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Introduction

In this paper, we shall deal with first order structures associated to
a fixed first order language $L$ with equality. For the sake of simplicity
we assume that $L$ has neither individual constant symbols nor function
symbols. Also, we shall use standard model-theoretic notions in Chang-
Keisler [1]. Let $M$ be a first order L-structure and $I$ be a topological
space. Then the topological power of $M$ by $I$, denoted by $M^{(I\rangle}$ , is the
substructure of the direct power $M^{I}$ , whose universe is the set of all the
continuous functions from $I$ to the universe $|M|$ of $M$, where we assume
that $|M|$ is endowed with the discrete topology. Topological powers of
$M$ are L-structures of the form $M^{(I)}$ for some topological space $I$; Boolean
topological powers of $M$ are L-structures of the form $M^{(I)}$ for some
Boolean space $I$.

Using these notions our main result can be expressed as follows:

THEOREM. Every topologica $l$ power of a first order L-structure $M$

is elementarily equivalent to a reduced power of $M$, and every reduced
power of $M$ is elementarily equivalent to a Boolean topological power
of $M$.

From this theorem we have the following corollary.

COROLLARY 1. The following three conditions are equivalent for any
sentence $\varphi$ in $L$ .

1) Every reduced power of a model of $\varphi$ is also a model of $\varphi$ .
2) Every topological power of a model of $\varphi$ is also a model of $\varphi$ .
3) Every Boolean topological power of a model of $\varphi$ is also a model

of $\varphi$ .
On the other hand, any topological power of $M$ can be considered as
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global sections of a constant M-sheaf and vice versa (cf. [2]). A sentenc $($

$\varphi$ in $L$ is said to be a global section sentence (respectively, CS-sentence
BCS-sentence) if $\varphi$ is preserved under sheaves of L-structures (resp
constant sheaves, constant sheaves over Boolean spaces). See section $\tau$

below for details. Therefore we obtain the following Corollary 1‘ fron
Corollary 1.

COROLLARY 1’. The following three conditions are equivalent $fo2$

any sentence $\varphi$ in $L$ .
1) $\varphi$ is a reduced power sentence.
2) $\varphi$ is a CSPsentence.
3) $\varphi$ is a BCS-sentence.

By using Corollary 1‘ and Proposition 6.2.6 (ii) in Chang-Keisler [1]
we have the following result:

COROLLARY 2. Every global section sentence is equivalent to a Horn
sentence.

Corollary 2 is an affirmative answer to the Mansfield’s problem [5].
Noted that this Corollary 2 has been already obtained by Volger [7].

In section 1 of this paper we shall state a Feferman-Vaught type
theorem and its immediate consequence due to Volger in [6]. By using
this fact, we shall give a proof of our theorem in section 2. In section
3, we shall discuss some relationship which exists between topological
powers and global sections of sheaves of L-structures, where Corollary
1’ and Corollary 2 will be proved.

\S 1. Fefermen-Vaught type theorem.

Throughout section 1 and section 2, every universe of an L-structure
is nonempty. In the following a Boolean valued L-structure $\mathfrak{M}$ consists
of \langle $|\mathfrak{M}|,$ $\mathfrak{M}_{B},$ $\ovalbox{\tt\small REJECT}\varphi\ovalbox{\tt\small REJECT}_{\Re}$ ( $\varphi\in$ Form $(L)$ )\rangle , where $|\mathfrak{M}|$ is an universe, $\mathfrak{M}_{B}$ is a
Boolean algebra, and for every L-formula $\varphi(x_{1}, \cdots, x_{*}),$ [$\varphi\ovalbox{\tt\small REJECT}_{\Re}$ is a func-
tion from $\mathfrak{M}$’ into $\mathfrak{M}_{B}$ which satisfies Equality Axioms and satisfies

$\ovalbox{\tt\small REJECT}\varphi\vee\psi J_{\Re}=\ovalbox{\tt\small REJECT}\varphi J_{\Re}+\$\psi\emptyset\Re$

’

$\square \varphi\wedge\psi J_{\Re}=I\varphi J_{n}\cdot\ovalbox{\tt\small REJECT}\psi J_{\mathfrak{M}}$ ,

$\beta 7\varphi J_{\Re}=\sim f\varphi J_{\Re}$ ,

$\ovalbox{\tt\small REJECT}\forall x\varphi(x)J_{\Re}=\bigwedge_{fe|\mathfrak{B}|}\emptyset\varphi(f)\ovalbox{\tt\small REJECT}_{\Re}$ ,
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$\ovalbox{\tt\small REJECT}\exists x\varphi(x)J_{\mathfrak{M}}=[\varphi(f)J_{\mathfrak{M}}fe|\mathfrak{M}|$

Let re be a Boolean valued L-structure. The two-valued reduct $\tilde{\mathfrak{M}}$ of $\mathfrak{M}$

is given by \langle $|\mathfrak{M}|,$ $\{\tilde{R}_{\zeta}|R_{\zeta}$ is a relation symbol in $ L\}\rangle$ where $\tilde{\mathfrak{M}}f=$

$R_{\zeta}(f_{1}, \cdots, f_{t})$ if and only if $\emptyset R_{\zeta}(f_{1}, \cdots, f_{n})J=1$ . Hence $\tilde{\mathfrak{M}}$ is an L-struc-ture.
A Boolean valued L-structure EM satisfies the maximum principle iffor any L-formula $\varphi(x, x_{1}, \cdots, x,.)$ and for any $f_{1},$

$\cdots,$ $f_{*}e|\mathfrak{M}|$ , thereexists $f\in|\mathfrak{M}|$ such that

$[\exists x\varphi(x, f_{1}, \cdots, f_{n})J_{\mathfrak{M}}=\int\varphi(f, f_{1}, \cdots, f_{n})J_{\mathfrak{M}}$ .
A Boolean valued L-structure $\mathfrak{M}$ satisfies the finite completeness $\cdot$ property
if for any $be\mathfrak{M}_{B}$ and any $a_{1},$ $a_{2}\in|\mathfrak{M}|$ , there exists $a$ $e|\mathfrak{M}|$ such that
$\mathbb{I}a=a_{1}\ovalbox{\tt\small REJECT}\geqq b$ and $\beta a=a_{2}J\geqq\sim b$ , and satisfies the almost two-valuedness
property if $\ovalbox{\tt\small REJECT}\varphi J=1$ or $\int\varphi J=0$ for any L-sentence $\varphi$ .

Let $L_{BA}$ be the first order language of Boolean algebras.

FEFERMAN-VAUGHT TYPE THEOREM ([3], [5], [6]). For any L-sentence
$\varphi$, there exists a sequence $\langle\Phi(\zeta_{1}, \cdots, \zeta_{m});\theta_{1}, \cdots, \theta_{m}\rangle$ where $\Phi(\zeta_{1}, \cdots, \zeta_{n})$ isan $L_{BA}$-formula and $\theta_{1},$

$\cdots,$
$\theta_{m}$ are L-sentences, such that for any Boolean

valued L-structure $\mathfrak{M}satisfying\sim$ the maximum principle and the finitecompleteness property, we have $\mathfrak{M}\models\varphi$ if and only if $\mathfrak{M}_{B}E=\Phi(\ovalbox{\tt\small REJECT}\theta_{1}J, \cdots, |[\theta_{m}J)$ .
The following corollary is an immediate consequence of above

Feferman-Vaught type theorem.

COROLLARY. Let $\mathfrak{M},$ $\mathfrak{M}$
’ be any Boolean valued L-structures which

satisfy the maximum principle, the finite completeness property and the
almost two-valuedness property. Suppose that $\mathfrak{M}_{B}=\mathfrak{M}_{B}^{\prime}$ and suppose that
for every L-sentence $\varphi|$[$\varphi J_{\mathfrak{M}}=1$ if and only if $\ovalbox{\tt\small REJECT}\varphi$]$|_{\mathfrak{M}},=1$ . Then we have
$\tilde{\mathfrak{M}}\equiv\tilde{\mathfrak{M}}’$ .

\S 2. A proof of the theorem.

LEMMA 1. For any L-structure $M$ and any topological space $I$,
$\mathfrak{M}^{(I)}=\langle|M^{(1)}|, C(I), \ovalbox{\tt\small REJECT}\varphi(f_{1}, \cdots, f_{n})]|_{\mathfrak{M}^{(I)}}=\{ieI|M\models\varphi(f_{1}(i), \cdots, f_{\hslash}(i))\}\rangle$

is a $C(I)$-valued L-structure which satisfies the maximum principle,
the finite completeness property and the almost two-valuedness property
where $C(I)$ $is\sim the$ Boolean algebra of all clopen subsets of I. And two-
valued reduct $\mathfrak{M}^{(I)}$ of $\mathfrak{M}^{(I)}$ coincides with $M^{(I)}$ .
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PROOF. For any $f_{1},$
$\cdots,$ $f.e|M^{(I)}|,$ $U_{i}=f_{1}^{-1}(f_{1}(i))\cap\cdots\cap f_{n}^{-1}(f,.(i))$ is

clopen subset of I. Since we have $I_{0}=\{i\in I|M\models\varphi(f_{1}(i), \cdots,f_{*}(i))\}=\bigcup_{:\in I_{0}}U$

and $I_{1}=\{i\in I|M\models 7\varphi(f_{1}(i), \cdots,f_{n}(i))\}=\bigcup_{ieI_{1}}U_{i},$ $I_{0}=\ovalbox{\tt\small REJECT}\varphi(f_{1},\cdots,f.)I$ is a clope
subset of I. $\beta\varphi\vee\psi J=\beta\varphi J+\beta\psi J,$ $\beta\varphi$ A $\psi J=\ovalbox{\tt\small REJECT}\varphi J\cdot\ovalbox{\tt\small REJECT}\psi J$ , and $\ovalbox{\tt\small REJECT} 7\varphi I=\sim\theta\varphi$

are easily shown. And, since $\ovalbox{\tt\small REJECT}\forall x\varphi(x)9$ and $I^{\exists}x\varphi(x)J$ are clopen subset
of $I$, we have [$\forall x\varphi(x)J=\bigwedge_{fe|r^{(I)}|}\square \varphi(f)J,$ $\ovalbox{\tt\small REJECT}\exists x\varphi(x)J=_{Je|r^{(I)}|}[\varphi(f)\ovalbox{\tt\small REJECT}$ . Ot
viously $\mathfrak{M}^{(I)}$ satisfies Equality Axioms. Therefore $\mathfrak{M}^{(I)}$ is a $C(I)$-value
L-structure.

For every $i\in I$, if $Mt=\exists x\varphi(x, f_{1}(i),$
$\cdots,$ $f_{*}(i))$ , then fix $a_{:}$ such tha

MP $\varphi(a_{i}, f_{1}(i),$
$\cdots,$

$f,$ $(i))$ , otherwise fix $a_{i}e|M|$ , arbitrarily. We defin
the $relation\sim on$ $I$ as follows: $i\sim i^{\prime}(i, i^{\prime}eI)$ if and only if $f_{1}(i)=f_{1}(i^{\prime}\backslash $,

$f,$ $(i)=f.(i^{\prime})$ . This is an equivalence relation. Let $\{i_{a}\}_{\alpha}$ be the represer
tatives of the equivalence classes. We define $h:I\rightarrow|M|$ as follows; fo
any $i\in I,$ $h(i)=a_{i_{\alpha}}$ if and only if $i\sim i_{\alpha}$ . For any $M’\subset|M|$ , we hav
$h^{-1}(M^{\prime})=\bigcup_{a_{i_{\alpha}}\in K^{\prime}}U_{i_{a}}$ . Hence $h$ is continuous. Considering that $ M\not\in$

$\exists x\varphi(x, f_{1}(i),$
$\cdots,$ $f_{s}(i))$ if and only if $M\models\varphi(h(i), f_{1}(i),$

$\cdots,$ $f.(i))$ , we hav
$\ovalbox{\tt\small REJECT}\exists x\varphi(x, f_{1}, \cdots, f_{n})J=\ovalbox{\tt\small REJECT}\varphi(h, f_{1}, \cdots, f_{n})\ovalbox{\tt\small REJECT}$ . Therefore $\mathfrak{M}^{(I)}$ satisfies the $\max$ :
mum principle. It is easy to show that $\mathfrak{M}^{(I)}$ satisfies the finite com
pleteness property and the almost two-valuedness property. From th
definition of two-valued reduct $\tilde{\mathfrak{M}}^{(I)}$ of $\mathfrak{M}^{(I)},\tilde{\mathfrak{M}}^{(I)}$ coincides with $M^{(I}$

Let $M$ be an L-structure, $X$ be an nonempty set and $F$ be a filte
on $X$. We can regard the reduced power $M^{X}/F$ as a Boolean valued X
structure $\mathfrak{M}^{X}/F$ in the usual way; i.e., $|\mathfrak{M}^{X}/F|=|M^{X}/F|,$ $(\mathfrak{M}^{X}/F)_{B}=2^{X}/\rfloor$

and for any L-formula $\varphi(x_{1}, \cdots, x_{n})$ ,

$\emptyset\varphi([f_{1}], \cdots, [f_{\#}])J_{\Re^{X}/F}=[\{x\in X|M\models\varphi(f_{1}(i), \cdots, f_{\alpha}(i))\}]_{F}$ ,

where $[X’]_{F}$ is an equivalence class of a characteristic function of $X^{\prime}\subset X$

It is easy to show that the following Lemma 2 holds.

LEMMA 2. For any L-structure $M$, any nonempty set $X$ and an
filter on $X,$ $\mathfrak{M}^{X}/F$ satisfies the maximum principle, the finite completc
ness property and the almost two-valuedness property. And two-value $($

reduct $\tilde{\mathfrak{M}}^{X}/F$ of $\mathfrak{M}^{X}/F$ coincides with $M^{X}/F$.
THEOREM. Every topological power of an L-structure $M$ is elemen

$ta\gamma dy$ equivalent to a reduced power of $M$, and every reduced power $0$

$M$ is elementarily equivalent to a Boolean topological power of $M$.
PROOF. For any topological space $I$, there exists an nonempty se

$X$ and a filter $F$ on $X$ such that $C(I)\equiv 2^{X}/F$. From Lemna 1 and Lemm
2, $\mathfrak{M}^{(I)}$ and $\mathfrak{M}^{X}/F$ are Boolean valued L-structures which satisfy th
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maximum principle, the finite completeness property and the almost two-
valuedness property. And for any L-sentence $\varphi$ , the conditions $\beta\varphi J_{\mathfrak{M}^{(I)}}=1$ ,
$ M\models\varphi$ and $I\varphi J_{r^{X}/F}=1$ are mutually equivalent. Therefore, from Corollary
of Feferman-Vaught type theorem, we have $\tilde{\mathfrak{M}}^{(I)}\equiv\tilde{\mathfrak{M}}^{X}fF$. Hence $ M^{(I)}\equiv$

$M^{X}/F$ from Lemma 1 and Lemma 2. For any nonempty set $X$ and any
filter $F$ on $X$, from Stone representation theorem, we have $ C((2^{X}/F)^{*})\cong$

$2^{X}/F$, where $(2^{X}/F)^{*}$ is the dual space of 2$X/F$. From Lemma 1, Lemma
2 and Corollary of Feferman-Vaught type theorem, $\tilde{\mathfrak{M}}^{((2^{X}/P))}\equiv\tilde{\mathfrak{M}}^{X}/F$.
Henee we get $M^{((2^{X}/F)^{*})}\equiv M^{X}/F$.

\S 3. Sheaves of $L$-structures.

In this section, we admit the empty L-structure. Most of our nota-
tions and definitions are taken from Ellerman [4]. Let $I$ be a topological
space. We can regard the set $P(I)$ of open subsets of $I$ as a category
in the usual way, i.e., the objects of $P(I)$ are the open subsets of $I$, and
$P(I)$ has one morphism from $u$ to $v$ if and only if $u\subset v$ . Let $M_{L}$ be the
category of L-structures and homomorphisms (not necessary onto). A
functor $P:C(I)^{op}\rightarrow M_{L}$ (i.e., a contravariant functor from $P(I)$ to $M_{L}$ )
is called a presheaf of L-structures and denoted by (I, $P$). A presheaf
of L-structures (I, $P$) is a sheaf of L-structures if the following conditions
are satisfied:

(1) Sor any open set $u$ , any open covering $\{u_{\alpha}|\alpha\in A\}$ of $u$ and any
family $\{a_{a}[\alpha eA\}$ satisfying the condition $a.eP(u.)|$ for eve$ry\alpha eA$ , if
$P_{u_{\alpha}\cap u_{\beta}}^{u_{\alpha}}(a_{a})=P_{u_{\alpha}\cap u_{\beta}}^{u_{\beta}}(a_{\beta})$ for any $\alpha,$ $\beta eA$, then there exists exactly one
$ae|flu)|$ such that $P_{u_{\alpha}}^{u}(a)=a_{\alpha}$ for every $\alpha eA$ .

(2) For any atomic relation $R(x_{1},$
$\cdots,$

$ x_{n}\rangle$, any open set $u$ , any open
covering $\{u_{a}\}\alpha\in A\}$ of $u$ and any $a_{1},$ $\cdots,$ $a_{\alpha}e|P(u)|$ , if $P(u_{\alpha})\models R(P^{\tau\iota}(a_{1})$ ,

’
$P_{\alpha}^{u}(aA)$ for every $\alpha eA$ , then $P(u)\models R(a_{\iota}, \cdots, a_{u})$ . $\alpha$

Iaet (A $P$) be a sheaf of L-structures. We define the stalk of $P$ at
ieI to. be the direct limit $P_{i}=\lim_{\rightarrow}{}_{uei}P(u)$ . For any atomic relation
$R(x_{1}, \cdots, x_{n})$ and $b_{1},$

$\cdots,$
$b,,$ $\in P_{i}$ , we have $P_{i}\models R(b_{1}, \cdots, b_{n})$ if and only if

there exists $u$ a $i$ and $a_{1},$ $\cdots,$ $ a_{t\iota}\in\lfloor P(u)\lfloor$ such that $P_{i}^{u}(a_{k})=b_{k}$ for $k=1,$ $\cdots,$ $n$

and that $P(u)kR(a_{1}, \cdots, a.)$ , where $P_{i}^{u}$ is the canonical map from $P(u)$

into $P_{i}$ . Let (I, $P$) be a sheaf of L-structures. $P(I)$ is said to be global
sectians $\phi(I, P)$ .

Let $M$ be an L-structure and $I$ be a topological space. We define $\sim$

constant M-sheaf (I, $M$) as follows: The universe $|M(u)|$ of $M(u)$ is the
set of all continuous functions from $u$ to the universe $|M|$ of $M$ (where
we consider that $|M|$ has the discrete topology), for every $ueP(I)$ . The
restrtction maps $M^{u};|M(u)|\rightarrow|M(v)|(v\subset u)$ are defined by $M_{v}^{u}(f)=f[v$.
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If $R(x_{1}, \cdots, x.)$ is an atomic relation and $f_{1},$
$\cdots,$ $f.e|M(u)|$ , then $M(u)|$

$R(f_{u}\cdots, f,,)$ if and only if for all $ieu$ MB $R(f_{1}(i), \cdots, f.(i))$ . We remar
that every stalk of a constant M-sheaf is isomorphic to $M$, and for an
nonempty L-structure $M$ and any topological space $I$, global sectior
$M(I)$ of a constant M-sheaf (I, $M$) is nonempty and coincides wit
topological power $M^{(I)}$ . Constant sheaves (over Boolean spaces) are sheave
of L-structures of the form (I, $M$) for some topological space (Boolea
space) $I$ and L-structure $M$.

Let $K$ be a cla8s of sheaves of L-structures. An L-sentence $\varphi$

preserved under $K$ if and only if for any (I, $P$) $eK$, the conditior
$\{ieI|P\models\varphi\}=I$ and $|P(I)|\neq\phi$ imply $ P(I)\models\varphi$ . Let $S$ (resp. $CS,$ $BCS$) $t$

the class of all sheaves of L-structures (resp. constant sheaves, constar
sheaves over Boolean spaces). An L-sentence $\varphi$ is said to be a glob:
section sentence (resp. CS-sentence BCS-sentence) if $\varphi$ is preserved unde
$S$ (resp. $CS,$ $BCS$).

COROLLARY 1’. For any L-sentence $\varphi$ the following three condition
are equivalent.

1) $\varphi$ is a reduced power sentence.
2) $\varphi$ is a CS-sentence.
3) $\varphi$ is a BSC-sentence.

PROOF. Let $\varphi$ be a reduced power sentence. From Corollary 1, fo
any nonempty L-structure $M$ and any topological space $I$, if MF $\varphi$, the
$ M^{(I)}\models\varphi$ . Therefore for any constant sheaf (I, $M$), if MP $\varphi$ and $|M|\neq g$

then $ M(I)\models\varphi$ . Hence $\varphi$ is a CS-sentence. Thus, 1) implies 2). Obviousl
2) implies 3). Then, the proof will be complete if we will show that.’
implies 1). Let $\varphi$ be a BCS-sentence. Let $M$ be a nonempty L-stru $($

ture, $X$ be a nonempty set, and $F$ be a filter on $X$. The univers
$M(2^{X}/F)^{*})$ of global sections of the constant M-sheaf $((2^{X}/F)^{*}, M)$ is nor
empty. So the relation MP $\varphi$ implies $ M((2^{X}/F)^{*})\models\varphi$ . Hence, from
Corollary 1, $ M\models\varphi$ implies $ M^{X}/F\models\varphi$ . So $\varphi$ is a reduced power sentence

COROLLARY 2. Every global section sentence is equivalent to a $Hor$ ’

sentence.

PROOF. Since a global section sentence is a CS-sentence and also
finite direct product sentence, a global section sentence is a reduce
power sentence and also a finite direct product sentence. If an $\Sigma$

sentence $\varphi$ is a reduced power sentence and a finite direct produc
sentence, then $\varphi$ is a reduced product sentence (see Proposition 6.2.6 (ii
in Chang-Keisler [1]). Hence a global section sentence is a reduced produc



TOPOLOGICAL POWERS 147

sentence. Therefore a global section sentence is equivalent to a Horn
sentence.

Corollary 2 is an affirmative solution of Mansfield’s problem [5]. In
[7] H. Volger gave a characterization of the global section sentence.
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