TOKYO J. MATH. Vol. 5, No. 2, 1982

Examples of Simply Connected Compact Complex 3-folds

Masahide KATO

Sophia University

In this note, we shall construct a series of compact complex manifolds $\{M_n\}_{n=1,2,3,\cdots}$ of dimension 3 which are non-algebraic and nonkähler with the numerical characters $\pi_1(M_n)=0$, $\pi_2(M_n)=Z$, $b_3(M_n)=4n$, dim $H^1(M_n, \mathcal{O}) \ge n$, and dim $H^1(M_n, \Omega^1) \ge n$, where Ω^p is the sheaf of germs of holomorphic *p*-forms. These examples show, in particular, that, it is impossible to estimate $h^{p,q}(M) = \dim H^q(M, \Omega^p)$ of a compact complex manifold M in terms of its (p+q)-th Betti number, contrary to the case of dimension 2 or the case of kähler manifolds. To construct these examples, we employ a method of connecting two manifolds together to obtain a new one (see §§ 3 and 4).

The discussions with Mr. H. Tsuji was very stimulating, to whom the author would like to express his hearty thanks.

§1. We shall construct, in this section, a complex manifold X of dimension 3 with a projection

$$p: X \longrightarrow C$$

such that

(i) $X-p^{-1}(0)$ is biholomorphic to the product of a primary Hopf surface $S_{\alpha} = C^2 - \{0\}/\langle \alpha \rangle$ and $C^* = C - \{0\}$ with $\alpha = \exp 2\pi i \alpha$;

(ii) $p^{-1}(0)$ is simply connected, and is a union of two primary Hopf surfaces biholomorphic to $S_{\beta j} = C^2 - \{0\}/\langle \beta_j \rangle$ (j=0,1) with $\beta_j = \exp 2\pi i b_j$ which intersect each other normally in an elliptic curve, where $a \in C$ is a fixed constant satisfying $\operatorname{Im} a > 0$, $b_0 = a^{-1}$, and $b_1 = (1-a)^{-1}$. Let $a \in C$ be a fixed number such that $\operatorname{Im} a > 0$. Then $\alpha = \exp 2\pi i a$ satisfies $0 < |\alpha| < 1$. The multiplication $\xi \mapsto \alpha \xi$ for $\xi \in C^* = \{\xi \in C: \xi \neq 0\}$ defines a holomorphic automorphism of C^* and the quotient space $C = C^*/\langle \alpha \rangle$ is an elliptic curve. Denote by $[\xi]$ the point on C corresponding to $\xi \in C^*$. Take three copies W_j , j=1, 2, 3, of C^2 , on which we fix standard systems of coordinates (x_j, y_j) . Let $X_j = W_j \times C$, and let (x_j, y_j) :

Received July 28, 1981

 $[\xi_j]$ be their coordinates. We form the complex 3-fold X by patching X_j 's as follows:

$$X = \bigcup_{j=1}^{3} X_{j},$$

$$\begin{cases} x_{2} = x_{1}y_{1} \\ y_{2} = x_{1}^{-1} \\ [\xi_{2}] = [\xi_{1}x_{1}^{a}] \\ x_{1} = x_{3}^{-1}y_{3}^{-1} \\ y_{1} = x_{3} \\ [\xi_{1}] = [\xi_{3}x_{3}^{a}y_{8}] \end{cases} \quad \text{on} \quad X_{1} \cap X_{2}, \quad \begin{cases} x_{3} = x_{2}y_{2} \\ y_{3} = x_{2}^{-1} \\ y_{3} = x_{2}^{-1} \\ [\xi_{3}] = [\xi_{2}x_{2}x_{2}^{-a}] \end{cases}$$

$$\begin{cases} (1) \quad X_{1} \cap X_{2} \\ x_{3} = x_{2}^{-1} \\ [\xi_{3}] = [\xi_{2}x_{2}x_{2}^{-a}] \end{cases}$$

It is easy to check that the patching is well-defined. Let p be the holomorphic mapping of X onto C given by

(2)
$$p = \begin{cases} y_1 & \text{ on } X_1 \\ x_2 y_2 & \text{ on } X_2 \\ x_3 & \text{ on } X_3 \end{cases}$$

We shall show that the fibre space

 $p: X \longrightarrow C$

has the desired properties (i) and (ii), and see also some additional facts. Consider the following two 2-folds S_0 and S_1 in X:

(3)
$$S_0: y_1=0 \text{ in } X_1, \text{ and } x_2=0 \text{ in } X_2$$
$$S_1: y_2=0 \text{ in } X_2, \text{ and } x_3=0 \text{ in } X_3,$$

which are biholomorphic, respectively, to the primary Hopf surfaces

$$S_{\scriptscriptstyle\beta_i} = C^2 - \{0\}/\langle eta_j \rangle$$
, $j = 0, 1$,

where $\langle \beta_j \rangle$ is the infinite cyclic group generated by the holomorphic automorphism

In fact, let

 $\varphi_{\scriptscriptstyle 01} \colon S_{\scriptscriptstyle 0} \cap X_{\scriptscriptstyle 1} \longrightarrow S_{\scriptscriptstyle \beta_{\scriptscriptstyle 0}}$

be given by

COMPACT COMPLEX 3-FOLDS

 $\begin{cases} x = \xi_1^{a/1} \\ y = x_1 \xi_1^{1/a} \end{cases}$

and let

$$\varphi_{\scriptscriptstyle 02}:S_{\scriptscriptstyle 0}\cap X_{\scriptscriptstyle 2} \longrightarrow S_{{}_{\beta_{\scriptscriptstyle 0}}}$$

 $\begin{cases} x = y_2 \xi_2^{1/a} \\ y = \xi_2^{1/a} \end{cases}.$

be given by

Then

$$arphi_{\scriptscriptstyle 0} \!=\! egin{pmatrix} arphi_{\scriptscriptstyle 01} & ext{ on } S_{\scriptscriptstyle 0} \cap X_{\scriptscriptstyle 1} \ arphi_{\scriptscriptstyle 02} & ext{ on } S_{\scriptscriptstyle 0} \cap X_{\scriptscriptstyle 2} \end{cases}$$

gives a biholomorphic mapping of S_0 onto S_{β_0} . Similarly, let

$$\psi_{12}: S_1 \cap X_2 \longrightarrow S_{\beta_1}$$

be given by

$$\begin{cases} x = \xi_2^{1/(1-a)} \\ y = x_2 \xi_2^{1/(1-a)} \end{cases}$$

 $\psi_{13}: S_1 \cap X_3 \longrightarrow S_{\beta_1}$

and let

be given by

$$\begin{cases} x = y_3 \xi_3^{1/(1-a)} \\ y = \xi_3^{1/(1-a)} \end{cases}$$

Then

$$\psi_1 \!=\! egin{pmatrix} \psi_{12} & ext{ on } S_1 \cap X_2 \ \psi_{13} & ext{ on } S_1 \cap X_3 \end{cases}$$

gives a biholomorphic mapping of S_1 onto S_{β_1} . By (2) and (3), we see that $p^{-1}(0) = S_0 \cup S_1$. Since $S_0 \cap S_1$ is in X_2 and $S_0 \cup S_1$ is given in X_2 by $x_2y_2=0$, S_0 and S_1 intersect with each other normally in the elliptic curve

$$\{(x_2, y_2: [\xi_2]): x_2 = y_2 = 0\}$$

which is biholomorphic to $C^*/\langle \alpha \rangle$. Note that $[\xi] \mapsto [\xi^{b_j}]$ gives a biholomorphic imap of $C^*/\langle \alpha \rangle$ to $C^*/\langle \beta_j \rangle$. Thus we see that X has the property (ii) when we show the following.

PROPOSITION 1. $p^{-1}(0)$ is simply connected.

PROOF. Since $\pi_1(p^{-1}(0))$ is generated by the elements of $\pi_1(S_0 \cap S_1) \cong \mathbb{Z} \oplus \mathbb{Z}$, it is enough to show that each generator of $\pi_1(S_0 \cap S_1)$ is null-homotopic in $\pi_1(p^{-1}(0))$. Let s and t be real numbers such that $0 \le s \le 1$, and $0 \le t \le 1$. Put

$$\gamma_{s}: [0, 1] \longrightarrow X_{2} , \qquad \theta_{1} \in [0, 1] ,$$

$$\begin{cases} x_{2} = 0 \\ y_{2} = se^{-2\pi i\theta_{1}} \\ [\xi_{2}] = [e^{2\pi ia\theta_{1}}] \end{cases}$$

and

$$\delta_i: [0, 1] \longrightarrow X_2$$
, $\theta_2 \in [0, 1]$,
 $\begin{cases} x_2 = t e^{-2\pi i \theta_2} \\ y_2 = 0 \\ [\xi_2] = [e^{2\pi i (1-a) \theta_2}] \end{cases}$.

Then we see easily the following:

$$\gamma_{\mathfrak{s}}([0, 1]) \subset S_0 \text{ for all } \mathfrak{s}, \text{ and } \gamma_0([0, 1]) \subset S_0 \cap S_1,$$

 $\delta_t([0, 1]) \subset S_1 \text{ for all } t, \text{ and } \delta_0([0, 1]) \subset S_0 \cap S_1.$

Moreover γ_0 and δ_0 generate $\pi_1(S_0 \cap S_1)$. To prove the proposition, it is enough to show that γ_1 is null-homotopic in S_0 , and that δ_1 is null-homotopic in S_1 . By (1), γ_1 is given in X_1 by

$$\begin{cases} x_1 = e^{2\pi i \theta_1} \\ y_1 = 0 \\ [\xi_1] = [1] . \end{cases}$$

Hence γ_1 is null-homotopic in $S_0 \cap X_1 \subset S_0$. Similarly, δ_1 is given in X_3 by

$$\begin{cases} x_3 = 0 \\ y_3 = e^{2\pi i \theta_2} \\ [\xi_3] = [1] \end{cases}$$

Hence δ_1 is null-homotopic in $S_1 \cap X_3 \subset S_1$.

Let

$$W = \bigcup_{j=1}^{3} W_{j}$$

Q.E.D.

be the complex 2-fold defined by patching W_i 's as follows:

$$egin{aligned} & (x_2\!=\!x_1y_1 \ y_2\!=\!x_1^{-1} \ x_1\!=\!x_2^{-1}y_3^{-1} \ y_1\!=\!x_3 \ y_1\!=\!x_2 \ y_2\!=\!x_2^{-1} \ y_3\!=\!x_2^{-1} \ y_3\!=\!x_2^{-1} \ y_1\!=\!x_3 \ y_1 \, . \end{aligned}$$
 on $W_2\cap W_3$,

Then the projections

$$(x_j, y_j: [\xi_j]) \longmapsto (x_j, y_j)$$

define a projection

$$\pi_{\mathbf{X}}: X \longrightarrow W$$
.

Note that X becomes a complex analytic fibre bundle over W with the fibre $C^*/\langle \alpha \rangle$ by means of this projection. Let t be the holomorphic mapping of W onto C given by

$$t = egin{pmatrix} y_1 & ext{on } W_1 \ x_2 y_2 & ext{on } W_2 \ x_3 & ext{on } W_3 \ . \end{cases}$$

Then we have the commutative diagram of projections:

Take the primary Hopf surface

$$S_{\alpha} = C^2 - \{0\}/\langle \alpha \rangle$$
 ,

which is defined by identifying $(x, y) \in C^2 - \{0\}$ with $(\alpha x, \alpha y) \in C^2 - \{0\}$, where $\alpha = \exp 2\pi i a$. Let $[x, y] \in S$ denote the point corresponding to $(x, y) \in C^2 - \{0\}$. Put

$$Y = S_{\alpha} \times C$$

and consider the set

$$E = \{([x, y], s) \in Y: y = s = 0\}$$
,

which is biholomorphic to $C^*/\langle \alpha \rangle$. Let

$$q: Y \longrightarrow C$$

be the projection to the 2nd component. Take two copies Z_j , j=1, 2, of C^2 , and we form a complex 2-fold

$$Z = \bigcup_{j=1}^{2} Z_{j}$$

as follows. Letting (u_j, v_j) be a standard system of coordinates on Z_j , we identify (u_1, v_1) with (u_2, v_2) , if and only if

$$\left\{ \begin{array}{c}
 u_1 = v_2 \\
 v_1 = u_2^{-1}
 \end{array} \right.$$

There is a holomorphic projection

$$\pi_{\mathbf{Y}}: \mathbf{Y} \longrightarrow \mathbf{Z}$$

defined as follows. Let

$$Y_1 = \{([x, y], s) \in Y : x \neq 0\}$$

$$Y_2 = \{([x, y], s) \in Y : y \neq 0\}$$

Then π_r is given by

$$\pi_{\mathbf{Y}}|Y_1:u_1=s, \quad v_1=x^{-1}y, \ \pi_{\mathbf{Y}}|Y_2:u_2=xy^{-1}, v_2=s.$$

Note that Y becomes a complex analytic fibre bundle over Z with the fibre $C^*/\langle \alpha \rangle$ by means of this projection. There is also a holomorphic mapping

$$\mu': W \longrightarrow Z$$

given by

$$\begin{cases} u_1 = y_1 \\ v_1 = x_1 y_1 \end{cases} \text{ on } W_1, \quad \begin{cases} u_1 = x_2 y_2 \\ v_1 = x_2 \end{cases} \text{ on } W_2, \quad \begin{cases} u_2 = y_3 \\ v_2 = x_3 \end{cases} \text{ on } W_3. \end{cases}$$

Then μ is the blowing-down of W which contracts

$$l = \{(x_1, y_1) \in W_1: y_1 = 0\} \cup \{(x_2, y_2) \in W_2: x_2 = 0\}$$

to the point

$$P = \{(u_1, v_1) \in Z_1 : u_1 = v_1 = 0\}$$
.

Now we shall prove the following proposition, from which the property (i) of $p: X \rightarrow C$ follows easily.

PROPOSITION 2. There is a biholomorphic mapping

$$\Psi': X - S_0 \longrightarrow Y - E$$

which makes the diagram

COMPACT COMPLEX 3-FOLDS

commutative.

PROOF. Define Ψ' as follows:

$$arpsilon'|X_1: egin{pmatrix} x = \xi_1 y_1^{-a} \ y = \xi_1 x_1 y_1 y_1^{-a} \ s = y_1 \ , \ x = \xi_2 x_2^{-a} \ y = \xi_2 x_2 x_2^{-a} \ s = x_2 y_2 \ , \ arpsilon'|X_3: egin{pmatrix} x = \xi_3 y_3 \ y = \xi_3 \ s = x_3 \ . \ \end{pmatrix}$$

It is easy to see that Ψ' is well-defined and gives the desired biholomorphic mapping. Q.E.D

§ 2. We shall construct a compact complex 3-fold M_1 with $\pi_1(M_1) = 0$, $\pi_2(M_1) = \mathbb{Z}$, and $b_s(M_1) = 4$. Let \tilde{V} be the vector bundle of rank 2 defined by the Whitney sum $\mathcal{O}_{P^1}(1) \bigoplus \mathcal{O}_{P^1}(1)$ of two line bundles of degree 1 on \mathbb{P}^1 . Take two copies \tilde{V}_1 , \tilde{V}_2 of \mathbb{C}^3 . Let (ξ_j, ζ_j, s_j) be a standard system of coordinates on \tilde{V}_j . Then \tilde{V} is obtained by taking the union $\tilde{V}_1 \cup \tilde{V}_2$ identifying (ξ_1, ζ_1, s_1) with (ξ_2, ζ_2, s_2) , if and only if

$$\begin{cases} \xi_1 = \xi_2 s_2^{-1} \\ \zeta_1 = \zeta_2 s_2^{-1} \\ s_1 = s_2^{-1} \end{cases}.$$

Put $l_0 = \{\xi_1 = \zeta_1 = 0\} \cup \{\xi_2 = \zeta_2 = 0\}$ and $\widetilde{V}^* = \widetilde{V} - l_0$. Let α be a holomorphic automorphism of \widetilde{V}^* defined by

$$(\xi_j, \zeta_j, s_j) \longmapsto (\alpha \xi_j, \alpha \zeta_j, s_j) \quad \text{on } V^* \cap V_j,$$

j = 1, 2. Put

$$M = \tilde{V}^* / \langle \alpha \rangle$$
.

Then the canonical projection $\tilde{\pi}: \tilde{V} \rightarrow P^1$ induces a projection

$$\pi: M \longrightarrow P^1$$

and define a structure on M of a complex analytic fibre bundle over P^1 with the fibre S_{α} . Now we shall modify M to obtain M_1 . Put $V_j = (\tilde{V}_j \cap \tilde{V})/\langle \alpha \rangle$ (j=1,2). Obviously, V_j , j=1,2, are subdomains in M, and $M = V_1 \cup V_2$. We replace V_1 by X constructed in §1 as follows. Let

 $\Phi_1: V_1 \longrightarrow Y = S_a \times C$

be the natural isomorphism induced by

$$(\xi_1, \zeta_1, \mathfrak{s}_1) \longmapsto ([\xi_1, \zeta_1], \mathfrak{s}_1)$$
.

We have another isomorphism

$$\Phi: X - p^{-1}(0) \longrightarrow S_{\alpha} \times C^* \subset Y$$
 ,

which is given by

$$\Phi = \Psi'|(X - p^{-1}(0))$$
.

Therefore we can define a compact complex 3-fold

 $M_1 = X \cup V_2$

by identifying $x \in V_1 - \pi^{-1}(0) = V_1 \cap V_2$ with $\Phi^{-1} \circ \Phi_1(x) \in X - p^{-1}(0)$, where $0 \in P^1$ indicates the point $s_1 = 0$. Then M_1 is a complex analytic fibre space over P^1 with the projection

$$p_1 = \begin{cases} p & \text{on } X \\ \pi & \text{on } V_2 \end{cases}$$

Note that, for $s \in P^1$, $s \neq 0$, $p_1^{-1}(s)$ is biholomorphic to S_{α} and $p_1^{-1}(0)$ is biholomorphic to $S_0 \cup S_1$.

PROPOSITION 3.

(i) $\pi_1(M_1)=0$, (ii) $\pi_2(M_1)=Z$, (iii) $b_3(M_1)=4$, in particular, the Euler number $e(M_1)=0$.

PROOF. (i) It is clear that

$$i_*: \pi_1(M - \pi^{-1}(0)) \longrightarrow \pi_1(M_1)$$

is surjective, where i_* is induced by the natural inclusion. Note that $\pi_1(M-\pi^{-1}(0))\cong Z$ is generated by a closed path contained in a fibre of π . Since $p_1^{-1}(0)$ is simply connected by Proposition 1, we infer that i_*

is a zero mapping. Hence $\pi_1(M_1)=0$. (ii) Since $\pi_1(M_1)=0$, it is enough to show that $H_2(M_1, \mathbb{Z})=\mathbb{Z}$ by the Hurewicz isomorphism theorem. Let Δ be a small disc around $0 \in \mathbb{P}^1$. Then we have the Mayer-Vietoris sequence with \mathbb{Z} -coefficients:

First we claim that $H_2(p_1^{-1}(\varDelta))=0$. Since $p_1^{-1}(0)=p^{-1}(0)$ is a deformation retract of $p_1^{-1}(\varDelta)$, it is enough to show that $H_2(p^{-1}(0))=0$. Recall that $p^{-1}(0)=S_0\cup S_1$. We consider the Mayer-Vietoris sequence with Z-coefficients

$$\cdots \longrightarrow H_2(S_0) \oplus H_2(S_1) \longrightarrow H_2(p^{-1}(0)) \longrightarrow H_1(S_0 \cap S_1)$$

 $\longrightarrow H_1(S_0) \oplus H_2(S_1) \longrightarrow \cdots$

By the argument in the proof of Proposition 1, we see that

$$H_1(S_0 \cap S_1) \longrightarrow H_1(S_0) \oplus H_1(S_1)$$

is bijective. Moreover, it is clear that $H_2(S_j)=0$, j=0, 1. Therefore we have $H_2(p^{-1}(0))=0$. Next we claim that the kernel of

$$i_1: H_1(p_1^{-1}(\partial \Delta)) \longrightarrow H_1(M_1 - p_1^{-1}(0))$$

is isomorphic to Z. Note that, by Proposition 2,

 $p_1^{-1}(\partial \Delta) \cong S^1 \times S_a \cong S^1 \times S^3$

and

$$(5) M_1 - p_1^{-1}(0) \cong M - \pi^{-1}(0) \cong C \times S_{\alpha} \cong \mathbb{R}^2 \times S^1 \times S^3$$

Therefore the 1-cycle γ_b in $p_1^{-1}(\partial \Delta)$ defined by $S^1 \times \{q\}$, $q \in S_{\alpha}$, is a free basis of the kernel of i_1 . Hence $H_2(M_1) = \mathbb{Z}$ follows from (5) and (4). (iii) Since the Euler number $e(M_1)$ is equal to that of M, we have $b_3(M_1) = 4$. Q.E.D.

Take two copies Z', Z'' of Z. Let (u'_j, v'_j) (resp. (u''_j, v''_j)) be the local coordinates on Z' (resp. Z'') corresponding to (u_j, v_j) on Z. We form the union

$$R_1 = Z' \cup W$$

by the identifications:

$$(u'_1, v'_1) = (x_1, y_1) \text{ iff } x_1 = u'_1 v'_1, \qquad y_1 = u'_1^{-1}, \\ (u'_1, v'_1) = (x_2, y_2) \text{ iff } x_2 = v'_1, \qquad y_2 = u'_1^{-1} v'_1^{-1}, \\ (u'_1, v'_1) = (x_8, y_8) \text{ iff } x_3 = u'_1^{-1}, \qquad y_8 = v'_1^{-1}, \\ (u'_2, v'_2) = (x_1, y_1) \text{ iff } x_1 = u'_2^{-1} v'_2, \qquad y_1 = v'_2^{-1}, \\ (u'_2, v'_2) = (x_2, y_2) \text{ iff } x_2 = u'_2^{-1}, \qquad y_2 = u'_2 v'_2^{-1}, \\ (u'_2, v'_2) = (x_8, y_8) \text{ iff } x_8 = v'_2^{-1}, \qquad y_8 = u'_2.$$

Let

 $\pi_{v_2}: V_2 \longrightarrow Z'$

be the holomorphic mapping given by

Define

 $\pi_{\mathcal{M}_1}: M_1 \longrightarrow R_1$

by

$$\pi_{M_1} = \begin{cases} \pi_{\mathbf{X}} & \text{ on } X \\ \pi_{V_2} & \text{ on } V_2 \end{cases}.$$

Then M_1 is a complex analytic fibre bundle over R_1 with the fibre

 $C^*/\langle \alpha \rangle$ and with the projection $\pi_{{}_{\mathcal{M}_1}}$. Similarly we form the union

$$R = Z'' \cup Z$$

by the identifications:

$$(u_1'', v_1'') = (u_1, v_1)$$
 iff $u_1'' u_1 = 1$, $v_1'' = v_1$,
 $(u_1'', v_1'') = (u_2, v_2)$ iff $u_1'' u_2 = 1$, $v_1'' u_2 = 1$,
 $(u_2'', v_2'') = (u_1, v_1)$ iff $u_2'' v_1 = 1$, $v_2'' u_1 = 1$,
 $(u_2'', v_2'') = (u_2, v_2)$ iff $u_2'' = u_2$, $v_2'' v_2 = 1$.

Clearly, R is biholomorphic to $P^1 \times P^1$ and R_1 is the blowing-up of R at $P = \{u_1 = v_1 = 0\}$. Let $\mu: R_1 \rightarrow R$ be the blowing-up. There is a projection

$$\pi_{\mathcal{M}}: M \longrightarrow R$$

given by

$$\pi_{M} | V_{1}: \begin{cases} u_{1} = s_{1}, v_{1} = \zeta_{1}\xi_{1}^{-1}, & \text{if } \xi_{1} \neq 0, \\ v_{2} = s_{1}, u_{2} = \zeta_{1}^{-1}\xi_{1}, & \text{if } \zeta_{1} \neq 0, \end{cases}$$
$$\pi_{M} | V_{2}: \begin{cases} u_{1}'' = s_{2}, v_{1}'' = \zeta_{2}\xi_{2}^{-1}, & \text{if } \xi_{2} \neq 0, \\ v_{2}'' = s_{2}, u_{2}'' = \zeta_{2}^{-1}\xi_{2}, & \text{if } \zeta_{2} \neq 0. \end{cases}$$

The following proposition is clear from the above construction.

PROPOSITION 4. The biholomorphic mapping

$$\Psi': X - S_0 \longrightarrow Y - E$$

of Proposition 2 extends naturally to a biholomorphic mapping

$$\Psi: M_1 - S_0 \longrightarrow M - E$$
,

which makes the diagram

$$\begin{array}{c} M_1 - S_0 \xrightarrow{\Psi} M - E \\ \downarrow^{\pi_{\underline{M}_1}} & \downarrow^{\pi_{\underline{M}_1}} \\ R_1 - l \xrightarrow{\mu} R - P \end{array}$$

commutative.

PROPOSITION 5. There are non-singular rational curves l_q in M_1 , parametrized by $q = \begin{pmatrix} q_1 & r_1 \\ q_2 & r_2 \end{pmatrix} \in GL(2, \mathbb{C})$ with $q_2 \neq 0$, such that each l_q is a section of p_1 : $M_1 \rightarrow \mathbb{P}^1$, and has a neighborhood isomorphic to that of a section of $\tilde{V} = \mathscr{O}_{\mathbb{P}^1}(1) \bigoplus \mathscr{O}_{\mathbb{P}^1}(1)$.

PROOF. For each $q = \begin{pmatrix} q_1 & r_1 \\ q_2 & r_2 \end{pmatrix} \in GL(2, \mathbb{C})$ with $q_2 \neq 0$, we define the section \tilde{l}_q of $\tilde{V}^* = \tilde{V} - l_0$ by

$$\begin{cases} \xi_1 = q_1 + r_1 s_1 \\ \zeta_1 = q_2 + r_2 s_1 \end{cases} \quad \text{on} \quad \widetilde{V}_1 \text{, and} \quad \begin{cases} \xi_2 = q_1 s_2 + r_1 \\ \zeta_2 = q_2 s_2 + r_2 \end{cases} \quad \text{on} \quad \widetilde{V}_2 \text{.} \end{cases}$$

Then the image l'_q of \tilde{l}_q in M does not intersect with E, and has a neighborhood in M-E which is biholomorphic to a section of \tilde{V} . Put $l_q = \Psi^{-1}(l'_q)$. Then the proposition follows from Proposition 4. Q.E.D.

§3. In this section we shall describe a method of connecting two compact complex 3-folds to obtain a new compact complex 3-fold. Let P^{s} be a complex projective space of dimension 3 and $[z_{0}: z_{1}: z_{2}: z_{3}]$ be a system of homogeneous coordinates. We define a holomorphic involution

$$\sigma: P^{\mathfrak{s}} \longrightarrow P^{\mathfrak{s}}$$

by

$$\sigma([z_0: z_1: z_2: z_3]) = [z_2: z_3: z_0: z_1]$$

Let l and l_{∞} be skew lines in P^{3} given by

$$l: z_0 = z_1 = 0$$
,

and

$$l_{\infty}: z_2 = z_3 = 0$$
.

It is easy to check that $\sigma(l) = l_{\infty}$. For any r > 0, and $\varepsilon > 1$, we define the following subsets in P^{s} :

$$egin{aligned} &U_r \!=\! \{ [z_0\!\!: z_1\!\!: z_2\!\!: z_3] \in I\!\!P^3\!\!: |z_9|^2 \!+\! |z_1|^2 \!<\! r(|z_2|^2 \!+\! |z_3|^2) \} \ , \ &U \!=\! U_1 \ , \ &N(arepsilon) \!=\! U_{m{\epsilon}} \!-\! [\,U_{1/arepsilon}] \ , \end{aligned}$$

and

$$\sum = \partial U$$

= {[$z_0: z_1: z_2: z_3$] $\in P^3: |z_0|^2 + |z_1|^2 = |z_2|^2 + |z_3|^2$ }

Then U_r and $N(\varepsilon)$ are connected and open, and \sum is a non-singular real hypersurface in P^3 . It is easy to show the following two lemmas.

LEMMA 1. For any r>0, U_r is biholomorphic to U, and $\lim_{r\to 0} U_r = l$.

LEMMA 2. For any $\varepsilon > 1$, we have

(i) $\sum \subset N(\varepsilon)$, (ii) $\sigma(\sum) = \sum$, (iii) $\sigma(N(\varepsilon)) = N(\varepsilon)$, and (iv) $\sigma(U) = P^{\varepsilon} - [U]$.

A compact complex 3-fold M is said to be of type Class L if and only if M contains a subdomain which is biholomorphic to $N(\varepsilon)$ for some $\varepsilon > 1$.

Let

$$F: \widetilde{V} \longrightarrow P^{*} - l_{\infty}$$

be the biholomorphic mapping defined by

$$F | V_1: (\xi_1, \zeta_1, s_1) \longmapsto [\xi_1: \zeta_1: s_1: 1]$$

and

$$F \mid V_2: (\xi_2, \zeta_2, s_2) \longmapsto [\xi_2: \zeta_2: 1: s_2] .$$

From this we have

LEMMA 3. Each section of \tilde{V} is mapped by F to a projective line in P^3 outside l_{∞} .

For any $\varepsilon > 1$, $N(\varepsilon)$ contains (infinitely many) projective lines in P^{s} . Therefore, by Lemma 1, we have

LEMMA 4. Suppose that M is of Class L. Then there is a nonsingular rational curve C and its neighborhood in M which is biholomorphic to U_{ε} for some $\varepsilon > 1$.

Suppose that M_1 and M_2 are of Class L. For some $\varepsilon > 1$, there are open embeddings

$$i_{\nu}: U_{\bullet} \longrightarrow M_{\nu} \ (\nu = 1, 2)$$
.

Let

$$M_{\nu}^{*} = M_{\nu} - [i_{\nu}(U_{1/\epsilon})]$$

and form the union

 $M_1^* \cup M_2^*$

by identifying a point $x_1 \in i_1(N(\varepsilon)) \subset M_1^*$ with the point $x_2 = i_2 \circ \sigma \circ i_1^{-1}(x_1) \in M_2^*$.

LEMMA 5. $M_1^* \cup M_2^*$ is a compact complex 3-fold.

Proof is easy.

REMARK 1. If $M_1 = M_2 = P^3$ and i_{ν} are the natural inclusions, then $M_1^* \cup M_2^* = P^3$.

We denote $M_1^* \cup M_2^*$ by $M(M_1, M_2, i_1, i_2)$. It is clear that $M(M_1, M_2, i_1, i_2)$ is defined independently of the choice of ε , but may depend on the choice of i_{ν} 's. The process to construct $M(M_1, M_2, i_1, i_2)$ out of M_{ν} 's and i_{ν} 's is called a *connecting operation*. Note that $M(M_1, M_2, i_1, i_2)$ is also of Class L.

§4. By means of connecting operations, we shall construct inductively a series of compact complex 3-folds $\{M_n\}_{n=1,2,3,\cdots}$ stated in the beginning of this note. Let M_1 be the manifold constructed in §2, which is of Class L by Proposition 5. To construct M_2 , we take two copies of M_1 , say M_1 and M'_1 . In the following, A' indicates a subset in M'_1 corresponding to A in M_1 . Let l_{q_1} (resp. l'_{q_1}) be one of the nonsingular rational curves in M_1 (resp. M'_1) described in Proposition 5. Let L_1 (resp. L'_1) be a neighborhood of l_{q_1} (resp. l'_{q_1}) in $M_1 - S_0$ (resp. $M'_1 - S'_0$) which is biholomorphic to U_{ϵ_1} for some $\epsilon_1 > 1$. This is possible by Lemma 1. Let $i_1: U_{\epsilon_1} \to L_1 \subset M_1$ (resp. $i'_1: U_{\epsilon_1} \to L'_1 \subset M'_1$) be an isomorphism. By the connecting operation, we obtain a compact complex 3-fold

$$M_2 = M(M_1, M_1', i_1, i_1')$$
.

Note that M_2 contains at least two Hopf surfaces H_1 and H_2 , corresponding to S_0 and S'_0 in M_1 and M'_1 , respectively. Now we regard $i_1(N(\varepsilon_1))$ as a subdomain in M_2 . In $i_1(N(\varepsilon_1))$, there are a non-singular rational curve l_{q_2} and its neighborhood L_2 which is biholomorphic to that of a section of \tilde{V} . Let $i_2: U_{i_2} \rightarrow L_2$ $(\subset i_1(N(\varepsilon_1)) \subset M_2)$ be an isomorphism, where we can assume that $1 < \varepsilon_2 \le \varepsilon_1$. By using $i_1|U_{i_2}$ and i_2 , we can connect M_1 and M_2 , and obtain

$$M_3 = M(M_1, M_2, i_1 | U_{i_2}, i_2)$$
.

Since $i_1(N(\varepsilon_1)) \subset M_2 - (H_1 \cup H_2)$, M_3 contains at least 3 Hopf surfaces H_1 , H_2 , and H_3 which correspond, respectively, to H_1 and H_2 in M_2 , and S_0 in M_1 . Now again, regarding $i_1(N(\varepsilon_2))$ as a subdomain in M_3 , we can repeat the above step, and we have inductively a series $\{M_n\}_{n=1,2,\cdots}$

$$M_n = M(M_1, M_{n-1}, i_1 | U_{i_{n-1}}, i_{n-1})$$

of compact complex 3-folds. M_n contains at least n Hopf surfaces, one of which is from M_1 and the others are from M_{n-1} .

THEOREM. For all $n \ge 1$,

(i) M_n is non-algebraic and non-kähler,

- (ii) $\pi_1(M_n)=0, \ \pi_2(M_n)=Z, \ and \ b_3(M_n)=4n,$
- (iii) dim $H^1(M_n, \mathscr{O}) \ge n$,
- (iv) dim $H^1(M_n, \Omega^1) \ge n$.

PROOF. (i) is clear, since M_n contains Hopf surfaces. (ii) By the Mayer-Vietoris sequence with Z-coefficients

$$(6) \qquad \cdots \longrightarrow H_2(M_1^{n-1} \cap M_{n-1}^*) \xrightarrow{i_2 \oplus j_2} H_2(M_1^{n-1}) \oplus H_2(M_{n-1}^*) \longrightarrow H_2(M_n) \\ \longrightarrow H_1(M_1^{n-1} \cap M_{n-1}^*) \longrightarrow \cdots ,$$

· •:

where

$$M_1^{n-1} = M_1 - [i_1(U_{1/\epsilon_{n-1}})]$$
 ,

and

$$M_{n-1}^* = M_{n-1} - [i_{n-1}(U_{1/\epsilon_{n-1}})]$$
 ,

we have

 $H_1(M_1^{n-1}\cap M_{n-1}^*)=0$,

and

 $H_2(M_1^{n-1}\cap M_{n-1}^{*})=Z$,

since $M_1^{n-1} \cap M_{n-1}^*$ is homotopy equivalent to $S^2 \times S^3$. Note that l_{q_n} generates both $H_2(M_1^{n-1} \cap M_{n-1}^*)$ and $H_2(M_1^{n-1})$. Hence

$$i_2: H_2(M_1^{n-1} \cap M_{n-1}^*) \longrightarrow H_2(M_1^{n-1})$$

is bijective. Therefore, from (6), we have

By the exact sequence

$$\cdots \longrightarrow H_3(M_{n-1}, M_{n-1}^*) \longrightarrow H_2(M_{n-1}^*) \longrightarrow H_2(M_{n-1})$$
$$\longrightarrow H_2(M_{n-1}, M_{n-1}^*) \longrightarrow \cdots,$$

and the duality

$$H_{3}(M_{n-1}, M_{n-1}^{*}) = H^{3}(l_{q_{n-1}}) = 0$$
 ,

and

$$H_2(M_{n-1}, M_{n-1}^*) = H^4(l_{q_{n-1}}) = 0$$
 ,

we have

$$H_2(M_{n-1}^*) = H_2(M_{n-1})$$
.

Hence, by (7) and the induction assumption, we obtain

$$H_2(M_n) = H_2(M_{n-1}) = Z$$
.

Since $\pi_1(M_n)=0$ is clear, $\pi_2(M_n)=Z$ follows from the Hurewicz isomorphism theorem. Since $e(M_n)=e(M_{n-1})+e(M_1)-4=e(M_{n-1})-4=-4(n-1)$ by the induction assumption and Proposition 3, we have $b_3(M_n)=2+2b_2(M_n)-e(M_n)=4n$.

To prove (iii) of the theorem, we shall make some preparations. Recall that

$$M_n^* = M_n - [i_n(U_{1/\epsilon_n})]$$
,
 $M_1^n = M_1 - [i_1(U_{1/\epsilon_n})]$,

and that

 $M_{n+1} = M_n^* \cup M_1^n$.

Let

$$f_n^1: M_n^* \longrightarrow M_{n+1}$$
, and
 $f_n^2: M_1^n \longrightarrow M_{n+1}$

be the natural inclusions. Then we have

$$s_n:=(f_n^2\circ i_1)|N(arepsilon_n)=(f_n^1\circ i_n\circ\sigma)|N(arepsilon_n)|$$

which defines an embedding

 $N(\varepsilon_n) \longrightarrow M_{n+1}$.

Let

$$\rho_n: N(\varepsilon_n) \longrightarrow M_n^*,$$

 $\sigma_n: M_n^* \longrightarrow M_n, \text{ and }$

 $\tau_n: N(\varepsilon_n) \longrightarrow M_n$

be the open embeddings defined, respectively, by

 $ho_n = (i_n \circ \sigma) | N(\varepsilon_n)$, $\sigma_n =$ the natural inclusion, and $\tau_n = \sigma_n \circ \rho_n$.

Let

$$t_n: N(\varepsilon_{n+1}) \longrightarrow N(\varepsilon_n)$$

be the open embedding defined by

$$t_n = s_n^{-1} \circ \tau_{n+1} = s_n^{-1} \circ (i_{n+1} \circ \sigma | N(\varepsilon_{n+1}))$$

FIGURE M_{n+1}

LEMMA 6. σ_n^* : $H^1(M_n, \mathcal{O}) \to H^1(M_n^*, \mathcal{O})$ is injective for all $n \ge 1$.

PROOF. Since the homomorphism

$$r_1: H^1(M_n - l_{q_n}, \mathcal{O}) \longrightarrow H^1(M_n^*, \mathcal{O})$$

induced by the natural inclusion is injective by Andreotti-Siu [1, Proposition 1.2], it is enough to show that

$$(8) H^1_{l_{q_n}}(M_n, \mathcal{O}) = 0.$$

Since l_{q_n} has a neighborhood in M_n which is biholomorphic to that of a projective line P^1 in P^3 , we have the exact sequence

$$\cdots \longrightarrow H^{0}(\mathbf{P}^{3} - \mathbf{P}^{1}, \mathcal{O}) \longrightarrow H^{0}(\mathbf{P}^{3}, \mathcal{O}) \longrightarrow H^{1}_{l_{q_{n}}}(M_{n}, \mathcal{O})$$
$$\longrightarrow H^{1}(\mathbf{P}^{3}, \mathcal{O}) \longrightarrow \cdots$$

From this sequence, (8) follows easily.

Q.E.D.

Let

$$L_1 = R^1(\pi_{M_1})_* \mathcal{O}_{M_1}$$
, and
 $L = R^1(\pi_M)_* \mathcal{O}_M$.

Then we have

LEMMA 7. $L_1 = \mathcal{O}_{R_1}$, and $L = \mathcal{O}_R$.

PROOF. First we consider L_1 . By a theorem of Grauert, L_1 is a vector bundle of rank $1 = \dim H^1(\mathbb{C}^*/\langle \alpha \rangle, \mathscr{O})$. Recall that R_1 is the blowing-up of R, $\mu: R_1 \to R$, and that $R \cong \mathbb{P}^1 \times \mathbb{P}^1$. Let E_1 be the proper inverse image of $\mathbb{P}^1 \times \{0\} \subset R$, and E_2 the proper inverse image of $\{0\} \times \mathbb{P}^1 \subset R$. Then $H^2(R_1, \mathbb{Z})$ is generated by E_1, E_2 , and the exceptional curve $l = \mu^{-1}(P)$. Note that $H^1(R_1, \mathscr{O}) = 0$. Hence, to prove the lemma, it is enough to show that the restrictions of L_1 to E_1, E_2 , and l are trivial. But these are consequences of the fact that $\pi_{\mathbb{M}_1}^{-1}(E_1)$, $\pi_{\mathbb{M}_1}^{-1}(E_2)$, and $\pi_{\mathbb{M}_1}^{-1}(l)$ are all elliptic bundles with vanishing Chern numbers, by virtue of a result of Kodaira [3, Theorem 12]. By a similar argument, $L = \mathscr{O}_R$ can be proved easily. Q.E.D.

LEMMA 8. dim $H^1(M, \mathcal{O}) = \dim H^1(M_1, \mathcal{O}) = 1$.

PROOF. This follows easily from Lemma 7 by using Leray's spectral sequences applied to the fibre bundles $\pi_{\mathcal{M}}$: $M \to R$, and $\pi_{\mathcal{M}}$: $M_1 \to R_1$.

LEMMA 9. The homomorphism

 $r_2: H^1(M_1, \mathcal{O}) \longrightarrow H^1(M_0 - S_0, \mathcal{O})$

induced by the natural inclusion is injective.

PROOF. Since $L = \mathscr{O}_R$ by Lemma 7, there is a non-zero section $s \in H^0(R-P, L)$. By Proposition 4, we see that $\mu^* s \in H^0(R_1-l, L_1)$. Since l is an exceptional curve in R_1 , and since L_1 is trivial on R_1 by Lemma 7, $\mu^* s$ extends to a section $\widetilde{\mu^* s}$ of $H^0(R_1, L_1)$. Consider the commutative diagram

$$(9) \qquad \begin{array}{c} H^{1}(M_{1}, \mathcal{O}) \xrightarrow{r_{2}} H^{1}(M_{1} - S_{0}, \mathcal{O}) \\ \uparrow^{j_{1}} \qquad \uparrow^{j_{2}} \\ H^{0}(R_{1}, L_{1}) \xrightarrow{r_{3}} H^{0}(R_{1} - l, L_{1}) , \end{array}$$

where r_s is induced by the restrictions, and j_1 and j_2 are the canonical injections of Leray's spectral sequences. Then

$$r_2 \circ j_1(\mu^*s) = j_2(\mu^*s)$$
.

Since j_2 is injective, and since $\mu^* s \neq 0$, we see that

(10)
$$r_2 \circ j_1(\mu s) \neq 0$$
.

By Lemmas 7 and 8, j_1 is an isomorphism. Therefore (10) implies that r_2 is injective. Q.E.D.

LEMMA 10. dim Ker $\rho_i^* \geq 1$.

(11)

(13)

PROOF. Consider the commutative diagram

$$\begin{array}{ccc} H^{1}(M_{1}, \ \mathscr{O}) \xrightarrow{\sigma_{1}^{*}} H^{1}(M_{1}^{*}, \ \mathscr{O}) \\ & & & & \\ & & & \\ & & & \\ & & & & \\$$

Take the element $j_1(\widetilde{\mu^*s}) \in H^1(M_1, \mathcal{O})$ of the proof of Lemma 9. By Lemma 6, $\sigma_1^* \circ j_1(\widetilde{\mu^*s}) \in H^1(M_1^*, \mathcal{O})$ is not zero. Therefore, to prove the lemma, it suffices to show that

(12)
$$\tau_1^* \circ j_1(\widetilde{\mu^*s}) = 0.$$

The element $s \in H^0(R-P, L)$ extends to an element $\tilde{s} \in H^0(R, L)$. Let $j_s: H^0(R, L) \to H^1(M, \mathcal{O})$ be the inclusion defined by Leray's spectral sequence. Consider the element $j_s(\tilde{s}) \in H^1(M, \mathcal{O})$. Let

$$\psi': H^{1}(M, \mathbb{C}) \longrightarrow H^{1}(M_{1} - S_{0}, \mathbb{C}) , \text{ and} \psi'': H^{1}(M, \mathbb{C}) \longrightarrow H^{1}(M_{1} - S_{0}, \mathbb{C})$$

be the homomorphisms defined by the inclusion $M - E \to M$ followed by Ψ^{-1} : $M - E \to M_1 - S_0$ of Proposition 4. Since $S_0 \cap \tau_1(N(\varepsilon_1)) = \emptyset$, we have also the homomorphisms

$$\begin{split} \tau_1': H^1(M_1 - S_0, C) & \longrightarrow H^1(N(\varepsilon_1), C) , \quad \text{and} \\ \tau_1'': H^1(M_1 - S_0, \mathscr{O}) & \longrightarrow H^1(N(\varepsilon_1), \mathscr{O}) \end{split}$$

induced by τ_1 . Then we have the following commutative diagram:

$$egin{aligned} H^1(M,\,C) & \stackrel{\psi'}{\longrightarrow} H^1(M_1 - S_0,\,C) & \stackrel{ au'}{\longrightarrow} H^1(N(arepsilon_1),\,C) \ & & & & & \downarrow j_\delta \ H^1(M,\,\mathscr{O}) & \stackrel{\psi''}{\longrightarrow} H^1(M_1 - S_0,\,\mathscr{O}) & \stackrel{ au''_1}{\longrightarrow} H^1(N(arepsilon_1),\,\mathscr{O}) \ , \end{aligned}$$

where j_4 , j_5 , and j_6 are homomorphisms defined by the natural inclusion $C \rightarrow \mathcal{O}$. It is easy to see that dim $H^0(M, d\mathcal{O}) \leq \dim H^0(M, \Omega^1) = 0$, where Ω^1 is the sheaf of germs of holomorphic 1-forms and $d\mathcal{O}$ is the subsheaf of Ω^1 whose elements are *d*-closed. Moreover $H^1(M, C) = C$. Hence, by Lemma 8 and the exact sequence

 $0 \longrightarrow C \longrightarrow \mathscr{O} \longrightarrow d\mathscr{O} \longrightarrow 0,$

we see that j_i is an isomorphism. Hence, from the diagram (13) and the fact that $H^1(N(\varepsilon_i), C) = 0$,

(14)
$$\tau_1'' \circ \psi'' \circ j_{\mathfrak{s}}(\widetilde{s}) = 0$$

follows. Consider the commutative diagram

(15)
$$H^{1}(M_{1}-S_{0}, \mathcal{O}) \xleftarrow{\psi''} H^{1}(M, \mathcal{O})$$
$$\uparrow j_{2} \qquad \qquad \uparrow j_{3}$$
$$H^{0}(R_{1}-l, L_{1}) \xleftarrow{\mu_{1}^{*}} H^{0}(R, L) ,$$

where μ_1^* is induced by the inclusion $R - P \rightarrow R$ followed by the isomorphism $\mu: R_1 - l \rightarrow R - P$. Note that

 $\mu^*s = \mu_1^*\widetilde{s}$.

Then, by the diagrams (9), (11), (13), and (15), we have

$$\tau_1^* \circ j_1(\widetilde{\mu^*s}) = \tau_1'' \circ r_2 \circ j_1(\widetilde{\mu^*s})$$
$$= \tau_1'' \circ j_2 \circ r_3(\widetilde{\mu^*s})$$
$$= \tau_1'' \circ j_2(\mu^*s)$$
$$= \tau_1'' \circ j_2(\mu^*s)$$
$$= \tau_1'' \circ j_2(\mu_1^*\widetilde{s})$$
$$= \tau_1'' \circ \psi'' \circ j_3(\widetilde{s}) ,$$

which is equal to zero by (14). Thus (12) is obtained. Q.E.D.

PROOF OF (iii) OF THE THEOREM. Consider the following inequalities:

We shall prove, by induction on n, that $(*)_n$ and $(**)_n$ hold for all $n \ge 1$. By Lemmas 8 and 10, $(*)_1$ and $(**)_1$ hold. Suppose that $(*)_n$ and $(**)_n$ hold for some $n \ge 1$. Consider the Mayer-Vietoris sequence

(16)
$$\cdots \longrightarrow H^{1}(M_{n+1}, \mathcal{O}) \xrightarrow{f_{n}^{*}} H^{1}(M_{n}^{*}, \mathcal{O}) \oplus H^{1}(M_{1}^{n}, \mathcal{O})$$

 $\xrightarrow{g_{n}^{*}} H^{1}(N(\varepsilon_{n}), \mathcal{O}) \longrightarrow \cdots,$

where

$$f_n^* = f_n^{1*} \bigoplus f_n^{2*}$$
, and
 $g_n^* = \rho_n^* - (i_1 | N(\varepsilon_n))^*$.

There is the following commutative diagram:

$$egin{aligned} H^1(M_1^*,\,\mathscr{O}) & \longrightarrow & \mu^1(N(arepsilon_1),\,\mathscr{O}) \ & j_7 igg| & & \downarrow j_8' \ H^1(M_1^n,\,\mathscr{O}) & \longrightarrow & H^1(N(arepsilon_n),\,\mathscr{O}) \ , \end{aligned}$$

where j_{τ} is induced by the inclusion, and j'_{s} is induced by the inclusion followed by σ . Note that j_{τ} is injective by Andreotti-Siu [1, Proposition 1.2]. Hence by Lemma 10,

(17)
$$1 \leq \dim \operatorname{Ker} \rho_1^* \leq \dim \operatorname{Ker} (i_1 | N(\varepsilon_n))^*$$
.

Since the subspace

$$K:=\operatorname{Ker} \rho_n^* \oplus \operatorname{Ker} (i_1|N(\varepsilon_n))^*$$

in $H^{1}(M_{n}^{*}, \mathcal{O}) \oplus H^{1}(M_{1}^{n}, \mathcal{O})$ is contained in Ker g_{n}^{*} , we have

dim Ker
$$g_n^* \ge n+1$$
 ,

by using (17) and the induction assumptions $(^{**})_1$ and $(^{**})_n$. Hence we obtain $(^{*})_{n+1}$ by the exact sequence (16). Moreover, since

$$f_n^{*-1}(K) \subset \operatorname{Ker} s_n^*$$
 ,

we have

dim Ker
$$s_n^* \geq \dim f_n^{*-1}(K) \geq n+1$$
.

Then by the commutative diagram

$$\begin{array}{ccc}H^{1}(M_{n+1}, \ \mathscr{O}) \xrightarrow{\tau_{n+1}^{\star}} H^{1}(N(\varepsilon_{n+1}), \ \mathscr{O}) \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\$$

we obtain

dim Ker
$$\tau_{n+1}^* \geq \dim \operatorname{Ker} s_n^* \geq n+1$$
.

Therefore, by the commutative diagram

and Lemma 6, we have

dim Ker
$$ho_{n+1}^* \geq$$
 dim Ker $au_{n+1}^* \geq n+1$,

which proves $(**)_{n+1}$.

PROOF OF (iv) OF THE THEOREM. By the exact sequence

 $0 \longrightarrow C \longrightarrow \mathscr{O} \longrightarrow d\mathscr{O} \longrightarrow 0$

and $\pi_1(M_n)=0$, we have

(18)
$$\dim H^1(M_n, \mathcal{O}) \leq \dim H^1(M_n, d\mathcal{O}).$$

Letting $d\Omega^1$ be the subsheaf of Ω^2 whose elements are *d*-closed, we form the exact sequence

$$(19) 0 \longrightarrow d\mathscr{O} \longrightarrow \mathscr{Q}^1 \longrightarrow d\mathscr{Q}^1 \longrightarrow 0 .$$

We claim that

(20) $\dim H^{\circ}(M_n, d\Omega^1) = 0.$

To prove (20), it suffices to show that

(21) $\dim H^0(M_n, \Omega^2) = 0.$

Take any $\omega \in H^{0}(M_{n}, \Omega^{2})$. Then $i_{n}^{*}\omega \in H^{0}(U_{\epsilon_{n}}, \Omega^{2})$. By Andreotti-Siu [1, Proposition 1.2], we have

$$H^{\scriptscriptstyle 0}(U_{\epsilon_n}, \, \varOmega^2) \cong H^{\scriptscriptstyle 0}(P^3, \, \varOmega^2) \!=\! 0$$
 .

Hence $i_n^*\omega=0$. This implies $\omega=0$ and proves (21). Therefore, from (19) and (20),

$$\dim H^{1}(M_{n}, d\mathscr{O}) \leq \dim H^{1}(M_{n}, \Omega^{1}).$$

Thus combining this with (iii) and the inequality (18), we obtain

$$\dim H^{1}(M_{n}, \Omega^{1}) \geq n . \qquad Q.E.D.$$

REMARK 2.*' I don't know whether dim $H^1(M_n, \mathcal{O}) = n$.

^{*)} See the end of the paper.

REMARK 3. For a compact complex manifold X, we put

 $h^{p,q}(X) = \dim H^q(X, \Omega^p)$.

It is known that, if X is a compact kähler manifold, or, more generally, a compact Fujiki manifold (i.e., of Class \mathscr{C} in Fujiki [2, Definition 1.1]), then the equality

$$h^{p,q}(X) = h^{q,p}(X)$$

holds and the k-th Betti number is given by

$$b_k(X) = \sum_{p+q=k} h^{p,q}(X)$$
 .

Hence, in particular, we have

$$h^{0,1}(X) = \frac{1}{2}b_1(X)$$
 and $h^{1,1}(X) \leq b_2(X)$.

By Kodaira [3, Theorem 3], we also see that, if dim X=2, then the following equality and inequality hold including the cases where X are non-kähler:

Our example shows, however, that, for general compact complex manifolds of dimension more than 2, it is impossible to estimate $h^{0,1}(X)$ and $h^{1,1}(X)$ in terms of $b_1(X)$ and $b_2(X)$, respectively.

REMARK 4. In his recent study of compact complex 3-folds with Hopf surfaces as divisors, H. Tsuji has also found a method of modifying a compact complex manifold as we have used in section §2. Namely, he found that, if a compact complex manifold X, dim $X \ge 3$, contains a primary Hopf manifold S of codimension 1 with a certain condition on the normal bundle of S in X, then one can replace S by an elliptic curve E to obtain a new compact complex manifold $Y=(X-S)\cup E$ [4].

Notes added on Dec. 10, 1981. It can be shown that dim $H^1(M_n, \mathcal{O}) =$ n, and dim $H^2(M_n, \mathcal{O}) = 0$. The differentiable structure of M_n can be described completely by using connected sum operations by virtue of

MASAHIKO KATO

the results of C. T. C. Wall [Invent. Math., 1, 355-374 (1966)]. See the forthcoming paper for these facts.

References

- A. ANDREOTTI AND Y-T. SIU, Projective embedding of pseudoconcave spaces, Ann. Scuola Norm. Sup. Pisa, 24 (1970), 231-278.
- [2] A. FUJIKI, On automorphism groups of compact kähler manifolds, Invent. Math., 44 (1978), 225-258.
- [3] K. KODAIRA, On the structure of compact complex analytic surfaces, I, Amer. J. Math., 86 (1964), 751-798.
- [4] H. TSUJI, On the neighborhood of a Hopf surface, preprint.

Present Address: Department of Mathematics Sophia University Chiyoda-ku, Tokyo 102