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Introduction

In this paper we study vanishing theorems of cohomology groups
with values in the sheaves of holomorphic functions with exponential
bounds. We treat the sheaf .., of holomorphic functions with some
exponential growth condition and the sheaf .. of holomorphic functions
with some exponential decay condition. The sheaves Pinc,y and Pae. are
proposed by Professors M. Sato and T. Kawai to define modified Fourier
hyperfunctions. Those are modifications of the sheaf & of holomorphic
functions with the infra-exponential growth condition and the sheaf &
of holomorphic functions with some exponential decay condition in Kawai
[12]. We have two motivations:

The first is to give a foundation for our forthcoming paper (Saburi
[26]) on the theory of modified Fourier hyperfunctions.

The second is to improve Kawai’s proof of vanishing theorems of
cohomology groups with the value in the sheaf 2. Our methods of proof
are valid for the <& without difficulties.

Kawai proved the Cartan Theorem B and the Malgrange theorem
for the sheaf & (Theorems 2.1.4 and 3.1.8 in Kawai [12] respectively).
His proof of the Cartan Theorem B for the sheaf 2 is somewhat com-
plicated. Moreover it seems to the author that his proof of the Malgrange
theorem for the sheaf ¢ is not complete.

We give a direct method of the calculation of the cohomology groups
with the value in the sheaf .., and prove the Cartan Theorem B for
that sheaf (Theorem I in §1.2). We also prove in details the Malgrange
theorem for the sheaf ., (Theorem III in §1.2).

There are some works relevant to Kawai [12]. Those are Ito-Nagamachi
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[8], Junker [9], [10], Nagamachi-Muguibayashi [17], [18], [19], Nagamachi
[20], and Saburi [23]. Except Saburi [23], they proved vanishing theo-
rems of cohomology groups with values in the sheaves £/ and Eg’ of
(Hilbert or Fréchet) vector valued holomorphic functions with the infra-
exponential growth condition and some exponential decay condition respec-
tively. To prove those theorems, they used the same method as Kawai’s
[12].

In this paper, following to Kawai [12], we mainly rely on the theory
of L’ estimates for the 3 'operator in Hormander [6], [7] and that of
Fréchet-Kdmura spaces and dual Fréchet-Komura spaces in Komatsu [13].
Fréchet-Komura spaces and dual Fréchet-Koémura spaces are the two
classes of topological vector spaces proposed by Komatsu [13]. (In the
terminology of Komatsu [18], Fréchet-Komura spaces are referred as FS*
spaces and dual Fréchet-Komura spaces are referred as DFS* spaces.
But following to Komatsu [15], we use the terminologies Fréchet-Komura
spaces and dual Fréchet-Komura spaces for those classes of topological
vector spaces.) We use those theories mainly in § 2.

The plan of this paper is as follows:

In §1 we give the definitions of the sheaves .., and .., and
formulate the main results. Those are the Cartan Theorem B for
the sheaves ~.., and .. and Malgrange theorem for the sheaf
anc,yb'

In §2 we introduce the sheaf .25 of locally square summable func-
tions with some exponential growth condition, which will be defined in
§2.1. Moreover we study the Dolbeault complex (.25*";3) and its dual
complex (Z/¢%.n,; ), where 2/, is the sheaf of locally square summable
functions with some exponential decay condition defined also in §2.1.
Here we give a sufficient condition so that the Dolbeault complex con-
stitutes an exact sequence. The result of this section gives a direct
method of calculation of cohomology groups with values in the sheaves
Pine,e a0d P, which is a somewhat different way from that of Kawai
[12]. (See Remark 3 in §2.2, and compare §2 in Kawai [12] with §§ 2
and 3 of ours.)

In §3, using the result in §2, we construct a soft resolution of the
sheaves Zi..,, and ... Moreover we prove the Cartan Theorem B
for those sheaves (Theorems 8.1.2 and 3.1.4). We also prove the
Malgrange theorem for the sheaf 7., (Theorem 3.2.1).

The author expresses his sincere gratitude to Professor M. Mori-
moto, whose constant encouragement and guidance made him write this
paper.
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§1. Definitions of the sheaves @i, and g, and main results.
1.1. Definitions.

DEFINITION 1.1.1. We denote by D* the radial compactification
R*||S** of R* where S is a (k—1)-dimensional sphere put at infinity.
Here we identify S*—* with (R*\{0})/R,. Let us consider the natural pro-
jection w': R\{0}— S%'=(R*{0})/R,. We denote x.=w(x) for « € R*\{0}.
Then the topology of D* is defined as follows. Let B* be the closed
unit ball in R* centered at the origin. We define a bijection £ of D*
onto B* by the following:

x| x| if y=x,€Sk™

x<y>={w,(”x”+1) if y—weR*,

~ where ||z| is a slight modification of |x|=1"ai+---+a; near the origin
so as to be C= as a function of x and monotone increasing as a function
of |2]. We equip D* with the weakest topology so that « gives a homeo-
morphism of D* onto B*. We can also equip D* with a differential
structure so that ¢ gives a diffeomorphism of D* onto B*.

With this topology, a fundamental system of neighborhoods of a
point x., € S is given by a family {(C+a)UC.} (Co={y.cS:" yeC)),
where @ runs all vectors in R*, and C runs all open cones in R* with
the vertex at the origin containing x. Thus we have x.=lim, .. \x+a)
for any x e R*\{0} and any a € R*. On R* this topology coincide with the
usual topology.

We identify C" with R* and denote by Q" the radial compactification
of C"=R*™.

For a real valued function @ on C"™ which is bounded on any compact
set in C*, we define two sheaves Pi,, aNd Fucc,¢-

DEFINITION 1.1.2. We denote by P, the sheaf on Q" whose section
module ... . (W) over an open set W in Q" is given by the following:

Cine, o W)={f € Z(WNC™); zg»g‘gcnlf(z)l exp (—@(z)—¢€[z[) <o
for any KcW and any >0}, |

where the notation KW means that K is a relatively compact subset
of W.

DEFINITION 1.1.3. We denote by ..., the sheaf on Q" whose sec-
tion module .. (W) over an open set W in Q" is given by the following:
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e, o W)={f € Z(WNC"); for any KcW there exists an £>0
such that sup | f(2)]| exp (P(2)+¢|z|) < o0} .

When the function @ is identically 0, we denote ine,p ANA Paec,» DY
e a0d @y, respectively.

REMARK. The restrictions of the sheaves Cine,e ANA Pgee,, to C®
coincide with the sheaf < of holomorphic functions on C=.

DEFINITION 1.1.4. We call an open set W in Q" to be acute, if it
satisfies the following condition:

sup |Im z[|/(|]Re 2|+ A)<1 for some A>0.
zewNnen

DEFINITION 1.1.5. We call an open set V in Q" to be Z..-pseudo-
convexr if it is acute and if there exists a strictly plurisubharmonic C*
function p on V' NC" satisfying the following condition (P):

i) {zeVNC p(z)<c}cV for any ceR,

P
(P) {ii) sup p(z2)<~ for any KcV.
ze KNC™

DEFINITION 1.1.6. We say a function @ on C* to be of linear varia-
tion if there exists a constant A>0 such that

|P(z")—p(2)| <A for every z, 2z’ eC* with |2’—z|<1.

ExXAMPLE (a). For e.=(1,0, ---, 0), €S2, there exists a funda-
mental system of neighborhoods consisting of ..-pseudoconvex open
sets in Q*. Put

U,= {z eC"; |Im z1|2+§ |2,<*| Re z,— (1/8) %, Re z1>1/3} ,
V8= I_}a ’

then {V,},.,, gives a fundamental system of neighborhoods of e¢. con-
sisting of £7..-pseudoconvex open sets. It is easy to see that {(Vibocsa
gives a fundamental system of neighborhoods of ¢ and each V, (0<o<1)
is acute. To show the &..-pseudoconvexity of V, (0<d<1), we define
the following functions:

0,(2)=|Im z|+z |2;— 8| Re 2,— (1/3) |*
s(2)=1/(—qs(2)) (ze V,nC" .
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Then p, gives a strictly plurisubharmonic C* function on V,NC" (0<d<1)
which satisfies the condition (P) in Definition 1.1.5. This shows the
@ -pseudoconvexity of V,; (0<é<l).

REMARK 1. Considering the function p(z)+|2[?>, we fined that VN C"

is pseudoconvex in the usual sense, if V is an Z..-pseudoconvex open
set in Q".

1.2. Main results.

Using the above definitions we can descrive the main results of this
paper.

For a sheaf # on a topological space X, we denote by HYE; &)

the ¢-th cohomology group of an open (or closed) set E with the value
in the sheaf .#.

THEOREM I (Theorem 3.1.2). For any ..pseudoconvexr open set V

m Q" and any plurisubharmonic function ® on C™ of limear variation,
we have

HYV; Tne,e)=0 (g21).

THEOREM II (Theorem 3.1.4). Let K be a compact set in Q. Suppose
that there exists a fundamental system of meighborhoods of K consisting
of ne-Dseudoconvex open sets in Q°. Then we have

HY(K;, @.)=0 (g=1).

THEOREM III (Theorem 3.2.1). For any acute open set W in Q" and
any plurisubharmonic function ® on C" of linear variation, we have

HY W @ine,0)=0 .

§ 2. The Dolbeault complex for the sheaves 23",

2.1. Preparation.

In this section we define the sheaf on Q", 2, of <7%. functions with
some exponential growth condition and %/, of <72, functions with some
exponential decay condition. We define a topology of 25(W) for an
open set W in Q. We consider the following dual Dolbeault complexes:

ZPIW) > ZLPIW) — - s ZG(W) — 0

| I

Vi W) g Dt W) = D2ih(W) 0,
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and make some remarks for the dual operator # of the Cauchy-Riemann

operator a.
a) For a real valued measurable function ¢ on C" which is bounded

on any compact set in C*, we define two sheaves .25 and 2/, on Q*:

DEFINITION 2.1.1. We denote by .2, the sheaf on Q" whose section
module 2%(W) over an open set W in Q" is given by the following:

ZuW)={f e W NC% | 150 exp (~p(a)—elzDir< oo
for any KcW and any s>0} ,

where d\ is the Lebesgue measure on C"=R?.

DEFINITION 2.1.2. We denote by 2/, the sheaf on Q" whose section
module 2Z/,(W) over an open set W in Q" is given by the following:

?,,,(W):{fe.%ﬁc(WnC"); for any Kc W there exists an ¢>0
such that annlf(z)lz exp (¢(Z)+6|zl)dx<oo} .

REMARK. The restrictions of the sheaves .27 and 2/, to C* coincide
with the sheaf <2, of locally square summable functions on C*=R*".

Let W be an open set in Q. We are going to equip the function
space Z5(W) with a topology.

Let {K;} be an increasing sequence of compact subsets of W which
exhausts W. Then we define Hilbert spaces X,(®) (j=1,2, --.), using
the notation in Hormander [6], [7]:

X,(P)=LAK;n C"; p(2)+(1/5)|2])
={recmdnen; |, | 17@ ¢ exp (—o@—ilzhdr< oo} .

J

Consider the projective system:

o} °; PE_s pitt pl’ﬁi'i’
Xi(P) — Xy (@) — -+« — X (P) & Xip(@P)e—-.-,

where pj*' are natural restriction mappings. We note that oi*' are
weakly compact operators with dense ranges. As to the weak compact-
ness of 0i*', we remark that a continuous operator of a Hilbert space
into another is always weakly compact. pi*! have dense ranges. Because
every f e X,®) can be approximated by the sequence {f,} c X,,.(®) defined
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as follows:
| (z)_{f(z) exp(—(1/»)|zl) if zeK,nC
F&=10 if ze(K;\K;)NC".

Now we equip Z%(W) with a following projective limit topology of
Hilbert spaces:

ZW)=1im proj X{(9) .

Since pi** are weakly compact, Z%(W) is a Fréchet-Komura space. We
remark that the topology of 25(W) just defined above does not depend
on the choice of exhaustion {K;} of W.

Next we study the dual space of Z,(W).

We represent the dual space of X;(®) by

Yi(p)=L X,;NC" —p(2)—A/DzD
—{fesmney | 17@"exp (2@ +WDIzDdN < f .

The pairing between X;(@) and Y,(9) is given by the following:

o=\, FIIn for (f,0)e X(PXYP).

Since pi*' have dense ranges, the strong dual space of the Fréchet-
Koémura space 25(W) is represented by the following dual Fréchet-
Komura space:

?qo,comp(W)=lim lnd Y9,
J
thanks to Theorem 11 in Komatsu [13] (p. 376), where the injection
05 Y(@)— Yy compy(W) is given by the following:

9(z) if zeK;nC"
0 if ze(W\K,)ncCr.

P}g(z)={
The pairing between 25(W) and 2/, ..m,(W) is given by the following:

rov=\ _ fIdn for (f,0)€ ZUW)XLruom(W) -

REMARK. We note that 23(W) coincide with 25 (W) (P.(2)=P(2)+
Alog (|z[2+1)) for any A>0. To see this fact, it is sufficient to consider
the following projeceive system:
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v e X(Pa) — X(P) —— X1 (P) — X (@) — - - .

b) Now we go on to the definition of the Dolbeault complex 2,7,
and make an elementary study for its dual complex.

DEFINITION 2.1.3. We denote by 259 (resp. Zz,»?) the sheaf on
Q" whose section module 25*9(W) (resp. Z,»"(W)) over an open set
W in Q" is given by the following:

ZP T (W)={ 3, - f1..82" NdZ"; f1,, € 25(W)}

IIl=p,|J/|=

(resp. Z>*(W)={ 3, IrGZ N2 g, € Z (W) .

Ii=Ip,|J 1=

Let W be an open set in Q". Then .25*9(W) is an Fréchet-Kémura
space:
2% ""(W)=lim proj X*?(p)
J

=lim proj Lt,,o(K; N C*; #(2)+(1/3)|2]) ,
where we followed the notation in Hormander [6], [7]:

L. o(K;NC™ P(2)+ (/)] 2]) ,
={,_ 2, JrodZ N3 frs € (KN C™ —9(2)— (1)) 2))} -

1 I=p,|J|=¢
The strong dual space of the Fréchet-Komura space .27,*9(W) is repre-
sented by the following dual Fréchet-Kémura space:
Zsiim(W)=lim ind Y;(p)
=lim ind Lt, o(K; N C"; —9(2)—(1/3)]z]) .

The pairing between 2759 (W) and 2% (W) is given by the following:

S1:91.580  for (f, 9) e Z500(W)x 27 n8,(W) ,

1Il=p,1J|=¢ Swncn

o=

where we put
f= > fr.d2"AdZ (fr,s€ ZH(W)) ,

Il=p,|J|=¢

g= >, 9r,d2'NdZ7 (91,0 € Zp,0ome(W)) .

Hl=p,|J]|=¢
Let us consider the Cauchy-Riemann operators:

55: X,‘-""””(%) -_— X}p’q)(¢2) (j=1) 2’ °c ') ’
3: 24N ) —s 2O
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The domains D;; and D; of ; and 3§ respectively are defined as follows:

Di,={f € XPe0(9,); 3f € X(2)} ,
Di={f e 250+ (W); 3f € Z20 (W)} ,

where df is defined in the sense of distributions.
We note that the following diagram is commutative:

%ip.q—l)(W)_a_,%;p,q)(W)
(2.1.1) oi | e
Xpei(@) —— X0y
J

The operators 9; and 9 are densely defined and closed. Hence the opera-
tors 9; and d have their dual operators #; and & respectively. The opera-
tors ¢#; and & are also closed. We note that, if g=&v (or &#;v), then the
following equation holds:

g= s 9 4, ,d2' AdzE
I1=p,(Kl=q—1 1sksn,(k}UK=J 0%

as distributions on C".

c) Next we go on to study the relation of the operators ¢, and &.

We note that, if ge D,,, then by the commutative diagram (2.1.1),
we have pjg e D, and dp;g=p;%,9. However we have to check whether
g € DyN Y;»?(p,) implies g € Dy, or not. Therefore we make a little argu-
ment about this problem. In what follows we identify pjg and p}*'g
with g.

First we need

LEMMA 2.1.1. Let W be an open set in Q. Then we can choose an
exhaustion {K;} of W consisting of compact subsets of W such that each
K;NC" has a C* boundary.

PrOOF. Using a partition of unity by C> functions, we can construct
a C* function ¢ on WNC™ which satisfies the following conditions:

W,={ze WNC" qz)<c}cW for any ceR,
sup q(z)<<e for any KcW.

ze KNC™
Then by the Sard theorem (see, for example, Guillemin, Pollack [1], p.
205) we can choose an increasing sequence {¢;}JC R (¢; T o) so that each
W.; has a C~ boundary. We put K;=W,, (=1, 2, ---), then {K;} gives
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an exhaustion of W with required properties. q.e.d.

REMARK. Recall that the topology of 25(W) does not depend on the
choice of an exhaustion {K;} of W. Therefore in what follows, by Lemma
2.1.1, we may assume that each K;NC" has a C* boundary.

PROPOSITION 2.1.2. Suppose geDy,NY?(p,) and dgec Yi#(p,).
Then we have g€ D,, and &,g=3g, where l=max {j, k}.

PROOF. We prove the proposition only in the case j=k. Since in
the case j<Fk, the proof goes similarly as in the case j=k. By the
previous remark, we may assume that each K;NC" has a C~ boundary.
Hence by Proposition 2.1.1 in Hormander ([6], p. 100), for any f € D;;

there exists a sequence {f, }CC(, q_l,(K NC™) such that
(2'1°2) "fv—f”%:i—i-”.a-fv—aif”?g.i'—’ 0 (2) — °°) ’

where the notations ||-|,,,; and ||- |, ; are the norms of the Hilbert spaces

X»9(p,) and X®9(p,) respectively, and Ci,, ,(K;NC") is defined as
follows:

Chon ENCY={ 3, hy 42" AdZ’; hyy=H, |2 ;00n Hy,y € CKC™) .

i=p |J|l=q—1

Then we have from (2.1.2)

Of s 9> — 0if, 9);
(y—> ).
(P9 — (S, dg);
Thus we have <9;f, g);=<f, #g); for each f e Dj;. ;+ This shows geD, ¢
and ¢;9=74dg. q.e.d.

2.2. The Dolbeault complex for the sheaves .25,

Under the above preparations, we now discuss a sufficient condition
so that the Dolbeault complex 25> constitutes an exact sequence.
That is

THEOREM 2.2.1. Let V be an Pi.-pseudoconvex open set in Q, @ a
plurisubharmonic function on VNC". Then the following sequence

@21) 2oy 22 azenwyy 22, L 30 gemyy 0

28 exact.

PROOF. a) From the definition of O ne-pseudoconvexity, there exists
a strictly plurisubharmonic C* function p on VN C" satisfying the follow-
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ing condition (P):

P {Uc‘={zeVﬂC";p(z)<c}cV for any ceR,
slg%p(z)<oo for any KcV.

Hence as in the proof of Lemma 2.1.1, we can choose a sequence {c;}CR
(¢; 7 =) so that each U,; has a C~ boundary. Here we note that each
U,; is pseudoconvex in the usual sense. Put K;= U Then {K;} gives

an exhaustion of V, and we have the following representatlon for
%(z’ q)(V).
252 (V)=lim proj X;*»*(®) .
J

We put @,=@+2(n—q)log (1+|2[*), and replace the above representation
by .
257 (V)=lim proj X;»*(®,) .

J

(See Remark at the end of a) in §2.1.)
b) . By Theorem 4.4.2 in Hormander ([7], p. 94), the following sequence
5(1) 5® 3im
(222)  XPOP) — XPI(@) — -+ = XP(P,) — 0
is exact for each j. Since the kernel of a closed operator is closed, 3}®
(g=1, - -, n) has a closed range for each j. Hence from the closed range
theorem for Banach spaces, we conclude that the dual sequence of (2.2.2):

— Y0P < Y (@) —0

(2.2.3) YR PR

(1)

is exact, and that & (¢=1, -, n) has a closed range for each j.
¢) Consider the following dual complexes

® 7
@21 2ew) s ey s I ey —o0
(2.2.4) ;o(’::gr)up(v) 9o g,;(,pégl,)”(V) :19(2) oo :19(”) é”w’:;p(V) —20.

In order to prove the exactness of the sequence (2.2.1), we will show
that the sequence (2.2.4) is exact and that & (¢g=1, ---, ») has a closed
range. Then by the Serre-Komatsu duality theorem (see Theorem 19 in
Komatsu [13], p. 3881), we have the exactness of (2.2.1).

d) (The exactness of the sequence (2.2.4)) Let #%g=0 and ge€
Y»?(@). Then by Proposition 2.1.2, we have g eDQ;m and #fg=89g=0.



236 YUTAKA SABURI

Hence by the exactness of the sequence (2.2.8), there exists a ve
Y »**(@p,,,) such that #7*"v=g. We note that v e Dg;ﬂ"‘l) implies v € Dyy+n
and #"*y=9f*"y. Thus we have #“*Yv=g. This shows the exactness
of the sequence (2.2.4).

e-1) (Closedness of Im#? in the case ¢=2) If ¢=2, then we have
Im#?=Ker 3" by the exactness of the sequence (2.2.4). Since $ v
is closed, Ker #*™® is closed. Thus we have the closedness of Im #?
for ¢=2.

e-2) (Closedness of Im #? in the case ¢=1) First we will find a
sufficient condition to obtain the closedness of Im #* by a functional
analytic consideration.

The Fréchet-Komura space 25,*”(V) is reflexive by Theorem 1 in
Komatsu ([13], p. 369). Hence in the strong dual space 2% . (V) of
Z,""(V), the closedness, the weak closedness and the weak* closedness
are equivalent for a convex set, especially for a subspace. On the other
hand, a Fréchet space is fully complete by the Banach theorem (see,
for example, Bourbaki ([1], p. 75). Therefore to obtain the closdness of
Im &, it is sufficient to show the weak closedness Im3*" N N° in N° for
any neighborhood N of 0€.25""(V). Here N° denotes the polar set
of N:

Ne={gez =% (V); Re {f, gp=—1 for all feN}.

(As for the above argument, see Komatsu [2], p. 168 for example.)
Since N° is bounded, there exists a bounded set B; in some Y (g,
such that N°=p}(B;), by Theorem 6 in Komatsu ([13], p. 372). Here we
note that o) gives a weak homeomorphism and that we have

057 (Im 3% N N °)=p;~(Im 8) N 0§ (N °)
=0;"'Am 3)N B; .

Therefore to obtain the weak closedness of Im#*NN° in N°, it is
sufficient to show the weak closedness of o *(Im#) in Y/»"(p,). On
the other hand, we found the closedness of Im#{® in b) of the proof.
Since Im #{" is a subspace, Im #{" is also weakly closed.

Thus we have found that the condition p;'(Im #*)=Im & (=1, 2, ---)
is a sufficient condition for the closedness of Im #V. We will show this
fact as

LEMMA 2.2.2. Under the assumptions im Theorem 2.2.1, conmsider
the operators
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F: 2 lmn (V) —— Zghina(V)

z?;.q). Y’(,p q—”(¢q—1) e Y}p q)(g,q) (.721’ 2’ . ) .
Then we have o;'(Im #?)=Im & (§=1,2, --+).

PrRoOOF. We found Im ¢ Cp;*(Im #?) in Proposition 2.1.2. Hence
we have only to show Im & D ;" (Im &?).

We will show that the conditions g€ Dy NY»?(®,) and H*ge
Y (@, ) imply #?geIm#®. If k<j, then we have #'?g cIm & by
Proposition 2.1.2. Therefore we have only to show in the case k>j.

a) We have #?2g=¢"g by Proposition 2.1.2.

b) We recall K;=U,, (U,,={z € VNC"; p(z)<c,;}) and sup,xnenr P(2) < o
for any KcV. Slnce supp z?“”g supp??gc K,;NC", there existsa § € Dy,
such that #{"§ =g and supp§c K; N C" by Proposition 2.8.2 in Hormander
([6], p. 109).

¢) Consider the following dual dlagram

él(c(”

Lty es(B;NC™ @y + (AR 2]) —— Lty o(K;NC" 2+ (1/k)|2])

| I

oKy NC" = Pea—= (W) 2]) o Ly (BN €5 — @ =AM 21) -
k

Then we have d@F=8?g in a similar way to the proof of Proposition
2.1.2.

d) We approximate §9g=3{F ¢ Y9 (p,_,) by elements of Im &
in the topology of Y »* (e, _,):

Put by(z)=exp(—(1/u)z2) (2*=22+---+22). Since V is acute, we have
b i e YP(p,) (v=1,2, ---), where b, denotes the complex conjugate of

b,. Similarly we have, for each f € D5, b.f € D5@ and a0 (b,f)=b,0"f.
Then for any f eDaun, we have

@RS, b.3) = BIPS, Bi = GOG.F), i =B.f, FPaHE
= <f" buﬂl(c‘”g‘>:i= <.f’ buﬂ( )g>5 ’

Where {+,->% denotes the pairing between L, .(K;NC"; ®.+(1/k)|z|) and
L, (K;NC"; —p.—(1/k)|z]). Hence we have bygeDsm and &(b,9)=
b,%?g. Since #ge Y (p,_,), we have

90,0 =8809 — 809 in VPP (v o).
This shows that #?g e Im .
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e) Since Im ¢; is closed, we have #?g e Im &
Thus we have had o;7'(Im ¢'?)=Im #{. q.e.d.

At the same time we complete the proof of Theorem 2.2.1.

REMARK 1. In the course of the above proof of Theorem 2.2.1, we
have proved the following:

Without the assumption of acuteness of an open set V in @", if
there exists a strictly plurisubharmonic C> function »p on VNC" satis-
fying the condition (P) in Definition 1.1.5, for any plurisubharmonic
function @, we have the following exact sequence:

%(p,l)(V) —i—’%(p’z)(V) d > oo 9 >%(”")(V) — 0.

REMARK 2. The difficulty of the proof of Theorem 2.2.1 has been to
show the closedness of Im#. If we can find holomorphic functions which
play the same role as b, (appeared in d) of the proof of Lemma 2.2.2) for
wider classes of open sets than that of acute open sets, then we are
able to show Theorem 2.2.1 for wider classes of pseudoconvex open sets.

REMARK 3. Kawai proved the exactness of the following sequence
(Lemma 2.1.1 in Kawai [12]):

x-2.v-2.z,
where

X= limiproj Ly, —0(2; /D] z]|+41og (1+]|2 )+ P(2))
Y=1imjproj Ly o(2; A/ 2] +2log 1+ 2]) +P(2))
Z =lim’_proj Ly . +0(2; A/D 2| +2(2)) ,

2 is a pseudoconvex open set in C", @ is a plurisubharmonic function
on 2 and ||z| is a slight modification of |z| near {z;=0 for some j} so
as to be C~ and convex. Using this lemma, he proved the Cartan
Theorem B for the sheaf < in the form of the Cech cohomology groups
and constructed a soft (L?-) resolution of that sheaf.

On the other hand our method gives a direct construction of a soft
(L*-) resolution of the sheaf .., and a direct proof of the Cartan
Theorem B for this sheaf at the same time. (See §3.1.)

The reader should notice the difference of growth conditions between
the spaces X, Y, Z and the spaces 2,9(W): The spaces X,Y and Z
are the intersections of the spaces of globally square summable differen-
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tial forms on 2 with respect to the weighted measures (@(z)+(1/7)| 2 |)d\(2).
On the other hand the spaces 25'"9(W) are the intersections of the
spaces of (in a certain sense) locally square summable functions on
W NC* with respect to the weighted measures (®(z)+(1/7)]2|)d\(?).

§3. Vanishing theorems of cohomology groups with values in the
sheaves .., and Tyece

3.1. The Cartan Theorem B for the sheaves @Pi,, and “iec.

DEFINITION 3.1.1. For a continuous function ¢ on C", we denote by
2540 the sheaf on Q" whose section module 25"»%(W) over an open
set W in Q" is given by the following:

%1’””‘”(W)={f G%“""’(W}; gfe %(D,q+1)(W)} ,
where df is defined in the sense of distributions.

DEFINITION 3.1.2. We denote by 272»? the sheaf on Q" whose sec-
tion module Z/;*?(W) over an open set W in Q" is given by the following:

OO W)={g € 2 (W); 3g € 2P (W)} ,
where dg is defined in the sense of distributions.
REMARK 1. We note that 25 and 2/y*? are soft sheaves on Q".

REMARK 2. The restrictions of the sheaves 2Z,"*? and 2/,”? to
C™ coinside with the sheaf 229 on C*, where 57 "% denotes the sheaf
on C* whose section module S#»?(W) over an open set W in C" is given
by the following:

52 PO(W)=(f € L (W); 3f € Lo (W)} .

PROPOSITION 3.1.1. Let @ be a plurisubharmonic function on C™ of
linear variation. Then we have the following soft resolution of the sheaf
Pine,e 0N Q™

] ] ]
(BLL) 0 Fipep —— 2500 —2 25300 s oot D L0 0.

PrROOF. a) (Exactness of (3.1.1) on C") The restriction of (3.1.1)
to C" is the following sequence:

(3.1.1Y 0 — P — SF00 _.’2._, SO 2 Y ee 9 y SpPOm 0 .

This is the ordinary L-resolution of the sheaf < of holomorphic func-
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tions on C". Therefore the sequence (8.1.1) is exact on C*.

b) (Exactness of (3.1.1) on S ') We have only to show the ex-
actness of (3.1.1) at ¢,,=(1, 0, ---, 0), € S2*~'. Because from the exactness
at el,, we can show the exactness of (8.1.1) at each point in S2*! by
using of linear unitary transforms of C=.

b-1) The exactness at the term 272 at el follows from the ellip-
ticity of 9, the assumption of linear variationality of @ and the esti-

mation of sup-norms by L*-norms for holomorphic functions:
1,(0,0)

Let fe27,.. and 3f=0. Then there exists an open neighborhood
W of e in Q" such that fe ZA(WNC™ and

| 1r@)I exp (—20(w)—elw])dr< oo

holds for any KcW and any ¢>0. On the other hand since @ is of
linear variation, there exists a constant A>0 such that

P2 —A=p(w)=P(z)+A for any 2z, weC" with |w—z|Z1

holds. Hence if we choose compact neighborhoods L and L’ of ¢. in Q"
so that LcL'cW and dist (LNC" dL’'NC")=2, we have the following
estimation for all ze LNC" and all ¢>0:

sup | f(w)| exp (—p(w)—e|w])
sexp (—P(z)—¢|z|+A+e) sup | f(w)|

SBexp (~p@)—clsl+4+e) | | 70w)Pdrew)|”

=Be+:| | |w) [ exp (~29(2)—2¢l )dnaw) |

=B | 170l exp (~20(w)~26lw| +4(A-+eDdnew) |
<Bexp (A +9) |, 17@)I* exp (~2p(w)—clw)irw) |

<o,

where we put B,={weC"; |lw—2|<1} and B,={weC"; |lw—2|<2}, and B
is a positive constant depend only on dist (B,, 9B;). Moreover, from the
arbitrariness of z€ LNC™ in the above estimation, we have

_sup | f(2)| exp (—p(z)—elz])< oo

for all €e>0. Thus we have f € Pi.,.., and the exactness at the term
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250" at ¢!, was shown. ‘

b-2) The exactness at the term 255? (¢=1) at e, follows from
Theorem 2.2.1. Because ¢. has a fundamental system of neighborhoods
consisting of #7,..-pseudoconvex open sets. (See Example (a) in §1.1.)q.e.d.

THEOREM 3.1.2. Let V be an .-pseudoconvex open set in Q", and
@ plurisubharmonic. function on C™ of linear variation. Then we have

HY(V; Pine,0)=0 (a=1).

PROOF. This is an immediate consequence of Proposition 3.1.1 and
Theorem 2.2.1. q.e.d.

Now we go on to the case of the sheaf ...
LEMMA 8.1.8. For 6>0 and A>0, we put
U, .={zeC"; |Im 2[*°<d*|Re z|*+ A%} .

Assume 0<8<1, then for any 0<e<V'1—05"/V" 2 A, we have the following
estimation from below:

(8.1.2) |cosh (sl/?)lzC;,A,, exp (eV'1I—=6%2|V'1+6%) (z€ U,

for some constant C,,,>0. Here we put 2*=2i+---+2.. Also we have
the following estimation from above:

(3.1.3) |cosh (61 2%) |<exp (¢|z]) (2€C™) .

REMARK. Since coshw is an even function, cosh (V" 2*) defines an
entire function on C".

PROOF OF LEMMA 38.1.8. This is a consequence of an explicit calcu-
lation. q.e.d.

PROPOSITION 3.1.4. For the sheaf i, we have the following soft
resolution:

814) 00— Pree—r o0 Lgnen 2, 2 gm0,

PrROOF. The restriction of the sequence (38.1.4) to C* is the L’-reso-
lution (3.1.1) of the sheaf ¢ of holomorphic functions on C™. Therefore
it is sufficient to show the exactness of (3.1.4) on S2*~'. To show this
we have only to prove the exactness of (8.1.4) at ¢.. Because from the
exactness at e, we can show the exactness of (3.1.4) at each point in
S2*-! by using of linear unitary transforms of C~.
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Exactness at the term 2% at ¢! follows from the ellipticity of
the operator 6 and the estimation sup-norms by L*-norms for holomor-
phic functions as in the proof of Proposition 8.1.1. For simplicity, we
denote ¢, by e..

Let ge2.:*® (¢z1) and dg=0. Then we can find a v € Y " such
that dv=g as follows. Put g,(2)=cosh(e}/7%). Then there exists an
€>0 so that g,g€.27"“? by Lemma 3.1.3. We note d(g.9)=g.99=0.
Therefore there exists a w € 27" such that dw=g,g by Proposition
3.1.1. Hence we have d(w/g.)=g and w/g. € 2;;**" again by Lemma
3.1.3. Thus we have proved the exactness of the sequence (3.1.4) on
S, q.e.d.

THEOREM 3.1.6. Let K be a compact set in Q" which has a funda-
mental system of meighborhoods consisting of O ne-P8eudoconvex open sets
in Q. Then we have

Hq(K; ﬂdec)':O (qgl) .

PrROOF. The proof goes similarly to that of Proposition 3.1.4 by
using Theorem 8.1.2 instead of Proposition 3.1.1. q.e.d.

Here the author thanks Professor M. Morimoto, who suggest the
author to use the function cosh (¢12*) as a damping function.

REMARK 1. By Remark 1 in § 2.2 and Proposition 3.1.1, the following
proposition is valid;

Without the assumption of acuteness for an open set V in @, under
the assumption of existence of a strictly plurisubharmonic C> function
» on VNC" satisfying the conditions (P) in Definition 1.1.5, we have

HY(V; Pne,p)=0 (g=2)
for any pulrisubharmonic function ¢ on C* of linear variation.

REMARK 2. We do not know whether following statements (), (x*)
and (x*x) are valid or not:
(x) HYV; £.)=0 (g=1) for any ¢ ..-pseudoconvex open set V
in Q".
(x%) HYK; Cec,s)=0 (g=1) for any compact set K in @ which has
a fundamental system of neighborhoods consisting of ¢”..-pseudoconvex
open sets and any plurisubharmonic function @ on C" of linear variation.
(xxx)  HYV; @aoe,0)=0 (¢=1) for any ..-pseudoconvex open set V
in @ and any plurisubharmonic function @ on C" of linear variation.
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As for the first statements, since Zu..(V)=lim projxey @u..(K) is a
space of projective limit of dual Fréchet-Komura spaces. We can not
use the usual argument of Mittag-Lefller type by using of an approxi-
mation theorem.

As for the second and third statements, we do not know whether
the following sequence constitute a soft resolution or not for the sheaf
aee,» fOr any @ such as above:

0 Praerg—— 200 s gon 2, ... 2 gm0,
3.2, The Malgrange theorem for the sheaf &..,,.
Next we go on to the Malgrange theorem for the sheaf & ,:

THEOREM 3.2.1. Let W be an acute open set in Q", and @ a pluri-
subharmonic function on C* of linear variation. Then we have

H"(W; anc,so) =0.

PROOF. Since we have the soft resolution (3.1.1) for the sheaf ~,.. .,
it is sufficient to show the sequence

%1,(0,1:—1)('”/) _?_(_'_‘_)_, %1,(0,7;)(”7) — 0

is exact, where we put 4+=2p. In particular it is sufficient to prove

(3.2.1) 25025 250 (W) — 0

is exact. To show this, as in the proof of Theorem 2.2.1, we consider
the following dual complex:

25,9 (W) __é_("_)_, Z NN (W) — 0

(3.2.2) Yy (W) —— o Zprrome(W) «—0

and prove the exactness of (8.2.2) and the closedness of Im &*. Then
by the Serre-Komatsu duality theorem (Theorem 19 in Komatsu [13],
p. 381), we are able to obtain the exatness of (3.2.1).

a) (Injectivity of ©®) The injectivity of & follows from following
two facts: If 3™g=0, then g is anti-holomorphic (i.e., § is holomorphic).
If gez %0 (W) and #7g=0, then we have g=0 by the uniquess of
analytic continuation.

b) (Closedness of Im #™) To show the closedness of Im &, using



244 YUTAKA SABURI

the same argument as in e) of the proof of Theorem 2.2.1, we will
prove the closedness of Im #™ and p;'(Im#™)=Im#». We will prove
these facts as Lemma 3.2.2 and Lemma 3.2.3.

LEMMA 3.2.2. Let U be an acute open set in Q", @ a plurisubharmonic
function on C*. We define the following spaces of differential forms:

X =LY, o (UNC 9(2)+21og (L+]2])
X™=L% . (UNC™; 9(2)) ,

Y= Ly o(UNCT —p(m)—2log (1+]21)
Y=Lk, (UNC™ —9(2)) -

Congider the following dual diagram:

™
X0 i_, X

1]

Y(n—l) ‘3(';;- Y(n) .

If UNnC" has a C* boundary, then 3 has a closed range.
PrROOF. For 6>0 and >0, we put

U, .={z€C"; |Im z|*<dé*|Re 2|*+a’},
Va,a—': fj&.a .

By the acuteness of U‘there exist a 8 (0<d<1) and a a>0 such that
U,.cU holds. We put

0..(2)=1/(a*+8*Re z*—|Im 2| ,
p(2)=q,,.(2)+|2]* .

We note that functions g,, and » are plurisubharmonic on U,,, that
U,. is pseudoconvex and that there exists a constant ¢>0 so that K,=
{2eC™; g,,0(2)=c}D U.

Next we define the spaces Xv, Xm™ Fu-d gnd ¥ modifying
Xwo-n X  yu-n gnd Y™ respectively with the replacement of U by
Vs,... Consider the following dual diagram:

o Jm
K- _?__, X

fx‘(n-x) ‘ I"i(n) .
gm
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Since UNC™ has a C* boundary, we have D;cD;, DyCDj and Sg=43¢g for
g€ D,.

Let {J#g,} be a sequence in Im ¢ such that Jg, converges to some h,
in Y9, Then for any f €Ker D;, we have

0=3f, .07 =<f, Fg.)~ — (f, by~ (90— o).

Since supp A, cK,NC*, there exists a g,€D; such that Sg,=h, and
supp g, K,NC™ by Proposition 2.3.2 in Hormander ([6], p. 109).

If we have supp g, UNC", then we can prove g,€ D, and 0g0=z§g,,
in a similar way to the proof of Proposition 2.1.2, because UNC™ has
a C> boundary. Therefore we have only to prove supp g,cUNC".

Let 2€(V,.,NC*\U and B, a small open ball in C* with the center
at z so that B,NU=¢. It is sufficient to show

(®, g>=0 for all weFw”(B,).

We fix a differential form o e 2~(B,). Since ~9“""’(B,,)c:Ker 5"",
we can find a differential form 7 e X»" such that 97=w by Theorem
4.4.2 in Hormander ([7], p. 94). Since (supp g,,)n(supp w)=¢, we have

, 9.5~ =157, 9.5~ ={w, g.)"=0

for all v. On the other hand, since d#g, converges to h, in Y™ (and
also in Y "), we have

0=, 89,5~ =, 99,0 — <N, hey~ (¥ — ).
Thus we have
{w, g = <577, 9. =<7, 5go>~= <77, ko)~ =0. q.e.d.

From Lemma 3.2.2, we immediately have the closedness of Im &
which was in the question in b) of the proof of Theorem 3.2.1.

LEMMA 38.2.8. Let U be an acute open set in Q", ® a plurisubhar-

monic fuuction on C*. Then in the following dual diagram:

25rn(U) 25 25 ()

|

2D (U) —o 752U

we have o '(Im &")=Im9"™ (§=1,2, :--).
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ProoF. First, if it is necessary we replace K; by I? which was
used in the definition of the topology of the space 25*9(U). Here we
meaned by K the union of K; and all of relatively compact sets in the
connected components of U \K The reason why we replace K; by K;
is that supp &‘“’ch ,C* implies supp gCK NC" by the uniqueness of
aAnalyI,lc continuation. We note that K; has also C* boundary and
K:‘CK:H;'

Thus we have the following representation:

25" (U)=1lim proj X»(p,)
=lim prOJ L, q)(K, NC*; 2(2)+1/7)|2]) ,
7,58 ,(U)=lim md Y »9(p,)

=llm§lnd L(p,q)(Kj N Cn; —¢q(z) - (l/j)l 2 I) .

Since Im#;Cp;(Im#) always holds, we have only to prove
0 (Im ') cIm 8.

Let geDyn Y,ﬁ’ "(®,) and dge Y»" (@, ). If j=k, then we have
dg=12;9 € ImJ; by Proposition 2.1.2. We are going to prove #"g e Im H™
for j<k in five steps:

a) By Proposition 2.1.2, we have dg=d.g.

b) Since supp#™gcK,;NC" we have supp gcK,;NC" by the unique-
ness of analytic continuation.

¢) As in the proof of Lemma 3.2.2, we choose 0<d<1 and a>0
so that V,,DK;. Put

X{p,q) = %p,q)( VJ,u n C"; ¢q(z) +(1/l)| z I)
?{pﬂ) =L2(p,q)( Vd,a N C"; ——¢q(z)—' (lll)l z ]) (l =1’ 29 . ') ’

and consider the following dual diagram:

N m
Xepn(p, ) — XPm(0,)

|

?ip'n—n(¢n—1) W ?{p.n)(¢n) (l=1y 2) o).

We may regard as D;DD,;,. We note that g€ D,, implies g€ D; and
?’zg dyg.

Now our g belongs to D;,. Put b(z)=exp(— (1/v)z2) r=1, 2,
#*=2i+---+2,). Then we have bge Y™ (p,) (v=1, 2, -+.), since V,,,,l
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acute. For all f eKer 5,-, we have

0=G,f, b.9)7 = 0.5, f, 9)% = @), 95

=<b, f, Wr =<, 0.7 =<1, b, -
Since dg € Y (@,_)C ¥ (p,_,), we have by the Lebesgue dominated
convergence theorem
| (F, B80)7 — (f,9); (P— ),
for all f e D;,. Hence we have
{f, 905 =0

for all f e Kerd,. Here we note again supp dgc K i€ Vi ’llhen by Prop-
osition 2.3.2 in Hormander ([6], p. 109), there exists a h e Y;”"(®,) such
that ‘

dh=3¢g, supphcV,,.

d) We note that

0

(h—g)dz;=0
0%,

Sh—9)=3,

holds on C*, and supp (h—g)c V;,.. Hence we have h=g on V,,NC"
by the uniqueness of analytic continuation. This and b) implies g=

he Y™ (®,).
e) Since K;NC" has a C~ boundary, we have geD,, and dg=

&, € Im &; by Proposition 2.1.2. q.e.d.
Thus we have completed the proof of Theorem 3.2.1.
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