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Introduction

Little are known about the ergodic properties of infinite systems of
particles in spaces of $dimension\geqq 2$ except those of ideal gasses, in spite
of their importance in statistical mechanics $[1, 2]$ .

In the case of one dimension, some ergodic properties are known for
the systems of hard rods [3, 4, 5], also the orders of decay of the time
correlation functions are known for a system [5].

We show in this note two dimensional infinite system introduced by
Hardy et al in [7] is topologically mixing. Our argument depends
essentially only on the dissipative character and the time reversibiliy
combined with infiniteness of the system. So similar arguments may
work also for other systems which have similar nature, in particular for
the continuous systems with hard core.

\S 1. Description of the system $(\mathfrak{X}, T)$ .
For the completeness we give the definition of the system we

consider. Let $Z^{2}$ be 2 dimensional integral lattice. On each lattice site
there are at most 4 particles, the velocity of a particle is one of the 4
unit vectors $(1, 0)$ , $(0,1),$ $(-1,0)$ and $(0, -1)$ . The configurations where
there are at least 2 particles with the same velocity on the same lattice
site are excluded.

More precisely, the phase space ee of allowed configurations of
particles is

$\mathfrak{X}=\{X|X:Z^{2}\times P\rightarrow\{0,1\}\}$ ,

where
$P=\{v=(v^{1}, v^{2})eZ^{2}||v^{1}|+|v^{2}|=1\}$
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Naturally, we have

$\mathfrak{X}=\prod_{aeZ^{2}}ae_{a}$

where

$\mathfrak{X}_{\iota}=\{X_{a}|X_{a}:\{a\}\times P\cong P\rightarrow\{0,1\}\}$

is the space of the configurations on the lattice site a $eZ^{2}$ . (The element
$X_{a}$ is naturally identified with the sub8et $\{veP|X_{a}(v)=1\}$ of $P.$ ) ee is a
topological space with product topology.

The time evolution map $T$ of the system is defined as follows. $T$

is made of the free motion $T_{0}$ and the collision $C,$ $T=T_{0}CT_{0}$ . $T_{0}$ is
merely a translation:

$(T_{0}X)(a, v)=X(a-v, v)$ , $(a, v)eZ\times P$ .
Let us define the map $\varphi_{\epsilon}:\mathfrak{X}_{a}\rightarrow \mathfrak{X}_{a}$ by

$\varphi_{a}(X_{a})=\left\{\begin{array}{l}X_{1}:X_{a}=X_{0}\\X_{0}:X_{a}=X_{1}\\X_{a}\end{array}\right.$

where $X_{0}=\{(1,0), (-1,0)\},$ $X_{1}=\{(0,1), (0, -1)\}$ . The collision $C$ is defined
by

$(CX)_{a}=\varphi_{a}X_{a}$ , a $eZ^{2}$ .
\S 2. Basic properties of the system (X, $T$ ).

$T$ is dissipative in the following sence [6]. For any bounded subset
$K$ of $Z^{2}$ , there exist a bounded subset $K_{1}\supset K$ and a positive integer
$n$ such that if $X(a, v)=0$ for $\forall a\in K_{1}-K$, then $(T^{n}X)(a, v)=0$ for
$\forall a\in K$.

Next, let $i$ be the direction reversing map of $\mathfrak{X}$ , that is,

$(iX)_{a}=-X_{a}$ , a $eZ^{2}$

where $-X_{a}=\{-v_{1}, \cdots, -v_{k}\}\subset P$, when $X_{a}=\{v_{1}, \cdots, v_{k}\}\subset P$. $T$ is time
reversible, that is,

$iT=T^{-1}i$ .
These properties can be easily checked by the definition of $T$.
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\S 3. $(\mathfrak{X}, T)$ is topologically mixing.

Let us introduce some notations which will be used latter. For any
positive integers $k_{2}>k_{1}>k>0$ ,

$Q(k)=[-k, k]\times[-k, k]\subset Z^{2}$

$Q^{+}(k;k_{1}, k_{2})=[-k, k]\times[k_{1}, k_{2}]$

$Q^{-}(k;k_{1}, k_{2})=[-k, k]\times[-k_{2}, -k_{1}]$

$Q_{+}(k;k_{1}, k_{2})=[k_{1}, k_{2}]\times[-k, k]$

$Q_{-}(k;k_{1}, h)=[-k_{2}, -k_{1}]\times[-k, k]$

$\overline{Q}(k;k_{1}, k_{2})=Q^{+}\cup Q^{-}\cup Q_{+}\cup Q_{-}$ ,

where $[a, b]=\{neZ;a\leqq n\leqq b\}$ .
From dissipative property of the system, we can easily show that
(i) for any $k>0$ and large $n>0$ , there exist positive integers

$k_{3}>k_{2}>k_{1}(>k)$ satisfying the following condition

if $X_{a}=0$ (i.e. $X(a,$ $v)=0,$ $\forall v\in P$) for $\forall aeQ(k_{8})-Q(k)$

then $(T^{n}X)_{a}=0$ for $\forall a\in Q(k_{2})-\overline{Q}(k;k_{1}, k_{2})$ ,

and that all of the velocities of the particles of $T^{n}X$ on a $Q^{+}(k;k_{\iota}, k_{2})$

($Q^{-},$ $Q_{+},$ $Q_{-}$ , respectively) are $(0,1)((0, -1),$ $(1,0)(-1,0)$ , respectively).
Combining this property and the time reversibility of $T$, we can

easily show that:
(ii) for any configuration $\{x_{a}\}_{aeQ(k)}(x_{a}e\mathfrak{X}_{a})$ on $Q(k)$ , there exist $n>0$ ,

$k_{2}>k_{1}(>k)$ and a configuration $\{x_{a}^{\prime}\}_{ae\overline{Q}(k:k_{1},k_{l})}$ such that

if $X_{a}=\left\{\begin{array}{l}x_{a}^{\prime}a\in Q(k;k_{1}, k_{2})\\(T^{n}X)_{a}=x_{a}a\in Q(k)\\0aeQ(k_{2})-\overline{Q}(k;k_{1}, k_{2})\end{array}\right.$

Note that all of the velocities of the particles of $X$ on $a\in Q^{+}(k;k_{1}, h)$

($Q^{-},$ $Q_{+},$ $Q_{-}$ respectively) are $(0, -1)((0,1),$ $(-1,0),$ $(1,0)$ respectively),

and $k_{1}$ can be taken arbitrarily large.
From (i) and the property of the collision $C$, it is easy to see that
(iii) for any $k>0$ and for any configuration $\{x_{a}\}_{aeQ(k)}$ on $Q(k)$ , there

exist $k_{4}>k_{3}>k$ , and a configuration $\{x_{a}^{\prime}\}_{aeQ(k_{4})-Q(k)}$ on $Q(k_{4})-Q(k)$ such that

if $X_{a}=\left\{\begin{array}{ll}x_{a}^{\prime}, & aeQ(k_{I})-Q(k)\\x_{u}, & aeQ(k)\end{array}\right.$

then $(T^{m}X)_{a}=0$ for $\forall ae\overline{Q}(k;k, k_{3})\cup Q(k)$ for some $m>0$ ,

As a matter of fact, the configuration $\{X_{a}^{\prime}\}$ has following properties;
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$x_{a}^{\prime}=0$ for $\forall ae\overline{Q}(k;k, k)$

and the velocities of the particles on $Q^{+}(k;k, k_{4})$ ($Q^{-},$ $Q_{+},$ $Q_{-}$ resp.) are
$(0, -1)((0,1),$ $(-1,0)$ , $(1, 0)$ resp.). For instance, the particleI of
$\{x_{a}\}_{aeQ(k)}$ which go out from the right boundary of the $Q(k)$ are repelled
upward or downward by the particles of $\{x_{a}^{\prime}\}_{aeq_{+}(k:k.k)}$ . In that case, we
must arrange the particles on $Q_{+}$ appropriately so that the repelled
particles do not interact mutually.

The velocities of the particles of $TX$ on a $Q(k_{\epsilon})-(\overline{Q}(k;k, k_{t})\cup Q(k))$

are
$(1, 0)$ or $(0,1)$

’

if a $e[k+1, k_{8}]\times[k+1, k_{8}]$ ,
$(-1,0)$ or $(0,1)$ if a $e[-k_{\epsilon}, -k-1]\times[k+1, k_{\epsilon}]$ ,
$(-1,0)$ or $(0, -1)$ if a $e[-k_{t}, -k-1]\times[-k_{\epsilon}, -k-1]$ ,

and $(1, 0)$ or $(0, -1)$ if a $e[k+1, k_{\epsilon}]\times[-k_{\epsilon}, -k-1]$ .
From (i), (ii) and (iii) it is not hard to see that
(iv) for any configurations $\{x_{a}^{\prime}\}_{\iota eQ(k)}$ and $\{x_{a}^{\prime\prime}\}_{aeQ(k)}$ on $Q(k)$ and for large

$n>0$ , there exist a number $k_{f}>0$ and a configuration $\{x_{a}^{\prime\prime}’\}_{\iota eQ(k)-Q(k)}$ such that

if $X_{a}=\left\{\begin{array}{ll}x_{a}^{\prime}, & aeQ(k)\\x_{a}^{\prime\prime\prime}, & a\in Q(k_{f})-Q(k)\end{array}\right.$ then $(T^{i*}X)_{a}=x_{a}^{\prime\prime}$ for a $eQ(k)$ .
This means that

$ TS(\{x_{a}^{\prime}\})\cap S(\{x_{a}^{\prime\prime}\})\neq\emptyset$ ,

where $S(\{x_{a}^{\prime}\})=$ { $X|X_{a}=x_{a}^{\prime},$ a $eQ(k)$} is a cyclinder set of $\mathfrak{X}$ .
Hence we have proved

THEOREM. The system $(\mathfrak{X}, T)$ is topologically mixing, that is, for
any open sets $A$ and $B$, there exists a number $N>0$ such that for all
$n>N$ we have $ T^{n}(A)\cap B\neq\emptyset$ .

REMARK. The same result holds also in the case when $T=CT_{0}$ .
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