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Introduction

Perhaps one of the most general form of the so-called Goursat
Problem is that given by Hormander [3]: Discuss the existence and the
uniqueness of solutions of the partial differential equation:

(1) Diy= >, a.D*u+f

lel <18

such that
u(x) — P(x) = O(x*)

as x approaches each coordinate planes in the space C* of n complex
variables where @(x) is a given function. We may roughly summarize
Hormander’s results as follows. There exists a unique holomorphic
solution of the equation (1) if the coefficient on the left-hand side of the
equation (1) is sufficiently large compared with the coefficients a.,’s on
the right-hand side of the equation.

On the other extremity of the formulation of the problem, a very

special, and perhaps the simplest second order equation with constant
coefficients;

(2) EWgy = Uyy +Uyy + F (2, Y)

was studied, by J. Leray, in [4] with the similar boundary condition.
He proved that there exists a unique holomorphic solution of (2) for all
complex value of the parameter ¢ except for the real interval [—2, 2].
Furthermore, he revealed an unexpected complication of the problem
which can only be expressed by a continued fraction expansion of ¢. He
showed that both existence and uniqueness of holomorphic solutions of
(2) depends on the transcendental algebraic behavior of the parameter
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¢ on this particular interval.
If we want to describe explicitly the phrase “sufficiently large” in
Hormander’s result for the equation (2), we have

|e|>59.112. - - |

In these two different types of approaches, the best result obtained up
to now seems to be the work of L. Garding, [1]. He studied higher
order equations with variable coefficients and proved the existence and
the uniqueness of holomorphic solutions outside the circle |¢|>2 in the
complex e-plane.

The object of the present study is to give a precise bound of the
circle of convergence of the holomorphic solutions in terms of a non-
euclidean distance between the parameter ¢ and the exceptional interval
[—2, 2] for a class of equations similar to (2) but with variable coeflicients
for which Leray’s method is no-longer applicable. Thus our results will
be stated for equations which are less general than that of Garding’s,
but much more general than Leray’s equation (2). Our results are not
so deep as that of Leray’s, but exceed Garding’s results by proving the
existence and the uniqueness inside the circle |¢|<2 which he left un-
touched.

The method of the proof depends largely on the estimates of large
sparse matrices with a parameter among their elements. We use Chebychef
polynomials as solutions of certain difference equations. Our method of
attack could be applicable to wider classes than the class of partial
differential equations treated in this paper.

At the end the author wishes to thank Prof. K. Okubo for his valuable
suggestions and encouragement.

§1. Notations and results.

Let x, ¥ be complex variables and a be multi-index. We put,

a=(a, a,), |a|l=a,+a,, D*= —(%)al(a—il—)az ,

where @, and a, are non-negative integers. We shall consider the following
analytic differential equation.

(1.1) 8(’;;)”(%)q“=,a,§+qa“(x’ vDu+h(z, y), », q=1,

where ¢ is a complex parameter and a.(x, ¥), h(x, ¥) are analytic in an
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open ball B;
B={(z, y); |z|<r, ly|<r} .

We take, as the boundary conditions,

(%>mu’$.__o=¢l,m(y) , 0=m=<p-—-1,
(1.2) (%)nu,yq:%m(x) , 0=<n<gq—1 ,

where ¢,, and ¢,, are analytic in a neighborhood of the origin, and
the following compatibility conditions are assumed:

ERPNES R

o

for all m, n satisfying

We assume the following conditions;

a’a(o, 0)¢0 ’ if a:(p_ly Q+1> or (p+1’ q_l) ’

1.4 _
1.4 a«(0, 0)=0, if a#(p—1,¢+1) or (p+1,q—1) and |a|=p+q.

REMARK 1. If, in the equation (1.1), (p, ¢) is not contained in the
convex hull of the set of multi-indices {a; a,(0, 00}, then the Goursat
problem (1.1)-(1.2) has one and only one analytic solution, in case e#0,
(see [3]). The equation (1.1) is not in general contained in this case.

By the assumptions (1.4), we may assume;

(1.5) a.0,0)=1, if a=(p—1,¢+1) or (p+1,q9-—1),

since this is always possible by making use of the change of variables;
B=0,2;; Y=0x%s, (6,=V Up11,4-1(0, 0); e,=1"a, , .11(0, 0)). For simplicity, we
shall consider only the homogeneous cases.

(%)mu’zz‘):O , Ogm_s_p;—l ,
(5)

The general case then follows by using an appropriate transformation
such as

(1.6)
=0, 0=n=q-—1.
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1.7

Pt (_'_¢2.n(m)

+’§o:2—“: (::;) (nl)\(ax) ”>(0)

By the analyticity of a.(z, y), h(z, y) we have,

< i
1.8 i h(z, y)=3 hej—e Y _ |
(1.8) 0, =S afy i A b D= b s L
where af; and h,; have the following estimates,
(1.9) laf | SMrti((B+5)1) ,  |h;| S Mr+i((G+5)1)

for some constants M and » which are independent of a, 1, 3. For each
c>1 we set,

(1.10) F,= {e,e $1+1/_82’(c+1/c)2+(c—1‘/?)>1}

We denote the complement of the closed interval [—2, 2] in the complex
plane by C\[—2,2]. Then we can see that for each ¢ contained in
C\[—2, 2], we can take a number ¢ with the property,

c>1l, eekF,.

THEOREM. If ¢ is contained in C\[—2, 2] and if we assume the
condition (1.4), (1.5), the Goursat problem (1.1)-(1.6) has one and only

one solution w(x, y, &) with is analytic with respect to z, ¥y tn the
domain

(@, ); || +]y | <1/(Kp+e")r, §=¢*/(c—1)%,

where K, is independent of ¢ and ¢ is the number chosen as above.
Moreover, w(z, y, €) is also analytic with respect to ¢ in C\[—2, 2].

Theorem will be proved in §§2-4.

§2. Construction of the formal solution.

Suppose there exists an analytic solution u(zx, y, &) =3 u,;(#*¥?/(G1)(E!)).
Then by (1.6) we get

(2.1) u;=0, (0=i<p—1, or 0=<j<¢-1),
and by (1.1), (1.8) we get
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myJ B x’lyﬂ
(2.2) s%u”,,ﬁq( DG 2;,(?_: Uita,, 3+a2( ')(g'))

x( az. ) i

')(#')) 7 EnGn

By comparing the coefficients of «'y’ in (2.2), we obtain,

(2.3)  —Uirptr,itgo1 T EWiip, j+q— Witp_1,5+q+1

i\[(J
— (p+1,q—1) (pr—1,9+1
- Z ( Y ) ( # >{uv+p+1,l‘+q—1ai£\4,_f1[1 +uu+p 1, F+q+1ai2v 3q - y

i 4 1 \(J i
ZZ : uu+a1,#+a2ai—u,j—# +hii ’

a#({p—1,q+1),(p+1,4—1) v=0 p=0 %) #
where
Do i\___t )
T ———————— —_—e 2 .
(v) pl(i—p)! ’ (ﬂ) MG—)1 for all 4, 7=0

Specifically, if we put i=j=0, i=1, j=0 or =0, j=1, then we have,
respectively

(2‘4) EUpg= by

EWUpt1,q=Up,g+17T 0% Up, oty

(2.5)
EUp,q+1=Up+1,¢ T Uy, + ho,y -

We denote by A,(k=1, 2, ---) the following k£ by k matrix.

r ¢ —1 O . .. h
-1 -1 0
0O—-1 -1 0 - - - O
0 —1 ¢
0

2.6) A=

e—1 0
0 -1 & -1
\ O ""‘1 €
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Let U, and H,(k=1, 2, ---) be the vectors defined by
2.7 Ur="(Ustp-1,0y Untp—2,0+1 ***» Upts,ktq2s Up htq) »
(2.8) Hy="*(hi_y,00 Ra—s,1y ***y Byigy Poi_y) «
Then (2, 4), (2.5) are written as follows;

€ 0 0 Upq R
(2.9) - a](_?o’q) & - 1 up+1’q = hl'o
—ah? —1 € Uy, q+1 ho,.

Generally, (2.3) is a system of linear equations with unknown variables
Uity i+4(t+I=k—1, 7, =0); recalling (2.1), (1.5), it can be written as follows.

(A, 0 Y r U.) [ H )
B, A, 0 U, H,
Bm Baz As 0 ° U, 8 -E[s
Bu Boz Ba,s Aa 0 U4 H4
2.10) | T ol ,
( Blu Bkz Blcs Bm ° ° * Bk.k—lAk J . U, k / Hk J
k:l’ 2, cee

where B, , is a (m, ») matrix.
In order to consider the structure of the matrices B, .2=m=<k, 1<
n=m-—1) more precisely, we ﬁrs_t note that the term which appears in

(2.3) is the term h,; or a:'_,,,,-_,,( ;’ )(i‘)uaﬁ,,aﬁp for some «a, 1, j, v, ¢t. The-
refore, if we write (2.3) in the matrix notation (2.10), then each component

of B, , must be the finite sum of the coefficients of Uyrip, gV + ' =m—1)
in (2.83). More precisely, we can prove the following lemma.

LEMMA 1. Let N be the number of terms which appear in the right-
hand side of (1.1). Then the number of the terms

. v\[/J ..
Ay jn v )\ for some a,1,3,v, 1,
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which appear in each fized row or column of B,,.2=m=<k 1<n<m;
k=1, 2, --.), does not exceed N(m—mn+1). And, if we choose a positive
constant M, sufficiently large, then the absolute values of these terms
can be estimated by

Mam " (m—1)1)/(n—1)1) .

PrOOF. Since each row of B, , is assigned by (2.3) with some (4, 7)
such that ¢+j=m—1, the number of the terms in one row does not
exceed the number of the pairs, (v, #£) which satisfy the following set
of inequalities:

(2.11) v+p=p+g—|a|+n—1, v+a,=p, 0<v=<i, 0Spu<j, p+a,=q ,
where a=(a,, ;). By (2.11) we get, |
pre—|al-v+n—lsj=m—i-1,
and hence,
pteg—|al+i—m+n=y.
By using (2.11) we have
pHe—|a|+i—m+n=<v<s.

Therefore v can take at most i—(p+q—|«a] +i—m+n)+l=m—n+|a|—
p—q+1 different values. Since |a|<p+g (the order of the equation),
we obtain the desired fact.

Similarly, we can prove the same property for a column. The remain-
ing part of Lemma 1 is proved as follows. Fi;'st note that all the terms

which appear in B, , are of the form az‘_,,,-_,,( f))( 1'25) for some 1, 7, v, 1,
a such that

t+i=m—1, v+p=n—1+p+qg—|al|, v+a,=p, p+a,=q.
By using (1.9) we have

s §)(2)] s sm 144010

On the other hand we have
re i (n—1+p+g—|ap(n—2+p+e—|al)---n=1,

if p+g9—|a|=1, and n is sufficiently largé. From this inequality, choosing
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M,(= M) sufficiently large, we get
Mym=rrem2(m—1)D/(n—1+p+g—|aD)=Mrm(m—D)1)/(n—1)1) .

This completes the proof of Lemma 1.
To caleculate w1+, (t+5=Fk—1, i, =0) by using (2.10) we need:

LEMMA 2. Let %, be the matrix in the left-hand side of (2.10).
Suppose that A;* exists for all k=1,2, ---. Then Wi (k=2,3, ---) exist
and are given by;

~ 'Al—'l 0 . e )
C., A7* 0 .
Cm Csz A.;l 0 ° * * O
(2.12) Ul=
0
( Ciw Che Cuw - - - Cipy Pl I
k=23, -,

where C, ,.2=<m=k, 1<n<m) is a (m, n) matriz and is calculated as
Jollows;

2.13) Coo=3 s (—1)*A5'By,niAst Bawy aeonAshy - -

=1 n=n(1)<n(2)<-«<n(s)<m

s r ALl B wr Aniy Baw 143",

where the sSUMMALION D _nip<ni < .-<uir<m 18 taken over all the combina-
tions.

The proof of Lemma 2 is based on a straight forward computation.
The proof is nearly trivial for k=2. So it should be done for k=8 and
So on.

In view of Lemma 2, the estimates of the coefficients depend heavily
on A;'. Let us write

(2.14) I,=det A, (k=12 --.),
then by (2.6) and simple calculations we get

(2.15) IL=¢, L=e-1.
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By expanding det A, with respect to the first row, we obtain the following
difference equation.

(2.16) Ik+1=SIk—Ik—1 (k=2, 3, . ') .

By the elementary theory of difference equations, the solution of (2.16)
with initial conditions (2.15) is given by;

(2.17) Ik:1/621_4 1 +1/§C4_)k+1_<i_:1£2€“"_;_4_>k+1} :

when e#+2, and
(2.18) w=(xD*k+1),

when =12,

By (2.17) and in view of the Remark 4 which follows, we can
calculate the zeros of I, as follows;

Put

and let £ be the closure (in an ordinary sense) of E, that is,
E=[-22].
DEFINITION. We call E “the exceptional set” of the Goursat problem
(1.1)-(1.6).
Therefore, if ¢ is not contained in E, then A;'(k=1,2, ---) exists.

Consequently, in view of Lemma 2 and (2.10), the formal solution of
(1.1)-(1.6) exists and it is unique.

REMARK 3. If the order of the equation (1.1) is 2, (1.1)-(1.6) are
reduced to the following ones,

a\ 3\ _ )
(2.19) e(-%— (E)u—lézaa(x, N Du+h(z, ) ,
(2.20) u(z, 0)=u(0, y)=0, (x,y)eC.

Now, if we restrict the variables (x, y) in R? then the exceptional set
coincides with the set where the equation is elliptic or parabolic, that
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is, the characteristic form is nonnegative.

REMARK 4. (The representation of I). If we substitute ¢ in (2.17)
with 2z, we have,

I(22)= V-1 — (z—V 2 —1)*1} .

1
57T {(z+

On the other hand, recalling two formulas concerning the Chebychef’s
function U,({) and hypergeometric series F(a, B, v; {), we have

Uy<c>=»(1—c2>“2F(ﬂ, 1-» 38, 1-¢)

2 2 2
—_— 1 2 ___ v__ — 2 __ Vv
==V T=1y -V T=D),

. F@+n)L(B+n)L(v)C
F(a, B, s C)——’g‘.} F(OC)F(ﬁ)F('Y+n)(n!) ’

where v is an arbitrary complex number. Then we have the representa-
tions

I,,(2z)=(1—z2)—1'2U,,+1(z)=(k+1)F(£isz, —g, %; 1—-z2) :

§3. Some lemmas.

The proof of Theorem essentially depends on the following lemma.

LEMMA 3. Let b%; be the (i, j) component of Ai’, then we have
k
(3'1) 2 lbfilécz/(cml)sy i:]" %y k; k=19 29 Y vech )
i=1

here F, and A, are given in (1.10), (2.6) respectively.

REMARK 5. Note that the estimate (8.1) is uniform in k. Since A,
is a symmetric matrix, we can easily prove

k k
bti = b:'i ’

therefore we can interchange the parts of 4, 7 in (3.1).
To prove Lemma 3 we prepare the following Lemmas 4, 5.

LEMMA 4.

L I /I, (i>7)

(3.2) b= {I,_II:,_;/I» (=3,
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where we suppose I,=1.
PrOOF. By the formula of an inverse matrix, we get
=451, ,
where 45; is a (g, i) cofactor of A,. A simple computation gives

o {I,-_Jk*i (>3,
L Gsy).

Hence, Lemma 4 is proved.

LEMMA 5. We put,

(3.3) 0=1/{—1 log(e+1/282_4)=0'+1/:_10" :

where &, 0" are the real and imaginary part of 6 respectively, and we
take the branch of V'e€—4 such that

e€—4>0,
which implies, |
Ve—4>0

and we fix a branch of
-4
1 (e +1e >
og ———
appropriately, them we have
(3.4) 0'<—loge, VeckF,.

Proor. Put

2-—-
w:e—l—l/ze 4 ’

then the mapping ¢ — w maps F, into the exterior of the circle {w; |w|=¢}.
Therefore we have

(3.5) lw|>¢, (Gf eceF,).

On the other hand, we have
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V —1l0=log w=log |w|+V —larg w,

that is,
=—Vv —1log |w|+arg w .
So we get
0"=—log |wj .
Using (3.5), we get
0"<—logec.

PrOOF OF LEMMA 2. By (2.17), (8.3) we have
(3.6) I(e)=Sink+1)0
sin @
By Lemma 4 and (3.6), we have, when >3,
| “ sin @ sin(k+1)6 21V —1siné
{ exp(V' —1(k+1—1+7)0)+exp(—V —1(k+1—i+ 7)) }

exp(V —1(k+1—1—35)0)—exp(—V —1(k+1—i— 7))
exp(V' —1(k+1)0) —exp(—1V — —1(k+1)6)

And when <7,

(3.8) ke Sindfsin(k—j+1)6 _ 1
) Y sin @ sin(k+1)6 21V —1sin@
{ exp(V —1(k+1+i—35)0) +exp(— V' —1(k+1+1—5)6) }
% exp(V —1(k+1—i—3)8)—exp(—V —1(k+1—i— 5)8)
exp(V' —1(k+1)0)—exp(—Vv —1(k+1)8)

By Lemma 5, we get
0"<—logec,
s0, we can estimate the dominators of (8.7), (3.8) as follows.

(8.9) | exp (V' —1(h+1)8)—exp(—V —1(k+1)6)|= (1 —1/c*) exp(— (b +1)8") .
(3.10) |sin 0| ;%(1—- 1/¢?) exp(—0") .

Hence, by using (3.7), (3.9), (3.10) we have, for 7>3,
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k. 1

X |{exp (V' —1(k+1—i+3)8) +exp(—V —1(k+1—i+ 5)6)
—exp(V —1(k+1—i—3)0) —exp(— V' —1(k+1—i—)6)}|
_c’exp((k+2)6"),
(—1)(c*—1) '
+exp(—0"(k+1—i—3))+exp@’(k+1—i—3))} .

exp(—6"(k+1—i+ 7))+ exp(6”(k+1—i+j))

Similarly, by using (3.8), (3.9), (3.10), we get, when 1<},

(3.12) || s CERO R D) iop g4 14 i )+ exD(8"(k+1+im 5)
(c*—1)(c*—1)

+exp(—6"(k+1—i—3))+exp(@’(k+1—i—3))} .

For each positive integer k¥ and ¢ such that 1< 1<k, we have

oI pE | | B 5 e ¢’ exp(6”(k+2))
:2=1l iJI ,_Z_ﬂlbi: +j§,_1,bi1l_ (02——1)(64——1)

» {};:1 [exp(—6"(k+1—3+ ) +exp(0"(k+1—i+ 5))]
+, él [exp(—8"(k+1+i— 7)) +exp(8”(k+1+i— )]

+ zj;l [exp (— 0" (k+1~i— ) +exp (" (b+1—i— )]}
¢’ exp(6”(k+2))
(E—1)(c*—1)1—e") "
+exp(8” (ke +2—1)) + exp(—6"k) — exp(6” (k +2)) — exp(— 6"'3)
—exp(6” (k+1)) +exp(6"” (i +1)) — exp(6"5) +exp(— " (l— 1))
+exp(—6"(i—1))—exp(¢”’(k—i+1))} .

—exp(—6"(k+1—1))+exp(—6"(k+1))

On the other hand, we can prove
7Y — g (), e~ D 0" 0, 1—e?"=1—1/c ,
by using the estimate,
"< —log e¢<O0,
for ¢>1 by definition. Hence

07 —loge —bloge —2loge —38loge
+ +e +e
D@D e }

IA
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c2(c4+cs+c2+1) < c2
T (e—1)(c*+2¢+2¢*+2¢+1) ~ (c—1)°

This completes the proof of Lemma 3.

§4. Completion of the proof of Theorem.
First, we shall prepare two lemmas.

LEMMA 6. Let N\ be a positive integer and /t be a positive nmumber
and let x,, x,, ---, x; be real variables. Then, the maximum of the product
XX, - - X; uder the conditions,

x1+w2+ et +xl=#! Xy Tgy *°°, xZgO ’
does mot exceed e"'°.

PROOF. By using the Lagrange’s method of indeterminate coefficients,
we can see that the maximum of z,x,---x; under the above conditions is
(#/7)*. Then, considering the maximum of the function g(x)=(g/2)* in
the interval [1, ), we can prove Lemma 6.

LEMMA 7. (The estimate of C,,). The absolute value of each com-
ponent of C,, . can be estimated by

o((m—1!) m
N((n—1)1)

where 6=2c*/(c—1)* and M, N, r are defined in Lemma 1.

—-n(MoaNe2/6+61/e)m_n ,

ProoF. By using (2.13), Lemmas 1,8 we can see that the absolute
value of each component of (—1)'Az'Ba . Ak B ,nienAnb_n- -+ Azh, does
not exceed the following value;

Meorrpm-r N L= DD 6y 4 1 (mis) —m(s—1)+1) - - - (0(B) — (@) +1) .
((n—1)1)
On the other hand, using Lemma 6 with A=s, g=m—n-+s, we have
(m—n(8)+1)(n(8)—n(s—1)+1)---(n(8)—n(2)+1)
=(m—n(8)+1(n(s)—n(s—1)+1)- - - (n(8)—n(2) +1)(n(2) —n(l)+ 1)

<e(m—n+a)/c

Hence the absolute value of each component of C,, has the following
estimate.
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~ 83841,0m—n NF8—1,(m—n)/e s/e ((m""l)!)

=1 n=n(1)<--.<n(s)<mM03 TN ¢ (n—1)1)
—m—n m—n 89841l m—n \Js—1,(m—n)/e ./a_(_(_”l';‘_lz_!_)_
_'Zﬂ< . >M06+'r N*le =D
<OUM=D)D) g m—mrro( 1,5 N 4 1)

- N((n—1)1)

_3((7”’—"1)!) m—n 2/e 1e\m—n
—N___(('n—l)!)’r (M, 0Ne** +e"* )™~ .

Consequently, we have proved Lemma 7.

PROOF OF THEOREM. To prove Theorem, we have only to prove the

convergence of the formal solution obtained in §2. By Lemma 7 and
(2.10), we have,

]uk+’~1,q ll Ty l‘up,k-!-q—ll

T ok—=1)) 26 | 1re\k—1 -]
égf{———_N((l—— R UM N e ) Myt (4 1)1)}

bty SM,(k1)r*—* (M, Nde + e“* ) — (M5 Ne** +¢V*)
+ M- o < SMEDr (OL BT o)) — (MONE™ e )

+ 25 (U D)= 5B (0, Nger 1oy Mt o)1)
I%¢

< (61 (M3 N + ey~ ( Md+ %) '

Put,
ro=r(M,Noe* +¢"*), K=Mp+2LNoe +1
Nzel./e

then we have,

[up+k—1,q y T % up,q'*-k—lléKTf_l(k!) .

Therefore we have,

.i— y.‘i _ o . ) xt+PyJ'+q
G0 Gol T & Z(“ G D) DGO )
2 ) ((f+p+g—1)1) A
< K1 L - +p itaq
=2 A K G te-DnGronGrn Y
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k+p+q—1
t+p

=35 Krt (o] + |y et
=1

Si Kfri‘—l 2 |x|i+ﬂly|k+p+q—1—i—p
T k=1 t+5=k—1

Hence the formal solution obtained in §2 actually converges, if

1_ 1
lxl+ly|<r1 ,r(MNaez/c_'_el/c) *

Note that this convergence is uniform in ¢ on any compact subset of
C\[—2, 2]. Therefore this solution is also analytic with respect to ¢ in
the domain C\[—2, 2]. Consequently we have proved Theorem.
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