left\{\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) ; \pi_{a, b}(x)(i)=a_{i} \text { for } 0 \leqq i \leqq n-1, \text { for some } x\right\} \tag{35}
\end{equation*}
$$

It is well known that $h_{\text {top }}\left(f_{a, b}\right)=\lim _{n \rightarrow \infty}(1 / n) \log N_{a, b}^{(n)}$. We can easily show that

$$
\begin{align*}
& \pi_{a, b}(0)(i)=0 \quad \text { for } \quad 0 \leqq i \leqq k-1, \quad \pi_{a, b}(0)(k)=1 \\
& \text { and } \pi_{r_{k}, r_{k}}(0)=\dot{0} 0 \cdots 01 \mathrm{i}=\pi_{a, b}\left(x^{*}\right) . \tag{36}
\end{align*}
$$

And therefore $X_{a, b} \supseteq X_{r_{k}, r_{k}}$, which implies $h_{\text {top }}\left(f_{a, b}\right) \geqq h_{\text {top }}\left(f_{r_{k}, r_{k}}\right)=\log \gamma_{k}$. But it is easy to see by virtue of Lemma 2.1 that

$$
\begin{equation*}
X_{a, b}-X_{r_{k}, r_{k}}=\left\{\omega \in X_{a, b} ; \sigma^{n} \omega=\pi_{a, b}(x) \text { for some } n \text { and some } x \in C_{0}\right\} \tag{37}
\end{equation*}
$$

and $\pi_{a, b}(x)=00 \cdots 0 * 100 \cdots 0 * 1 \cdots$ for every $x \in C_{0}$. So we get

$$
\begin{equation*}
N_{a}^{(n)} \leqq \sum_{m=0}^{n} N_{\gamma_{k} \gamma_{k}}^{(n-m)} 2^{[m /(k+1)]+1} \leqq C \gamma_{k}^{n} . \tag{38}
\end{equation*}
$$

The last inequality follows from the inequality $N_{\gamma_{k}, \gamma_{k}}^{(n)} \leqq C^{\prime} \gamma_{k}^{n}$, which has been shown in $\S 4$ of part I. So we obtain $h_{\text {top }}\left(f_{a, b}\right) \leqq \log \gamma_{k}$, which completes the proof.
$\S 3 . f_{a, b}$-expansion and the density of invariant measure.
In this section we consider the case when the fundamental partition is a generator, that is, the case $D-\left(\bigcup_{k=2}^{\infty} D_{k}^{(1)}\right)$.

Let us define $N_{0}(x, n)$ and $N_{1}(x, n)$ for $x \in[0,1]$ and $n \geqq 0$ by

$$
N_{j}(x, n)= \begin{cases}1 & \text { if } \quad n=0 \tag{39}\\ \#\left\{i ; 0 \leqq i \leqq n-1, \omega_{a, b}^{x}(i)=j\right\} \quad \text { if } \quad n \geqq 1\end{cases}
$$

Then we have
Lemma 3.1 ($f_{a, b}$-expansion). If $(a, b) \in D-\left(\cup_{k=2}^{\infty} D_{k}^{(1)}\right)$, then we have the so-called $f_{a, b}$-expansion for $x \in[0,1]$ as follows

$$
\begin{equation*}
x=1-\frac{1}{b} \sum_{n=0}^{\infty}\left(\frac{1}{a}\right)^{N_{0}(x, n)}\left(-\frac{1}{b}\right)^{N_{1}(x, n)} \tag{40}
\end{equation*}
$$

where the sum in the right-hand side converges absolutely.
Proof. Let us define $\varepsilon(j)$ and $\delta(j)$ for $j=0$ or 1 by

$$
\varepsilon(j)= \begin{cases}\frac{1}{a} & \text { for } j=0 \tag{41}\\ -\frac{1}{b} & \text { for } j=1\end{cases}
$$

$$
\delta(j)=\left\{\begin{array}{lll}
1 & \text { for } & j=0 \tag{42}\\
0 & \text { for } & j=1 .
\end{array}\right.
$$

Then it follows from (1) that

$$
\begin{equation*}
x=\varepsilon\left(\omega_{a, b}^{x}(0)\right) f_{a, b}(x)+1-\frac{a+b}{a b} \delta\left(\omega_{a, b}^{x}(0)\right) . \tag{43}
\end{equation*}
$$

By using (43) successively we obtain, for any natural number N,

$$
\begin{equation*}
x=\sum_{n=0}^{N-1}\left(1-\frac{a+b}{a b} \delta\left(\omega_{a, b}^{x}(n)\right)\right) \prod_{i=0}^{n-1} \varepsilon\left(\omega_{a, b}^{x}(i)\right)+\prod_{i=0}^{N-1} \varepsilon\left(\omega_{a, b}^{x}(i)\right) f_{a, b}^{N+1}(x) \tag{44}
\end{equation*}
$$

It is easy to see that

$$
\begin{gathered}
-\frac{a+b}{a b} \delta\left(\omega_{a, b}^{x}(n)\right) \prod_{i=0}^{n-1} \varepsilon\left(\omega_{a, b}^{x}(i)\right)+\prod_{i=0}^{n} \varepsilon\left(\omega_{a, b}^{x}(i)\right) \\
=-\frac{1}{b} \prod_{i=0}^{n-1} \varepsilon\left(\omega_{a, b}^{x}(i)\right)=-\frac{1}{b}\left(\frac{1}{a}\right)^{N_{0}(x, n)}\left(-\frac{1}{b}\right)^{N_{1}(x, n)},
\end{gathered}
$$

and so we get (40) by letting N go to infinity in (44). The absolute convergence is proved as follows. In the case $D_{k}^{(2)} \cup D_{k}^{*}, \pi_{a . b}(x)$ has no consecutive 0 's of length longer than k for any $x \in[0,1]$; so by using the inequality $a^{k} b>1$ we obtain the absolute convergence. We can show this in the same manner in the case $D_{0} \cup D_{1} \cup D^{*}$.

Define a function $h_{a, b}(x)$ on $[0,1]$ by

$$
\begin{equation*}
\left.h_{a, b}(x)=\sum_{n=0}^{\infty}\left(\frac{1}{a}\right)^{N_{0}(0, n)}\left(-\frac{1}{b}\right)^{N_{1}(0, n)} I_{[f, b}^{n}(0), 1\right](x) . \tag{45}
\end{equation*}
$$

By the absolute convergence of (40), we see that $h_{a, b}(x)$ is a function of bounded variation. Now let us prove that $h_{a, b}$ is the density of an invariant measure for $f_{a, b}$.

Lemma 3.2. For any Borel set $A \subset[0,1]$, we have

$$
\begin{equation*}
\int_{A} h_{a, b}(x) d x=\int_{f_{a, b}^{-1} A} h_{a, b}(x) d x \tag{46}
\end{equation*}
$$

Proof. It is enough to show that

$$
\begin{equation*}
h_{a, b}(x)=\frac{1}{a} h_{a, b}\left(\frac{1}{a} x-\frac{a+b-a b}{a b}\right) I_{[(a+b-a b) / a b, 1]}(x)+\frac{1}{b} h_{a, b}\left(-\frac{1}{b} x+1\right) . \tag{47}
\end{equation*}
$$

We can show (47) in the same manner as for the proof of Theorem 2.1 in part I.

To prove $h_{a, b}(x) \geqq 0$, we prepare several lemmas as follows:
Lemma 3.3 (Li-Yorke [5]). Let an integrable function $h(x)$ on [0, 1] satisfy (46). Denote by $P(N, Z)$ the set of $x \in[0,1]$ which satisfies $h(x)>0(<0,=0$, respectively $)$. Then we have that

$$
\begin{equation*}
f_{a, b} P=P \quad \text { a.e. and } \quad f_{a, b} N=N \quad \text { a.e., } \tag{48}
\end{equation*}
$$

where a.e. means almost everywhere with respect to the Lebesgue measure.

Proof. To simplify the notation, we write f for $f_{a, b}$ in this proof. From the assumption we have

$$
\begin{align*}
\int_{P} h(x) d x & =\int_{f^{-1} P} h(x) d x \tag{49}\\
& =\int_{f^{-1} P \cap P} h(x) d x+\int_{f^{-1} P \cap N} h(x) d x+\int_{f^{-1} P \cap Z} h(x) d x \\
& \leqq \int_{f^{-1} P \cap P} h(x) d x \leqq \int_{P} h(x) d x .
\end{align*}
$$

So we obtain that

$$
\begin{equation*}
f^{-1} P \supset P \quad \text { a.e. and } \quad f^{-1} P \cap N=\varnothing \quad \text { a.e., } \tag{50}
\end{equation*}
$$

which imply that

$$
\begin{equation*}
f P \subset P \subset f^{-1}(f P) \subset f^{-1} P \tag{51}
\end{equation*}
$$

From (46), (50) and (51) it is easy to see that

$$
\begin{align*}
0 & =\int_{f^{-1}\left(f_{P}\right)-f P} h(x) d x \tag{52}\\
& =\int_{f^{-1}\left(f_{P}\right)-P} h(x) d x+\int_{P-f_{P}} h(x) d x \\
& =\int_{P-f P} h(x) d x
\end{align*}
$$

so we obtain that $f P=P$ a.e. The assertion $f N=N$ a.e. can be proved in the same manner.

Lemma 3.4. Let $h(x)$ satisfy the same assumption as in Lemma 3.4 and let a Borel set $B \subset[0,1]$ satisfy, for some n_{0},

$$
\begin{equation*}
f_{a, b}^{n} B \cap B=\varnothing \quad \text { a.e. for every } \quad n \geqq n_{0} \tag{53}
\end{equation*}
$$

Then we have that

$$
\begin{equation*}
h(x)=0 \quad \text { a.e. } \quad x \in B \tag{54}
\end{equation*}
$$

Proof. Let $B_{p}=\{x \in B ; h(x)>0\}$ and let $B_{p}^{*}=\bigcup_{n=n_{0}}^{\infty} f_{a, b}^{n} B_{p}$. Then it is easy to show that

$$
\begin{equation*}
B_{p}^{*} \cap B_{p}=\varnothing \quad \text { a.e. and } \quad f_{a, b}^{-n_{0}} B_{p}^{*} \supset B_{p}^{*} \cup B_{p} \tag{55}
\end{equation*}
$$

Using (55) and the assumption of lemma, we obtain that

$$
\begin{align*}
\int_{B_{p}^{*}} h(x) d x & =\int_{f_{a}^{-n_{0} B_{p}^{*}}} h(x) d x \tag{56}\\
& \geqq \int_{B_{p}^{*}} h(x) d x+\int_{B_{p}} h(x) d x,
\end{align*}
$$

which implies $\int_{B_{p}} h(x) d x=0$, and so we obtain $B_{P}=\varnothing$ a.e. We can show that $B_{n}=\{x \in B ; h(x)<0\}=\varnothing$ a.e. in the same manner.

Lemma 3.5. Let $(a, b) \in D_{1} \cup D^{*} \cup\left(\bigcup_{k=2}^{\infty} D_{k}^{*}\right)$. For every interval $I \subset[0,1]$ with positive length, there exists an n which satisfies

$$
\begin{equation*}
f_{a, b}^{n} I=[0,1] . \tag{57}
\end{equation*}
$$

Proof. It is sufficient to prove that $f_{a, b}^{m} I \ni b /(b+1)$ for some m, since it is easy to see that $f_{a, b}^{n} I=[0,1]$ for some $n \geqq m$ in this case. We can easily show that if, for some interval $J, 1-1 / b \in J$ then

$$
\begin{equation*}
\left|f_{a, b} J\right| \geqq \frac{a b}{a+b}|J| \tag{58}
\end{equation*}
$$

where || denote the length of interval.
In the case D_{1}, we have that

$$
\begin{equation*}
\left|f_{a, b}^{2} I\right| \geqq \min \left\{\frac{a b^{2}}{a+b}, a b, b^{2}\right\}|I|=\frac{a b^{2}}{a+b}|I| \tag{59}
\end{equation*}
$$

except in the case when

$$
\begin{equation*}
I \cap f_{a, b} I \ni 1-\frac{1}{b} \quad \text { or } \quad f_{a, b} I \cap f_{a, b}^{2} I \ni 1-\frac{1}{b} \tag{60}
\end{equation*}
$$

is satisfied. Using (59) repeatedly we get the desired conclusion if we notice that $a b^{2} /(a+b)>1$. (Note that $b /(b+1)>(a+b-a b) / b$.) In the case of (60), it is easy to see that $f_{a, b}^{2} I \ni b /(b+1)$.

In the case D_{k}^{*}, we have that

$$
\begin{align*}
\left|f_{a, b}^{k+1} I\right| \geqq \min & \left\{\frac{a^{k} b^{2}}{a+b}, a^{k} b, a^{k-1} b^{2}, \cdots, a b^{k}, b^{k+1}\right\}|I| \tag{61}\\
& =\frac{a^{k} b^{2}}{a+b}|I|,
\end{align*}
$$

if at most one interval among $I, f_{a, b} I, \cdots, f_{a, b}^{k} I$ contains $1-1 / b$. If $f_{a, b}^{m} I$ and $f_{a, b}^{m+i} I$ contain $1-1 / b$ for some $0 \leqq m<m+i \leqq k$, then we can show that $f_{a, b}^{m+i+1} I \ni b /(b+1)$. Using (61) repeatedly we get the desired conclusion if we notice that $a^{k} b^{2} /(a+b)>1$ in the case D_{k}^{*}.

In the case D^{*}, we can prove the lemma in the same manner.
Theorem 3.1. Let $(a, b) \in D_{1} \cup\left(\bigcup_{k=2}^{\infty} D_{k}^{*}\right) \cup D^{*}$. Then $h_{a, b}$ is the density function of an invariant measure for $f_{a, b}$ and $h_{a, b}(x)>0$ a.e. $x \in[0,1]$.

Proof. From Lemmas 3.2 and 3.5, it is sufficient to prove that $h_{a, b}(x)>0$ on $[0, \varepsilon]$ for some $\varepsilon>0$. By the definition of $h_{a, b}$, we have $h_{a, b}(0)>0$. In the case when 0 is periodic for $f_{a, b}$, we have $h_{a, b}(x)=h_{a, b}(0)$ on $[0, \varepsilon]$ for sufficiently small ε. Otherwise, let $h_{a, b}(0)=s$. By Lemma 3.1, we have that, for some n_{0},

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty}\left(\frac{1}{a}\right)^{N_{0}(0, n)}\left(\frac{1}{b}\right)^{N_{1}(0, n)}<\frac{s}{2} . \tag{62}
\end{equation*}
$$

So if we pick a positive ε satisfying $\varepsilon<f_{a, b}^{n}(0)$ for $1 \leqq n<n_{0}$, we can show $h_{a, b}(x)>s / 2$ on $[0, \varepsilon]$.

THEOREM 3.2. Let $(a, b) \in D_{1} \cup\left(\cup_{k=2}^{\infty} D_{k}^{*}\right) \cup D^{*}$. Then the dynamical system ($\left.f_{a, b}, h_{a, b}(x) d x\right)$ is weak Bernoulli.

Proof. Using Lemma 3.5, it is easy to see that $f_{a, b}^{2}$ (resp. $f_{a, b}^{k}, f_{a, b}$) satisfies the condition of Bowen [1] in the case of $D_{1}\left(\right.$ resp. $\left.D_{k}^{*}, D^{*}\right)$. So we can apply the result of Bowen to get the desired conclusion.

Now let us investigate the support of $h_{a, b}$ in the case D_{0}. Let $(a, b) \in D_{0}^{(m)}$ for some $m \geqq 1$ and denote by A_{i} for $0 \leqq i \leqq 2^{m}-1$ the intervals defined by

$$
A_{i}= \begin{cases}{\left[f_{a, b}^{2 m+i}(1), f_{a, b}^{i}(1)\right]} & \text { if } \tag{63}\\ {\left[N_{1}(1, i)\right. \text { is even }} \\ \left.f_{a, b}^{i}(1), f_{a, b}^{2 m+i}(1)\right] & \text { if } \quad N_{1}(1, i) \text { is odd }\end{cases}
$$

As in part I, we can show that A_{i} 's are disjoint and that

$$
\begin{equation*}
f_{a, b} A_{i}=A_{i+1} \quad \text { for } \quad 0 \leqq i \leqq 2^{m}-2, \quad f_{a, b} A_{2^{m-1}}=A_{0} \tag{64}
\end{equation*}
$$

Corollary 3.1. Let $(a, b) \in D_{0}^{(m)}$ for some $m \geqq$. Then
(i) $h_{a, b}$ is the density function of an invariant measure for $f_{a, b}$ and the support of $h_{a, b}$ is equal to $\bigcup_{i=0}^{m_{i=1}} A_{i}$.
(ii) The dynamical system $\left(f_{a, b}, h_{a, b}(x) d x\right)$ is ergodic but not weakly mixing.

Proof. This corollary follows from Theorems 1.2, 3.1, 3.2, Lemmas 3.2, 3.3, 3.4 and (64).

Corollary 3.2. Let $(a, b) \in D_{k}^{(2)}$ for some $k \geqq 2$. Then $h_{a, b}$ is the density function of an invariant measure for $f_{a, b}$ and
(i) if $a+b<a^{2 k} b^{3}$, then the support of $h_{a, b}$ is equal to $\bigcup_{i=0}^{k} J_{i}$, where J_{i} is defined in Theorem 2.3.
(ii) If $a+b \geqq a^{2 k} b^{3}$, then the support of $h_{a, b}$ is equal to $\bigcup_{i=0}^{k}\left(J_{i, 1} \cup\right.$ $\left.J_{i, 2}\right)$ for some sub-intervals $J_{i, 1}$ and $J_{i, 2}$ of $J_{i}(0 \leqq i \leqq k)$ which satisfy

$$
\begin{equation*}
f_{a b}^{k+1} J_{i, 1}=J_{i, 2} \quad \text { and } \quad f_{a, b}^{k+1} J_{i, 2}=J_{i, 1} . \tag{65}
\end{equation*}
$$

And the dynamical system $\left(f_{a, b}, h_{a, b}(x) d x\right)$ is ergodic but not weakly mixing.

Proof. This corollary follows from Theorems 2.3, 3.1, 3.2, Lemmas 3.2, 3.3 and 3.4.

References

[1] R. Bowen, Bernoulli maps of the intervals, Israel J. Math., 28 (1977), 161-168.
[2] L. Jonker and D. A. Rand. A Lower Bound for the Entropy of Certain Maps of the Unit Interval, preprint.
[3] A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488.
[4] T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 895-922.
[5] T. Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc., 235 (1978), 183-192.
[6] R. M. MAY, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-567.
[7] R. M. May and G. F. Oster, Bifurcations and dynamic complexity in simple ecological models, Amer. Naturalist, 110 (1976), 573-599.
[8] P. Stefan, A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the line, Comm. Math. Phys. 54 (1977), 237-248.
[9] G. Wagner, The ergodic behavior of piecewise monotonic transformations, Z. Wahrscheinlichkeitstheorie und Verw Gebiete, 46 (1979), 317-324.

Tokyo 187
and
Department of Mathematics
Keio University
Hiyoshi-cho, Kонокu-ku, Yоконаma 223

