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\S 1. Introduction.

The spectral and scattering theory for partial differential operators
has been investigated extensively (see [1], [8], [10], [11], [13], [14], and
references there). But certain ellipticity has been assumed to ensure
the completeness of wave operators. Such an assumption excludes, for
example, the equation of magnetgasdynamics which has a characteristic
root like $\xi_{1}$ (see [3, p. 298]). The aim in this paper is to remove such
an ellipticity assumption.

In [14] the author established the existence and completeness of the
wave operators for “symmetric systems”, which are rather general ones
including symmetric hyperbolic systems and Schr\"odinger equations. The
existence of the wave operators was established under the condition
that perturbations are short range; no additional condition was assumed.
In establishing the completeness, however, certain ellipticity was further
assumed in order to apply the compactness argument. Without such an
ellipticity assumption we shall show in this paper that the wave opera-
tors are complete in a weak sense. It is shown, for example, that the
ranges of the wave operators for symmetric hyperbolic systems with
characteristic roots of constant multiplicity are scattering subspaces.
(For an abstract scattering theory which is not based on the subspace
of absolute continuity, see [18].) In order to establish it we apply the
method recently invented by Enss [5], which does not essentially rely
on the compactness argument and is more direct than the method of
Kato-Kuroda. The crucial tool which makes this application possible is
the $L_{2}$-boundedness theorem of Calderon-Vaillancourt [4].

Now, we explain notations in order to state the results. We write
$D_{j}=-i\partial/\partial x_{j},$ $x=(x_{1}, \cdots, x,)\in R$ , $\langle x\rangle=(1+|x|^{2})^{1/2}$ , $\langle D\rangle^{2}=1+D_{1}^{2}+\cdots+D^{2}$ ,
$D^{\alpha}=D_{1}^{\alpha_{1}}\cdots D_{*}^{\alpha_{n}}$ , where $\alpha=(\alpha_{1}, \cdots, \alpha)$ is a multi-index. For $G_{1}$ and $G_{2}$
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in $R’$ , we write $G_{1}\subset G_{2}$ if the closure of $G_{1}$ is compact and is contained
in the interior of $G_{2}$ . We denote by $\ovalbox{\tt\small REJECT}(R$

“
$)$ or $\ovalbox{\tt\small REJECT}$ the spaoe of $C^{\infty}-$

functions on $R$ , all of whose derivatives are bounded. No confusion
will arise from using the same symbol for the space of matrix-valued
functions, all of whose elements belong to $\mathscr{G}$ $L_{2}(R)$ denotes the usual
$L_{2}$-space on $R$“. For a positive integer $m$ , we denote by $H_{0}$ the Hilbert
space $[L_{g}(R)]$ with natural inner product. For $f\in H_{0}$ , the Fourier
transform of $f$ is denoted by $\hat{f}$. For an $m\times m$ matrix $A$ , the norm of
$A$ is denoted by $|A|$ . For a densely defined closed linear operator $T$

between Banach spaces, $D(T),$ $R(T),$ $\sigma_{p}(T)$ , and $\rho(T)$ denote the domain,
range, point spectrum, and resolvent set of $T$, respectively. For Banach
spaces $X$ and $Y,$ $B(X, Y)$ denotes the Banach space of all bounded linear
operators from $X$ to Y.

Consider the symmetric system

(1.1) $i\frac{\partial u}{\partial t}=L(x, D)u\equiv M(x)[$
’

where $u(x, t)$ is a $C$ -valued function. We assume the following condi-
tions (A.I) and (A.II).

(A.I) (i) $M(x)$ is an $m\times m$ matrix-valued measurable function on $R$“

such that $CI\leqq M(x)\leqq C^{-1}I$ for some positive constant $C$, where $I$ is the
unit matrix; (ii) $P(\xi)$ is a polynomial with $m\times m$ matrix-coefficients, and
is Hermitian symmetric for each $\xi eR$“; (iii) the differential operator
$\sum_{j=1}^{K}q_{\dot{f}}(x)Q_{\dot{f}}(D)$ is formally self-adjoint.

(A.II) There exists a constant $\epsilon>1$ such that

$(|M(x)-I|+\sum_{j=1}^{K}|q_{j}(x)|)\langle x\rangle eL_{\infty}(R$“ $)$ .
Let $H$ be a Hilbert space with the inner product

$(f, g)_{H}=\int_{R}.M(x)^{-1}f(x\overline{)g(x)}dx,$ $f,$ $ge[L_{2}(R’)]^{n}$ .
By virtue of (A.I.i) $H$ is, as a vector space, equal to $H_{0}$ . The identifi-
cation operator $J$ form $H_{0}$ to $H$ is well-defined: $(Jf)(x)=f(x)$ . We denote
by $H^{\infty}(R$“ $)$ the space of $C$“-valued $C^{\infty}$-functions on $R$“, all of whose
derivatives are $L_{2}$-functions. Let $H$ be a self-adjoint extension of
$L(x, D)|_{H^{\infty}(R^{n})}$ in $H$, and let $H_{0}$ be the natural self-adjoint realization in
$H_{0}$ of the differential operator $P(D)$ . Denote by $E_{0,a\iota}$ the projection of
$H_{0}$ onto the subspace of absolute continuity for $H_{0}$ . Then it was shown
in [14] that the wave operators
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(1.2) $W_{\pm}=s-\lim_{t\rightarrow\pm\infty}e^{itH}Je^{-itH_{0}}E_{0,ac}$

exist and are isometric on $E_{0},{}_{ae}H_{0}$ .
Now, let us state our main results. Let $H_{0}$ be the subspace of

continuity with respect to $H$. Put

(1.3) $r_{\pm}=\{f\in H_{0}$ ; lim $sup\Vert(1-J\psi_{j}(D)E_{0,\alpha c}J^{-1})e^{-itH}f\Vert=0$ for all $\psi_{j}$ with
$T\rightarrow\infty j\rightarrow\infty\pm t\geq T$

$\lim_{\dot{f}\rightarrow\infty}\psi_{j}(\xi)=1$ and $\sup_{j}\Vert\psi_{j}\Vert_{L_{\infty}(R^{n})}<\infty$ }.

Then the first result is as follows.

Theorem 1. Under (A.I) and (A.II) one has

(1.4) $R(W_{\pm})=_{\rightarrow}V_{\pm}$ .

It will be shown that $\vee l_{\pm}^{\nearrow}$ are closed subspaces, reduce $H$, and are
contained in the scattering subspaces $\mathscr{M}_{\pm}$ for $H$. Here $\mathscr{M}_{\pm}$ are defined
by

(1.5) $\mathscr{M}\swarrow_{\pm}=\{f\in H;\lim_{T\rightarrow\pm\infty}\frac{1}{T}\int_{0}^{T}\Vert\chi_{R}e^{-itH}f\Vert dt=0$ for each $R>0\}$ ,

where $\chi_{R}$ is the characteristic function of the set $\{x\in R‘‘; |x|<R\}$ . (Differ-
ent but similar definitions of scattering subspaces were given in [2],
[16], and [18].)

The second result states that if $Q_{j}(D)$ is $H_{0}$-bounded and the roots
of the equation det $(\lambda I-P(\xi))=0$ have constant multiplicity (the precise
conditions, $(A.III)\sim(A.V)$ , will be stated in \S 3), then $R(W_{\pm})=\mathscr{M}_{\pm}$ :

Theorem 2. Under $(A.I)\sim(A.V)$ one has

(1.6) $ R(W_{\pm})=\swarrow\swarrow\pm\cdot$

An application of this theorem is given. It states that the energy
of the solution of the equation (1.1) propagates along the classical orbits
corresponding to the Hamiltonian $P(\xi)$ .

We note here that $\mathscr{M}_{+}=\mathscr{M}_{-}=H_{0}$ if $\chi_{R}(H+i)^{-1}E_{0}$ is compact for
every $R>0$ , where $E_{\iota}$ is the projection operator onto $H_{c}$ (see [2], [16]).
Therefore, if we assume certain ellipticity, we can conclude from
Theorem 2 that

$R(W_{+})=R(W_{-})=H_{c}$ .
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Thus Theorem 2 almost includes the results already known. However,
it does not include Theorem 5.7 in [14], where no condition concerning
the regularity of characteristic roots was imposed. An important open
problem is to establish (1.6) without assuming the regularity of char-
acteristic roots.

The remainder of this paper is organized as follows. In \S 2 we
shall show Theorem 1. Some lemmas there will be given in a more
general form than is necessary for the proof of Theorem 1; they will
be used also in proving Theorem 2. In \S 3 we shall state Theorem 2
precisely and give its proof. There, we shall also give a theorem con-
cerning the propagation of energy. \S 4 is devoted to the study of the
scattering theory for symmetric systems in an exterior domain; results
analogous to those for the entire space $R$“ are given.

\S 2. Proof of Theorem 1.

This section is devoted to the proof of Theorem 1. To start with,
we state some properties of the spaces $\vee r_{\pm}$ and $\mathscr{M}_{\pm}$ defined by (1.3)
and (1.5), respectively.

PROPOSITION 2.1. (i) $LA_{\pm}^{\prime}$ and $\ovalbox{\tt\small REJECT}_{\pm}$ are closed linear subspaces of
$H_{c}$ and reduce H. (ii) $\vee r_{\pm}\subset \mathscr{M}Z_{\pm}$ .

PROOF. $r_{\pm}$ and $\ovalbox{\tt\small REJECT}_{\pm}$ are clearly closed linear subspaces of $H$. They
reduce $H$, for they are invariant under the transformation $e^{-it}$“. Since
$\mathscr{M}_{\pm}$ are orthogonal to all eigenvectors of $H$, we obtain that $\mathscr{M}_{\pm}\subset H_{\iota}$

(cf. [2], [18]). This completes the proof of (i). Now let us show (ii).
For $fe_{\infty}r_{\pm}$ , put $f(t)=e^{-itH}f$. Given $\epsilon>0$ , we first choose a $C_{0}^{\infty}$-function
$\psi$ and $N>0$ such that

(2.1) $\sup_{\pm t\geqq N}||(1-J\psi(D)E_{0,ac}J^{-1})f(t)||<\epsilon$ .

Since $J\chi_{R}(x)\psi(D)E_{0,a\iota}J^{-1}$ is a compact operator, there exists an operator
$S$ of finite rank such that

(2.2) $\Vert J\chi_{R}(x)\psi(D)E_{0,ac}J^{-1}-S\Vert<\epsilon$ .
The inequalities (2.1) and (2.2) imply

(2.3) $\Vert\chi_{R}f(t)\Vert\leqq 2\epsilon+\Vert Sf(t)\Vert,$ $\pm t\geqq N$ .
Since $fe$ H., we obtain that for each $g\in H$
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$\lim_{T\rightarrow\pm\infty}\frac{1}{T}\int_{0}^{T}|(g, f(t))|dt=0$

(see [2, Lemma 2]). Thus

$\lim_{T\rightarrow\pm\infty}\frac{1}{T}\int_{0}^{T}\Vert Sf(t)\Vert dt=0$ .

This and (2.3) imply that $fe\mathscr{M}_{\pm}$ . $q.e.d$ .
We first show that the ranges $R(W_{\pm})$ of the wave operators $W_{\pm}$

are included in $\vee r_{\pm}$ .
PROPOSITION 2.2. Assume (A.I) and (A.II). Then the wave operators

$W_{\pm}$ defined by (1.2) exist and are isometric on $E_{0,ae}H_{0}$ . Furthermore,

(2.4) $R(W_{\pm})\subset\vee 4_{\pm}^{\nearrow}$ .

PROOF. Since the first half of the proposition was already shown
in [14], it remains to show (2.4). Suppose that $\lim_{j\rightarrow\infty}\psi_{j}(\xi)=1$ and
$\sup_{\dot{g}}\Vert\psi_{f}\cdot||_{L_{\infty}}<\infty$ . Let $f=W_{\pm}g$ for some $geH_{0}$ with $E_{0,ac}g=g$ . Given
$\epsilon>0$ , we can choose $T>0$ such that

$||e^{-itH}f-Je^{-itH_{0}}g\Vert<\epsilon$ , $\pm t>T$ .
On the other hand,

$\lim_{j\rightarrow\infty\pm}\sup_{t\geqq}||(1-J\psi_{j}(D)E_{0,a\epsilon}J^{-1})Je^{-itH_{0}}g||$

$=\lim_{j\rightarrow\infty}\sup_{ft\geqq T}||Je^{-itH_{0}}(1-\psi_{j}(D))g||=0$ .
Thus

$\lim_{\dot{g}\rightarrow\infty}\sup_{\pm t\geq}\Vert(1-J\psi_{\dot{f}}(D)E_{0,ac}J^{-1})e^{-itH}f||<(1+\sup_{j}||\psi_{j}||_{L_{\infty}})\epsilon$ .

This already proves (2.4), for $R(W_{\pm})$ are closed subspaces of $H_{c}$ . q.e.d.

Next we show the reverse inclusion along the line given by Enss
[5] and Simon [17]. To this end we prepare some lemmas.

LEMMA 2.3. Let $f$ be a real-valued $C^{\infty}$-function on an open set
$\Omega\subset R$“ such that $D^{\alpha}f\in L_{\infty}(\Omega)$ for all $|\alpha|\geqq 1$ . Let $G$ be a bounded open
set such that $\{gradf(\xi);\xi\in\Omega\}cG$ . Then for each $k>0$ there exists a
constant $Cs$uch that

(2.5) $\Vert(1+|x-x_{0}|+|t|)^{k}e^{-itf(D)}\phi(x)\Vert_{L_{2}(\{xeR^{n};(x-x_{0})/t\not\in O\})}\leqq C\Vert\langle x-x_{0}\rangle^{k}\phi\Vert_{L_{2}(R^{n})}$

for all $\phi$ with Supp $\hat{\phi}\subset\Omega,$ $x_{0}\in R$“, and $t\in R$ .
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PROOF. Since $e^{-tf(D)}$ commutes with translation, we may assume
that $x_{0}=0$ . Choose a $C^{\infty}$-function $\psi$ on $R$“ such that $\psi(x)=1$ on $R\backslash G$

and $\psi(x)=0$ in an open neighborhood of the closure of $\{gradf(\xi);\xi\in\Omega\}$ ,
and put $\psi_{t}(x)=\psi(x/t)$ . It is sufficient to show that

(2.6) $||\psi_{t}(x)(1+|x|^{2}+t^{2})^{k/2}e^{-itf(D)}\phi(x)||_{L_{2}(R)}\leqq C\Vert\langle x\rangle^{k}\phi(x)\Vert_{L_{g}(R^{n})}$

for all $\phi$ with $\hat{\phi}eC_{0}^{\infty}(\Omega)$ . We have by integration by parts

$ e^{-itf(D)}\phi(x)=(2\pi)^{-\cdot/2}\int e^{-itf(\xi)+ig\xi}[\nabla\cdot\frac{i(t\nabla f-x)}{|t\nabla f-x|^{2}}]^{k}\hat{\phi}(\xi)d\xi$ ,

where $\nabla=(\partial/\partial\xi_{1}, \cdots, \partial/\partial\xi.)$ . Elementary calculations show that there
exists a positive constant $C$ such that

$\inf_{\epsilon\rho}|t\nabla f(\xi)-x|\geqq C(|t|+|x|)$

for all $t$ and $x$ with $\psi_{t}(x)\neq 0$ . Thus we have

(2.7) $(1+|x|^{2}+t^{2})^{k/2}\psi_{t}(x)e^{-itf(D)}\phi(x)$

$=\sum_{|\alpha|\lessgtr k}\int e^{g\xi}a_{\alpha}(t;x, \xi)[e^{-itf(\epsilon)}D^{\alpha}\hat{\phi}(\xi)]d\xi$ ,

where $a_{\alpha}(t;x, \xi)e\mathscr{G}(R_{x}\times R_{\xi})$ . Hence (2.6) follows from the $L_{2}$-bounded-
ness theorem of [4].

LEMMA 2.4. Let $f,$ $g$ , and $h$ be $m\times m$ matrix-valued functions on
$R$“ which are commutative with one another and belong to $\mathscr{G}$. Then
the following statements hold.

(i) If $d\equiv dis$ ($Suppg$ , Supp $h$) is positive, then for each $k$ there
exists a constant $C$ such that

(2.8) $||g(x)f(D)h(x)\phi(x)||\leqq Cd^{-k}||\phi||,$ $\phi e[L_{2}(R$“) $]$
m

(ii) There exists a constant $C$ such that for all $R>1$

(2.9) $||(g(x/R)f(D)-f(D)g(x/R))\phi(x)||\leqq CR^{-1}\Vert\phi\Vert,$ $\phi e[L_{2}(R)]^{n*}$ .
PROOF. (i) The symbol $a(x, \xi)$ of the pseudo-differential operator

$g(x)f(D)h(x)$ is represented by the oscillatory integral

$Os-\int\int e^{-i_{l}\eta}g(x)f(\xi+\eta)h(x+y)dyd\eta$ ,

where $d\eta=(2\pi)^{-}d\eta$ . (See [9].) We have for any $k>n/2$
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$ a(x, \xi)=\int\int e^{-iy\eta}g(x)\langle D_{\eta}\rangle^{2k}\{\langle\eta\rangle^{-2k}f(\xi+\eta)\}\langle y\rangle^{-2k}\langle D_{y}\rangle^{2k}h(x+y)dyd\eta$ .

Since $|y|\geqq d$ if $g(x)h(x+y)\neq 0$ , we obtain that $|a(x, \xi)|\leqq Cd^{-2k}$ . Similarly,
for any multi-indices $\alpha$ and $\beta$ there is a constant $C_{\alpha,\beta}$ such that

$|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}a(x, \xi)|\leqq C_{a,\beta}d^{n-2k}$

Thus (2.8) follows from the $L_{2}$-boundedness theorem.
(ii) Denoting by $b(x, \xi)$ the symbol of the pseudo-differential oper-

ator $f(D)g(x/R)$ , we have

$ b(x, \xi)=Os-\int\int e^{-i\nu\eta}f(\xi+\eta)g((x+y)/R)dyd\eta$ .

Put

$G_{R}(x, y)=\int_{0}^{1}\nabla g((x+ty)/R)dt$ .

Since $g((x+y)/R)=g(x/R)+R^{-1}G_{R}(x, y)\cdot y$ , we have

$ b(x, \xi)=g(x/R)f(\xi)+R^{-1}Os-\int\int e^{-iy\eta}(-i\nabla_{\eta}f(\xi+\eta))\cdot G_{R}(x, y)dyd\eta$ .

Since $\{G_{R}\}_{R>1}$ is a bounded set in ta this implies (2.9). q.e. $d$ .
LEMMA 2.5 ([17, \S 2, Lemma 2]). Let $f$ be a rapidly decreasing

function such that $f\geqq 0$ and $\int fdx=1$ . For each lattice point $\alpha eZ^{n}$ , put

(2.10) $f_{\alpha}=f*x_{\alpha}$ ,

where $\chi_{\alpha}$ is the characteristic function of the unit cube centered at $\alpha$ .
Let $g_{\alpha}(\alpha eZ^{t})$ be functions such that

$\sup_{\alpha}\Vert\langle D\rangle^{2}g_{\alpha}\Vert_{L_{2}(R^{\#})}<\infty$

For a rapidly decreacing function $h$ , define Th by

(2.11) $(Th)(x)=\sum_{\alpha}g_{\alpha}(D)f_{\alpha}(x)h(x)$ .

Then

$|1Th\Vert_{L_{2}}\leqq C\Vert h\Vert_{L_{2}}$ .
In order to state a lemma which is a key to the proof of the

inclusion $\vee\rho\nearrow\pm\subset R(W_{\pm})$ , we review some of the notations and propo8itions
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appearing in [14]. Decompose the characteristic polynomial det $(N1-P(\xi))$

into irreducible factors $R_{j}(j=1, \cdots, q)$ :

(2.12) det $(\lambda I-P(\xi))=R_{1}^{n_{1}}\cdots R_{q}^{\prime*_{q}}$ .
Here $R_{i}\neq R_{j}$ if $i\neq j$ . Put

(2.13) $R=R_{1}\cdots R_{q}$ and $S(\xi)=the$ discriminant of $R(\lambda, \xi)$ .
It is easily seen that $S(\xi)\not\equiv O$ . Enumerate the roots of the equation
$R(\lambda, \xi)=0$ which are not identically constants as

(2.14) $\lambda_{1}(\xi)\leqq\cdots\leqq\lambda_{f}(\xi)$ ,

where $\lambda\not\equiv\lambda_{\dot{f}}$ if $i\neq j$ . The remaining roots $\lambda_{\dot{f}}(\xi)(j=r+1, \cdots, k)$ are
identically constants: $\lambda_{\dot{f}}(\xi)=a_{j}$ . We denote by $\Lambda$. the set of all excep-
tional values of $P(\xi)$ :

(2.15) $\Lambda_{\iota}=$ {$\lambda eR;R(\lambda,$ $\xi)=S(\xi)=0$ for some $\xi\in R’$ } $\cup\{a_{j};j=r+1, \cdots, k\}$ .

We denote by $F_{\dot{f}}(\xi)$ the orthogonal projection matrix in $C^{n}$ onto the
eigenspace corresponding to the eigenvalue $\lambda_{\dot{f}}(\xi)$ . Note that $F_{2}(\xi)$ and
$\lambda_{\dot{f}}(\xi)$ are smooth in $\{\xi eR‘‘; S(\xi)\neq 0\}$ . As for the projection $E_{0,a\epsilon}$ of $H_{0}$

onto the subspace of absolute continuity for $H_{0}$ , we have

PROPOSITION 2.6 ([14, Proposition 2.1]). $E_{0,a\iota}=\sum_{i=1}^{f}F_{j}(D)$ .

We note here that the subspace of absolute continuity, subspace of
continuity, and scattering subspaces for the operator $H_{0}$ are all equal.

Let $\Lambda_{\iota}$ be the set of all critical values of the functions $\lambda_{\dot{f}}(\xi)|_{\{S(\xi)\neq 0\}}$

$(j=1, \cdots, r)$ defined by

(2.16) $\Lambda_{o}=\bigcup_{\dot{g}=1}^{\prime}$ {$\lambda_{\dot{f}}(\xi)$ ; grad $\lambda_{j}(\xi)=0$ , $S(\xi)\neq 0$}.

We have the following proposition.

PROPOSITION 2.7 ([14, Lemmas 2.2 and 2.3]). $\Lambda_{0}$ is a finite set.
Furthermore, there is a polynomial $T(\xi)$ such that $T(\xi)\not\equiv O$ and

(2.17) $\Lambda_{0}=$ {$\lambda eR;R(\lambda,$ $\xi)=T(\xi)=0$ and $S(\xi)\neq 0$ for some $\xi eR$“}.

We can now define the operators $A_{j.\pm}(j=1,2, \cdots)$ from $H$ to $H_{0}$

playing an important role in the proof of Theorem 1. Choose homo-
geneous functions $g_{\pm}$ of order zero in $C^{\infty}(R\backslash \{0\})$ so that
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$g_{+}(\xi)+g_{-}(\xi)=1$ on $R\backslash \{0\}$ ,
$g_{\pm}(\xi)=0$ on $\{\mp\xi_{1}\geqq|\xi|/2\}$ .

For each $\alpha eZ$ , choose a rotation $R_{\alpha}$ transferring $\alpha$ to $(|\alpha|, 0, \cdots, 0)$ .
Let $\Psi$ be an $m\times m$ matrix-valued function on $R$“ belonging to ta such
that

(2.18) $V\equiv Supp\Psi+Supp\hat{f}\subset\{\xi\in R; S(\xi)T(\xi)\neq 0\}$ ,

where $f$ is the function appearing in (2.10). Let $\Phi$ be an $m\times m$ matrix-
valued $C^{\infty}$-function on $R$“, all of whose derivatives are bounded on $V$.
Then $A_{j,\pm}$ are defined by

(2.19) $A_{j,\pm}=\sum_{|\alpha|>\dot{g}l3}\sum_{p,q=1}^{r}g_{\pm}(R_{a}\nabla\lambda_{p}(D))F_{p}(D)\Phi(D)f_{\alpha}(x)\Psi(D)F_{q}(D)J^{-1}$ ,

where $f_{\alpha}(x)$ is the function defined by (2.10).

The key lemma is stated as follows.

LEMMA 2.8. Let $Q(\xi)$ be an mxm matrix-valued $C^{\infty}$-function, all of
whose derivatives are bounded on the set $V$ in (2.18). Assume that
$D^{\alpha}\lambda_{j}(\xi)(j=1, \cdots, r, |\alpha|\geqq 1)$ are bounded on $V$ and

(2.20) $inf\{|\nabla\lambda_{j}(\xi)|;\xi eV, j=1, \cdots, r\}>0$ .

Then the following statements hold.
(i) There exist positive constants $\delta$ and $C$ such that for all $t$ with

$\pm t\geqq 0$

(2.21) $\Vert\chi_{\delta(j+|t|)}(x)Q(D)e^{-itH_{0}}A_{\dot{g},\pm}\Vert_{B(H,H_{0})}\leqq C(1+j+|t|)^{-2}$

and

(2.22) $\Vert\chi_{\delta(j+|t|)}(x)Q(D)e^{-itH_{0}}J^{*}A_{\dot{g},f}^{s}||_{B(H_{0},H)}\leqq C(1+j+|t|)^{-2}$

(ii) For each $k$ there exists a positive constant $C$ such that

(2.23) $||\chi_{j\prime b}(x)Q(D)A_{\dot{g},\pm}||_{B(H.H_{0})}\leqq C(1+j)^{-k}$

and

(2.24) $||\chi_{j/b}(x)Q(D)J^{*}A_{;,\pm}^{\sim}||_{B(H_{0},H)}\leqq C(1+j)^{-k}$ .
PROOF. (i) We shall show only the inequality (2.21) for $t\geqq 0$ ,

since the other ones can be proved similarly. For $\phi\in H$ and $\alpha\in Z$“

with $|\alpha|>j/3$ , put
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$\phi_{\alpha}=\sum_{p,q=1}^{f}g_{+}(R_{\alpha}\nabla\lambda_{p}(D))F_{p}(D)\Phi(D)f_{\alpha}(x)\Psi(D)F_{q}(D)J^{-1}\phi$ .
Choose positive constants $a$ and $b$ so that the set

$G=\{veR ; a<|v|<b, v\cdot\alpha>-2|v||\alpha|/3\}$

includes the set {$\nabla\lambda_{\dot{f}}(\xi);\xi e$ Supp $\hat{\phi}_{\alpha},$ $j=1,$ $\cdots,$ $r$}. Choose $\delta>0$ so small
that for $x$ and $t$ with $|x|\leqq\delta(j+t)$

$(x-\alpha)/t\not\in G$ and $1+|\alpha|+t\leqq 2(1+|x-\alpha|+t)$ .
Then it follows from Lemma 2.3 that for each $k>0$ there is a constant
$C$ independent of $\alpha$ and $t$ such that

$||\chi_{\delta(j+t)}(x)Q(D)e^{-itH_{0}}\phi_{\alpha}||_{L_{t}}\leqq C(1+|\alpha|+t)^{-k}||\langle x-\alpha\rangle^{k}\phi_{\alpha}||_{L_{2}}$ .
Since $\sup_{\alpha}\Vert\langle x-\alpha\rangle^{k}f_{\alpha}\Vert<\infty$ , we have

$\sup_{\alpha}\Vert\langle x-\alpha\rangle^{k}\phi_{\alpha}\Vert_{L_{2}}\leqq C\Vert\phi\Vert_{H}$ .

Hence

(2.25) $||\chi_{\delta(j+t)}(x)Q(D)e^{-itH_{0}}\phi_{\alpha}||_{r_{0}}\leqq C(1+|\alpha|+t)^{-k}||\phi||_{H}$ .
Summing up (2.25) on $\alpha$ we obtain (2.21).

(ii) We can write

$A_{j,\pm}=\sum_{|\alpha|>\dot{g}(3}G_{1}(D)f_{\alpha}(x)G_{2}(D)J^{-1}$ ,

where $G_{1},$ $G_{2}e\mathscr{G}$ . Choosing a $C^{\infty}$-function $\psi$ such that $\psi(x)=1$ on
$\{|x|\leqq 1/11\}$ and $\psi(x)=0$ on $\{|x|\geqq 1/10\}$ , we put

$f_{\alpha,1}(x)=\psi((x-\alpha)/|\alpha|)f_{\alpha}(x)$ and $f_{\alpha.2}(x)=(1-\psi((x-\alpha)/|\alpha|))f_{\alpha}(x)$ .
Since $\{f_{\alpha.1}\}_{\alpha}$ is a bounded set in ta and

dis ($Supp\chi_{\dot{J}/\iota}$ Supp $f_{\alpha,1}$) $\geqq j/30$ ,

it follows from Lemma 2.4 that for each $k>0$ there is a constant $C$

such that

(2.26) $||\chi_{\dot{g}/f}\sum_{|\alpha|>jl3}G_{1}(D)f_{\alpha,1}(x)G_{2}(D)J^{-1}\Vert_{B(H,H_{0})}\leqq C(1+j)^{-k}$ .
On the other hand,

$\Vert f_{\alpha,2}(x)||_{L}\infty\leqq C(1+|\alpha|)^{-k-}$ .
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This implies that the inequality obtained from (2.26) by replacing $f_{\alpha,1}$

with $f_{q,2}$ holds. The $|proof$ of (2.23) is now complete. The inequality
(2.24) can be shown similarly. q.e. $d$ .

Completion of the proof of Theorem 1. We shall show only the
inclusion,$\prime r_{+}\subset R(W_{+})$ , for the other one can be proved similarly. Let
$\phi\in\vee r_{+}$ . Given $\epsilon>0$ , we first choose $\Psi$ in $C_{0}^{\infty}(\{\xi\in R‘‘; S(\xi)T(\xi)\neq 0\})$ so
that

(2.27) $\Vert(1-J\Psi(D)E_{0,ac}J^{-1})e^{-itH}\phi\Vert<\epsilon$

when $t$ is sufficiently large. Since it follows from Proposition 2.1 (ii)

that $\phi e\mathscr{M}_{+}$ , we can find a sequence $\{t_{j}\}_{j=1}^{\infty}$ of positive numbers such
that max $(j, t_{j-1})\leqq t_{j}$ and

(2.28) $\lim_{\dot{g}\rightarrow\infty}\Vert\chi_{j}(x)e^{-lt_{j}H}\phi$ il $=0$ .

Choosing a rapidly decreasing function $f$ such that $f\geqq 0,$ $\int fdx=1$ ,
$\hat{f}\in C_{0}^{\infty}$ , and

Supp $\hat{f}+Supp\Psi\subset\{\xi\in R^{n};S(\xi)T(\xi)\neq 0\}$ ,

we define $f_{a}(\alpha\in Z^{*})$ by (2.10). Define operators $A_{j,\pm}$ by (2.19) with
$\Phi=1$ , and put

$\phi_{j,\pm}=A_{j,\pm}e^{-it_{j}H}\phi$ and $\phi_{l}=e^{-it_{j}H}\phi$ .
We have

$\Psi(D)E_{0,ac}J^{-1}\phi_{j}=\sum_{\alpha}E_{0,ac}f_{\alpha}(x)\Psi(D)E_{0,ac}J^{-1}\phi_{\dot{f}}$

$\equiv\sum_{|\alpha|>\dot{g}(3}+\phi_{\dot{g},w}=\phi_{j.+}+\phi_{j,-}+\phi_{\dot{g},w}$ .

Since it follows from Lemma 2.4 and (2.28) that

$\lim_{j\rightarrow\infty}\Vert^{\chi_{j/2}}(x)\Psi(D)E_{0,ac}J^{-1}\phi_{j}||=0$ ,

we obtain

(2.29) $\lim_{\dot{g}\rightarrow\infty}\Vert\phi_{j,w}\Vert=0$ .

We next claim that

(2.30) $\lim_{j\rightarrow\infty}\Vert\phi_{j,-}||=0$ .
We have
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$||A_{j,-}e^{-it}j^{H}-A_{\dot{g}.-}Je^{-it_{j}H_{0}}J^{*}\Vert_{B(H,H_{0})}=||A_{\dot{g}.-}^{\sim}-e^{-:t_{j}H}Je^{it_{\dot{g}0}}J^{*}A_{\dot{g},-}^{\sim}\Vert_{B(H_{0^{\prime}}B)}$

$\leqq\Vert(J^{*}J-1)A_{j,-}^{l}||+\int_{0}^{\infty}||J(\sum_{\nu}q_{\nu}(x)Q_{\nu}(D)+(M(x)-I)P(D))e^{ltH_{0}}J^{*}A_{\dot{g}.-}^{\wedge}||dt$ .

Since $(J^{*}f)(x)=M(x)f$, we thus obtain by Lemma 2.8 and the assumption
(A.II)

(2.31) $\lim_{\dot{g}\rightarrow\infty}||A_{i-}e^{-it_{j}H}-A_{i-}Je^{-it_{j}H_{0}}J^{*}||_{B(H.H_{0})}=0$ .
On the other hand, since for each $R||\chi_{R}(x)e^{it_{j^{ff}0}}J^{*}A_{\dot{g},-}^{\sim}||\rightarrow 0$ as $ j\rightarrow\infty$ ,
we obtain that for any $\psi$ in $H_{0}$ with compact support

$\Vert A_{j,-}Je^{-i_{j}H_{0}}\psi\Vert\rightarrow 0$ .
Thus

(2.32)
$s-\lim_{\dot{f}\rightarrow\infty}A_{j,-}Je^{-t_{j}H_{0}}J^{*}=0$ .

Combining (2.31) and (2.32), we get the claim (2.30).
We have by Lemma 2.8

$||(W_{+}-J)\phi_{\dot{g},+}||\leqq\int_{0}^{\infty}||(HJ-JH_{0})e^{-itH_{0}}\phi_{j,+}\Vert dt$

$\leqq C\int_{0}^{\infty}\{(1+j+t)^{-2}+[\delta(j+t)]^{-}\}dt$ .
Thus

(2.33)
$\lim_{\dot{f}\rightarrow\infty}\Vert(W_{+}-J)\phi_{\dot{g}.+}||=0$ .

Combining (2.27), (2.29), (2.30), and (2.33), we obtain that for sufficiently
large $j$

(2.34) $||e^{-it_{j}H}\phi-W_{+}\phi_{\dot{g}.+}||<2\epsilon$ .
Hence

$\Vert\phi-W_{+}e^{it_{j^{H}0}}\phi_{j,+}||<2\epsilon$ ,

which implies that $\phi eR(W_{+})$ . This completes the proof.

\S 3. Scattering states. Propagation of energy.

In this section we shall prove Theorem 2 and give its application.
Throughout this section we use the notations $(2.12)\sim(2.17)$ in \S 2.

First, let us state Theorem 2 precisely; we must formulate the
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conditions $(A.III)\sim(A.V)$ . Put

(3.1) $\Lambda=\Lambda_{e}\cup\Lambda_{\iota}$ .
For an interval I and the characteristic root $\lambda_{j}(\xi)$ which is not identi-
cally constant, we put

(3.2) $\Omega_{j}(I)=\{\xi\in R^{n};\lambda_{j}(\xi)\in I\}$ .
The condition (A.III) is then stated as follows.

(A.III) (i) $\Lambda_{e}$ is a discrete set; (ii) for each interval $ I_{1}\Subset R\backslash \Lambda$ and
$j(j=1, \cdot. , , r)$ , there exist positive constants $a$ and $b$ and an interval
$I_{2}$ such that

(3.3) $ I_{1}\Subset I_{2}\Subset R\backslash \Lambda$ , dis $(\partial\Omega_{j}(I_{2}), \Omega_{j}(I_{1}))>0$ ,

(3.4) $\{|\nabla\lambda_{j}(\xi)|;\xi\in\Omega_{j}(I_{2})\}\subset[a, b]$ ,

(3.5) $inf\{|\lambda_{i}(\xi)-\lambda_{j}(\xi)|;\xi\in\Omega_{j}(I_{2}), i\neq j, 1\leqq i\leqq k\}\geqq a$

and $D^{\alpha}\lambda_{j}(\xi)(|\alpha|\geqq 2)$ are bounded on $\Omega_{j}(I_{2})$ .
Suggested by Simon [17], we formulate the conditions (A.IV) and

(A.V) as follows; they are a little weaker than the condition that $Q_{\dot{f}}(D)$

is $P(D)$-bounded.
(A.IV) There exists an $m\times m$ matrix-valued function $R_{1}$ on $R^{n}$ such

that $R_{1}^{-1}\in \mathscr{P},$ $R_{1}(\xi)P(\xi)=P(\xi)R_{1}(\xi)$ , and

$Q_{\dot{f}}(\xi)(P(\xi)-z)^{-1}R_{1}^{-1}(\xi)\in \mathscr{G},$ $z\in C\backslash R,$ $j=1,$ $\cdots,$
$K$ .

Put

(3.6) $X=\{f\in H;R_{1}(\xi)(P(\xi)-i)\hat{f}(\xi)eL_{2}\}$ .

(We note that $H^{\infty}(R^{n})\subset X\subset JD(H_{0}).$ ) Let $H$ be a self-adjoint extension
of $L(x, D)|_{X}$ , and denote by $E$ the spectral measure associated with $H$.
Then (A.V) is stated as follows.

(A.V) There exists an $m\times m$ matrix-valued function $R_{2}$ on $R^{n}$ such
that $R_{2}^{-1}\in L_{\infty},$ $R_{2}(D)E(I)$ is a bounded operator for each $IcR$ , and for
every $\epsilon>0$ there is a positive constant $\delta$ such that $R_{1}(\xi)$ is bounded on
the set $\{\xi+\eta;|R_{2}^{-1}(\xi)|\geqq\epsilon, |\eta|<\delta\}$ .

We can now state Theorem 2.

THEOREM 2. Asuume $(A.I)\sim(A.IV)$ . Let $H$ be a self-adjoint exten-
sion in $H$ of $L(x, D)|.$ , and assume (A.V). Then the ranges $R(W_{\pm})$ of
the wave operators defined by (1.2) are equal to $\mathscr{M}_{\pm}:$ $R(W_{\pm})=\mathscr{M}_{\pm}$ .
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For the proof we need a lemma.

LEMMA 3.1. Let $\Phi$ be a continuous function on $R$ vanishing at
infinity. Let $IcR$ . Let $g$ be a $C^{\infty}$-function such that $g(x)=0$ on
$\{|x|<1\}$ and $g(x)=1$ on $\{|x|>2\}$ , and let $g_{j}(x)=g(x/j)(j=1,2, \cdots)$ . Then
for each $\epsilon>0$ one can choose a function $\Psi$ in $\mathscr{G}$ such that $ R_{1}\Psi\in$ ta
and

(3.7) $||\{\Phi(H)-J\Phi(H_{0})\Psi(D)J^{-1}\}g_{\dot{f}}(x)E(I)||_{B(H)}<\epsilon$

for sufficiently large $j$ .
PROOF. We shall show the lemma along the line given in [17] (see

[17, \S 2, Lemmas 4 and 5]). Since finite linear combinations of the
functions $(t-z)^{-1}({\rm Im} z\neq 0)$ are dense in the Banach space of all continu-
ous functions on $R$ vanishing at infinity, it suffices to consider the case
$\Phi(t)=(t-z)^{-1}$ with ${\rm Im} z\neq 0$ . We have by (A.II) $\sim$ (A.IV)

$\Vert\{\Phi(H)-J\Phi(H_{0})J^{-1}\}R_{1}^{-1}(D)g_{j}(x)\Vert$

$=||(H-z)^{-1}J[(M(x)-I)P(D)+\sum_{\nu}q_{\nu}(x)Q_{\nu}(D)](P(D)-z)^{-1}R_{1}^{-1}(D)g_{\dot{f}}J^{-1}||$

$\leqq C(j^{-}+||(1-g_{j/\epsilon})a_{0}(D)g_{\dot{f}}\Vert+\sum_{\nu}\Vert(1-g_{j/s})a_{\nu}(D)g_{j}||)$ ,

where $a_{0},$ $a_{\nu}e$ ta. Thus Lemma 2.4 (i) yields

(3.8) $\Vert\{\Phi(H)-J\Phi(H_{0})J^{-1}\}R_{1}^{-1}(D)g_{j}(x)||\leqq Cj^{-1}$

For each $\epsilon>0$ , choose $\Psi$ in $\mathscr{G}$ so that $R_{1}(\xi)\Psi(\xi)e\mathscr{G}$ and

$||(1-\Psi(\xi))R_{2}^{-1}(\xi)\Vert_{L_{\infty}}<\epsilon\delta$ ,

where $\delta$ is a sufficiently small number. Then we have by (3.8)

$||\{\Phi(H)-J\Phi(H_{0})\Psi(D)J^{-1}\}g_{j}(x)E(I)||$

$\leqq\Vert\{\Phi(H)-J\Phi(H_{0})J^{-1}\}\Psi(D)g_{j}||+C||(1-\Psi(D))g_{j}E(I)||$

$\leqq C(j^{-1}||R_{1}(D)\Psi(D)||+||[R_{1}(D)\Psi(D), g_{j}(x)]\Vert)$

$+C(\epsilon\delta\Vert R_{2}(D)E(I)||+\Vert[1-\Psi(D), g_{j}(x)]||)$ ,

where [X, $Y$ ]$=XY-YX$. Hence we obtain by Lemma 2.4 (ii)

$||\{\Phi(H)-J\Phi(H_{0})\Psi(D)J^{-1}\}g_{j}(x)E(I)\Vert\leqq C(j^{-1}+\epsilon\delta)$ .
This implies (3.7).

PROOF OF THEOREM 2. Since $R(W_{\pm})\subset\infty r_{\pm}\subset \mathscr{M}_{\pm}$ , it remains to show
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the inclusion $\mathscr{M}_{\pm}\subset R(W_{\pm})$ . Since $\bigcup_{I\Leftarrow R\backslash A}E(I)\mathscr{M}_{\pm}$ are dense $in\swarrow\swarrow\pm$

’ we
have only to show that $E(I)\mathscr{M}_{\pm}\subset R(W_{\pm})$ for each $ IcR\backslash \Lambda$ . Let us show
the inclusion $E(I)\mathscr{M}_{+}\subset R(W_{+})$ . (We show only this inclusion, for the
other one can be shown similarly.) Let $\phi\in E(I)\mathscr{M}_{+}$ . We can find a
sequence $\{t_{\dot{f}}\}_{\dot{g}=1}^{\infty}$ of positive numbers such that max $(j, t_{j-1})\leqq t_{j}$ and
$\lim_{\dot{g}\rightarrow\infty}\Vert\chi_{j}(x)J^{-1}e^{-it_{j}H}\phi\Vert=0$ . Choose a function $\Phi$ in $C_{0}^{\infty}(R\backslash \Lambda)$ so that
$\Phi(H)\phi=\phi$ . For each $\epsilon>0$ , we can choose by Lemma 3.1 a function $\Psi$

in ta such that $R_{1}\Psi e$ ta and

$\lim_{\dot{g}\rightarrow\infty}\Vert e^{-it_{j}H}\phi-J\Phi(H_{0})\Psi(D)J^{-1}e^{-it_{j}H}\phi\Vert<\epsilon$ .

By the same argument as in the proof of Theorem 1, we obtain the
decomposition

$\Phi(H_{0})\Psi(D)J^{-1}e^{-t_{j}H}\phi=\phi_{l+}+\phi_{i,-}+\phi_{j,w}$ ,

where

$\lim_{\dot{g}\rightarrow\infty}(\Vert(W_{+}-J)\phi_{j,+}\Vert+\Vert\phi_{j,-}\Vert+\Vert\phi_{j,w}\Vert)=0$ .

(In doing so, use the equalities: $\Phi(H_{0})=\Phi(H_{0})E_{0,a\iota}$ and $e^{-itH_{0}}R_{1}^{-1}(D)=$

$R_{1}^{-1}(D)e^{-itH_{0}}.)$ Thus

$\lim_{\dot{g}\rightarrow\infty}\Vert\phi-W_{+}e^{it_{j}H_{0}}\phi_{j,+}\Vert<\epsilon$
,

which implies that $\phi eR(W_{+})$ . The proof is complete.

Next, let us discuss the propagation of energy of the solution. We
begin with the following theorem.

THEOREM 3.2. Assume (A.I) and (A.II). Let $H$ be a self-adjoint
extension of $L(x, D)|_{H^{\infty}(R^{n})}$ in H. Let I be a finite or infinite interval
of $R$ , and let $\Gamma$ be an open set including the set

(3.9) $\bigcup_{g=1}^{f}\{-\nabla\lambda_{j}(\xi);\lambda_{\dot{f}}(\xi)\in I, S(\xi)\fallingdotseq 0\}$ .

For $t\in R$ , set $\Gamma_{t}=\{tx;xe\Gamma\}$ ; denote by $\chi_{\Gamma_{t}}$ the characteristic function
of $\Gamma_{t}$ . Then

(3.10) $\lim_{t\rightarrow\pm\infty}||\chi_{\Gamma_{t}}e^{-itH}\phi||_{H}=\Vert\phi\Vert_{H},$
$\phi eE(I)R(W_{\pm})$ .

PROOF. We put

$\Omega=\bigcup_{1\leq J^{\xi r}}\{\xi\in R ; \lambda_{j}(\xi)\in I, S(\xi)T(\xi)\neq 0\}$ .
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We denote by $E_{0}$ the spectral measure associated with $H_{0}$ . Since
$E(I)W_{\pm}=W_{\pm}E_{0}(I)E_{0,ae}$ and $C_{0}^{\infty}(\Omega)$ is dense in $E_{0}(I)E_{0},{}_{a\iota}H_{0}$ , it suffices to
show (3.10) for $\phi=W_{\pm}\psi$ with $\psi eC_{0}^{\infty}(\Omega)$ and $ E_{0,a\iota}\psi=\psi$ For such $\psi$ ,
Lemma 2.3 gives

$\lim_{t\rightarrow\pm\infty}\{\Vert(1-\chi_{\Gamma_{t}})e^{-itH_{0}}\psi\Vert_{\pi_{0}}+||(J-J_{1})e^{-:tH_{0}}\psi\Vert_{H}\}=0$ ,

where $J_{1}$ is the unitary operator from $H_{0}$ to $H$ defined by $(J_{1}f)(x)=$

$M(x)^{1/2}f(x)$ . Thus

$\lim_{t\rightarrow\pm\infty}||^{\chi_{\Gamma_{t}}}e^{-tH}\phi\Vert_{H}\geqq\lim_{t\rightarrow\pm\infty}(||J_{1}x_{\Gamma_{t}}e^{-tH_{0}}\psi||_{H}-||e^{-itH}\phi-J_{1}e^{-tH_{0}}\psi||_{H})$

$=\lim_{t\rightarrow\pm\infty}||^{\chi_{\Gamma_{t}}}e^{-itH_{0}}\psi\Vert_{r_{0}}=\Vert\psi||ff_{0}=\Vert\phi\Vert_{H}$ .
This implies (3.10). q.e. $d$ .

The following corollary is concerned with the lower bounds at infinity
for the solutions of (1.1).

COROLLARY 3.3. Let the hypotheses of Theorem 3.2 be satisfied, and
assume that the open set $\Gamma$ includes also the origin. Assume further
that $R(W_{\pm})=\mathscr{M}_{\pm}$ . Let $\phi e$ H. If

(3.11) $\lim_{T\rightarrow\pm\infty}\frac{1}{T}\int_{0}^{T}\Vert\chi_{\Gamma_{t}}e^{-itH}\phi||_{H}^{2}dt=0$ ,

then $E(I)\phi=0$ .
PROOF. We have

(3.12) $||^{\chi_{\Gamma_{t}}}e^{-tH}E(I)\phi\Vert^{2}$

$\leqq\Vert\chi_{\Gamma_{t}}e^{-i\iota H}\phi\Vert^{2}+2{\rm Re}((1-\chi_{\Gamma_{t}})e^{-itH}E(I)\phi, e^{-tH}E(R\backslash I)\phi)$ .
Since the assumption that $R(W_{\pm})=\mathscr{M}_{\pm}$ and (3.11) imply that $\phi\in R(W_{\pm})$ ,
we obtain by Theorem 3.2, (3.11), and (3.12)

$\lim_{T\rightarrow f\infty}\frac{1}{T}\int_{0}^{T}\Vert^{\chi_{\tau_{t}}}e^{itH}E(I)\phi\Vert^{2}dt=0$ .

Hence $E(I)\phi=0$ . q.e.d.

REMARK 3.4. (i) For symmetric hyperbolic systems, we can always
replace the set $\Gamma_{t}$ in (3.11) with a bounded set by using the property
of finite propagation: Let $P(D)=\sum_{j}A_{\dot{f}}D_{\dot{f}}+B$, and put

$\sigma=\max$ {$x$ ; det $(\lambda I-\sum_{\dot{f}}A_{\dot{f}}\xi_{\dot{f}})=0,$
$|\xi|=1$}.
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Let $\gamma$ be an open set including the set
$\cup\{-\nabla\lambda_{j}(\xi);\lambda_{j}(\xi)\in I, S(\xi)\neq 0\}\cap\{|x|<\sigma\}$ ,

$1\leq j\leqq r$

and put $\gamma_{t}=\{tx;x\in\gamma\}$ . Then the conclusion of Corollary 3.3 holds if
(3.11) is satisfied with $\Gamma_{t}$ replaced by $\gamma_{t}+\{x\in R^{n};|x|<R\}$ , where $R$ runs
over $(0, \infty)$ .

(ii) Corollary 3.3 extends a part of Theorem 2.1 in [7] to the
variable coefficients case. (See also [6], [12], [15].)

(iii) The assumption $R(W_{\pm})=\mathscr{M}_{\pm}$ is satisfied also by systems which
do not necessarily satisfy the condition (A.III) (see [14]).

\S 4. Exterior problems.

In this section we shall study the scattering theory for symmetric
systems in an exterior domain, and give results analogous to those for
symmetric systems in $R^{n}$ . Since all theorems to be formulated in this
section can be shown along the line described in \S \S 2 and 3, we omit
the proof.

Let $G$ be a domain in $R$“ such that $R^{\iota}\backslash G$ is compact. We consider
the differential operator

(4.1) $L(x, D)=M(x)[P(D)+\sum_{\dot{g}=1}^{K}q_{j}(x)Q_{\dot{f}}(D)]$

in $G$ under the following conditions (A.I)’ and (A.II)’.
(A.I)‘ (i) $M(x)$ is an $m\times m$ matrix-valued measurable function on

$G$ such that $CI\leqq M(x)\leqq C^{-1}I$ for some positive constant $C$; (ii) $P^{*}(\xi)=$

$P(\xi)$ ; (iii) the differential operator $\sum_{j}q_{j}(x)Q_{j}(D)$ is formally self-adjoint.
(A.II)’ There exists a constant $s>1$ such that

$(|M(x)-I|+\sum_{j=1}^{K}|q_{j}(x)|)\langle x\rangle eL_{\infty}(G)$ .

Let $H_{0}$ be the Hilbert space $[L_{2}(R^{\prime})]^{n}$ with natural inner product.
Let $H$ be the Hilbert space $[L_{2}(G)]^{n}$ with the inner product

$(f, g)_{H}=\int_{a}M(x)^{-1}f(x)\overline{g}(x)dx$ .

Let $J_{1}$ be the identification operator from $H_{0}$ to $H$ given by the restric-
tions of functions to $G$ . Let $J_{2}$ be the operator from $H$ to $H_{0}$ defined
by
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$(J_{2}f)(x)=\left\{\begin{array}{ll}f(x), & xeG\\0, & x\not\in G.\end{array}\right.$

Let $\rho$ be a $C^{\infty}$-function on $R$“ such that $\rho(x)=0$ for $x$ with dis $(x, R^{*}\backslash G)\leqq$

$1$ and $\rho(x)=1$ on {$x$ ; dis $(x,$ $R\backslash G)\geqq 2$}. Let $H$ be a self-adjoint extension
of $L(x, D)$ restricted to $\{\rho(x)f(x);f(x)eH^{\infty}(R‘‘)\}$ . Put

(4.2) $-r_{\pm}=\{feH_{\epsilon}$ ; lim $sup\Vert(1-J_{1}\psi_{\dot{f}}(D)E_{0,ac}J_{2})e^{-itH}f||=0$

$T\rightarrow\infty\dot{g}\rightarrow\infty ft\geq T$

if $\lim_{\dot{f}\rightarrow\infty}\psi_{j}(\xi)=1$ and $\sup_{\dot{f}}||\psi_{j}||_{L}\infty<\infty$ }.

Then we have the following analogue to Theorem 1.

THEOREM 4.1. The wave operators

$W_{\pm}=s-\lim_{t\rightarrow\pm\infty}e^{itH}J_{1}e^{-:tH_{0}}E_{0.ac}$

exist and are isometric on $E_{0,a\iota}H_{0}$ . Furthermore,

$R(W_{\pm})=\vee r_{\pm}$ .
Now, let us state the analogue to Theorem 2. We require the

following modifications of (A.IV) and (A.V).
(A.IV)‘ There exists an $m\times m$ matrix-valued function $R_{1}$ on $R$“

such that $R_{1}^{-1}e\mathscr{P},$ $R_{1}(\xi)P(\xi)=P(\xi)R_{1}(\xi)$ , and

$Q_{\dot{f}}^{(\alpha)}(\xi)(P(\xi)-z)^{-1}R_{1}^{-1}(\xi)e$ va $zeC\backslash R,$ $j=1,$ $\cdots,$ $K,$ $|\alpha|\geqq 0$ .
Let $H$ be a self-adjoint extenqion of $L(x, D)|_{X}$ , where

$X=\{J_{1}\rho(x)(P(D)-i)^{-1}R_{1}^{-1}(D)g;g\in H_{0}\}$ .
We denote by $E$ the spectral measure associated with $H$.

(A.V)’ There exists an $m\times m$ matrix-valued function $R_{2}$ on $R$ such
that $R_{2}^{-1}\in L_{\infty},$ $R_{2}(D)J_{2}\rho(x)E(I)$ is a bounded operator for each $IcR$ , and
for every $\epsilon>0$ there is a positive constant $\delta$ such that $R_{1}(\xi)$ is bounded
on $\{\xi+\eta;|R_{2}^{-1}(\xi)|\geqq\epsilon, |\eta|<\delta\}$ .

The scattering subspaces $\mathscr{M}_{\pm}$ for $H$ are defined with an obvious
modification; the analogue to Proposition 2.1 holds. The analogue to
Theorem 2 is stated as follows.

THEOREM 4.2. Assume (A.I)’, (A.II)‘, (A.III), and (A.IV)’. Let $H$ be
a self-adjoint extension of $L(x, D)|_{X}$ in $H$, and assume (A.V)’. Then
$R(W_{\pm})=\mathscr{M}_{\pm}$ .
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The following theorem is essentially known (cf. [10], [14], [17]).

THEOREM 4.3. Let the hypotheses of Theorem 4.2 be satisfied.
Assume that $\chi_{R}E(I)$ is compact for each $R>0$ and $ IcR\backslash \Lambda$ , where $\Lambda$ is
the set defined by (3.1). Then the following statements hold.

(i) $R(W_{+})=R(W_{-})=H_{c}=H_{ac}=\mathscr{M}\swarrow+=\mathscr{M}l_{-}$ , where $H_{ac}$ is the subspace

of absolute continuity for $H$.
(ii) The only possible limit points for the point spectrum of $H$

are in $\Lambda$ . Each eigenvalue not in $\Lambda$ has finite multiplicity.

The following theorem and corollary are analogues to Theorem 3.2
and Corollary 3.3.

THEOREM 4.4. Let the hypotheses of Theorem 4.1 be satisfied. Let
an interval $I\subset R$ and open sets $\Gamma$ and $\Gamma_{t}$ have the same property as
in Theorem 3.2. Then

$\lim_{t\rightarrow\pm\infty}\Vert^{\chi_{\Gamma_{t}}}e^{-itH}\phi\Vert_{H}=\Vert\phi\Vert_{H},$
$\phi\in E(I)R(W_{\pm})$ .

COROLLARY 4.5. Let the hypotheses of Theorem 4.4 be satisfied,
and assume that the open set $\Gamma$ includes also the origin. Assume
further that $ R(W_{\pm})=\mathscr{M}\swarrow\pm\cdot$ Let $\phi\in H.$ If

$\lim_{T\rightarrow\pm\infty}\frac{1}{T}\int_{0}^{T}\frac{\wedge}{}$ ,

then $E(I)\phi=0$ .
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