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Introduction

In this article, we are concerned with a dynamical system on the
1-dimensional integer lattice the state space of which is compact (not
necessarily discrete). When the state space of the system is not discrete
the usual free energy may diverge and hence instead of it we consider
the relative free energy which we introduced in [3]. In §2, we discuss
the variational principle in this system with respect to relative free
energy and we show that the measure which minimizes relative free
energy is obtained as a unique solution of an eigenvalue problem of a
transfer operator, if the potential has not so long range (Theorem 2.1).

Moreover we discuss its cluster property and we prove that the
equilibrium measure is mixing under the same assumption on the poten-
tial as the above (Theorem 3.1), and especially it is weak Bernoulli, if
the potential has finite range (Theorem 3.2).

In the former paper [3], we discussed time evolution of a Markov
process ¢, of a speed change model on our dynamical system and we
proved that the relative free energy of y, decreases according to time
evolution. Combining these results with Theorem 2.1 in this article, it
follows that every initial state converges to the equilibrium state, if
the Gibbs measure is unique.

§1. Construction of a shift invariant measure.

Let 2, be a compact Hausdorff space with the second countability
axiom and let <% be its topological Borel field. We suppose that a
probability measure vy, and a metric d, with d,(z, ¥)<1, =, y€ 2, are
endowed with (2, <#). Let (2, <Z, D) be the 1-sided countable product
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of copies of (2,, &, v,). Let 2 be a shift invariant closed subset of 2.
The shift on 2 is denoted by o and the n-th coordinate of an element
w2 is denoted by w,, n=1,2, ---.

Moreover we use the following notations;

Q*={u e 27; there exists an w € 2 such that uwe 2},

where 2% is the nm-fold product of 2, and by uw, we mean the element
of 2 such that

Uy A=s1=n)
wt—n (i> n) ’

(uw),= {

v*=the restriction of the n-fold product measure »? to 2*,
W w)={ue 2" uwe 2},

W, (u, w)={vel; uwvwe 2},

2~ (w)={u € 2%; v {W, (u, ®)}>0}.

A A B=the symmetric difference of the sets A and B, and d is the
metric on 2 defined by

d(@, )= 35 27dy(@,, o)) .

Furthermore throughout this article, we assume the following three
conditions A), B) and C) on £Q.
A). There exists a certain >0 such that for any ® and »n>0,

V™2™ (@)} =v™(2") .

We fix the » hereafter.
B). For any £>0, there exists >0 such that

vi{W.(u, @)AW (u, @)} .
v {W.(u, @")} ’

whenever d(w, @’)<é.

C). For any n=1, 2---, v*(”)>0 for any nonempty open subset <
of 0",

The above three assumptions imply the following lemma which we
often use hereafter.

sup | ueJ(2™ (@) n 2" (@)} <e ,

LEMMA 1.1.

1.1) (1) »{W,.(@)}>0 for any n and @ .
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(2) For any >0, there exists 6>0 such that
(1.2) v { W, () AW, (0")}<e for n=r,

whenever d(w, @) <4.

D"{ W‘r(u’ CO)} . n,r . n,r ’ oo
(1.83) (3) supsup{Z e we Y@@ n 2o H<oo .

Proor. (1) Suppose that v*{W,(w)}=0 for some » and w. We may
assume n=7. On the other hand we get by the assumption A)

y™{Q™ (@)} =v™{u e 2Q™; v{W,(u, ®)}>0}>0.

This is a contradiction because W, (w)D W,(u, ®).
(2) This follows easily from the assumption B).
(3) Let e>0 and let 6 be the corresponding positive number in B).
Then for any w, ®’' €2 we can find {0 e 2; =0, 1, ---, k} such that
(i) o'=w, "=’
(ii) O0<d(w®, ™)< for 0Zi<k—1,
and it follows from the assumption B) that

v W,(u, @)} _ 4 (W, (u, ) ‘ "
v{W,(u, @)} = H, VW, @) <A+eF=A+e) .

This completes the proof.
Denote

C(R2)=the set of all continuous functions on £,
C,(2)={f €C(); f(w) depends only on the coordinates w,, - --®,}

and topologize C(2) and C,(2) by the norm
(1.3) l|f|l=sgp |f(w)] for feC(D).
Moreover we put

Z =the set of all probability measures on 2

and

# =the set of all shift invariant probability measures on 2. Let U
be a function in C(2) which satisfies the condition D). T [l],< o,

where
[l],=sup {e"“"-"“); w, 0’ €2, d(w, ®)=27"}.
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We call U a potential and we say U is of finite range if UeC,(2) for
some P.

For given potential U we shall seek for an equilibrium measure
Yy in the sense of the wariational primciple. In the following, appeal-
ing to a linear operator L, on C(Q2) which is a generalization of transfer
matrix, we shall show that p, is obtained as a solution of an eigenvalue
problem for L,. An operator & is defined by

(L.4) Ff@=\  fuoervdnw), feC@),

1
and if no confusion is likely to be, we use the notation <& and I instead
of &~ and e"‘“ respectively. The dual operator of <& is denoted by
¥, that is F*u(f)=pu(f) for any finite signed measure x. An
operator L* on & is defined by

(1.5) L*pu(f)==2* ()] =* (1), feCQ).

Since & is weakly compact and convex, Riesz-Schauder’s fixed
point theorem implies that there exists p=p, € & such that

(1.6) L*o=p .
Define an operator L on C(2) by
1.7 Lf(w)=0"<7 f(w) for feC®),

where a=a,;=*p(1). Then p(Lf)=L*o(f)=p(f) bolds.
In the following we shall construct a solution h € C(2) of the equa-
tion Lh=h, which is unique as can be seen later.

LEMMA 1.2. Suppose feC(2) is nmommegative and f*0. Then for
sufficiently large n we get L*f(w)>0 for any we L.

Proor. If there exists some n such that L"f>0, then we get

L+ f(w)= a—lg L* f (u@)l(ua)dv(w) >0
Wilw)

for any we Q2. On the other hand, there exist an integer k>0, an open

set Z2CQ* and >0 such that f(w)>o for any w=(w, @, ---) €2 with

(w,, @,, -+, @) €, and hence by A) we get

ef@=\  arw|  arerwe T tewe)

rite,

>5(inf z)k+f§ AV ()W, (u, ©)}>0 .

ek wne
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COROLLARY 1.1. o(&)>0 for any open set & CR.

PrROOF. For any <, we can find a closed set Cc2” and feC(Q)
such that 0= f(w)=<1 and

1 weC

F@)= {0 weT’.

It follows for sufficiently large =,
() zp(f)=L*"p(f)=p(L"f)>0 .
COROLLARY 1.2. If fe C(2) satisfies p(|f])=0, then f=0.

PrROOF. Suppose f#0. Then by Lemma 1.2 for sufficiently large »
we have L"|f|>0. On the other hand, we have

oLl f=p(l =0

This is a contradiction.

LeMMA 1.3. If feC,(2) for some p and f>0, we get

L)

1.8 =C
o Loy @) =
and

.9) IL£I<CI

Jor any n=Zp-+r and any o, ®' € 2.

PrOOF. We get by Lemma 1.1 3) and the assumption A)

Lrf(@) _ . s, fav@dr— @ dr@)Tlo*uve)

r(%, @

(1.10)

SRR T L e Ol IO R0

<{ Wy} sup {2 O,y g grerr(@) (@)

W, (w, @)
r pr{W(u CO)} n,r n,r ’
={ [ 01} sup sup {ZLZeM B o e Yiom (@) n @)

<oo .
Denoting the right hand term by C, we get (1.8) and
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IL*flI=C inf L*f (@)= Co(L*f)=Cp(f)=CI|fI| -

COROLLARY 1.3. {||L"|}.2: %8 bounded.
LEMMA 1.4. {L*f},z0 18 equi-continuous for any fe C,(Q).

PROOF. We may assume f=0 and f#0 without loss of generality.
Let n>r+p. Then we get

L fl)—Lft@)| <0l || ELQ @) |
éC“f”'[SQ""’ﬂ(w)na"—nr(w') dv"=r(u) , SW,. (u’w)d”r(v)f(u’uw)Hl(o’uva))

dv(v) f(uve’) T1 (6*urvw’)

SW,(u.w’) :I

- I:Sa"—"'m) nan—r r(w,)dp"—"(u) SW,.(u,m) @) f (w)[fi(o"wwe) :I

dv ()| [1 1 (e*uvw) — [Tl(c'uve’)]

§C”f|| max SWrW»mer(u.w')

e QT (W)NQTT T (w!) dv,(v)ﬂl(o_gu’vw)

SW.,.(u,a))

dy'(v) [1l(c*uvw)

+ CHf|| max SWr(M,a))\W,-(u,m')
* dv ()1l (o* uvw)

SW,.(M,, )

dv' () [Il(c*uvw”)

+ C“f” max SW,-(u.m’)\W,.(u,m)
“ dy' (W) [1l(c*uvw)

SW,(u,w)
o'uvw') _ 4

l(c*uvw)

(u, @)AW, (u, @)}
v{W.(u, w)} '

LEMMA 1.5. For any f e€C(R) such that o(f)=0, we get

<C||f| max  max ln

veW (%, @) NW . (u,w’)

+CI 1 { T 11t} max XA

(1.11) lim L"f=0 .

n—>00

Especially, if feC,(2), then for n>r+p
(1.12) o(|IL*fN=A—CHo(f]) .

PrROOF. We devide our proof into two cases.
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(i) Suppose fe C,(2) and p(f)=0.
Then we have

o(fH=p(f"),
and for n>7r+p by (1.9) we get
L*f*(@)=C*max L"f*=C~o(L"f*)=C~'o(f*) .
It follows that |
|Lrf|=|Lr f+ =~ Lrf | =L+ —C=p(f ) +Cp(f ) —Lrf |
=L f*—Cp(fH)+L"f~—C~p(f")
=L*f|—-C(f]) -

Hence we get

(L") =1 —CH(f) -
From this inequality it follows that
(1.13) lim o(|L"f)=0 .

Suppose that
lim ||[L"f||>0 .
Then there exists a subsequence {n,} and >0 such that

|IL*f||>é for any k .

Since {L™f},>, is relatively compact by Corollary 1.3 and Lemma 1.4,
there exists a subsequence {n,;} of {n,} and ge C(2) such that

lim L*if=g in C(%) .
Hence we get

llgll = lim ||[L™if|| =6 .
On the other hand, by (1.13)

o(gh=lim p(L"*if])=0 .

This contradicts to that ||g]|=6 by virtue of Corollary 1.2.
(ii) Suppose feC(2) and p(f)=0, and let f,eC,(2) (=12, ---)
be a sequence such that
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Efg ”f_'fp” =0 .

Then we get

IL fll S |L"f — Lfoll + | LS|
§C”f ""fp” + ”L”fp”

and hence lim, ... [|[L"f||=0. This completes the proof.

From the above two lemmas, it follows that {L"l},., is relatively
compact and so there exists a subsequence {L™1} and h=h, € C(2) such
that

(1.14) h=lim L™1 in C(Q) .

k—o0

Note that heC,_,(2) if UeC,(Q).
LEMMA 1.6. For the above h, it holds that

(1.15) (1) p)=1,
(1.16) (2) Lh=h.
PROOF. (1) p(h)=lim, .. p(L™1)=p(1)=1.
(1.17) (2) |[Lh—h||<||Lh—L™*1||+ ||L™*1 — L1+ || L™1— k]|

=(C+D||L™1—h| +||L"(L1-1)] .

Since p(L1—1)=0, by Lemma 1.5 the right term in (1.17) converges to
0 as k—. Thus we get Lh=h.

LEMMA 1.7. For any feC(Q) and pre P, it holds that

(1.18) (1) lim || L*f—p(f)hl|=0
: 1 .\ _
(1.19) (2) lim |(22*) wH -l |=0.

ProOF. Since p(f —p(f)h)=0, by Lemma 1.5 we have
(1) lim |L"f = (k|| =lim | L"f —o(f)Lh||=1im | L*(f—p()M)||=0,

(2) lim|(Le*) wp)—potr) | = lim 1L f) — ol

n—oo

= lim |p(Lf—p(f)h) | =0 .



DYNAMICAL SYSTEM 185

THEOREM 1.1. There exists a unique triplet {ay, hy, oy} which satis-
fies both equations

(1.20) (1) HAov=0avpy, v F
(1~21> (2) FHhy=oayhy, Pu(hu)=1 .

PROOF. We have already shown the existence of {ay, hy, oy}. Hence
we need only to show the uniqueness.

Suppose that there exist {ay, hy, oy} and {a, k', o’} which satisfy
(1.20) and (1.21). Then by Lemma 1.7 we get

o hoyor= lim (2.7 ) =0/ tim ()"

n—00 aU

’ ’

Thus we get ay=a’, and therefore p,=p’.
1.5, together with (1.21)

Hence we get by Lemma

lhg —R'|| = Lim || L*(hy—h))]|=0 .

Note that it can be easily shown that

(1.22) lim % log <21 = log ay

We now consider the measure p; € & defined by ,(f)=ps(hvf).
THEOREM 1.2. p; 18 shift invariant.

PrROOF. Define foo by

(1.28) foo(w)=flow) .
Then for fe C(2), we get
(1.24) Lo (f °0)=py(hy(f0))
= Po(Ly(ho(f0))) .
On the other hand, we get
(1.25) Ly (hy(f 00)) (@) = o7’ 5 (hy(f 2 0)) (@)
= a7 Swlm ho(uw) f 00 (uw)l(uw)dv(w)
= oy (@) L ho(w)

= f(@)hy(®) .
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Hence
0o (Lig(by(f 20))) = pu(fho) = tt5(f) -
This completes the proof.
LEMMA 1.8. Any one of {ay, hy, oy} 8 continuous in U.

Proor. Let {U,} be a sequence of potentials which converges to a
potential U and choose a subsequence {U,,} for which the following both
limits exist

(1.26) }‘11013 00, =0
and
(1.27) limea, =c.

k—oo

Here the existence of a subsequence {aU”k} is clear from that
|| <Max, e’ and from the compactness of &*. Then we get

‘ \razro—alsap l < ] \fdzro —S a5 pu,,

PP

+ I Sfdgy*,ov,,k — Sfdgvf,kpu,,k
| 700, fap | +| v, rdo—a| o

Hence it follows from the continuity of <&* in U that

+

+tay,,

S faszro=\afdo

Therefore by the uniqueness of {a,, k,, o} We get
p=ps and a=ay.

This completes the proof.

§2. Variational principle.

We now define the relative free energy for shift invariant measures
(for more precise definition, refer to [3]).

Any measurable finite partition &, of 2, induces a measurable finite
partition ¢ of 2 each atom of which has the form {we®2; w, eI}, Icg,
and we say that ¢ is induced by &. The family of all measurable
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finite partitions of @2, is denoted by 4 and we identify the partition &
of 2, and the partition of 2 which is induced by é&.

DEFINITION 2.1. For g e and any finite measurable partition ¢ of
2, we put

. H(, &)= I) log £&)
2.1) &, &) 12‘6.5#( ) log (D)

v ___T_— 1 v \, -7
2.2) W, 9=Tm ——H ( Vo7%) .
In (2.1), we take

0log0=0
y 0 if p=0

28) plogg '{+oo if p>0,

if they appear.
DEFINITION 2.2. For pe . 7Z, let

(2.4) k() = sup (e, &) .

We call h*(g) the relative entropy of ¢ with respect to v.
DEFINITION 2.3. Let

(2.5) )=\ U@dp(@)+ k(e .

We call f(¢) the relative free energy of pt with respect to v. We call
a measure X, an equilibrium state if fj(¢,)=inf fi(te).
It is known that if a measure £ has the density ¢ of the projec-

tion of zt to 2" with respect to »* for n=1,2, ---, then h*(¢) is given by
(2.6) R¥(i) = lim 71%_8 log g™ d

(refer to [4]). Put
¢(U)= inf f(¢) and & (U)={pre 7; fi()=4(U)} .
LEMMA 2.1. For any e #, the inequality
2.7) fe() = — log ay
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holds and the equality is attained by pe=p,; that is, ¢(U)= — log ;.
ProoOF. For feC(2) we obtain
Lo ()= ag"po (7 (f b))
=a,-,~§m f(u)dv“(u)gghv(uw) exp {-5 Ul uo)} doo(e)

and hence we can see

n—1 .
2.8) P )= a7 ww)e- 5 dpy ()
is the density of the projection of f, to 2" with respect to v*. We get
2.9) lim p"(®,, @,, - - ')/p(”_‘n(wz, @, - - )
_e"hy(@)

(o) (uniformly in w)

by the condition D). Hence it follows that

h*(¢ty) = lim ig log p™dp, = lim S log W) 4 o,
n—oo N n—s00 p("—l)(o-u)

= — log ay —£,(U) .

This implies
Jo(tty) = —log ay; .

Next we shall show fy(¢)=—loga, for any pe . #. If the projection
of £ to 2" is not absolutely continuous with respect to »* for some n,
then fy(#)=+ > and hence the assertion is trivial. Let p™ and qa™ be
densities of p{® and g™ with respect to v*, respectively. By (2.9), we
get

(2.10) U(®)=— log ay— limlog — 2@ _ | 150 1 () —log hy(cw) .
=% (g 0)

Combining (2.10) and the Jensen’s inequality, we get

Jo()= —log a, + lim lg log q_""(_co)dpg — log ay .
nooo 9, p(n) (w)

THEOREM 2.1. & (U)={y,}.
PrROOF. By Lemma 2.1, it holds clearly that Lo eZ(U). Since
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(U+tV)= ;n; Sorer() =#iglj {(U) +hi(e) +2(V)}
=fa() +tu(V)
for any pre . #, we get
(2.11) Tm #(U+tV)—(U))<, inf (V) .
tlo resg
Replacing V by —V in (2.11), we get
(2.12) lt_iTl’%l_ —1.{¢(U+tV)—¢(U)}_2_.Ms;}(g) n(v) .
On the other hand, since & ...k, is differentiable at ¢=0 and

_};{alf+tlf —y}= '1—{9U+tv’(%+tl’h0 — FLoh) |00 +ev ()

= pU+tV<}t—(=%+tV —Zf)hrf)/PUHV(hU) ’

s(U+tV)=log ay,,r is also differentiable at ¢=0, and hence
sup);c(V)= inf ©n(V) for any VeC,(Q), p=1,2, ---.
preg(U)

preE U
This implies p(V)=pg,(V) for any VeC,(2) »=1,2,---), and any
pe(U) and hence p=p,. Therefore we get &(U)={ts}.

§3. The cluster property of the measure [.

In this section we will show the mixing property of g,. Moreover
if U is of finite range, we will show g, is weak Bernoulli. Since each
point z in 2, has a base of neighborhood {V,(x)} such that the boundary
of V,(x) is of measure zero with respect to v,, we can find a sequence
{¢.} of finite measurable partitions of 2, such that diameters of atoms
of &, converge to zero as m— o and moreover each atom A of &, satisfies

(3.1) v(A)= inf {v(f); 0=X,=f}.

THEOREM 3.1. Suppose that U is of finite range. Then t; 18
weak Bermnoull:.

ProOF. It is sufficient to show the weak Bernoulli property of g,
with respect to the partition 7={{we 2: w, e A}; Ac¢g} for any ¢ whose
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atoms satisfy (8.1). For any >0 and AeVZ,0777), we can take
J4€C,.,(2) such that

xAéfA and [!U(fA—xA)§8/k’ .
It is sufficient to show

3.2) lim SuP > |t (fa(Xgoo™ 7)) — o (fto(Xs)|=0 .

n—o P2 ? .
A,BeVae— Iy
=0

We get by (1.25)
3, |0 (fahzo0™) — o £ Dt (o)
= 2, 100(hof s(X3°0"*%)) — o (f.) 00 (v X 5)]
= 2 1oL (hof DX 5) — ()P0 (s 5)|
= A'ZB |0oACL™**(hef u) — o (f 2)hi)X 5}
< 3 0ullL* ot a— t1o(£Oho) )
< 3 0oL+ (haf s~ o F O}

From the assumption we get UeC,(2) for some ¢>0. Since L? maps
C,(2) into C,(2), we get

Le(hofu—tto(fahy) € Cy(R) .
Let n=m(g+7)+¢’, 0=¢'<qg+7r. Then we get by Lemma 1.5.
AL (hgfa— o (fOR}S (1 —C )"0 {|L** (hpf s — oo (f RS}
On the other hand,
2 0ol|L7 (hof a— o (f o)}

=003 (L7 (haf ) + o (F)ho)]}

=2(1+e).
Therefore we get

2 o (fu(foo0™ ) — o (£ ) iu(f)]
=4Q-CH)™.

This completes the proof.
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THEOREM 3.2. Yy s mixing for any U satisfying the condition D).
PrOOF. By Lemma 1.7, we have

Lo((foo™g) =ty (f(L"9)) — to(fo ttr(@he) = ttu(f) s (9)
for f, g € C(Q).
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