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Introduction

It is well known that homogeneous convex cones play an important
role in the theory of homogeneous bounded domains (cf. e.g., [3], [7]).
On a homogeneous convex cone $V$, a canonical Riemannian metric is
defined which is closely related to the Bergman metric of the tube
domain over $V$. With respect to this Riemannian metric, every homo-
geneous self-dual cone is a Riemannian symmetric space of non-positive
sectional curvature (cf. [2], [8]). But it is little known about the
Riemannian geometric properties of homogeneous non-self-dual cones.
The main purposes of the present paper are to give a necessary con-
dition for a homogeneous convex cone to be of non-positive sectional
curvature with respect to the canonical metric and to determine such
cones of rank 3 or of low dimensions.

The relation between homogeneous convex cones and homogeneous
affine hyperspheres has been studied by Calabi [1] and Sasaki [9]. In
\S 1, we will recall some of definitions and the fundamental results on
homogeneous convex cones and homogeneous affine hyperspheres from
[13], [1] and [9]. In \S 2, by using results of Sasaki [9] and Meschiari
[5], we will see that every homogeneous convex cone with dimension
$\geqq 2$ is homothetically equivalent to a product Riemannian manifold of a
homogeneous hyperbolic affine hypersphere and the half line of positive
real numbers (Proposition 2.1). As an application of this and a result
in [10] or [12], a characterization for a homogeneous hyperbolic affine
hypersphere to be Riemannian symmetric with respect to the affine
metric will be given (Theorem 2.2). By making use of a result in Calabi
[1] we will see that the Ricci curvature of a homogeneous convex cone
is always non-positive (Theorem 2.3). In \S 3, by using the resuIts
obtained in [12] we will calculate explicitly the curvature tensor of the
canonical metric (Lemmas 3.1 and 3.2) and give a sufficient condition
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for a homogeneous convex cone to have a plane section with positive
curvature (Theorem 3.4). By applying this to certain homogeneous con-
vex cones, we will show that the sectional curvature of a homogeneous
convex cone with respect to the canonical metric is not necessarily non-
positive (Corollary 3.5). In \S 4, we will consider homogeneous convex
cones with non-positive sectional curvature and determine such cones of
rank 3 (Theorem 4.6) or of low dimensions (Theorem 4.7). Finally, some
corrections to the misstatements contained in [11] will be given.

Some of our results have been announced in the note [11].
Throughout this paper, the same notation and terminologies as in

[12] will be employed.
The author would like to express his hearty thanks to Prof. S.

Kaneyuki and Prof. T. Sasaki for their helpful suggestions during the
preparation of this paper.

\S 1. Preliminaries.

In this section, following Vinberg [13], Calabi [1] and Sasaki [9] we
recall some of definitions and the fundamental results on homogeneous
convex cones and homogeneous affine hyperspheres.

1.1. Let $V$ be a convex cone in the n-dimensional real number space
$R^{n}$ . We denote by $G(V)$ the group of all linear automorphisms of $R^{n}$

leaving $V$ invariant. If the group $G(V)$ acts transitively on $V$, then
the cone $V$ is said to be homogeneous. Let $\langle$ , $\rangle$ be an inner product
on $R^{n}$ and $V^{*}$ the dual cone of $V$ with respect to this inner product.
Then the characteristic function $\phi_{V}$ of a convex cone $V$ is defined on $V$ by

(1.1) $\phi_{V}(x)=\int_{\gamma}$. exp $(-\langle x, y\rangle)dy$ ,

where $dy$ is the canonical Euclidean measure on $R$“. The characteristic
function has the following property:

(1.2) $\phi_{V}(Ax)=\phi_{V}(x)/|\det A|$

for every $A\in G(V)$ .
Let us take a system of linear coordinates $(x_{1}, x_{2}, \cdots, x_{n})$ of $R^{n}$ .

Then from the characteristic function we can define a $G(V)$-invariant
Riemannian metric $g_{V}$ on $V$ by

$g_{V}=\sum_{i,j}\frac{\partial^{2}\log\phi_{V}}{\partial x_{i}\partial x_{j}}dx_{i}dx_{j}$ .
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This Riemannian metric $g_{V}$ is called the canonical metric of $V$.
1.2. Next, we recall briefly the relation between homogeneous con-

vex cones and T-algebras due to Vinberg. The detailed proofs may be
found in [13] or [14].

Let $\mathfrak{U}=\sum_{1\xi i,j\leqq r}\mathfrak{U}_{j}$ be a T-algebra of rank $r$ with an involution $*$

We put

$T=T(\mathfrak{U})=$ {$t=(t_{ij})\in \mathfrak{U};t_{ii}>0$ and $t_{ij}=0$ for $j<i$}

and
$V=V(\mathfrak{U})=\{tt^{*} ; t\in T(\mathfrak{U})\}$ .

Then the set $V$ is a homogeneous convex cone in the real vector space
$X(\mathfrak{U})=\{x\in \mathfrak{U};x^{*}=x\}$ . Conversely every homogeneous convex cone is
realized in this form (up to linear equivalence). The number $r$ is called
the rank of $V$. The set $T$ is a connected R-triangular solvable Lie
subgroup of $G(V)$ which acts simply transitively on $V$. The tangent
space of $V$ at the point $e\in V$ may be naturally identified with the am-
bient space $X(\mathfrak{U})$ or with the Lie algebra $t$ of the Lie group $T$ , where
$e=(e_{ij}),$ $e_{ii}=1$ and $e_{ij}=0$ for $1\leqq i\neq j\leqq r$ . Under this identification, the
canonical metric $g_{\gamma}$ at the point $e$ may be considered as an inner product

$\langle$ , $\rangle$ on $l$ . The Lie algebra $l$ is bigraded with subspaces $\mathfrak{U}_{ij}(1\leqq i\leqq j\leqq r)$

such that

(1.3) $t=\sum_{1\leq t\leqq j\leq r}\mathfrak{U}_{ij}$
(orthogonal direct sum) , $\mathfrak{U}_{ii}=R$ $(1\leqq i\leqq r)$ .

The natural identification of $t$ with $X(\mathfrak{U})$ is given by $a\in\iota\rightarrow a+a^{*}eX(\mathfrak{U})$ .
For every $i,$ $j$ with $1\leqq i\leqq j\leqq r$ , we put

(1.4) $n_{ij}=\dim \mathfrak{U}_{ij}$ , $n_{i}=1+1/2\sum_{k<i}n_{ki}+1/2\sum_{i<k}n_{ik}$ .

Then the condition

(1.5) max $\{n_{ij}, n_{jk}\}\leqq n_{ik}$

is satisfied for $1\leqq i<j<k\leqq r$ with $n_{ij}n_{jk}\neq 0$ .
For every $i$ with $1\leqq i\leqq r$ , we put

$e_{i}=(1/2\sqrt{n_{i}})e_{li}\in \mathfrak{U}_{ii}=R$ .
Then we have $\langle e_{i}, e_{i}\rangle=1$ . For every $i,$ $j$ with $n_{tj}\neq 0(1\leqq i<j\leqq r)$ , we
take an orthonormal basis $\{e_{ij}^{\lambda}\}_{1\leqq\lambda\leqq n_{ij}}$ of $\mathfrak{U}_{ij}$ . If $n_{j}n_{jk}\neq 0$ with $1\leqq i<j<$

$k\leqq r$ , then there exists a system $\{T_{\lambda}\}$ of linear operators
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$T_{\lambda}:\mathfrak{U}_{jk}\rightarrow \mathfrak{U}_{ik}$ $(1\leqq\lambda\leqq n_{ij})$

satisfying the following conditions:
$[e_{ij}^{\lambda}, a]=T_{\lambda}a$

for every $a\in \mathfrak{U}_{jk}$ and
$T_{\lambda}T_{\mu}+{}^{t}T_{\mu}T_{\lambda}=(1/n_{j})\delta_{\lambda\mu}I_{jk}$ $(1\leqq x, \mu\leqq n_{ij})$ ,

where $I_{jk}$ is the identity operator on $\mathfrak{U}_{jk}$ . An irreducible homogeneous
self-dual cone is characterized by the condition that $n_{ij}=c$ for every $i,$ $j$

with $1\leqq i<j\leqq r$, where $c$ is a positive constant.
1.3. Let $S$ be a hypersurface in $R$“ $(n\geqq 2)$ and $f:S\rightarrow R$ its imbed-

ding. For each point $p$ in $S$, we take a local coordinate neighborhood
$(U, (u_{1}, u_{2}, \cdots, u_{n-1}))$ around $p$ . For every $i,$ $j$ with $1\leqq i,$ $j\leqq n-1$ , we put
a function $\Lambda_{j}$ on $U$ by

(1.6) $\Lambda_{ij}=\det(f_{j}, f_{1}, \cdots, f_{-1})$

where $f_{j}=\partial^{2}f/\partial u\partial u_{j},$ $f=\partial ff\partial u$ and $f$ is considered as a column vector
valued mapping. From now on, we assume that the symmetric matrix
$(\Lambda_{ij})$ defined by (1.6) is positive definite on a suitable local coordinate
neighborhood $U$ around every point $p$ in $S$ . Then for $1\leqq i,$ $j\leqq n-1$ , by
putting

(1.7) $g_{ij}=\Lambda^{-1/(n+1)}\Lambda_{ij}$ , $\Lambda=\det(\Lambda_{ij})$

we have a Riemannian metric $g_{s}=\sum_{i,j}g_{j}du_{i}du_{j}$ on $S$. The Riemannian
metric $g_{s}$ defined by (1.7) is called the affine metric of $S$. A hypersurface
$S$ is called a hyperbolic affine hypersphere (with its center at the origin),
if the imbedding $f$ satisfies the following equation:

$\Delta f=-(n-1)Hf$ ,

where $H$ is a negative constant and $\Delta$ is the Laplace-Beltrami operator
with respect to the affine metric $g_{s}$ (cf. Calabi [1]). A closed hyperbolic
affine hypersphere $S$ is said to be homogeneous if there exists a unimodu-
lar subgroup $G(S)$ of $GL(n, R)$ which acts transitively on $S$. In this
case, $S$ is a homogeneous Riemannian manifold, that is, the affine metric
$g_{s}$ is $G(S)$-invariant.

For a convex cone $V$ in $R^{n}$ and a positive real number $c$, we denote
by $S_{o}$ the level surface of the characteristic function $\phi_{V}$ with level $c$ .
Then the following result is known in Sasaki [9]: For a homogeneous
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convex cone $V$ in $R^{n}$ , the level surface $S_{6}$ is a homogeneous hyperbolic
affine hypersphere, and on $S_{0}$ the canonical metric $g_{r}$ coincides with the
affine metric $g_{s_{\epsilon}}$ up to a constant factor. Conversely every homogeneous
hyperbolic affine hypersphere is realized in this form.

\S 2. Homogeneous convex cones and homogeneous affine hyper-
spheres.

In this section, we investigate the Riemannian geometric properties
of homogeneous convex cones by making use of the results due to Calabi
[1] and Sasaki [9] stated in \S 1.

2.1. For a homogeneous convex cone $V$ in $R^{n}$ , we denote by $S=S_{1}$

the level surface of the characteristic function $\phi_{V}$ with level one and
$c:S\rightarrow R^{n}$ the inclusion mapping of $S$ into $R^{n}$ . We define a mapping $\xi$ by

(2.1) $\xi:S\times R^{+}\rightarrow V$ , $\xi(p, t)=tp$ ,

where $R^{+}=\{t\in R;t>0\}$ .
The following proposition is essentially due to Sasaki [9] and

Meschiari [5].

PROPOSITION 2.1. Let $V$ be a homogeneous convex cone in $R$“ with
$n\geqq 2$ and $c$ a positive real number. Then the Riemannian manifold
(V, $g_{V}$) is homothetically equivalent to the Riemannian product of the
homogeneous hyperbolic affine hypersphere $(S_{t}, g_{s_{c}})$ and the half line of
positive real numbers.

PROOF. For every positive real number $\lambda$ , the homothety $\lambda$ id. is
contained in $G(V)$ . Therefore, by Sasaki’s result stated in the subsec-
tion 1.3 and the property (1.2), the affine hyperspheres $S_{e}$ and $S=S_{1}$ are
homothetically equivalent. Hence, in order to prove the above assertion
it is sufficient to show that the Riemannian manifold $(S, c^{*}g_{V})\times(R^{+}, nt^{-2}dt^{2})$

is isometric to (V, $g_{V}$). In fact, it is easy to see that the mapping $\xi$

defined by (2.1) is an isometry (cf. Meschiari [5]). $q$ .e.d.

2.2. It is known in [2] or [8] that a homogeneous self-dual cone is
Riemannian symmetric with respect to the canonical metric. Conversely,
it was proved in the recent papers (cf. [10] or [12]) that every Riemannian
symmetric homogeneous convex cone is self-dual. Therefore, by Proposi-
tion 2.1 we have the following

THEOREM 2.2. For a homogeneous convex cone $V$ in $R^{n}$ with $n\geqq 2$ ,
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the homogeneous hyperbolic affine hypersphere $S_{e}$ is Riemannian sym-
metric with respect to the affine metric if and only if $V$ is self-dual.

We remark that the sufficient condition in the above statement has
been proved by Sasaki [9].

It is known in Calabi [1] that the Ricci curvature of a complete
hyperbolic affine hypersphere with respect to the affine metric is non-
positive. Combining this with Proposition 2.1 we have the following

THEOREM 2.3. The Ricci curvature of a homogeneous convex cone
with respect to the canonical metric is non-positive.

\S 3. Sectional curvature of the canonical metric.

In this section, after calculating the curvature tensor by making
use of the results obtained in [12], we give a sufficient condition for a
homogeneous convex cone to have a plane section with positive curvature.
Furthermore, we show that the sectional curvature of a homogeneous
convex cone with respect to the canonical metric (or equivalently, a
homogeneous hyperbolic affine hypersphere with respect to the affine
metric) is not necessarily non-positive.

From now on, we will consider exclusively the canonical metric.
So, for the sake of brevity the terminology with respect to the canonical
metric may be omitted.

3.1. Let $V$ be a homogeneous convex cone of rankr and $l=$

$\sum_{1\leqq\leqq j\leqq r}\mathfrak{U}_{j}$ the corresponding simply transitive subalgebra of $\mathfrak{g}(V)$ given
by (1.3), where $\mathfrak{g}(V)$ denotes the Lie algebra of $G(V)$ . The bracket
operation $[, ]$ in the Lie algebra $l$ and the connection function $\alpha$ of
the canonical metric have been obtained explicitly in [12]. The curva-
ture tensor $R$ of the canonical metric is given by the following formula
(cf. Nomizu [6]):

(3.1) $ R:t\times l\times l\rightarrow\iota$ ,
$R(a, b, c)=R(a, b)c=\alpha(a, \alpha(b, c))-\alpha(b, \alpha(a, c))-\alpha([a, b], c)$

for every $a,$ $b,$ $cet$ . Therefore, the following two lemmas can be proved
in a straightforward manner from the above formula (3.1), the lists of
the bracket operations in $t$ and the connection function of the canonical
metric given by Lemmas 1.1 and 2.2 of [12]. So, we may omit their
proofs. Here we will denote by $a_{j}$ the $\mathfrak{U}_{i\dot{g}}$-component of an element
$a=(a_{\dot{f}})\in t$ .
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LEMMA 3.1. If $n_{ij}n_{jk}\neq 0$ with $1\leqq i<j<k\leqq r$ , then the curvature
tensor $R$ of the canonical metric satis.fies the following conditions:

(1) $R(e_{\beta}, a_{\alpha\beta}, b_{\alpha\beta})=\langle a_{\alpha\beta}, b_{\alpha\beta}\rangle((1/4\sqrt{n_{\alpha}n_{\beta}})e_{\alpha}-(1f4n_{\beta})e_{\beta})$ ,
$R(e_{\alpha}, a_{\alpha\beta}, b_{\alpha\beta})=\langle a_{\alpha\beta}, b_{\alpha\beta}\rangle((1/4\sqrt{n_{\alpha}n_{\beta}})e_{\beta}-(1/4n_{\alpha})e_{\alpha})$

for $(\alpha, \beta)=(i, j),$ $(i, k)$ or $(j, k)$ .
(2) $R(e_{k}, a_{jk}, a_{ik})=R(e_{k}, a_{ik}, a_{jk})=(1f4\sqrt{n_{k}})\sum_{1\leqq\lambda\leqq n_{ij}}\langle T_{\lambda}a_{jk}, a_{k}\rangle e_{i\dot{g}}^{\lambda}$

,

$R(e_{i}, a_{ij}, a_{k})=R(e, a_{ik}, a_{ij})=(1f4\sqrt{n_{i}})\sum_{1\leqq\lambda\leqq n_{ij}}\langle a_{ij}, e_{tj}^{\lambda}\rangle^{t}T_{\lambda}a_{k}$ .

(3) $ R(a_{ij}, a_{jk}, b_{jk})=(1/4n_{j})\langle a_{jk}, b_{jk}\rangle a_{ij}-1/4\sum_{1\leqq\lambda,\mu\leqq n_{ij}}\langle a_{ij}, e_{ij}^{\lambda}\rangle$

$\times(\langle T_{\lambda}b_{jk}, T_{\mu}a_{jk}\rangle+2\langle T_{\lambda}a_{jk}, T_{\mu}b_{jk}\rangle)e_{i\dot{g}}^{\mu}$ ,

$ R(a_{i\dot{g}}, a_{jk}, b_{ij})=-(1/4n_{j})\langle a_{ij}, b_{ij}\rangle a_{\dot{g}k}+1/4\sum_{1\leqq\lambda,\mu\leqq n_{ij}}\langle a_{ij}, e_{j}^{\lambda}\rangle$

$\times\langle b_{ij}, e_{i\dot{g}}^{\mu}\rangle(2{}^{t}T_{\mu}T_{\lambda}+{}^{t}T_{\lambda}T_{\mu})a_{jk}$ .
(4) $R(a_{ij}, a_{jk}, a_{ik})=\sum_{1\leqq\lambda\leqq n_{ij}}\langle a_{\dot{f}}, e_{i\dot{g}}^{\lambda}\rangle\langle T_{\lambda}a_{jk}, a_{ik}\rangle((1/4\sqrt{n_{k}})e_{k}-(1/4\sqrt{n_{i}})e)$

,

$R(a_{ij}, a_{ik}, a_{jk})=\sum_{1\xi\lambda\leqq n_{ij}}\langle a_{ij}, e_{i\dot{g}}^{\lambda}\rangle\langle T_{\lambda}a_{jk}, a_{ik}\rangle((1/4\sqrt{n_{k}})e_{k}-(1f4\sqrt{n_{f}})e_{\dot{f}})$ .

(5) $R(a_{ij}, a_{k}, b_{k})=-(1/4n_{i})\langle a_{ik}, b_{ik}\rangle a_{j}$

$+1/4\sum_{1\leqq\lambda,\mu\leqq n_{ij}}\langle a_{ij}, e_{i\dot{g}}^{\lambda}\rangle\langle {}^{t}T_{\lambda}b_{k},{}^{t}T_{\mu}a_{ik}\rangle e_{ij}^{\mu}$
,

$R(a_{jk}, a_{ik}, b_{k})=-(1/4n_{k})\langle a_{ik}, b_{ik}\rangle a_{jk}+1/4\sum_{1\leqq\lambda\leqq n_{ij}}\langle T_{\lambda}a_{jk}, b_{k}\rangle {}^{t}T_{\lambda}a_{ik}$ .

Similarly we have

LEMMA 3.2. If $n_{ij}n_{ik}\neq 0,$ $n_{jk}=0$ or $n_{jk}n_{k}\neq 0,$ $n_{ij}=0$ with $1\leqq i<j<$

$k\leqq r$ , then the curvature tensor $R$ of the canonical metric satisfies the
following conditions: For $(\alpha, \beta)=(i, j),$ $(i, k)$ or $(j, k)$ ,

(1) $R(e_{\beta}, a_{\alpha\beta}, b_{\alpha\beta})=\langle a_{\alpha\beta}, b_{\alpha\beta}\rangle((1/4\sqrt{n_{\alpha}n_{\beta}})e_{\alpha}-(1f4n_{\beta})e_{\beta})$ ,
$R(e_{\alpha}, a_{\alpha\beta}, b_{\alpha\beta})=\langle a_{\alpha\beta}, b_{\alpha\beta}\rangle((1/4\sqrt{n_{\alpha}n_{\beta}})e_{\beta}-(1/4n_{\alpha})e_{\alpha})$ ,

(2) $R(e_{\alpha}, a_{\alpha\beta}, e_{\alpha})=(1/4n_{\alpha})a_{\alpha\beta}$ , $R(e_{\alpha}, a_{\alpha\beta}, e_{\beta})=-(1/4\sqrt{n_{\alpha}n_{\beta}})a_{\alpha\beta}$ ,
$R(e_{\beta}, a_{\alpha\beta}, e_{\beta})=(1f4n_{\beta})a_{\alpha\beta}$ ,

(3) $R(a_{\alpha\beta}, b_{\alpha\beta}, c_{\alpha\beta})=(1/4n_{\alpha}+1/4n_{\beta})(\langle a_{\alpha\beta}, c_{\alpha\beta}\rangle b_{\alpha\beta}-\langle b_{\alpha\beta}, c_{a\beta}\rangle a_{\alpha\beta})$ .
(4) $R(a_{j}, a_{ik}, b_{i\dot{g}})=(1/4n_{i})\langle a_{j}, b_{i\dot{g}}\rangle a_{k}$ ,

$R(a_{ij}, a_{k}, b_{ik})=-(1/4n_{i})\langle a_{k}, b_{ik}\rangle a_{ij}$ .



412 TADASHI TSUJI

(5) $R(a_{jk}, a_{k}, b_{jk})=(1/4n_{k})\langle a_{jk}, b_{j\hslash}\rangle a_{ik}$ ,
$R(a_{jk}, a_{k}, b_{ik})=-(1/4n_{k})\langle a_{ik}, b_{k}\rangle a_{\dot{g}k}$ .

(6) Every one of the following values is zero:
$R(e_{a}, e_{\beta})$ for $\alpha,$ $\beta e\{i, j, k\}$ ,
$R(e_{i}, a_{ij}, e_{k})$ , $R(e_{i}, a_{j}, a_{\dot{g}k})$ , $R(e_{i}, a_{j}, a_{k})$ , $R(e_{i}, a_{jk})$ ,
$R(e, a_{ik}, e_{j})$ , $R(e_{i}, a_{k}, a_{\dot{f}})$ , $R(e, a_{ik}, a_{jk})$ , $R(e_{j}, a_{j}, e_{k})$ ,
$R(e_{\dot{f}}, a_{j}, a_{jk})$ , $R(e_{j}, a_{\dot{f}}, a_{ik})$ , $R(e_{j}, a_{\partial k}, a_{ij})$ , $R(e_{j}, a_{\dot{g}k}, a_{ik})$ ,
$R(e_{\dot{f}}, a_{ik})$ , $R(e_{k}, a_{i\dot{g}})$ , $R(e_{k}, a_{jk}, a_{ij})$ , $R(e_{k}, a_{jk}, a_{ik})$ ,
$R(e_{k}, a_{ik}, a_{i\dot{g}})$ , $R(e_{k}, a_{k}, a_{jk})$ , $R(a_{ij}, b_{j}, a_{jk})$ , $R(a_{j}, b_{\dot{f}}, a_{k})$ ,
$R(a_{i\dot{g}}, a_{\dot{g}k})$ , $R(a_{j}, a_{ik}, a_{jk})$ , $R(a_{jk}, b_{jk}, a_{k})$ .

3.2. If $n_{ij}\neq 0$ for some pair $(i, j)$ with $1\leqq i<j\leqq r$ , then from the
formulas (1) in Lemmas 3.1 or 3.2 it follows that there are always plane
sections with negative curvature (cf. also Theorem 2.3). Now we give
a sufficient condition for a homogeneous convex cone to have a plane
section with positive curvature and show that the sectional curvature
of a homogeneous convex cone is not necessarily non-positive.

LEMMA 3.3. If $n_{ij}n_{jk}\neq 0$ with $1\leqq i<j<k\leqq r$ , then the following
equalities (1) and (2) are valid:

(1) $\langle R(X, Y)Y, X\rangle=-\alpha^{2}/2n_{k}+\alpha/\sqrt{2n_{f}n_{k}}-1/4n_{i}$ ,
(2) $\langle R(U, V)V, U\rangle=-\beta^{2}/2n_{i}+\beta/\sqrt{2n_{i}n_{f}}-1/4n_{k}$

for $X=\alpha e_{k}+e_{ij},$ $Y=e_{ik}+e_{jk},$ $U=\beta e_{i}+e_{jk}$ and $V=e_{ij}+e_{k}$ , where $\alpha,$ $\beta\in R$ ,
$e_{ij}=e_{ij}^{1},$ $e_{\dot{g}k}=e_{\dot{g}k}^{1},$ $e_{ik}=e^{i_{k}}$. and $e_{k}=\sqrt{2n_{f}}T_{1}e_{\dot{g}k}$ .

PROOF. Substituting the formulas (1) $-(5)$ in Lemma 3.1 to $R(X, Y)Y=$
$\alpha R(e_{k}, e_{ik}, e_{ik})+\alpha R(e_{k}, e_{jk}, e_{jk})+\alpha R(e_{k}, e_{ik}, e_{\dot{g}k})+\alpha R(e_{k}, e_{jk}, e_{ik})+R(e_{\dot{f}}, e_{jk}, e_{\dot{g}k})+$

$R(e_{ij}, e_{ik}, e_{ik})+R(e_{i\dot{g}}, e_{jk}, e_{ik})+R(e_{ij}, e_{ik}, e_{jk})$ , we have the first equality. The
second equality follows similarly from the formulas in Lemma 3.1 and
the Bianchi’s identity. q.e. $d$ .

From the above lemma we have the following

THEOREM 3.4. If a triple $(i, j, k)$ with $n_{i\dot{g}}n_{jk}\neq 0(1\leqq i<j<k\leqq r\cdot)$

satisfies the conditions $n_{i}>n_{\dot{f}}$ or $n_{k}>n_{j}$ , then there exists a plane section
in $t$ with positive curvature.

PROOF. If $n_{i}>n_{j}$ , then by the formula (1) in Lemma 3.3 $\langle R(X$,
Y) $Y,$ $ X\rangle$ attains a positive value for a suitable real number $\alpha$ . By
making use of the formula (2) in Lemma 3.3 we may similarly show
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the statement for the case of $n_{k}>n_{j}$ . $q.e.d$ .

Now we give two concrete examples of homogeneous convex cones
which satisfy the conditions in the above theorem. Let $l,$ $m,$ $n$ be posi-
tive integers which satisfy the condition $n\leqq m$ with $(m, n)\neq(1,1)$ and
consider the irreducible homogeneous non-self-dual cones defined by the
following (3.2) or (3.3):

(3.2) $V=$ {$x=(x_{1},$ $x_{2},$ $\cdots,$
$x_{7+l})\in R^{7+l};x_{4}>0,$ $A(x)$ is positive definite} ,

where $A(x)=(a_{ij}(x))$ is a real symmetric matrix of degree 3 such that
$a_{11}(x)=x_{1}x_{4}-\sum_{8\leq k\leqq 7+l}x_{k}^{2},$ $a_{12}(x)=x_{4}x_{b},$ $a_{18}(x)=x_{4}x_{6},$ $a_{22}(x)=x_{2}x_{4},$ $a_{23}(x)=x_{4}x_{7}$ and
$aae(x)=x_{s}x_{4}$ .
(3.3) $V=\{x=(x_{1}, x_{2}\cdots, x_{m+n+4})\in R^{m+n+4};x_{3}>0, P_{1}(x)>0, P_{2}(x)>0\}$ ,

where $P_{1}(x)=x_{1}x_{3}-\sum_{5\leqq k\leqq m+4}x_{k}^{2}$ and $P_{2}(x)=P_{1}(x)(x_{2}x_{3}-\sum_{m+b\leqq k\leqq m+n+4}x_{k}^{2})-(x_{s}x_{4}-$

$\sum_{5\leqq k\leqq n+4}x_{k}x_{m+k})^{2}$ .
Then we have

COROLLARY 3.5. For the homogeneous convex cone $V$ defined by (3.2)

or (3.3), the sectional curvature of $V$ attains the values of both signs.

PROOF. From the correspondence between homogeneous convex cones
and T-algebras due to Vinberg [13] we can see that a simply transitive
subalgebra $t$ of $\mathfrak{g}(V)$ (cf. (1.3)) for the cone $V$ defined by (3.2) is bigraded
with subspaces $\mathfrak{U}_{ij}(1\leqq i\leqq j\leqq 4)$ satisfying $n_{12}=n_{13}=n_{23}=1$ , $n_{14}=l$ and
$n_{24}=n_{34}=0$ . Therefore $n_{1}=2+l/2>n_{2}=2$ . For the cone $V$ defined by
(3.3), $t$ is bigraded with subspaces $\mathfrak{U}_{lj}(1\leqq i\leqq j\leqq 3)$ such that $n_{12}=1$ ,
$n_{13}=m$ and $n_{23}=n$ . Thus, $n_{3}=1+m/2+n/2>n_{2}=1+1/2+n/2$ . $q$ .e.d.

\S 4. Homogeneous convex cones of non-positive sectional curvature.

In this section we will consider homogeneous convex cones of non-
positive sectional curvature and determine such cones of rank 3 or of
low dimensions by making use of the results obtained in the previous
sections.

4.1. Let $V$ be a homogeneous convex cone of rank $r$ and $l=$

$\sum_{1\leqq\leqq j\leqq r}\mathfrak{U}_{ij}$ a simply transitive R-triangular solvable subalgebra of $\mathfrak{g}(V)$

given by (1.3). If the sectional curvature of the canonical metric on $V$

is non-positive, then by Theorem 3.4 we have

(4.1) max $\{n_{l}, n_{k}\}\leqq n_{j}$
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for every triple $(i, j, k)$ satisfying the conditions $n_{ij}n_{jk}\neq 0$ and $1\leqq i<j<$

$k\leqq r$ .
As an application of Theorem 3.4 we have the following

THEOREM 4.1. If the sectional curvature of a homogeneous convex
cone of rank $r$ is non-positive and $n_{j}\neq 0$ for every $i,$ $j$ with $1\leqq i<j\leqq r$ ,
then $n_{i}$ is constant for $ 1\leqq i\leqq\gamma$ .

PROOF. Clearly the assertion holds for the case of $r\leqq 2$ . So, we
may assume that $r\geqq 3$ . By (4.1) we have max $\{n_{i}, n_{i+2}\}\leqq n_{i+1}$ for $ 1\leqq i\leqq$

$r-2$ . Therefore $n_{1},$ $n_{r}\leqq n_{2}=n_{3}=\cdots=n_{r-1}$ holds. On the other hand, by
(1.4) and (1.5) we have $2(n_{2}-n_{1})=\sum_{s\leqq i\leqq r}(n_{2i}-n_{1i})\leqq 0$ and $2(n_{r-1}-n_{r})=$

$\sum_{1\leq i\leq r-2}(n_{i\prime-1}-n_{ir})\leqq 0$ . Hence, it follows that $n_{1}=n_{2}$ and $n_{r-1}=n_{r}$ . $q$.e.d.
From the above theorem we have

COROLLARY 4.2. Let $V$ be a homogeneous convex cone of rank $r$ with
$\gamma\geqq 3$ satisfying the following condition: For every $j$ with $2\leqq j\leqq r$ , the
number $n_{ij}$ is positive and independent of $i(1\leqq i\leqq j-1)$ . Then the sec-
tional curvature of $V$ is non-positive if and only if $V$ is self-dual.

PROOF. In view of the well known result by Rothaus [8], we have
only to prove the necessary condition. Let us put $m_{\dot{f}}=n_{j}(1\leqq i\leqq j-1$ ,
$2\leqq j\leqq r)$ . Then by Theorem 4.1 we have $n_{i}=n_{i+1}(1\leqq i\leqq r-1)$ , and by
(1.5), $2(n_{i}-n_{+\iota})=(i-1)(m_{:}-m_{+1})=0$ for $2\leqq i\leqq r-1$ . Therefore $m_{2}=$

$m_{s}=\cdots=m_{f}$ and $n_{j}$ is constant independent of $i,$ $j$ with $1\leqq i<j\leqq r$ . $q$ .e.d.
Next we show the following

COROLLARY 4.3. Let $V$ be a homogeneous convex cone of rank $r$ with
$\gamma\geqq 3$ satisfyi$ng$ the following two conditions:

(1) $n_{ij}$ is positive and constant for every $i,$ $j$ with $1\leqq i<j\leqq r-1$ .
(2) The sectional curvature of $V$ is non-positive.

Then $V$ is self-dual or otherwise $n_{ir}$ is positive and constant for $ 1\leqq i\leqq$

$r-2,$ $n_{r-1t}=0$ and $(r-3)n_{1t}\leqq(r-2)n_{12}$ .
PROOF. If $n_{ir}=0$ for every $i$ with $1\leqq i\leqq r-1$ , then $V$ is the direct

product of a homogeneous self-dual cone of rank $r-1$ and the cone of
positive real numbers. So, by the condition (1.5) we may assume that
$n_{1t}=m>0$ . Now we consider the case of $n_{r-1t}\neq 0$ . Then from Theorem
4.1 it follows that the equalities $n_{1}=n_{2}=\cdots=n_{f}$ hold. By (1.4) we
have 2$n_{i}=2+(r-2)n_{12}+n_{lr}(1\leqq i\leqq r-1)$ and 2$n_{f}=2+n_{1t}+n_{2r}+\cdots+n_{r-1\prime}$ .
Therefore $n_{1t}=n_{2r}=\cdots=n_{t-1r}=m,$ $n_{12}=m$ and $V$ is self-dual. Next we
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consider the case of $n_{1r}=m>0,$ $n_{r-1r}=0$ and $r\geqq 4$ . Analogously as in the
proof of Theorem 4.1 we can show that the equalities $n_{1}=n_{2}=\cdots=n_{r-2}$

hold. By these equalities and the condition (1.5) we have $n_{ir}=m$ for $ 1\leqq i\leqq$

$r-2$ . By the condition $n_{r}\leqq n_{1}$ we have $(r-3)n_{1r}\leqq(r-2)n_{12}$ . We remark

that in the case of $r=3,$ $(r-3)n_{1r}<(r-2)n_{12}$ is trivially valid. $q$ .e.d.

Furthermore we have

COROLLARY 4.4. Let $V$ be a homogeneous convex cone of rank 3 satis-
fying the condition $n_{12}n_{23}\neq 0$ . Then the sectional curvature of $V$ is non-
positive if and only if $V$ is self-dual.

PROOF. By Theorem 4.1 we have $n_{1}=n_{2}=n_{3}$ . From the conditions
(1.4) and (1.5) it follows that $n_{12}=n_{23}=n_{13}$ . Hence, $V$ is self-dual. $q$.e.d.

4.2. Now we want to determine homogeneous convex cones of rank 3
with non-positive sectional curvature. Let us take positive integers $m,$ $n$

and define two irreducible homogeneous non-self-dual cones $V_{m,n}$ and
$V_{n}^{\prime}$ by the following:

(4.2) $V_{m,n}=\{x=(x_{1}, x_{2}, \cdots, x_{m+n+3})\in R^{m+n+3};x_{3}>0, P_{1}(x)>0, P_{2}(x)>0\}$ ,

where $P_{1}(x)=x_{1}x_{3}-\sum_{4\leqq k\leq m+3}x_{k}^{2},$ $P_{2}(x)=x_{2}x_{3}-\sum_{m+4\xi k\leq m+n+3}x_{k}^{2}$ , and

(4.3) $V_{m,n}^{\prime}=\{x=(x_{1}, x_{2}, \cdots, x_{m+n+3})\in R^{m+n+3};x_{3}>0, Q_{1}(x)>0, Q_{2}(x)>0\}$ ,

where $Q_{1}(x)=P_{1}(x),$ $Q_{2}(x)=x_{2}Q_{1}(x)-x_{3}\sum_{m+4\leqq k\leq m+n+3}x_{\dot{k}}^{?}$ . Then we have

PROPOSITION 4.5. Let $V$ be a homogeneous convex cone which is
linearly isomorphic to $V_{m,n}$ or $V_{m,n}^{\prime}$ defined above. Then the sectional
curvature of $V$ is non-positive.

PROOF. The convex cone $V_{m,n}^{\prime}$ defined by (4.3) is linearly isomorphic

to the dual cone of $V_{m,n}$ defined by (4.2) (cf. [13], [4]). Therefore these
cones are isometric (cf. [5], [9]). So, it is sufficient to prove the state-
ment for the case of (4.2). The simply transitive subalgebra $l$ of $\mathfrak{g}(V)$

given by (1.3) is bigraded with subspaces $\mathfrak{U}_{ij}(1\leqq i\leqq i\leqq 3)$ such that
$n_{12}=0,$ $n_{13}=m$ and $n_{23}=n$ . Put $i=1,$ $j=2$ and $k=r=3$ in Lemma 3.2.
Then by using the Bianchi’s identity and the formulas (1) $-(6)$ in Lemma
3.2, for every

$X=x_{1}e_{1}+x_{2}e_{2}+x_{3}e_{3}+x_{13}+x_{23}$ and $Y=y_{1}e_{1}+y_{2}e_{2}+y_{8}e_{a}+y_{13}+y_{23}$

in $l$ we have the following:

$R(e_{i}, x_{l3}, Y)=(y_{i}/4n_{i})x_{i3}-(y_{3}/4\sqrt{n_{i}n_{s})}x_{i3}+\langle x_{i3}, y_{i3}\rangle((1/4\sqrt{n_{i}n_{3})}e_{3}-(1/4n_{i})e_{i}),$
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$R(e_{\epsilon}, x_{\epsilon}, Y)=(y_{3}/4n_{\epsilon})x_{i\theta}-(y_{i}/4\sqrt{nn_{8})}x_{u}+\langle x,, y_{iS}\rangle((1/4\sqrt{n_{i}n,)}e-(1/4n_{8})e_{s})$ ,
$R(x_{i3}, y_{i3}, Y)=(1/4n+1\prime 4n_{s})(\langle x_{3}, y_{i3}\rangle y_{i3}-\langle y_{i3}, y_{3}\rangle x_{i\theta})$ $(i=1,2)$

and
$R$($x_{i8},$ $y$is’ $Y$ ) $=(1/4n_{8})(\langle x_{8}, y_{3}\rangle y_{jS}-\langle y_{\dot{g}3}, y_{\dot{g}3}\rangle x_{i3})$ $((i, j)=(1,2),$ $(2,1))$ .

For every element $a$ in $t$ , we put $\Vert a\Vert=\langle a, a\rangle^{1/2}$ . Then directly from the
above formulas we have the following:

$\langle R(x, Y)Y, X\rangle=--\Vert_{(1/2\sqrt{n_{2})}(x_{2}y_{23}-y_{2}x_{28})}^{(1/2\sqrt{n_{1}})(x_{1}y_{13}-y_{1}x_{13})}I_{(1/2\sqrt{n_{s}})(y_{s}x_{23}-x_{s}y_{28})||^{2}}^{(1/2\sqrt{n_{3}})(y_{s}x_{1S}-x_{\epsilon}y_{18})||^{2}}$

$-(1/4n_{1}+1/4n_{s})(||x_{13}||^{2}||y_{18}||^{2}-\langle x_{13}, y_{1},\rangle^{2})$

$-(1/4n_{2}+1/4n_{8})(||x_{23}||^{2}||y_{23}||^{2}-\langle x_{2S}, y_{23}\rangle^{2})$

$-(1/4n_{8})(||x_{18}||^{2}\Vert y_{23}||^{2}+\Vert x_{23}||^{2}||y_{18}||^{2}-2\langle x_{13}, y_{18}\rangle\langle x_{2l}, y_{u}\rangle)$ .
Therefore, $\langle R(X, Y)Y, X\rangle\leqq 0$ . $q$ . e.d.

Combining the above proposition with Corollary 4.4, we have
THEOREM 4.6. Let $V$ be a homogeneous convex cone of rank 3. Then

the sectional curvature of $V$ is non-positive if and only if $V$ is self-dualor linearly isomorphic to the one defined by (4.2) or (4.3).

PROOF. A reducible homogeneous convex cone of rank 3 is self-dual.
On the other hand, an irreducible homogeneous convex cone $V$ of rank 3
satisfies the condition $n_{12}n_{2S}\neq 0$ or $V$ is linearly isomorphic to $V_{*,n}$ or
$V_{m,n}^{\prime}$ (cf. [41, [13], [14]). If $n_{12}n_{2S}\neq 0$ , then by Corollary 4.4, $V$ is self-
dual. The sufficient conditions in the above statement follow from
Proposition 4.5 and a result by Rothaus [8]. q.e. $d$ .

4.3. For homogeneous convex cones of low dimensions we have the
following

THEOREM 4.7. Let $V$ be a homogeneous convex cone in $R$“ with
$n\leqq 6$ . Then the sectional curvature of $V$ is non-positive.

PROOF. If a homogeneous convex cone $V$ is linearly isomorphic to
the direct product of homogeneous convex cones $V_{1}$ and $V_{2}$ , then by
using (1.1) or the property (1.2) we can see that the Riemannian manifolds
(V, $g_{V}$) and $(V_{1}, g_{V_{1}})\times(V_{2}, g_{V_{2}})$ are isometric. On the other hand, from
the classification of homogeneous convex cones of low dimensions (cf.
[4]) it can be seen that $V$ is self-dual, or otherwise $V$ is linearly isomor-
phic to one of the following: $V_{1,1},$ $V_{1,1}^{\prime},$ $V_{2.1},$ $V_{2,1}^{\prime},$ $V_{1,1}\times R^{+},$ $V_{1.1}^{\prime}\times R^{+}$ .
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Thus, we obtain the above statement. $q.e.d$ .
From the above theorem, Proposition 2.1 and the Sasaki’s result

stated in \S 1, we have the following

COROLLARY 4.8. Let $S$ be a homogeneous hyperbolic affine hyper-
sphere in $R^{n}$ with $n\leqq 6$ . Then the sectional curvature of $S$ with respect
to the affine metric is non-positive.

Finally we would like to add corrections to the misstatements con-
tained in the note [11]. The above Theorem 4.7 is a correct form of
Theorem 2 in [11]. A homogeneous convex cone in Theorem 3 of [11]
should be read as an irreducible homogeneous convex cone.
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