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Introduction

In this paper we shall deal with well-posedness of the Cauchy problem
for some weakly hyperbolic operators with involutive and non-involutive
multiple characteristics. For the second order equations, Oleinik [4]
obtained a sufficient condition for well-posedness. Menikoff [1] extended
Oleinik’s results to the equations of higher order, and Ohya [3] improved
and simplified Menifoff’s proof. In a previous paper [5], we considered
weakly hyperbolic operators whose characteristic roots come across one
another with finite order at ¢=0.

Recently Nishitani [2] has proved well-posedness of the Cauchy problem
for a hyperbolic operator with characteristic roots coming into double
at t=0 in contact with each other of infinite order. In this article we
shall treat the case where the characteristic roots may have m(=2)
multiplicities at ¢=0 in contact with one another of infinite order.

Now our concern is the following operator P which is a partial
differential operator of the form:

P=Dr+ 3, a.;z, t)D2D}

L

where each coefficient a,,;(x, ) belongs to <#((0, T') X R"). Let Mz, ¢, &),
j=1, ---, m, be the characteristic roots of P. If all the \;(z, ¢, &) are real
valued functions in <#((0, T'), S*) for some T > 0, P is said to be a weakly
hyperbolic operator. We consider only such operators throughout the
paper. ‘ '

We say that a weakly hyperbolic operator P has involutive charac-
teristic roots if for any 1, jJ(1<1, j<m), there exist pseudo-differential
operators A, ; B;; and C, ;€ < ((0, T'), S°) such that
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0.1) [0,, 0;1= A, ;0.,+ B, ;6;,+C,,;

where [A, B]=AB—BA is the commutator, and 9, is a pseudo-differential
operator

.ai=Dt—x';i(x; t: Dc)

where D,= —1i0, and D,= —10,.
In the following we denote by (u, v) the L*scalar product with
respect to z, by ||u(-, t)||, the norm in Sobolev space H* and

(-, DIlE .= EIIDeu( O S+a—s -

§1. Involutive case.

Let P be a weakly hyperbolic operator with invelutive characteristic
roots defined in introduction. Following to Zeman [6] we consider the
modules W, (0<k<m—1) over the ring of pseudo-differential operators in
x of order zero. Let /1,=0,0,---9,. Let W,_, be the module generated
by the monomial operators I7,/3,=9.3, -0, -0, of order m—1 and let W,_,
be the module generated by the operators I7,/3,0;(i=j) of order m—2
and so on.

Zeman [6] proved the following theorem in the case of multiplicity m.

THEOREM. Let P be a weakly hyperbolic operator with involutive
characteristic roots satisfying the comditiom:

(1.1) P=II,+ :)_:,1 Qo 0%,

where a,;€ Z((0, T), S°) and ws_;€ W,_;. Then the Cauchy problem for
P is H>-well-posed, where H*= n He.

In this section we shall consider the application of this theorem.

THEOREM 1.1. Let P be a weakly hyperbolic operator with the pro-
perty:

The characteristic roots A, (x, t, &) are of the form \;(x, t §=
o(@)X(z, t, &), where X;e€ (0, T), 8Y, o(x) € <Z (R*) and x,;&x
when 1+j .

Then the Cauchy problem for P is well-posed if the lower order terms
P, (7=1,2, ---, m—1) satisfy
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(1'2) Pm-—l(xo t’ E, a(‘w)h‘t(\mo to E))::a(m)m_iKl.j(m’ t! E)
with K, (x, t, &) € (0, T), S*~9).

REMARK. The condition (1.2) implies that if we write
Pm—:‘(’“; t, &, 7):':;—;‘“1.1‘(”9 t) e‘)zmpi—i

then we have
| A%, t, §)=0)', (@, £, £)

where &,,; belong to < ((0, T), S°).

The theorem will be proyed by showing that P satisfies the conditions
of the Zeman theorem. To begin with the lemma which shows P is @
weakly hyperbolic operator with involutive characteristic roots.

LEMMA 1.2. For any i, j there exist A,; B.; C;;€ # (0, T), S
such that ’

(1.3) {3, ai]:A,iat*Bs.ia;’*'Ct,i .
PrROOF. Let 4,(0, 9;]) be the principal symbol of {9, 9;]. Then, by
the formula of product of pseudo-differential eperators, we obtain
019 34]) = 3 (Dey 6= 0@)N0D,, (6~ 0 (2))

- De“(fo - a(w)xj)aza(Eo —o(x)X,)}
‘ =0‘(x)Di.‘j(xs t, 5)

where D, ;e Z 0, T), S*). Here we used the notation
z,=t and &=7.

If we define funetions A,; and B, ; for i=j by A,;=D. iz, t, §)/(%;—%,
B, ;=D, (x, t, &)/(x;—X;) respectively, then A,;, B;,;€ Z (0, T), 8" and the
equality: :

At,:‘(xy t; 6)(50—0(x)x¢)+31,5(x, t; a@(&o‘*U(W)ZJ):O(@).D;,;(% t.' f)

holds. Hence we have [d, 8;]1=A,;0,+ B, ;9;+C,; for some C,; €
(0, T), S°. Q.E.D.

The following elementary lemma is helpful te show that P can be
represented in the form of (1.1).
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LEMMA 1.8. Let I1,=0,---0;, where i; are integers and 1=,
t,=m. Then o(Il,), the symbol of II,, can be written in the form;

IA

(1.4) o(l,)= af__[l (r—0(@)X;)+Ry_,+ o + R,

where Ra—j(xy tr & 7'-)::2;;3 bﬁ,i(w’ t’ s)g(x)ﬁri—:‘*ﬁ fO’r some bﬂ,j € @((0, T)y Sﬂ)
(G=1, -+, 8).

PROOF. Let us prove by induction on s. When s=1, (1.4) is trivial.
Suppose it holds for s. Since 11,,,=11,0,,_,, the symbol of I7,,, is given
by o(I1,+,)=0(I1,)(&,— a(®)X;,, ) + e Dga(11,)9%(&,—o(x)X,,,,). From the as-
sumption of induction, ¢(77,) in the above equality can be replaced by the

right hand side of (1.4). Arranging the terms suitably we have (1.4)
for s+1. _ . o . Q.E.D.

Now we shall show (1.2) implies (1.1). From (1.2) and Lemma 1.3
with s=m, we have '

a(P—-n..)=§

m—3 L
) g €., t, &)o(x)zm i

for some C.L;€Z(0, T), S‘): Pick up the homog‘eneous part of degree
m—1 in the right hand side, and denote by

Py, 1, 8, ©) =5, 803, 1, Do@)emit.
To show (1.1) we must determine A; € (0, T), S° so that
(1.5) P 6,6 0=54,6,1, 9 [l c—o@X) .

Let us note P, ,(,t, ¢, o@X,)=0(@)"'K,(x, t, &) for some K;(z,t, &) e
(0, T), S*™) by the assumption. Define A;e#(0, T), S° by

o ‘ e
A.‘i(w: t’ $)=[;I;[’ (XJ_A‘{):I K."(x: tr 5) .
Then Lemma 1.3 for s=m—1 yields
o(P—la— 3 4,113, =35 S du. @, 1, Dot@yems—
J=1 i35 j=2 i=0

where d, ;€ (0, T), SY).
Repeating these steps we attain to the representation (1.1). Q.E.D.
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Therefore the proof of Theorem 1.1 is completed by the help of
Zeman’s theorem.

§2. Non-involutive case.

In this section Wé consider the weakly hyperbolic operator Pin 2=
R"x (0, T) with principal symbol of the form )

2.1) P.(x, t, & 7)= ﬁ (T—o(EN(@, t, &)

where \; € 2 (0, T), SY is real valued, N+, for i+7, and o(t) e ([0, TD
is positive and strictly increasing for ¢>0. In addition, we assume that
z(t)=a(t)/o’(t) belongs to <Z™([0, T]) and for any N=0 there exists a
positive constant Cy such that o(t)<Cy7(t)” in [0, T].

Now we state the main theorem in this section.

THEOREM 2.1. Let P be an operator satisfying the condition 2.1).
Then the Cauchy problem for P is well-posed if the lower order terms
P,_i(x, t, & T) satisfy the condition;

(2.2) P,_i(x, t, & o@®)\(=, t, §))=0t)"T(t) 7 K,,;
where K, ;(z, t, &) € & (0, T'), S™79).

REMARK. The condition (2.2) implies that if we write P,_;(z, ¢, &, 7)=
Simia, (@, t, £) T, then a,;=0(t)'T(t)77@,, (=, t, §) where

a:i..‘i € %((O’ T); Si)

for 1=1.
We prove the Theorem by the same procedure to [5].

LEMMA 2.2. For any 1t,j there exist pseudo-differential operator
A,;, B,;, C.;e (0, T), S° such that

(2.3) [0;, 0;1= (t) " [A4,;0,+ B;,;0;+ C.il -

PROOF. Let 0,([3, 9;]) be the principal symbol of [d, ;]. Then we
obtain

0190 35D =33 (De (6= SN0, E— TN
— D (6= 0@N3)2., (G0 (I}
= — " ()N —Ny) — F@)@N; —eNe) + T ()N, N5}
=0(t)e(t)" D@, t, &)
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where {,} is Poisson bracket and D, (=, f, £) are smooth functions in
(0, T), S"). On the other hand the principal symbol of o@) A, 0,4
B‘,,'a"-}-C‘,j] iS

()[4 (=, T, (T —N)+ B, 4z, £, §)(T—2y)] .
Put
A, 5=, 8, £)=D; (=, t, )/(N—Ny) ,
B, (=, t, §)=D, (=, t, &)/(\,—2;) .
Then A, ; B, ;e 520, T), 8° and
[0, 0;1=7(t)"'[As,18,+ Bi,18;+C. 5]
for some C, ;e <Z((0, T), S°. Q.E.D.

LEMMA 2.3. For any monomial w*e W, there exist 0, and w!, e
W,+, such that

s+1
(2.4) 0,0; =W}, + f‘:_‘.l ; () *er, a4y

where ¢, € Z((0, T), S°) and @y, e W,,,_,.

PROOF. For any w{=4d;---9;,(5,<J,---<J,), there exists some jé&
{3y -+, 4} with 1<j<m. BSince {3, ;] = v(t) A, d,+ B, 9;+C.,], by
Lemma 2.2, we have immediately (2.4). Q.E.D.

LEMMA 2.4. For any ne CY2) and any real number s the Jollowing
energy estimates hold.

2.5) -‘;—”;nw:_;ur|:gconst{r(t) N2

m--J+1

+Hloa_sulli+ 3 ;.T(t)“"‘*‘ @l e uidfi} .

+

k=1

PROOF. By Lemma 2.8 with s=m—j we have
m-—F+1 *
0 Wa_jU=WhH_;u-+ E_‘. 2 t(®) e s 041 -
=1 7

Putting

v= (0:_.,"“

m—§i1
I=wh_;nu+ & ‘?4 () er 4@l juaatt ,
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we have a first order hyperbolic equation 3,v=¢g. Hence it follows
—llv = 2Re(—'v 'v)

=2Re(V' — 1\ (x, t, D)v+V —1g, v),
- =2Re(V =1In(z, t, D.)v, v).+2 Re(V —17¥(t)g, =(t)"*v),
sconst{||v{li+ (@) {g{i+7@) 7 H2ili} .

Therefore we proved (2.5) using the inequality
m—J+1 _ ki
holizsconst{ Sy =% o@ Ml @b sl ,

which immediately follows from the definition of g. Q.E.D.
Now we prove a basic lemma.

LEMMA 2.5. Set O(t)=3p, .7 0i_ ). Then the ineguality
(2.6) %(D(t)_s_ const{®(t) + (&) () + (&) || T u ||}
holds for any u e C>(Q).

PROOF. Since
L ot)=3, |- 2he@y e @)l 0nsulli+o) L ws i,
dt k=1 dt

from Lemma 2.4 it follows

Ma

5 7)) 0t i

¥
Il

1

2 ott)sconst {5, 3 c@ @b et

2SS Tl | -]

k=1 j=1

<econst {(D(t) + 2O OE) + ()| H u Jf2

SRIOR IS LIOR el IR A B

k=1 j=1

Reecalling j+k—1<(m—k+1)+k—1=m, we have thus

m m—k+1

é P Z T(E) 2TV || Wt iU s = cOnSE @(t) ’

which implies (2.6) by combining with the above ineguality. Q.E.D.
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Next let us state the main lemma in this section.

LEMMA 2.6. Under the condition of Theorem 2.1, thefre e:mst Ca,x €
(0, T), S° and @%_€ W,_, such that

(2.7 pP-1u, —sz(t) *Ca, kWi -

k=1 «

The following lemma is needed for proving Lemma 2.6, as in the proof
of Theorem 1.5.

LEMMA 2.7. Let II,=0d,,---0;, where each i; 18 an tnleger with 1=
LW=---=t,<m. Then o(ll,), the symbol of II,, can be written in the form:
2.8) o(l1)=11 €~ 0N )+ Rt -+,
where Ra—i(x’ t! er T)=2n's;3 aﬁ.i(x, t; E) T ITE and aﬂ.i=a(t)pt(t)~j&‘é,5(my tr E)
for B=1 with some @, ;(x, t, &) € & ((0, T), SP). .

PrROOF. We carry out the proof by induction on s. When s=1 (2.8)
is trivial. Assume (2.8) is valid for s. Since I7,,,=11,9,,,,, by the product
formula for two symbols we have

(2.9) 0(17,+1)=0(H.)(Eo—0(t)7w,+l)+§) Dio(11,)05(60— 0 (E)Ny, ) -
Since o(I1,) satisfies (2.8) by the assumption, so does o(I1,)(&,—a ()N, ,,)
and since:

g.o Dio(11,)05(60— 0 (E)Ny, )

s s—§

=23, 2, Z bs—_ia11(®, t, E)G(E)PT(t) 0 (t)T(t) 0z —i—F0

=0 p=0 a#
where b, e (0, T), S°), the formula (2.8) is also valid for s+1, which
completes the induction. Q.E.D.

PrROOF OF LEMMA 2.6. From the condition (2.2) and Lemma 2.7 with
s=m, we obtain
J

o(P—I,)=33 ¢, i@, t, &)r~7

5=11=0
where
(2.10) ¢, (=, t, &)=0@) ()¢, (=, t, &) for i=1 with &, Z (0, T), S?) .

Let the homogeneous part of degree m—1 on (z, &) be



THE CAUCHY PROBLEM 107
Poi(@, 6 ©)= 3,00, 1, 0"

We want to determine Az, ¢, &) e%((O, T), 8°) so that .

(2.11) () ;’; Ay, t, O TLc—oOM)=P (5, 8,6, 7) .

From the condition (2.10) for j=1, we obtain -
B @, t, & o) =0Tt K (@, t, 6)

where each Kz, t, §) is a smooth functlon in (0, T), S~'). Putting
=0()n; into (2.11) gives S

G(t)’"“lf(t) ‘A,(w ¢, E) H (% —N)=a®)"” 1T(t) 'K (w t, &) .
Then we can ﬁnd( - N |

Ay, 1, '5):[11 (ﬁ'—ﬁf%(x,i & in F(O, D, 5.
Applying Lemma 2.7 Wlth 8§=m— 1 to 0(2,_1A 11+ 0.), We obtaln

( _‘_T(t)l ZA Ha) T(t) kl{gl m21 Jdt,(w t, §T"" 1\“-1}

31\ 1= i=

with d, ;(z, t, §)=0()'c(t)” 1d,,(a: t, &) for i21‘where d,,e.?é‘((o ), S%.
Next we pick up the homogeneous part of degree m—2 on (z, §) in

) o ’di,(w t, &Tm 7, e, B, (2, t, & D=1 di(, T, T
We shall represent this in a form:

(2.12) z-(t) Z,A,(a: t, E)H(Z' a(t))x,i) for A; e Z((0, T), S°) .

122

From d,,=0(t)'z(t)"'d,, provided for i=1, it results
B o, 8, &, 0(thy)=0(®)""2(t) K=, t, §)

with K, e <#((0, T), S*%). Then (2.12) with c=0(t)r; for j=2,8, ---, m
shows

" atym(t) A, ¢, &) IL =20 =0 r® Ky, 1, &) ..

i22

Then we can find A; so that
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Ao, t, o= 0] B 1,0).
23
Successive use of these steps finally makes us attain to
P, (21, D, D)=3 X o) tetaot s
where ¢i,.€ Z (0, T), S°) and @2 e W,._,.

Now we proceed to the homogeneous part of o(P—1I1,) of degree
m—2 on (7, &);

P .._z=‘§_'3 i, ¢, )T,

Here ¢, s(2, t, &) =0(t)'c(t)C, (=, ¢, &) for 1=1 with &, (x, t, ) € F(O, T), S°).
We want to determine By(x, t, &) € & ((0, T), S°) for j=2, 3, - - -, m so that

(2.13) P =c(t){3, Bi(w, t, & Il c—atn) .
22

From the above conditions on ¢,, we have
P, (=, t, & o) =0(t)""c(t)Qy(=, t, &)

for j=2,8, ---, m where Q,,t, &) € (0, T), S*%. Let us put z=
o(t)\; into (2.13). Then we have

oty ()™ 0 —N)Bfa, t, H=0(t)" () *Qs=, 8, &) ,

‘}2

8o that
By, t, )= [L =20 | @, ¢, &) in (O, T, S -
tz2

Applying Lemma 2.7 with s=m—2 to o(3°%. B; Hf‘é" d,), we obtain
2

o(Pus—r®)* 3 B, 1 o) =vo {3 S e 4, i)

Here e, ;=0(t)'z(t)7%¢, (=, t, &) for i=1 with &,;e <Z (0, T), S*). In the
same way as the proof for P,_, we have

Pu i@, t, D,, D)=3, 37 (¢) "c},s00%
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where c;..€ Z (0, T), S°) and w%_.€ W,_,. Repeating the same precess
for P,_,, ---, P,, we conclude :

p'nv-j(x, t’ -Dm D¢)=i2 T(t)_kci,kw:‘—k

k=5 «

for j=1,2, ..., m where ci,c (0, T), S° and w%_,€ W,_,. Therefore
we obtain the representation (2.7) and the proof is completed. Q.E.D.

It can be easily seen from Lemma 2.6 that

[ I u||i=|| (1] — P)u+ Pull;
S2(H (I w— Pyulfs+|| Pul|(d}
<const{®(t)+|| Pull3} .

This inequality combined with Lemma 2.5 immediately shows

LEMMA 2.8. For any ue C”(R2) there exists a constant ¢ 30 that
(2.14) _d@t_@(t) <e{@(t) + @) D)+ @) || Pull?) .

Let us proceed to obtain the energy estimate for P. Using the
inequality (2.14), we have

d —et —ct —ct d
7 {e ( )} ce ( ) e : ( )

<ce Yz ()" D)+ () || Pul?}
and then

(2.15) —gt—{a(t)“"e‘”@(t)}:: —co(t)—0" (t)e~ D (t) + a(t)"’%{@(t)e‘”}
=ca(®)z(@) || Pull; .

Now in order to be able to integrate both sides of (2.15) from 0 to
t, the value o(f)"e™*'®d(t)|,—, must be finite.

Hence we shall consider the following argument.

LEMMA 2.9. Under the condition of Theorem 1.1 there exist A, A,
oo, A, e Z(0, T), S° and a pseudo-differential operator of order m—1
with respect to (x,t) L,_, such that

P=0, - 0p+3 A;idye+ +0n+T(E)" ™00 (E)Lm_,
i=
=L+t@#)"" "ot) Ly, -
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Since this lemma is clear we omit the proof.
LEMMA 2.10. Let us consider a equation Luzf. Then we obtain
the energy inequality:

(2.16) - 1w(®)1l, < const{ %, 1| DIuO) lsrmoscs+1 FB)IL}

PRrOOF. From the form of L we can reduce Lu=f to the first order
system with diagonal principal part. Hence it follows easily the energy
inequality (2.16). Q.E.D.

Let us consider the following Cauchy problem.

Pu=f

2.17 )
( ) Diu|,—y=0 for j7=0,1, ---, m—1.

Here we shall define the function %z, t)(¢=0) analogous to Nishitani [2]
successively as follows.

U, =0
(2.18) Ly =f —7(@)" "0 (t) Lp_,u,

1=0) .
:u£+1[t=0=0 for j=0’ 1: s, m—1 ( B )
Hence we have

LEmMMA 2.11. For any integer i, the solution w(x,t) of (2.17) is
decomposed

(2.19) U=(U—Us+y) + Ugs,
= Wity + Uty

where w;y, and wu;+, have the estimates

(2.20) M wer |l S const{z(®)™ " Vo @} | % || im-sy i1,
(2.21) |t lle S const|| f |-y, -
Furthermore let g9,+,=f—Pu,1,. Then

(2.22) 1 gerill. = const{z®)~""Pa@)}* || f llim-s s+, -

PrOOF. (i) Proof of (2.20). From (2.17) and (2.18) L(u—u,.,) =
—t({t)" ™ Yo(t)L,_,(w—u;). Then it follows from Lemma 2.10

% —%s4s ||, Sconst 7)™ Vo (@) || u—u;||m_s,
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<const {t(£)" ™ Pa@)}**||%—vo||tm-1 (t+1.a
<const {z(&)" ™ Vo @)} || % ||im-v +1e -

(ii) Proof of (2.21). Combining (2.18) with Lemma 2.10, we have

|| %44 ], < const || f —7(&)~ " V0 () L%l
<const {|| fll.+7@) "™ Vo@) || U]l m-1,s}

<const {g [z@)~""Ya®)F|| f H(m—l):’.s}
<const || f{lwm-v1,s -
(iii) Proof of (2.22). Note that
G =T()" " V0 (&) Ly (U, — %) -
Then
[ gerlleSconst 7(8)™ ™00 (t) || Uirs— Uil lm-v,0 -

Since we can estimate u,,,—wu; in the similar way, the estimate (2.22)
follows easily. Q.E.D.

Now we shall investigate the Cauchy problem (2.17). Since Pu=
f, w.+, satisfies the equation Pw,.,=g,+,- Here we redefine &(t) replacing
w(x, t) by w,.(x, t). From (2.15) and (2.20) we have

(2.23) —{G(t)”“e””@(t)}ﬁw(t) @) gealls

<const o(t)"°z(t) "z (t)" ™ Vg (t))Pe+? H S lim-v 0,0
=const g(t) T I (§) TRV ETON |l e -

Now we choose a positive integer ¢ such that ©=[c¢/2] +1; Then
o)’ '®(t)|;—,=0. Integrating (2.28) from 0 to ¢ we obtain for any
e>0

a(t) e 'd(t)
t
<const S o(t)2e Do (g) 12N 0| () |[f ) (411,60
. _
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t
<const S o7 () |[fwmnr s, 00t
(V]

because 7(t)~ ™MV <const o(t)™* for any ¢>0. On the other hand from
monotony of o(¢) it follows

t
o(t) e *'@(t) <const g(t)*“+1—* S H @) imemry 411,08 -
0
Hence

(2.24 0(t)s const (&)~ [ 1| £y ro.adt

From (2.21) and (2.24) we have following energy inequality.

LEMMA 2.12. Under the condition of Theorem 2.1 for any 7real s
and €>0 there exists some non-negative integer i only depending on P
so that

(2.25) lu)|<const {Il £@)lim-se.
+a®7 =@ | 1 £ O llimsicro.it] -

Following Nishitani [2] we shall complete the proof of Theorem 2.1.
Define the o-translation P,(z, t, D,, D,) of P by

P,(z, t, D,, D,)=P(x, t+0, D,, D,) (0<0<0,) .
Now we consider the following Cauchy problem.

Pd(x’ t! Dm Dt)ud(w’ t)=f(x, t)

2.26 ,
( ) Diws(x, t)|=o=0 for 0=j=m—1.

Since P; is strictly hyperbolic for >0, (2.26) is well-posed. From (2.25)
the energy inequality of (2.26) holds uniformly in 6 such that

@20 ||w®)lisconst Il £®)lim-ses
t
+ oty e @ | 11 O lltn-y st}
Then there exists a subsequence of {u;(?)}<;s;, Which converges weakly

in (0, T), H*). The limit function « is a unique solution of the Cauchy
problem (2.17).
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Finally we state the following theorem as a combined result of
Theorem 1.1 and Theorem 2.1.

THEOREM 2.13. Let P be a weakly hyperbolic operator with the
property:

The characteristic roots :;(z, t, £)(1<j<m) are of the form (e, t, &)=
$(@X)o(E)X;(x, L, &) where X;€ Z((0, T), 8 are real valued, NeFEN; when
t#J and ¢(x) 18 real valued smooth function in <Z(R"). In addition
o(t) is the same function in Theorem 2.1.

Then the Cauchy problem for P is well-posed if the lower order
terms P,_;(x,t, & 7)(J=1, ---, m—1) satisfy

(2.28) P, i, t, & M=, t, &) =g¢(@)" o) it(t) K, (z, t, &)
where K, j(z, t, &) € &0, T), S™79).
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