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Introduction

Let $X$ be a smooth projective 3-fold over an algebraically closed field
$k$ . $X$ is called a Fano 3-fold if the anti-canonical divisor $-K_{X}$ of $X$ is
ample. Recently, Ishkovsky has developped the theory of Fano 3-folds
in his papers [1], [2] and has determined the structure of Fano 3-folds
with Picard number 1. In this paper, we will consider Fano 3-folds with
torus embedding (which we will call toric Fano 3-folds) and determine
all the toric Fano 3-folds up to isomorphism. As the result, we see that
there are 18 toric 3-folds and their Picard numbers are at most 5.

\S 1. The statement of the result.

THEOREM. (1) If $V$ is a toric Fano 3-fold, then the Picard number
$\rho=\rho(V)$ of $V$ is not greater than 5 and $V$ is isomorphic to one of the
following manifolds.

(I) $(\rho=1)$ (a) $P^{3}$ .
(II) $(\rho=2)$ (b) $P^{2}\times P^{1}$ , (c) $P(P_{P^{2}}\oplus p_{P^{2}}(1))$ , (d) $P(P_{P^{2}}\oplus p_{P^{2}}(2))$ ,
(e) $P(p_{P^{1}}\oplus p_{P^{1}}\oplus p_{P^{1}}(1))$ .
In the following, we denote by $DS_{k}(6\leqq k\leqq 8)$ the toric Del Pezzo

surfaces obtained from $P^{2}$ by blowing up 9-k points of $P^{2}$ (cf. (2.7)).
(III) $(\rho=3)$ (f) $P^{1}\times P^{1}\times P^{1},$ $(g)DS_{8}\times P^{1},$ $(h)P(P_{P^{1}\times P^{1}}\oplus p_{P^{1}\times P^{1}}(1,1))$ ,
(i) $P(\beta_{P^{1}\times P^{1}}\oplus\beta_{P^{1}\times P^{1}}(1, -1))$ ,
(i) $P(P_{DS_{8}}\oplus\beta_{DS_{8}}(\swarrow)),$ $whe\gamma e\swarrow is$ the total transform of a line in $P^{2}$ ,
(k) $F_{1}^{3}$ ; obtained by blowing up a line of $P(P_{P^{2}}\oplus p_{P^{2}}(2))$ ,
(1) $F_{2}^{3}$ ; obtained by blowing up a point of $P(P_{P^{1}}\oplus\beta_{P^{1}}\oplus d_{P^{1}}(1))$ .

(The precise definition of $F_{i}^{\rho}’ s$ will be given in \S 3.)
(IV) $(\rho=4)$ (m) $DS_{7}\times P^{1}$ ,
(n) $F_{1}^{4}$ ; obtained by blowing up an exceptional line of $ P(P_{P^{1}\times P^{1}}\oplus$

$P_{P^{1}\times P^{1}}(1, -1))$ ,
(o) $F_{2}^{4}$ ; obtained by blowing up an exceptional line of $DS_{8}\times P^{1}$ ,
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(p) $F_{3}^{4}$ ; obtained by blowing up an exceptional line of $P(p_{DS_{8}}\oplus p_{DS_{8}}(\swarrow))$ .
(V) $(\rho=5)$ (q) $DS_{6}\times P^{1}$ ,
(r) $F_{1}^{f}$ ; obtained by blowing up an exceptional line of $F_{1}^{4}$ .

In the above statements, a line means a l-dimensional T-stable subvariety.
(2) The blowing-up and blowing-down relations between these Fano

3-folds are indicated by the following diagram. (The arrow $\rightarrow indi-$

cates a blowing-up with center a line and the dotted $a\gamma row\rightarrow indicates$

a blowing-up with center a point.)

$\rho=5$

$\rho=4$

$\rho=3$

$\rho=2$

$\rho=1$

where $F_{3}^{3}=P(d_{DS_{8}}\oplus p_{DS_{8}}(\swarrow))$ , $F_{4}^{3}=P(p_{P^{1}\times P^{1}}\oplus p_{P^{1}\times P^{1}}(1, -1))$ , and $F_{f}^{3}=$

$P(\beta_{P^{1}\times P^{1}}\oplus^{p_{P^{1}\times P^{1}}}(1,1))$ .

\S 2. Some preliminaries on toric 3-folds.

To carry out the classification, we need some knowledge of the theory
of toric 3-folds, for which we refer to [3]. First we fix our notations.

(2.1) $k$ is an algebraically closed field.
$T$ is a three dimensional algebraic torus over $k$ .
$(Z^{\epsilon}, \Delta)$ is a finite partial polyhedral decomposition.
$V=Tem(\Delta)$ is a non-singular complete toric 3-fold determined by $\Delta$ .
$Sk^{1}=\{\sigma_{1}, \cdots, \sigma_{d}\}$ is the set of l-skeltons of $\Delta$ .
$n\in Z^{8}$ is the fundamental generator of $\sigma(i=1, \cdots, d)$ .
$\{D_{1}, \cdots, D_{d}\}$ is the set of T-stable prime divisors of $V$, where $D$ is

the closure of orb $(\sigma_{i})(i=1, \cdots, d)$ .
$\rho=\rho(V)$ is the Picard number of $V$. Note that $\rho=d-3$ in this case

([3], 6.1).
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$K_{V}$ is the canonical divisor of $V$. We can put $K_{V}=-\sum_{i=1}^{d}D_{i}$ (cf.
[3], 6.6).

PROPOSITION (2.2) ([3], Proposition 9.1). There are canonical bijec-
tions between the followings.

(a) The set of isomorphic elasses of non-singular complete toric
3-folds.

(b) The set of isomorphic classes of admissible $Z^{3}$-weighted triangu-
lations of $S$ , where $S$ is a sphere in $R^{3}$ centered at the origin.

(c) The set of combinatoric isomorphic classes of admissible doubly
Z-weighted triangulations of $S$.

By abuse of language, we will denote the $Z^{3}$-weighted or the doubly
Z-weighted triangulation of $S$ corresponding to $\Delta$ by the same letter $\Delta$ .

(2.3) For a $Z^{3}$-weighted (or doubly Z-weighted) triangulation $\Delta$ of
$S$ , let $v_{i}$ be the vertex of $\Delta$ corresponding to $\sigma$ and $s_{i}$ be the number
of edges concentrating to $v(i=1, \cdots, d)$ . Note that the number of
edges of $\Delta$ is $(\sum_{i=1}^{d}s_{i})/2$ and the number of triangles of $\Delta$ is $(\sum_{l=1}^{d}s_{i})/3$ .
By Euler’s theorem, we have $(\sum_{i=1}^{d}s_{i})/3-(\sum_{i=1}^{d}s_{l})/2+d=2$ or

(2.3.1) $\sum_{=1}^{\delta}s_{i}=6d-12$ .

If $L=v_{i}\cdot v_{j}$ is the edge of $\Delta$ connecting the vertexes $v_{i}$ and $v_{j}$ , we
will denote the line $D_{i}\cap D_{\dot{f}}$ of $V$ by the same letter $L$ .

LEMMA (2.4). If $-K_{V}$ is ample, then $d\leqq 10$ .
PROOF. For an edge $L=v\cdot v_{j}$ of $\Delta$ (or a line $D\cap D_{\dot{f}}$ of $V$ ), we put

$\delta_{L}=(D_{t}^{2}\cdot D_{\dot{f}})+(D_{i}\cdot D_{\dot{f}}^{2})+1$ . Since $-K_{V}$ is ample, $(-K_{V}\cdot L)>0$ . On the other
hand, if $v$ and $v^{\prime}$ are the vertexes such that the triangles $\{v, v_{i}, v_{\dot{f}}\}$ and
$\{v^{\prime}, v_{i}, v_{j}\}$ belong to $\Delta$ and if $D$ and $D^{\prime}$ are divisors of $V$ corresponding
to $v$ and $v^{\prime}$ respectively, we have $(-K_{V}\cdot L)=(\sum_{m=1}^{d}D_{n*}\cdot D_{i}\cdot D_{l})=(D_{i}^{2}\cdot D_{\dot{f}})+$

$(D_{i}\cdot D_{j}^{2})+(D_{i}\cdot D_{j}\cdot D)+(D_{i}\cdot D_{j}\cdot D^{\prime})=\delta_{L}+1$ . Hence we get $\delta_{L}\geqq 0$ for every
edge $L$ .

Moreover, we have

(2.4.1) $\sum_{t}\delta_{L}=\sum_{1Si<\dot{g}\leq\delta}\{(D_{i}^{2}\cdot D_{\dot{f}})+(D_{i}\cdot D_{\dot{f}}^{2})+1\}=\sum_{=\iota}^{d}\{\sum_{j\neq}(D_{i}\cdot D_{\dot{f}}^{2})\}+\frac{1}{2}\sum_{=\iota}^{d}s_{i}$ .

Since each $D_{i}$ is a non-singular complete toric surface and the set
$\{D_{j}\cap D|j\neq i, D_{i}\cap D_{\dot{f}}\neq\emptyset\}$ is the set of T-stable prime divisors on $D$ ,
we have
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(2.4.2) $\sum_{\dot{g}\neq}(D\cdot D_{;}^{2})=12-3s$ (cf. [3], \S 8).

Putting (2.4.1), (2.4.2) and (2.3.1) together, we get

(2.4.3) $\sum_{t}\delta_{L}=\sum_{=1}^{\delta}(12-3\epsilon_{i})+\frac{1}{2}\sum_{=1}^{\delta}s=30-3d\geqq 0$ .

PROPOSITION (2.5). $-K_{\gamma}$ is ample if and only if for every triangle
$\tau$ of $\Delta,$ $(m(\tau), n_{j})>-1$ for $ n_{j}\not\in\tau$ , where $m(\tau)$ is an element of $(Z^{8})^{\vee}$ (dual
of $Z^{8}$) detemined by $(m(\tau), n)=-1$ for $ n_{i}e\tau$ .

PROOF. This is a special case of ([3], 6.5).

PROPOSITION (2.6) ([3], 9.2). Let $v$ be a vertex of $\Delta$ and $v_{\iota},$ $\cdots,$ $v$. be
the vertexes of its link going around $v$ in this order. The divi8or $D$

corresponding to $v$ can be contracted smoothly to a point (resp. to a line)
if and only if $s=3$ and $n=n_{\iota}+n_{2}+n_{8}$ (resp. $s=4$ and $n=n_{\iota}+n_{s}$ or $n=$
$n_{2}+n_{4})$ . The contraction takes place as in the following figures.

$\downarrow$

$n=n_{1}+n_{S}$

PROPOSITION (2.7). If $X$ is a 2-dimensional complete smooth torus
embedding with ample – $K_{X}$ , then $X$ is isomorphic to one of the following
surfaces. (1) $P^{2},$ (2) $P^{1}\times P^{1},$ (3) $DS_{k}(6\leqq k\leqq 8)$ , where $DS_{k}$ is the surface
obtained from $P^{2}$ by blowing up 9-k points of $P^{g}$ . In this case, the
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center of the blowing up is intersection of two coordinate axes of $P^{2}$ .

\S 3. The classification.

LEMMA (3.1). There exists no toric Fano 3-folds for $d=9$ or 10.

PBOOF. Let $v$ be a vertex of $\Delta$ and $s$ be the number of edges con-
centrating to $v$ . If $d=10$ , by (2.4.3), we must have $\delta_{L}=0$ for every edge
$L$ of $\Delta$ . Then, considering the double Z-weighting, we see that the
possible value of $s$ is 3, 4 or 6 and that the weighted link around the
vertex $v$ must be one of the followings.

$s=3$ $s=4$ $s=6$

We can easily see that these weighted links cannot make an admissible
dobule Z-weighting.

If $d=9$ , let $\delta_{v}$ be the sum of $\delta_{L}$ concentrating to $v$ . Then by (2.4.3),
$\delta_{v}\leqq 3$ for every vertex $v$ . There are 33 types of weighted links of a
vertex $v$ satisfying the condition $\delta_{v}\leqq 3$ . But we can see that these can-
not make an admissible double Z-weighted triangulation.

(3.2) Now, let us begin the classification. As we have seen, $4\leqq d\leqq 8$ .
If $d=4$ , then $V\cong P^{8}$ (cf. [3], Theorem 7.1).

(3.3) If $d=5$ , the triangulation of the sphere is as follows.
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As $V$ is smooth, we may assume $n_{1}=(1,0,0),$ $n_{2}=(0,1,0)$ , and $n_{3}=$

$(0,0,1)$ . Also, as det $({}^{t}n_{1},{}^{t}n_{s},{}^{t}n_{4})=\det({}^{t}n_{s},{}^{t}n_{2},{}^{t}n_{4})=\det({}^{t}n_{b},{}^{t}n_{1},{}^{t}n_{4})=$

det $({}^{t}n_{f},{}^{t}n_{2},{}^{t}n_{1})=\det({}^{t}n_{f},{}^{t}n_{4},{}^{t}n_{2})=1$ , we may put $n_{4}=(-1, -1, c)$ and
$n_{b}=(a, b, -1)$ , where $a,$ $b,$ $c$ are integers such that $ac=bc=0$ . Moreover,
by (2.5), we have inequalities $a+b<2,$ $c<3,2a-ac-b>-2,2b-bc-a>$
$-2$ and $ac+bc-c<0$ . From these inequalities, it follows that $\Delta$ is iso-
morphic to one of the following $Z$’-weightings. (In what follows, we
describe the Z’-weighting by the matrix $N=({}^{t}n_{1}, \cdots,{}^{t}n_{d}).)$

(1) $N=\left\{\begin{array}{lllll}1 & 0 & 0 & -1 & -1\\0 & l & 0 & -l & -l\\0 & 0 & 1 & 0 & -1\end{array}\right\}$ .

In this case, the divisor $D_{4}$ contracts to a line in $P^{s}$ and $ V\cong P(P_{P^{1}}\oplus$

$P_{P^{1}}\oplus\beta_{P^{1}}(1))$ . (This is the case (e) of the Theorem.)

(2) $N=\left\{\begin{array}{lllll}1 & 0 & 0 & -1 & 0\\0 & 1 & 0 & -1 & 0\\0 & 0 & l & 1 & -l\end{array}\right\}$ .

In this case, the divisor $D_{8}$ contracts to a point in $P^{8}$ and $ V\cong P(d_{P^{2}}\oplus$

$P_{P^{2}}(1))$ . (This is the case (c) of the Theorem.)

(3) $N=\left\{\begin{array}{lllll}l & 0 & 0 & -l & 0\\0 & 1 & 0 & -1 & 0\\0 & 0 & 1 & 0 & -1\end{array}\right\}$ .

In this case, $V\cong P^{2}\times P^{1}$ . (This is the case (b) of the Theorem.)

(4) $N=\left\{\begin{array}{lllll}1 & 0 & 0 & -l & 0\\0 & 1 & 0 & -l & 0\\0 & 0 & 1 & 2 & -l\end{array}\right\}$ .

In this case, $V\cong P(P_{P^{2}}\oplus p_{p2}(2))$ . (This is the case (c) of the Theorem.)
(3.4) $d=6$ . There are two non-isomorphic triangulations of $S$ as

indicated by following figures.
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By the same argument as in (3.3), we see that $\Delta$ is isomorphic to
one of the followings. (As in (3.3), the matrix $N$ is $({}^{t}n_{1},$ $\cdots,{}^{t}n_{6}).$ )

Case (II). (1)

$N=\left\{\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & -1\\0 & 1 & 0 & -1 & -1 & -1\\0 & 0 & 1 & 0 & 0 & -1\end{array}\right\}$ .

The divisor $D_{1}$ can be blown down to a line and we get $P(P_{P^{2}}\oplus\beta_{P^{2}}(2))$ .
Also, if we contract the divisor $D_{4}$ to a line, we get $P(\beta_{P^{r}}\angle\oplus\beta_{p2}(1))$ .
This is $F_{1}^{3}$ (case $(k)$ ) of the Theorem.

(2)

$N=\left\{\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & -1\\0 & 1 & 0 & -1 & -1 & 0\\0 & 0 & 1 & 0 & 0 & -1\end{array}\right\}$ .

We can contract $D_{f}$ (resp. $D_{1},$ $D_{4}$) to a point (resp. to a line) and get
$P(P_{P^{1}}\oplus C_{P^{1}}\oplus d_{P^{1}}(1))$ (resp. $P(P_{P^{2}}\oplus p_{P^{2}}(1)),$ $P^{2}\times P^{1}$). This is the variety
$F_{2}^{3}$ (case (1)) of the Theorem.

Case (I). (3)

$N=\left\{\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & -l\\0 & 1 & 0 & -1 & 0 & 0\\0 & 0 & l & 0 & -1 & 1\end{array}\right\}$ .

We can contract $D_{1}$ (resp. $D_{s}$) to a line and get $P(P_{P^{2}}\oplus\rho_{P^{2}}(1))$ (resp.
$P(P_{P^{1}}\oplus\beta_{P^{1}}\oplus\beta_{P^{1}}(1)))$ . This is the variety $P(\rho_{DS_{8}}\oplus a_{DS_{8}}(\swarrow))$ (case $(j)$ ) of
the Theorem.

(4)

$N=\left\{\begin{array}{llllll}1 & 0 & 0 & l & -1 & -1\\0 & 1 & 0 & -1 & 0 & 0\\0 & 0 & 1 & 0 & -1 & 0\end{array}\right\}$ .

We can contract $D_{1}$ or $D_{6}$ to a line and get $P(P_{P^{1}}\oplus\beta_{P^{1}}\oplus d_{P^{1}}(1))$ in both
cases. This variety is isomorphic to the $P^{1}$-bundle $P(P_{P^{1}\times P^{1}}\oplus\beta_{P^{1}\times P^{1}}(1, -1))$

over $P^{1}\times P^{1}$ (case (i) of the Theorem).
(5)

$N=\left\{\begin{array}{llllll}1 & 0 & 0 & 1 & l & -1\\0 & 1 & 0 & -1 & 0 & 0\\0 & 0 & l & 0 & -1 & 0\end{array}\right\}$ .



44 KEIICHI WATANABE AND MASAYUKI WATANABE

This variety is isomorphic to the $P^{1}$-bundle $P(ff_{P^{1}\times P^{1}}\oplus ff_{P^{1}\times P^{1}}(1,1))$ over
$P^{1}\times P^{1}$ . (This is the case (h) of the Theorem.) In this case, we can
contract $D_{1}$ in two different (but isomorphic) ways getting a variety
which is not a Fano 3-fold.

(6)

$N=\left\{\begin{array}{llllll}l & 0 & 0 & 0 & 0 & -l\\0 & 1 & 0 & -l & 0 & 0\\0 & 0 & 1 & 0 & -1 & 0\end{array}\right\}$ .

This variety is isomorphic to $P^{1}\times P^{1}\times P^{1}$ (case (f) of the Theorem).
(7)

$N=\left\{\begin{array}{llllll}l & 0 & 0 & 1 & 0 & -1\\0 & l & 0 & -l & 0 & 0\\0 & 0 & 1 & 0 & -1 & 0\end{array}\right\}$ .

This variety is isomorphic to $DS_{8}\times P^{1}$ (case (g) of the Theorem). We
can contract $D_{1}$ to a line and get $P^{2}\times P^{1}$ .

(3.5) For the case of $d=7,8$ , we will carry out the classification
using the language of the double Z-weightings of $S$.

If $d=7(\rho=4)$ , we have $\sum_{L}\delta_{L}=9$ . If $v$ is a vertex of $\Delta$ , as $\delta_{v}\leqq 9$ ,
the weighted link of $v$ is one of the followings.

$-2\leqq b\leqq 1$ $2b+2c-ab\leqq 5$ ,
$b\geqq-1$ ,
$a+c\geqq-1$ ,
$c-ab-a\geqq-1$ .

$\left\{\begin{array}{l}b_{1}=b_{\epsilon}+b_{4}\\-b_{1}+(a-1)b_{\theta}=-ab_{4}-b_{f}\\b_{1}\geqq-1,b_{2}+a-1\geqq-1\\b_{l}\geqq 0,b\geqq 0\end{array}\right.$

$b_{f}-a\geqq-1,$ $\Sigma_{l=1}^{\iota}b_{i}\leqq 7$ .

There are 5 non-isomorphic triangulations of the sphere for $d=7$

(cf. [3], p. 77). Among these triangulations, only the following one can
have admissible double Z-weightings which satisfy the conditions above.
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There are four non-isomorphic double Z-weighting satisfying the
above conditions and it can be proved that the corresponding varieties
are actually Fano 3-folds using (2.5). The followings are the list of double
Z-weightings.

(1)

6
$0\simeq 1r_{1^{\frac{1}{\backslash }1}0}\nearrow^{0_{0}^{\gamma}\text{ト_{}0}}|-100_{J}-\not\subset^{\underline{1^{00^{\backslash }}}_{-1^{/}}}\sim 1-1^{*}\star^{0_{o^{\prime}}\underline{0}f_{1}^{0^{-}}}\backslash $

$o^{-1}\sqrt{}$ $-1\backslash _{0}$

(2)
$01$

$o\simeq\iota_{0^{-,1}0}\overline{\epsilon}_{0^{/\backslash /}\prime}\Lambda^{\vee}*o^{\prime^{0}}-1^{\frac{1}{\backslash }1}\sim 0/\backslash \nearrow^{0\int^{0}0}\backslash _{o_{1}}\mu_{-11}^{-1\underline{-}1}\underline{\aleph}_{1}^{0}m^{0^{/^{1}}}$

(3)

$-0L$

$o_{\simeq 1^{-}}^{\nearrow\frac{0}{}}-1^{\frac{1}{\backslash }1}*l_{o^{\prime}}^{1^{-1}\backslash _{0_{1}\forall^{0^{-0}}}}\sqrt{}^{-1}01\overline{1^{\backslash }}_{-11*_{\backslash _{0}}}0^{*}fi_{\underline{\backslash }_{01}}/1$

(4)
$01$

$-1$

$o_{\sim o_{0}}-1\forall_{o^{\underline{\sim}_{1}}\backslash o_{00}}\Lambda_{o_{0}^{\prime^{0}}}^{1}0^{-1}\nearrow\backslash \backslash \star^{\backslash }1^{0}\nearrow^{\underline{0\{}0}\searrow_{r_{0}^{0^{-}}}0\overline{\mu_{0}}^{\underline{[\backslash }_{0}}\varphi_{0}$
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The corresponding $Z$’-weightings are as follows;
(1)

$N=\left\{\begin{array}{lllllll}l & 0 & 0 & 0 & 0 & 0 & -l\\0 & 1 & 0 & -1 & -1 & 0 & 1\\0 & 0 & 1 & 0 & -l & -1 & 0\end{array}\right\}$ .

The divisor $D_{2},$ $D_{4},$ $D_{6}$ and $D_{6}$ are contractible to a line and we get $F_{2}^{3}$ ,
$p(p_{DS_{8}}\oplus p_{DS_{8}}(\swarrow)),$ $P(p_{P^{1}\times P^{1}}\oplus p_{P^{1}\times P^{1}}(1, -1))$ and $DS_{8}\times P^{1}$ respectively after
contracting. This variety is $F_{1}^{4}$ (case $(n)$) of the Theorem.

(2)

$N=\left\{\begin{array}{lllllll}l & 0 & 0 & 0 & 0 & 0 & -l\\0 & 1 & 0 & -1 & -l & 0 & -1\\0 & 0 & 1 & 0 & -1 & -l & 0\end{array}\right\}$ .

We can contract $D_{\delta}$ (resp. $D_{6}$) to a line and get $DS_{8}\times P^{1}$ (resp. $ P(P_{P^{1}\times P^{1}}\oplus$

$P_{P^{1}\times P^{1}}(1,1)))$ . We can contract $D_{4}$ in two different ways. But the both
resulting varieties are not Fano 3-folds. This variety is $F_{2}$ (case (0)) of
the Theorem.

(3)

$N=\left\{\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & -1\\0 & 1 & 0 & -1 & -1 & 0 & -1\\0 & 0 & 1 & 1 & 0 & -1 & 1\end{array}\right\}$ .

We can contract $D_{f}$ to a line and get $P(d_{DS_{8}}\oplus p_{DS_{8}}(\swarrow))$ . The divisors $D_{8}$

$D_{4}$ are also contractible to a line. But the resulting varieties are not
Fano 3-folds. This variety is $F_{3}^{4}$ (case $(p)$ ) of the Theorem.

(4)

$N=\left\{\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & -1\\0 & l & 0 & -l & -1 & 0 & 0\\0 & 0 & 1 & 1 & 0 & -l & 0\end{array}\right\}$ .

This variety is isomorphic to $DS_{7}\times P^{1}$ (case (m) of the theorem). We
can contract $D_{3}$ (resp. $D_{4}$) and get $DS_{8}\times P^{1}$ (resp. $P^{1}\times P^{1}\times P^{1}$). The
divisor $D_{f}$ is contractible to a line. But the resulting manifold is not a
Fano 3-fold.

(3.6) For $d=8$ , classifying by double Z-weightings as in (3.5), we
can see that the possibility of $\Delta$ is restricted to one of the following
two types both of which have the same triangulation as follows.
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(1)

$N=[001$ $001$ $001$ $-101$

($v_{8}$ is at infinity.)

$-100$ $-100$ $-101$ $-1-10]$ .

We can contract $D_{2}$ (resp. $D_{3},$ $D_{4},$ $D_{6},$ $D_{7}$) and get $F_{2}^{4}$ (resp. $F_{s}^{4},$ $F_{2}^{4},$ $F_{1}^{4}$ ,
$F_{1}^{4})$ . The divisor $D_{6}$ is contractible to a line in two ways. But the
resulting varieties are not Fano 3-folds. This variety is $F_{1}^{b}$ (case $(r)$) of
the Theorem.

(2)

$N=\left\{\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & -1\\0 & 1 & 0 & -1 & -1 & 0 & 1 & 0\\0 & 0 & 1 & 1 & 0 & -l & -1 & 0\end{array}\right\}$ .

This variety is isomorphic to $DS_{6}\times P^{1}$ (case (q) of the Theorem). We
can contract $D_{2},$ $D_{3},$ $D_{4},$ $D_{f},$ $D_{6}$ or $D_{7}$ to a line and get $DS_{7}\times P^{1}$ .

This concludes the classification of the toric Fano 3-folds.

COROLLARY (3.7). Indices and degrees of the above Fano 3-folds are
as follows. (For the definition of indices and degrees of Fano 3-folds,
see Iskovskih [1].)

$P^{8}$ $P^{2}\times P^{1}$

$\rho$ 1 2
index 4 1
degree 1 54

$P(p_{P^{2}}\oplus^{p_{P^{2}}}(2))$ $P(p_{P^{1}}\oplus d_{P^{1}}\oplus\theta_{P^{1}}(1))$

2 2
1 1

62 54

$P(P_{P^{2}}\oplus p_{P^{2}}(1))$ $P^{1}\times P^{1}\times P^{1}$ $DS_{8}\times P^{1}$ $P(P_{DS_{8}}\oplus\rho_{DS_{8}}(\swarrow))$ $P(a_{P^{1}\times P^{1}\oplus p_{P^{1}\times P^{1(1}}}, -1))$

2 3 3
$27$ $26$ $481$

3 3
1 1

50 44
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$P(p_{P^{1}\times P^{1}\oplus 9_{P^{1}\times P^{1}}(1,1))}$ $F_{1}^{\epsilon}$ $F_{2}^{l}$ $DS_{7}\times P^{1}$ $F_{1}^{4}$ $F_{2}^{4}$ $F_{\epsilon}$ $DS_{0}\times P^{1}$ $F_{1}^{b}$

3 3 3 4 4 4 4 5 5
$621$ $501$ $ae^{1}$ $421$ $401$ $u^{1}$ $ae^{1}$ $361$ $361$

COROLLARY (3.8). The manifolds appearing in the above classification
are not isomorphic as abstract varieties to each other.

ADDED IN PROOF. After the submission of our paper, V. V. Batirev
has obtained the same result as ours which appeared in Izvestia Akademii
Nauk, S.S.S.R., Vol. 45, no. 4, 1981.
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