The Centralizers of Semisimple Elements of the Chevalley Groups E_{7} and E_{8}

D. I. DERIZIOTIS

University of Crete
(Communicated by Y. Kawada)
The purpose of this paper is to give in detailed tables all the centralizers and their orders of semisimple elements of the finite Chevalley groups E_{7} and E_{8}. These tables are very useful since they give also the character degrees of the semisimple irreducible complex representations constructed by Deligne and Lusztig [7] for the finite Chevalley groups of adjoint type. For, these degrees can be obtained if we know what subgroups of the finite Chevalley groups of universal type are centralizers of semisimple elements (see [7]). Similar tables giving these centralizers for the classical groups and for the groups G_{2}, F_{4} and E_{6} have been obtained in [5], [6], [12] and [11] respectively.

A considerable amount of detailed work was involved in the compilation of our tables which has not been included in the paper. However we outline below the general results on which we relied heavily for our calculations.

Let G be a simple linear algebraic Chevalley group of rank l defined over the algebraic closure K of the prime field F_{p} of p elements. Let Φ be a root system of G with respect to a maximal torus T_{0} of G which splits over F_{p}. Consider the highest root r_{0} in Φ and let $\tilde{\Delta}=\Delta U\left\{-r_{0}\right\}$ where $\Delta=\left\{r_{i} ; i=1, \cdots, l\right\}$ is a fixed fundamental basis of Φ. Also we put $I_{0}=\{0,1,2, \cdots, l\}$.

We have shown [8] that, except for the bad primes of G (see [1, p. 178]), a connected reductive subgroup G_{1} of maximal rank in G is the connected centralizer of a semisimple element if and only if some proper subset of the roots in $\widetilde{\Delta}$ is equivalent under the Weyl group $W(=W(\Phi))$ to a fundamental basis of the root system of G_{1}. Thus every connected centralizer of a semisimple element in G is in some $C_{J}, J \varsubsetneqq I_{0}$, where by C_{J} we denote the set of all connected centralizers of semisimple elements
of G which are G-conjugate to the connected centralizers whose root system is Φ_{J}, the root system generated by $\Delta_{J}=\left\{r_{j} ; j \in J\right\}$. All the centralizers belonging in a given $C_{J}, J \nsubseteq I_{0}$, have the same Dynkin diagram the type of which we denote E_{J}. Notice (See [10].) that if two proper subsets Δ_{J}, Δ_{J}, of $\tilde{\Delta}$ have the same Dynkin diagrams then Δ_{J} and Δ_{J} are W-conjugate, apart from a few exceptions when $\tilde{\Delta}$ is of type E_{7} or E_{8}.

We consider now the Frobenius endomorphism σ of G which raises every matrix coefficient to its $q^{\text {th }}$ power where $q=p^{m}$. Then the group G_{σ} of the fixed points under σ is a Chevalley group over the field F_{q} of q elements. To work within G_{o} we have to consider first the connected centralizers of σ-stable semisimple elements (which are, of course, σ stable subgroups) and the question is if each set $C_{J}\left(J \subsetneq I_{0}\right)$ contains such a centralizer. Thus for a given $J \varsubsetneqq I_{0}$ we consider the set \mathscr{C}_{J} of all σ stable centralizers in C_{J}. Then the group G_{σ} acts on \mathscr{C}_{J} and let $\mathscr{C}_{J} / G_{\sigma}$ be the set of G_{σ}-orbits in \mathscr{C}_{J}. Finally we denote by Ω_{J} the normalizer in W of the set Δ_{J} of the simple roots $r_{j}, j \in J$. Now the structure of the group of the fixed points of a centralizer in \mathscr{C}_{J} under σ has been determined by Carter [4] as follows: Let $G_{J} \in \mathscr{C}_{J}$. Then
(a) Each conjugacy class [w] of Ω_{J} gives rise to the orbit $\overline{G_{J}^{g}}$ in $\mathscr{C}_{J} / G_{\sigma}$ represented by the conjugate G_{J}^{g} of G_{J}, where $\pi\left(g^{-1} \sigma(g)\right)=w, \pi$ being the natural homomorphism of the normalizer $N_{G}\left(T_{0}\right)$ of T_{0} onto W. The map $[w] \rightarrow \overline{G_{J}^{g}}$ is a bijection.
(b) If M is the semisimple part of G_{J}, then the group $\left(M^{g}\right)_{\sigma}$ is isomorphic to the subgroup of the finite Chevalley group of type M obtained by combining the graph automorphism τ of the Dynkin diagram of Δ_{J} induced by w with σ and taking the fixed points of the product $\sigma \tau$.
(c) If S is the identity component of the centre of G_{J}, then the group $\left(S^{\sigma}\right)_{\sigma}$ is isomorphic to the group $X / \bar{P}_{J} /(q w-1)\left(X / \bar{P}_{J}\right)$. Here X denotes the group (considered as an additive group) of the K-rational characters of T_{0} and \bar{P}_{J} is the subgroup of X consisting of all rational linear combinations of roots in Φ_{J}.

Let G_{J} be as above. Then $G_{J}=M S$ and $M \cap S=A$ is finite. Also M and S are σ-stable, being characteristic subgroups of G_{J} and G_{J} is F_{q}-isogenous to the direct product $M \times S$ (since both the connected groups G_{J} and $M \times S$ are F_{q}-isogenous to $M / A \times S / A$ which is isomorphic to $(M \times S) /(A \times A)$. In general, it is known that if H_{1}, H_{2} are two connected algebraic groups defined over k, a finite subfield of K, and H_{1} is k isogenous to H_{2} then the groups of the k-rational points of H_{1} and H_{2}
respectively have the same order. Therefore $\left|\left(G_{J}\right)_{\sigma}\right|=\left|M_{\sigma}\right|\left|S_{\sigma}\right|$. In particular, if $w=\pi\left(g^{-1} \sigma(g)\right)$, then $\left|\left(G_{J}^{g}\right)_{o}\right|=\left|\left(M^{g}\right)_{\sigma}\right|\left|\left(S^{g}\right)_{\sigma}\right|$, where the order $\left|\left(M^{g}\right)_{\sigma}\right|=\left|M_{\sigma \tau}\right|$ is well known (See [2, ch. 12].) and the order $\left|\left(S^{g}\right)_{\rho}\right|$ is $f(q) / g(q), f(t)$ and $\boldsymbol{g}(t)$ being the characteristic polynomials of w on $X \otimes \boldsymbol{R}$ and on $\bar{P}_{J} \otimes \boldsymbol{R}$ respectively.

From the above discussion we see that each orbit in $\mathscr{C}_{J} / G_{\sigma}$ is characterized by the type E_{J} of the Dynkin diagram of the centralizers in \mathscr{C}_{J} and by some conjugacy class [w] in Ω_{J}. If we are given such an orbit we can now ask whether this orbit contains a centralizer of some σ-stable semisimple element. Carter [4, Cor. 20] has shown that this depends on whether the group $X / P_{J}+(q w-1) X$ has a character which does not annihilate any root in $\bar{\Phi}_{J}-\Phi_{J}$ for sufficiently large values of q, where $\bar{\Phi}_{J}=\Phi \bigcap_{J}$. We note that instead of this we have given in [8] a practical method (using the Brauer complex of G, [9]) to determine the conditions which have to be imposed on q for the occurrence of such a centralizer in a given orbit in $\mathscr{C}_{J} / G_{\sigma}$.

To determine, for each proper subset J of I_{0}, the structure and its conjugacy classes of the group Ω_{J} we made great use of the material of Carter's paper [3].

In the tables which follow one row corresponds to each orbit in $\mathscr{C}_{J} / G_{\sigma}$. The column headed with Δ_{J} gives the type E_{J} of the Dynkin diagram of the centralizers in \mathscr{C}_{J}. The column headed with Ω_{J} gives the abstruct type of group which is isomorphic to Ω_{J}. The columns headed with $\left|\left(M^{g}\right)_{\sigma}\right|$ and $\left|\left(S^{\sigma}\right)_{\sigma}\right|$ give respectively the order of the semisimple and toral parts of the fixed points of the centralizers under σ belonging to a given orbit in $\mathscr{C}_{J} / G_{\sigma}$. In particular from the semisimple part we can deduce what kind of graph automorphism is induced by the elements of Ω_{J}. The last column gives the conditions which have to be imposed on q for the occurrence in the G_{o}-orbits in \mathscr{C}_{J} of centralizers of semisimple elements of G_{o}. In this last column whenever there is no indication of condition for occurrence this will mean that in the corresponding G_{σ}-orbit they do occur as centralizers of semisimple elements of G_{σ} for all q sufficiently large. For the group E_{7} we shall distinguish the simply-connected case from the adjoint one by putting " $s c$ " for the former and " $a d$ " for the latter.

When the group Ω_{J} is not too small, in the tables there is a column headed with [w]. In this column we give a representative element w for each conjugacy class in Ω_{J} which corresponds to the G_{σ}-orbit in \mathscr{C}_{J} parametrized by [w] and Δ_{J} so that one can distinguish the rows which have the same $\Delta_{J}, \Omega_{J},\left|\left(M^{g}\right)_{\sigma}\right|$ and $\left|\left(S^{g}\right)_{\sigma}\right|$. For these cases, we indicate in
the 2 nd, 3 rd and 4 th row of the first column the chosen Δ_{J}, the type of the root subsystem Φ_{J}^{\perp} which is orthogonal to Φ_{J} and a fundamental basis $\Delta_{\frac{1}{J}}^{1}$ of $\Phi_{\bar{J}}^{\perp}$ respectively. We give also in the 2 nd and 3 rd row of the second column the abstruct type of the group $\mathrm{Aut}_{w}\left(\Delta_{J}\right)$ and generators of this group respectively. These generators are given by their action on a suitable bases of Φ so that the reader can easily see the symmetries of Δ_{J} induced by them.

Our notation for the types of the Dynkin diagrams will be as that of Dynkin's paper [10]. The root system of type E_{8} is considered to be embedded in the real vector space \boldsymbol{R}^{8} with orthonormal basis $\left\{\varepsilon_{i}\right\}_{1 \leq i \leq 8}$. The fundamental roots are chosen to be the vectors $1 / 2\left(\varepsilon_{1}-\varepsilon_{2}-\right.$ $\left.\varepsilon_{3}-\varepsilon_{4}-\varepsilon_{5}-\varepsilon_{6}-\varepsilon_{7}+\varepsilon_{8}\right), \varepsilon_{2}+\varepsilon_{1}, \varepsilon_{2}-\varepsilon_{1}, \varepsilon_{3}-\varepsilon_{2}, \varepsilon_{4}-\varepsilon_{3}, \varepsilon_{5}-\varepsilon_{4}, \varepsilon_{8}-\varepsilon_{5}$ and $\varepsilon_{7}-\varepsilon_{6}$ with respect to which the positive roots are the vectors $\pm \varepsilon_{i}+\varepsilon_{j}, i<j$ and the vectors $1 / 2\left(\varepsilon_{8}+\sum_{i=1}^{i}(-1)^{v_{i}} \varepsilon_{i}\right)$ such that $\sum_{i=1}^{\eta} v_{i}$ is even where $v_{i}=0,1$. The root system of type E_{7} is the root subsystem of E_{8} consisting of the roots $\pm\left(\pm \varepsilon_{i}+\varepsilon_{j}\right), 1 \leqq i<j \leqq 6, \pm\left(\varepsilon_{8}-\varepsilon_{7}\right)$ and $\pm 1 / 2\left(\varepsilon_{8}-\varepsilon_{7}+\sum_{i=1}^{6}(-1)^{v_{i}} \varepsilon_{i}\right)$ such that $\sum_{i=1}^{6} v_{i}$ is odd. In the tables below, the numbers $1,2,3,4,5,6,7,8,9$, $10,11,12,13,14,15,16,17,18,19,20,21,22$ and 23 will denote respectively the roots $1 / 2\left(\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}-\varepsilon_{4}-\varepsilon_{5}-\varepsilon_{8}-\varepsilon_{7}+\varepsilon_{8}\right), \varepsilon_{1}+\varepsilon_{2}, \varepsilon_{2}-\varepsilon_{1}, \varepsilon_{3}-\varepsilon_{2}, \varepsilon_{4}-\varepsilon_{3}, \varepsilon_{5}-\varepsilon_{4}$, $\varepsilon_{8}-\varepsilon_{5}, \varepsilon_{7}-\varepsilon_{6}, \varepsilon_{7}-\varepsilon_{8},-\varepsilon_{7}-\varepsilon_{8}, 1 / 2\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}-\varepsilon_{6}-\varepsilon_{7}+\varepsilon_{8}\right), \varepsilon_{3}+\varepsilon_{2}, \varepsilon_{4}+\varepsilon_{3}, \varepsilon_{8}+$ $\varepsilon_{5}, \varepsilon_{4}+\varepsilon_{1}, 1 / 2\left(\varepsilon_{1}-\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}+\varepsilon_{6}-\varepsilon_{7}+\varepsilon_{8}\right), 1 / 2\left(-\varepsilon_{1}+\varepsilon_{2}-\varepsilon_{3}-\varepsilon_{4}+\varepsilon_{5}+\varepsilon_{6}-\varepsilon_{7}+\varepsilon_{8}\right)$, $\varepsilon_{7}+\varepsilon_{8}, \varepsilon_{8}-\varepsilon_{5}, \varepsilon_{8}+\varepsilon_{5}, 1 / 2\left(-\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}-\varepsilon_{5}-\varepsilon_{8}-\varepsilon_{7}+\varepsilon_{8}\right), 1 / 2\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}-\varepsilon_{4}-\varepsilon_{5}-\right.$ $\left.\varepsilon_{8}-\varepsilon_{7}+\varepsilon_{8}\right)$ and $\varepsilon_{4}-\varepsilon_{1}$. Also the letters $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta, \kappa, \lambda, \mu, \nu, \xi, \pi, \rho$, $\tau, \varphi, x, y, z, \omega, v$ and i will denote respectively the reflections in the hyperplanes orthogonal to the roots 1 up to 23.

We shall denote by H_{1} and H_{2} the following groups. Let us write the symmetric group S_{4} as the semi-direct product of $\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$ by S_{3}. Then H_{1} denotes the semi-direct product of $\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$ by \boldsymbol{S}_{4}, where S_{4} acts on the normal part such that its Klein subgroup $\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$ acts trivially and S_{3} purmutes the components in all possible ways. H_{2} denotes the semidirect product of the Weyl group $W\left(D_{4}\right)$ of type D_{4} by S_{4}, where here the Klein subgroup acts trivially on $W\left(D_{4}\right)$ and S_{3} acts as in the figure:

Notice that if $J=\varnothing$ then the groups of the σ-fixed points of the centralizers in \mathscr{C}_{ϕ} are the maximal tori $\left(T_{w}\right)_{\sigma}, w \in \Omega_{\phi}$, in G_{σ} determined from
Table 1
The structure and the orders of connected centralizers of semisimple elements in E_{7}.

(Continued)

(Continued)

(Continued)

(Continued)

(Continued)

Δ_{J}	Ω_{J}	$\left\|\left(M^{0}\right)^{\prime}\right\|$	$\left\|\left(S^{0}\right)^{\prime}\right\|$	Condition for occurrence sc. ad.	Δ_{J}	Ω_{J}	$\left\|\left(M^{*}\right)^{\prime}\right\|$	$\left\|\left(S^{0}\right)_{0}\right\|$	Condition for occurrence sc. ad.	
$A_{3}+3 A_{1}$	$\left(Z_{2}\right)^{2}$	$\left\|A_{2}\left(q^{2}\right)\right\|\left\|A_{2}(q)\right\|$	$q+1$	$3\|q-13\| q-1$	$A_{6}$$D_{4}+2 A_{1}$	$\begin{gathered} \boldsymbol{Z}_{2} \\ \left(\boldsymbol{Z}_{2}\right)^{2} \end{gathered}$	$\begin{aligned} & \left.\right\|^{2} A_{5}\left(q^{2}\right)\| \| A_{1}(q) \mid \\ & \left\|A_{6}(q)\right\| \\ & \left\|\left.\right\|^{2} A_{8}\left(q^{2}\right)\right\| \\ & \left\|D_{4}(q) \\| A_{1}(q)\right\|^{2} \end{aligned}$	$q+1$	$\begin{aligned} & 2 \mid q-1 \\ & 2 \mid q-q-1 \\ & 2 \mid q-1 \\ & \text { never } \\ & \text { occurs } \\ & \text { ocq-1 } \\ & \text { never } \\ & \text { occurs } \\ & 2 \mid q-1 \end{aligned}$	
		$\left\|A_{2}\left(q^{3}\right)\right\|$	$q-1$	$3\|q-13\| q-1$				q-1		
		$\left.\right\|^{2} A_{2}\left(q^{2}\right)\| \| A_{2}\left(q^{2}\right) \mid$	$q-1$	$3\|q+13\| q+1$				q+1		
		$\left.\right\|^{2} A_{2}\left(q^{6}\right) \mid$	$q+1$	$3\|q+13\| q+1$				$q-1$		
		$\left\|A_{3}(q) \\| A_{1}(q)\right\|^{3}$	$q-1$	$2\|q-12\| q-1$				$q+1$		
		$\begin{aligned} & \left.\right\|^{2} A_{8}\left(q^{2}\right)\| \| A_{1}\left(q^{2}\right) \mid \\ & \times\left\|A_{1}(q)\right\| \end{aligned}$	q-1	$2\|q-12\| q-1$			$\left.\right\|^{2} D_{4}\left(q^{2}\right)\| \| A_{1}\left(q^{2}\right) \mid$	$q-1$		
		$\left.\left.\right\|^{2} A_{3}\left(q^{2}\right)\| \| A_{1}(q)\right\|^{3}$	$q+1$	$2\|q-12\| q-1$				$q+1$		
		$\begin{aligned} & \left\|A_{3}(q)\right\|\left\|A_{1}\left(q^{2}\right)\right\| \\ & \times\left\|A_{1}(q)\right\| \end{aligned}$	$q+1$	$2\|q-12\| q-1$		\boldsymbol{Z}_{2}	$\left\|D_{5}(q)\right\|\left\|A_{1}(q)\right\|$	q-1		
$A_{3}+A_{2}+A_{1}$	\boldsymbol{Z}_{2}	$\begin{aligned} & \left\|A_{3}(q)\right\|\left\|A_{2}(q)\right\| \\ & \times\left\|A_{1}(q)\right\| \end{aligned}$	$q-1$		$D_{5}+A_{1}$	Z_{2}	$\begin{gathered} \left.\right\|^{2} D_{s}\left(q^{2}\right)\| \| A_{1}(q) \mid \\ \left\|D_{8}(q)\right\| \end{gathered}$	$\begin{aligned} & q+1 \\ & q-1 \end{aligned}$		
		$\left.\right\|^{2} A_{3}\left(q^{2}\right)\| \|{ }^{2} A_{2}\left(q^{2}\right) \mid$			D_{6}					
	$\left(Z_{2}\right)^{3}$	$\times\left\|A_{1}(q)\right\|$	+1		E_{6}	\boldsymbol{Z}_{2}	$\begin{aligned} & \left\|E_{6}(q)\right\| \\ & \left.\right\|^{2} E_{6}\left(q^{2}\right) \mid \end{aligned}$	$q-1$$q+1$		
$2 A_{3}$		$\left\|A_{3}(q)\right\|^{2}$	$q-1$	$4 \mid q-1$ $4 \mid q-1$						
		$\left\|A_{3}\left(q^{2}\right)\right\|$	$q+1$ $q-1$	$4\|q-12\| q-1$ $4\|q+12\| q-1$	$2 A_{3}+A_{1}$	$\left(Z_{2}\right)^{2}$		1	4\|q-1 $4 \mid q-1$	
			$q+1$	$4\|q+12\| q-1$			$\left\|A_{3}\left(q^{2}\right)\right\|\left\|A_{1}(q)\right\|$	1	$\left.\begin{aligned} & \text { never } \\ & \text { occurs } \end{aligned} 4 \right\rvert\, q-1$	
			$q-1$	$4\|q-12\| q-1$				1		
			$q+1$	$4\|q-12\| q-1$				1	$\text { occurs } 4 \mid q-1$	
		$\left.\left.\right\|^{2} A_{3}\left(q^{2}\right)\right\|^{2}$	$q-1$	$4\|q+12\| q-1$	$A_{5}+A_{2}$	\boldsymbol{Z}_{2}	$\left.\right\|^{2} A_{3}\left(q^{2}\right)\left\|{ }^{2}\right\| A_{1}(q) \mid$		$4\|q+14\| q+1$	
$A_{4}+A_{2}$	\boldsymbol{Z}_{2}		$q+1$	$4\|q+12\| q-1$			$\left\|A_{5}(q)\right\|\left\|A_{2}(q)\right\|$	1	$3\|q-13\| q-1$	
		$\left\|A_{4}(q)\right\|\left\|A_{2}(q)\right\|$	$q-1$				$\left.\right\|^{2} A_{5}\left(q^{2}\right)\left\|\\|^{2} A_{2}\left(q^{2}\right)\right\|$	1	$3\|q+13\| q+1$	
		$\left.\right\|^{2} A_{4}\left(q^{2}\right)\left\|{ }^{2} A_{2}\left(q^{2}\right)\right\|$	$q+1$		A_{7}	Z_{2}	$\left\|A_{7}(\underline{q})\right\|$	1	$4\|q-14\| q-1$	
$\left[A_{5}+A_{1}\right]^{\prime}$	\boldsymbol{Z}_{2}	$\left\|A_{5}(q)\right\|\left\|A_{1}(q)\right\|$	$q-1$	$2\|q-12\| q-1$			$\left\|{ }^{2} A_{7}\left(q^{2}\right)\right\|$	1	$4\|q+14\| q+1$	
		$\left.\right\|^{2} A_{6}\left(q^{2}\right)\| \| A_{1}(q) \mid$	$q+1$	$2\|q-12\| q-1$	$D_{6}+A_{1}$	1	$\left\|D_{8}(q) \\| A_{1}(q)\right\|$	1	$2\|q-12\| q-1$	
$\left[A^{6}+A_{1}\right]^{\prime \prime}$	Z_{2}	$\left\|A_{8}(q)\right\|\left\|A_{1}(q)\right\|$	$q-1$		E_{7}	1	$\left\|E_{7}(\underline{q})\right\|$			

Table 2

(Continued)

（Continued）

高	
3 3	
3	$\begin{aligned} & \pi \\ & 0 \\ & 0 \\ & 0 \\ & \text { Nin } \\ & =0 \end{aligned}$
들	
高	$\begin{aligned} & \overline{\text { E}} \\ & \text { ভ } \end{aligned}$
3	
2	
7	甘i

(Continued)

Δ_{J}	Ω_{J}	[w]	$\left\|\left(M^{*}\right)^{*}\right\|$	$\left\|\left(S^{\rho}\right)_{a}\right\| \quad$Condition for occurrence	Δ_{J}	Ω_{J}	[w]	$\left\|\left(M^{*}\right)\right\|_{\sigma}$	$\left\|\left(S^{0}\right)_{e}\right\|$	Condition for occurrence
		$\gamma_{\text {ss }}$		$\left(q^{2}-1\right)^{2}(q+1)^{2}$	\{1, 3, 10,	$2 \leftrightarrow 5$	$\tau \gamma$		$(q-1)^{2}\left(q^{3}-1\right)$	
		$\gamma \delta s$		$\left(q^{3}+1\right)(q+1)^{3}$	16, -17 \}	$3 \rightarrow 3$	$\tau \varphi r$		$(q-1)\left(q^{4}-1\right)$	
		${ }_{\text {¢ }} \beta_{s}$		$\left(q^{2}-1\right)^{3}$		$7 \rightarrow 7$	$\alpha \tau \varphi \omega$		$\left(q^{2}-1\right)(q+1)^{3}$	
				$(q+1)\left(q^{2}-1\right)$		$10 \rightarrow 10$	$\tau \alpha \varphi$		$(q+1)\left(q^{2}-1\right)^{2}$	
		$\gamma_{E \zeta}$		$\times\left(q^{3}+1\right)$		$16 \leftrightarrow$	$\gamma \varphi \tau \alpha$		$\left(q^{2}-1\right)\left(q^{3}+1\right)$	
		$\gamma \varepsilon \delta s$		$(q+1)^{2}\left(q^{4}-1\right)$		-17	$\tau \varphi \gamma_{\kappa}$		$(q-1)\left(q^{2}+1\right)^{2}$	
		$\alpha \partial \mu_{s}$		$(q-1)^{2}\left(q^{2}-1\right)^{2}$		$s_{2}: 1 \rightarrow 16 \rightarrow$			$(q+1)(q-1)^{4}$	
		${ }_{\alpha \beta \sigma \zeta}{ }^{\text {s }}$		$\stackrel{(q-1)\left(q^{2}-1\right)}{\times\left(q^{3}+1\right)}$		$-17 \rightarrow 1$			$(q-1)\left(q^{2}-1\right)^{2}$	
		aerts		${ }_{\left(q^{3}+1\right)^{2}}$		$3 \rightarrow 3$	$\tau \varphi \lambda$		$(q+1)\left(q^{2}-1\right)^{2}$	
		$\gamma \beta \delta \zeta^{\text {s }}$		$\left(q^{2}-1\right)\left(q^{4}-1\right)$		$2 \rightarrow 7 \rightarrow$	$\tau \gamma^{2}$		$\left(q^{2}-1\right)\left(q^{3}-1\right)$	
				$(q+1)\left(q^{5}+1\right)$		$5 \rightarrow 2$	$\tau \varphi\ulcorner\lambda$		$(q+1)\left(q^{4}-1\right)$	
		$\gamma_{\varepsilon} \beta \delta \delta^{\prime}$		$\stackrel{(q+1)\left(q^{2}-1\right)}{\times\left(q^{3}-1\right)}$		$10 \rightarrow 10$	$\alpha \tau \varphi \omega \lambda$		$(q+1)^{\text {b }}$ $\left(q^{2}-1\right)(q+1)^{3}$	
		$\gamma \varepsilon \delta \nu s$		$(q+1)^{2}\left(q^{2}+1\right)^{2}$			$\gamma_{\varphi \tau} \chi^{\alpha} \lambda$		$(q+1)\left(q^{3}+1\right)$	
		$\alpha \beta \varepsilon \zeta_{\zeta}$		$\left(q^{2}-1\right)\left(q^{2}-q+1\right)^{2}$			$\tau \varphi \gamma_{\kappa \lambda}$		$(q+1)\left(q^{2}+1\right)^{2}$	
		$\alpha \delta 广 \mu_{\mu}$		$(q-1)^{2}\left(q^{4}-1\right)$			s_{1}	$\left\|A_{1}\left(q^{2}\right)\right\|\left\|A_{1}(q)\right\|$	$(q+1)(q-1)^{4}$	
		$\gamma \varepsilon \delta ¢ \mu s$		$(q-1)\left(q^{5}+1\right)$			τ_{1}		$\left(q^{2}+1\right)(q-1)^{3}$	
				$q^{6}-1$			ξs_{1}		$(q-1)\left(q^{2}-1\right)^{2}$	
		βr ¢ $¢ \zeta$ s		$\left(q^{2}-1\right)\left(q^{4}+1\right)$			$r \xi s_{1}$		$(q+1)\left(q^{2}-1\right)^{2}$	
		$\gamma \varepsilon \delta \zeta \nu s$		$\left(q^{2}+q+1\right)\left(q^{4}-1\right)$			$\gamma_{\tau s_{1}}$		$(q-1)^{2}\left(q^{3}+1\right)$	
		$\alpha \beta \varepsilon \gamma_{\mu}{ }^{\text {s }}$		$\left(q^{2}-q+1\right)^{3}$			$\alpha{ }^{\prime} s_{1}$		$\left(q^{2}-1\right)\left(q^{3}-1\right)$	
		$\alpha \delta \zeta_{\mu} \tau_{\varepsilon s}$		$(q-1)\left(q^{2}-q+1\right)$			$\alpha \tau s_{1}$		$(q-1)\left(q^{4}-1\right)$	
							$\alpha \kappa \varphi s_{1}$		$(q-1)\left(q^{4}+1\right)$	
		$\alpha \delta \zeta r_{\varepsilon} \beta$ s		$\begin{aligned} & \left(q^{2}-q+1\right) \\ & \times\left(q^{4}-q^{2}+1\right) \end{aligned}$			$\alpha \omega ¢ s_{1}$		$(q+1)\left(q^{4}-1\right)$	
		$\alpha \delta \rho \beta \gamma \zeta s$		$\frac{q^{6}-q^{3}+1}{\left(q^{2}+{ }^{\text {a }}+1\right.}$			λs_{1} $\tau \lambda s_{1}$		$(q-1)\left(q^{4}-1\right)$	
		$\beta \varepsilon \omega \delta \nu \zeta^{\text {c }}$		$\cdots{ }^{\left(q^{2}+q+1\right)} \times\left(q^{4}+q^{2}+1\right)$			$\xi \lambda s_{1}$		$(q+1)\left(q^{2}-1\right)^{2}$	
$3 A_{1}$	$W\left(\boldsymbol{F}_{4}\right) \times \boldsymbol{Z}_{2}$		$\left\|A_{1}(q)\right\|^{3}$	$(q-1)^{5}$			$r \xi \lambda s_{1}$		$\left(q^{2}-1\right)(q+1)^{3}$	
\{2, 5, 7\}	S_{3}	α		$(q+1)(q-1)^{4}$			$\gamma \tau \lambda s_{1}$		$\left(q^{2}-1\right)\left(q^{3}+1\right)$	
$D_{4}+A_{1}$	$\mathrm{s}_{1}: 1 \rightarrow 1$	$\tau \varphi$		$(q-1)\left(q^{2}-1\right)^{2}$			$\alpha\rceil \lambda s_{1}$		$(q+1)^{2}\left(q^{3}-1\right)$	

(Continued)

(Continued)

Δ_{J}	Ω_{J}	[w]	$\left\|\left(M^{p}\right)^{\prime}\right\|$	$\left\|\left(S^{0}\right)_{e}\right\|$	Condition for occurrence	Δ_{J}	Ω_{J}	[w]	$\left\|\left(M^{*}\right)^{\prime}\right\|$	$\left\|\left(S^{0}\right)_{e}\right\|$	Condition for occurrence
		$\varepsilon \gamma_{s}$		$(q+1)\left(q^{2}-1\right)^{2}$			$3 \rightarrow 3$	${ }_{3} 8_{2}$	$\left\|A_{1}\left(q^{3}\right)\right\|\left\|A_{1}(q)\right\|$	$(q-1)\left(q^{3}-1\right)$	
		$\varepsilon \beta s$		$(q+1)\left(q^{2}-1\right)^{2}$			$5 \leftrightarrow 7$	$\beta 3_{3} s_{1}$		$(q-1)\left(q^{3}+1\right)$	
		δr_{s}		$\left(q^{2}-1\right)\left(q^{3}-1\right)$			$9 \rightarrow 9$	$\kappa_{3} s_{1}$		$(q+1)\left(q^{3}-1\right)$	
		${ }^{\varepsilon \alpha} \alpha^{\prime}$		$(q-1)\left(q^{4}-1\right)$			$10 \rightarrow 10$	$\beta \kappa s_{3} s_{1}$		$(q+1)\left(q^{3}+1\right)$	
		$\alpha \gamma_{s}$		$(q-1)^{2}\left(q^{3}+1\right)$			$13 \leftrightarrow 14$	$s_{2} 3_{3} s_{1}$	$\left\|A_{1}\left(q^{4}\right)\right\|$	$q^{4}-1$	
		$\gamma_{\varepsilon} \beta s$		$\left(q^{2}-1\right)(q+1)^{3}$				$\beta{ }_{3} s_{3} s_{1}$		$q^{4}+1$	
		$\varepsilon^{\text {¢ }}$ ¢s		$(q+1)\left(q^{4}-1\right)$		$\left[4 A_{1}\right]^{\prime \prime}$	H_{2}	1	$\left\|A_{1}(q)\right\|^{4}$	$(q-1)^{4}$	$2 \mid q-1$
		e $\delta \alpha$ s		$\left(q^{2}+1\right)\left(q^{3}-1\right)$		$\{2,5,7,10\}$) S_{4}	α		$(q-1)^{2}\left(q^{2}-1\right)$	$2 \mid q-1$
		${ }_{\varepsilon \beta \alpha}{ }^{\text {a }}$		$(q+1)\left(q^{4}-1\right)$		D_{4}	$s_{1}: 1 \rightarrow 1$	$\tau \varphi$		$\left(q^{2}-1\right)^{2}$	$2 \mid q-1$
		$\varepsilon_{\text {car }}$		$\left(q^{2}-1\right)\left(q^{3}+1\right)$		\{1, 3, 16,	$2 \leftrightarrow 5$	τr		$(q-1)\left(q^{3}-1\right)$	$2 \mid q-1$
		$\gamma \alpha \delta s$		$(q-1)\left(q^{4}+1\right)$		-17)	$3 \rightarrow 3$	$\tau \varphi r$		$q^{4}-1$	$2 \mid q-1$
		$\varepsilon_{\varepsilon \beta \alpha \gamma_{s}}$		$(q+1)^{2}\left(q^{3}+1\right)$			$7 \rightarrow 7$	$\alpha \tau \varphi \omega$		$(q+1)^{4}$	$2 \mid q-1$
		$\gamma \xi \varepsilon \beta$ s		$(q+1)^{5}$			$10 \rightarrow 10$	$\tau \alpha \varphi$		$(q+1)^{2}\left(q^{2}-1\right)$	$2 \mid q-1$
		${ }_{\varepsilon \beta \alpha \delta s}$		$(q+1)\left(q^{2}+1\right)^{2}$			$16 \leftrightarrow-17$	$\gamma_{\varphi \tau} \alpha$		$(q+1)\left(q^{3}+1\right)$	$2 \mid q-1$
		$\alpha \delta \delta r^{\prime}$		$q^{5}+1$			$s_{2}: 1 \rightarrow 16 \rightarrow$	$\tau \varphi \gamma_{\kappa}$		$\left(q^{2}+1\right)^{2}$	$2 \mid q-1$
$\begin{gathered} {\left[4 A_{1}\right]^{\prime}} \\ \{3,5,7,10\} \end{gathered}$	$W\left(B_{4}\right)$ S_{4}	1 β	$\left\|A_{1}(q)\right\|^{4}$	$(q-1)^{4}$ $(q+1)(q-1)^{3}$			$-17 \rightarrow 1$	s_{1}	$\left\|A_{1}\left(q^{2}\right)\right\|$ $\times\left\|A_{1}(q)\right\|^{2}$	$(q-1)^{2}\left(q^{2}-1\right)$	$2 \mid q-1$
$\{3,5,7,10\}$	$\begin{gathered} S_{4} \\ s_{1}: 2 \leftrightarrow 13 \end{gathered}$	${ }^{\beta}$		$\begin{gathered} (q+1)(q-1)^{3} \\ \left(q^{2}-1\right)^{2} \end{gathered}$			$\underset{2 \rightarrow 7 \rightarrow 5 \rightarrow 2}{ }$	${ }_{\text {s }}^{1}$	$\times\left\|A_{1}(q)\right\|^{2}$	$(q-1)^{2}\left(q^{2}+1\right)$	$2 \mid q-1$
$\{2,9,13,14\}$) $3 \leftrightarrow 5$	$\beta \xi \pi$		$(q-1)(q+1)^{3}$			$10 \rightarrow 10$	ξs_{1}		$\left(q^{2}-1\right)^{2}$	$2 \mid q-1$
	$7 \rightarrow 7$	$\beta \xi \pi \kappa$		$(q+1)^{4}$			$s_{3}: 1 \rightarrow 1$	$r \xi s_{1}$		$(q+1)^{2}\left(q^{2}-1\right)$	$2 \mid q-1$
	$9 \rightarrow 9$	s_{1}	$\left\|A_{1}\left(q^{2}\right)\right\| \mid A_{1}(q)$	$\left.\right\|^{2}(q-1)^{2}\left(q^{2}-1\right)$			$2 \leftrightarrow 5$	$\gamma_{\tau s_{1}}$		$(q-1)\left(q^{3}+1\right)$	$2 \mid q-1$
	$10 \rightarrow 10$	βs_{1}		$(q-1)^{2}\left(q^{2}+1\right)$			$3 \rightarrow 3$	$\alpha{ }_{s}{ }_{1}$		$(q+1)\left(q^{3}-1\right)$	$2 \mid q-1$
	$14 \rightarrow 14$	πs_{1}		$\left(q^{2}-1\right)^{2}$			$7 \leftrightarrow 10$	$\alpha \tau s_{1}$		$q^{4}-1$	$2 \mid q-1$
	s_{2} : $2 \rightarrow 2$	$\beta \pi s_{1}$		$q^{4}-1$			$16 \rightarrow 16$	$\alpha \kappa \varphi s_{1}$		$q^{4}+1$	$2 \mid q-1$
	$3 \rightarrow 3$	$\pi \kappa s_{1}$		$(q+1)^{2}\left(q^{2}-1\right)$			$17 \rightarrow-17$	$\alpha \omega \varphi s_{1}$		$(q+1)^{2}\left(q^{2}+1\right)$	$2 \mid q-1$
	$5 \rightarrow 5$							s_{2}	$\left\|A_{1}\left(q^{3}\right)\right\|\left\|A_{1}(q)\right\|$	$(q-1)\left(q^{3}-1\right)$	$2 \mid q-1$
	$7 \leftrightarrow 10$	$\beta \pi \kappa s_{1}$		$(q+1)^{2}\left(q^{2}+1\right)$				$\alpha_{s}{ }_{2}$		$(q-1)\left(q^{3}+1\right)$	$2 \mid q-1$
	$9 \leftrightarrow 14$	${ }_{2} 8_{1}$	$\left\|A_{1}\left(q^{2}\right)\right\|^{2}$	$\left(q^{2}-1\right)^{2}$				$\alpha \omega s_{2}$		$(q+1)\left(q^{3}-1\right)$	$2 \mid q-1$
	$13 \rightarrow 13$	$\beta_{s_{2} s_{1}}$		$q^{4}-1$				$\alpha \tau \omega \varphi s_{2}$		$(q+1)\left(q^{3}+1\right)$	$2 \mid q-1$
	s_{8} : $2 \rightarrow 2$	$\beta \pi s_{2} s_{1}$		$\left(q^{2}+1\right)^{2}$				$\gamma_{\tau s_{2}}$		$\left(q^{4}-q^{2}+1\right)$	$2 \mid q-1$

(Continued)

(Continued)

Δ_{J}	Ω_{J}	[w]	$\left\|\left(M^{0}\right)^{*}\right\|$	$\left\|\left(S^{0}\right)_{o}\right\|$	Condition for occurrence	Δ_{J}	Ω_{J}	[w]	$\left\|\left(M^{0}\right)^{\prime}\right\|$	$\left\|\left(S^{q}\right)_{\text {a }}\right\|$	Condition for occurrence
		$\beta \mu s_{2}^{2}$		$(q+1)\left(q^{3}+1\right)$				$r \kappa \lambda{ }^{\text {r }}$		$\left(q^{2}-1\right)^{2}$	
		$\beta \alpha s_{2}^{2}$		$\left(q^{2}-1\right)^{2}$				$r_{\alpha} \lambda_{s}$		$(q+1)\left(q^{3}+1\right)$	
		$\mu \beta \alpha s_{2}^{2}$		$(q-1)\left(q^{3}+1\right)$				$\kappa \gamma_{\alpha} \lambda_{s}$		$q^{4}-1$	
		$\mu \beta r \alpha s_{2}^{2}$		$\left(q^{2}-q+1\right)^{2}$		A_{4}	$S_{5} \times Z_{2}$	1	$\left\|A_{4}(q)\right\|$	$(q-1)^{4}$	
		$s_{1} s_{2}$	$\left.\right\|^{2} A_{2}\left(q^{2}\right)\| \| A_{2}(q) \mid$	$\left(q^{2}-1\right)^{2}$		$\{6,7,8,10\}$	\boldsymbol{Z}_{2}	α		$\left(q^{2}-1\right)(q-1)^{2}$	
		$\beta_{s_{1} s_{2}}$		$q^{4}-1$		A_{4}	$s: 1 \rightarrow-1$	${ }^{\alpha}$		$\left(q^{2}-1\right)^{2}$	
		$\beta \mu s_{1} s_{2}$		$q^{4}+q^{2}+1$		$\{1,2,3,4\}$	$2 \rightarrow-2$	$\alpha \gamma$		$(q-1)\left(q^{3}-1\right)$	
		$\beta \mu \alpha s_{1} s_{2}$		$q^{4}-1$			$3 \rightarrow-3$	$\alpha \gamma \beta$		$(q+1)\left(q^{3}-1\right)$	
			$\left.\right\|^{2} A_{2}\left(q^{4}\right) \mid$	$\left(q^{2}+1\right)^{2}$			$4 \rightarrow-4$	aro		$q^{4}-1$	
		$\beta_{3}{ }_{2}$		$q^{4}-1$			$6 \leftrightarrow 10$	$\alpha \delta \beta \gamma$		$q^{4}+q^{3}+q^{2}$	
		$\beta \mu_{3}$		$q^{4}-q^{2}+1$			$6 \leftrightarrow 10$	ад̇¢		+q+1	
		$\beta \mu \alpha s_{2}$		$q^{4}-1$			$7 \leftrightarrow 8$	s	$\left.\right\|^{2} A_{4}\left(q^{2}\right) \mid$	$(q+1)^{4}$	
${ }^{A_{3}+A_{1}}$	$S_{4} \times\left(Z_{2}\right)^{2}$	1	$\left\|A_{3}(q)\right\|\left\|A_{1}(q)\right\|$	$(q-1)^{4}$				α_{s}		$(q+1)^{2}\left(q^{2}-1\right)$	
\{2, 5, 6, 7\}	Z_{2}	α		$(q-1)^{2}\left(q^{2}-1\right)$				$\alpha \delta s$		$\left(q^{2}-1\right)^{2}$	
$A_{3}+A_{1}$	$s: 1 \rightarrow 1$	γ_{κ}		$\left(q^{2}-1\right)^{2}$				$\alpha \gamma_{s}$		$(q+1)\left(q^{3}+1\right)$	
\{1, 3, 9, 10\}	$2 \rightarrow 2$	γ_{α}		$(q-1)\left(q^{3}-1\right)$				$\alpha \gamma \beta s$		$(q-1)\left(q^{3}+1\right)$	
	$3 \rightarrow-3$	$\kappa^{\gamma} \alpha$		$q^{4}-1$				$\alpha \gamma$ os		$q^{4}-1$	
	$5 \leftrightarrow 7$	λ		$(q-1)^{2}\left(q^{2}-1\right)$				${ }_{\alpha} \delta^{\beta} \gamma_{s}$		$q^{4}-q^{3}+q^{2}$ $-q+1$	
	$6 \rightarrow 6$	$\alpha \lambda$		$\left(q^{2}-1\right)^{2}$							
	$9 \rightarrow-9$	$\gamma_{\kappa \lambda}$		$(q+1)^{2}\left(q^{2}-1\right)$			$W\left(F_{4}\right)$	1	$\left\|D_{4}(\underline{q})\right\|$	$(q-1)^{4}$	
	$10 \rightarrow 10$	$\gamma_{\alpha \lambda}$		$(q+1)\left(q^{3}-1\right)$		$\{2,3,4,5\}$	S_{3}	η		$(q-1)^{2}\left(q^{2}-1\right)$	
		$\kappa \gamma^{\prime} \alpha \lambda$		$(q+1)^{2}\left(q^{2}+1\right)$		$\begin{gathered} D_{4} \\ \text { f7. } 8 .-9 . \end{gathered}$	$\begin{array}{r}s_{1}: 2 \rightarrow 2 \\ 3 \leftrightarrow 5 \\ \hline\end{array}$	$\eta \kappa$		$\left(q^{2}-1\right)^{2}$	
		s	$\left.\right\|^{2} A_{3}\left(q^{2}\right)\| \| A_{1}(q) \mid$	$(q+1)^{2}\left(q^{2}-1\right)$		\{7, 8, -9,	$3 ↔ 5$	$\eta \vartheta$		$(q-1)\left(q^{3}-1\right)$	
		α_{8}		$\left(q^{2}-1\right)^{2}$		$10\}$	$4 \rightarrow 4$	$\eta \kappa \vartheta$		$q^{4}-1$	
		$r_{\text {ks }}$		$(q-1)^{2}\left(q^{2}-1\right)$			$7 \leftrightarrow-9$	$\eta \pi \kappa \lambda$		$(q+1)^{4}$	
		$\gamma_{\alpha s}$		$(q-1)\left(q^{3}+1\right)$			$8 \leftrightarrow 8$	$\eta \pi \kappa$		$(q+1)^{2}\left(q^{2}-1\right)$	
		$n \gamma_{s}$		$(q-1)$			$10 \rightarrow 10$	$\eta \pi \kappa 9$		$(q+1)\left(q^{3}+1\right)$	
		$n 7 s$		$\times\left(q^{3}-q^{2}+q-1\right)$			$\mathrm{s}_{2}: 2 \rightarrow 3 \rightarrow 5$	$\eta \kappa 9 x$		($\left.q^{2}+1\right)^{2}$	
		λ_{8}		$(q+1)^{4}$			$\rightarrow 2$	s_{1}	$\left.\right\|^{2} D_{4}\left(q^{2}\right) \mid$	$\left(q^{2}-1\right)(q-1)^{2}$	
		$\alpha \lambda s$		$(q+1)^{2}\left(q^{2}-1\right)$			$4 \rightarrow 4$	ηs_{1}		$\left(q^{2}+1\right)(q-1)^{2}$	

(Continued)

Δ_{J}	Ω_{J}	[w]	$\mid\left(M^{0}\right){ }_{\text {o }}$	$\left\|\left(S^{0}\right)_{o}\right\|$	Condition for occurrence	Δ_{J}	Ω_{J}	[w]	$\left\|\left(M^{*}\right)_{o}\right\|$	$\left\|\left(S^{0}\right)_{a}\right\| \quad$ Co	Condition for occurrence	
	$7 \rightarrow-9 \rightarrow$	$y_{s_{1}}$		$\left(q^{2}-1\right)^{2}$			$7 \rightarrow 7$	$\pi 8_{1} 8_{3}$		$(q-1)\left(q^{2}-1\right)$	$2 \mid q-1$	
	$-14 \rightarrow 7$	Vys ${ }_{1}$		$\left(q^{2}-1\right)(q+1)^{2}$			$9 \leftrightarrow 14$	$\pi \kappa s_{1} 8_{3}$		$(q+1)\left(q^{2}-1\right)$	$2 \mid q-1$	
	$8 \rightarrow 8$	978_{1}		$(q-1)\left(q^{3}+1\right)$			$10 \rightarrow 10$	$\xi \pi 8_{1} 8_{3}$		$(q+1)\left(q^{2}-1\right)$	$2 \mid q-1$	
	$10 \rightarrow 10$	$\pi \vartheta s_{1}$		$(q+1)\left(q^{3}-1\right)$			$13 \rightarrow 13$	$\xi \pi \pi 8_{1} 8_{3}$		$(q+1)^{3}$	$2 \mid q-1$	
		$\pi \eta 8_{1}$		$q^{4}-1$		$A_{2}+3 A_{1}$	$S_{8} \times\left(Z_{2}\right)^{2}$		$\left\|A_{2}(q) \\| A_{1}(q)\right\|^{3}$	$(q-1)^{8}$		
		$\pi x \pi 8_{1}$		$q^{4}+1$						$(q-1)\left(q^{2}-1\right)$		
		$\pi \eta \kappa s_{1}$		$\left(q^{2}+1\right)(q+1)^{2}$					$\left\|A_{2}(q)\right\|\left\|A_{1}\left(q^{2}\right)\right\|$	$(q-1)\left(q^{2}-1\right)$		
		s_{2}	$\left.\right\|^{3} D_{4}\left(q^{8}\right) \mid$	$(q-1)\left(q^{3}-1\right)$								
		$\pi 8_{2}$		$(q-1)\left(q^{8}+1\right)$						$(q+1)\left(q^{2}-1\right)$		
		$\pi \lambda_{8}$		$(q+1)\left(q^{3}-1\right)$					$\left\|A_{2}(q)\right\|\left\|A_{1}\left(q^{8}\right)\right\|$	$q^{3}-1$		
		$\pi \eta \lambda \kappa 8_{2}$		$(q+1)\left(q^{3}+1\right)$						$(q+1)\left(q^{2}+q+1\right)$		
		9732		$q^{4}-q^{2}+1$					$\left.\left.\right\|^{2} A_{2}\left(q^{2}\right)\| \| A_{1}(q)\right\|^{3}$	$(q+1)\left(q^{2}-1\right)$		
		$y \kappa 8_{2}$		$\left(q^{2}-q+1\right)^{2}$						$(q+1)^{8}$		
		$z \lambda s_{2}$		$\left(q^{2}+q+1\right)^{2}$						$(q-1)\left(q^{2}-1\right)$		
$5 A_{1}$	H_{1}	1	$\left\|A_{1}(q)\right\|^{5}$	$(q-1)^{3}$	$2 \mid q-1$				$\times\left\|A_{1}(q)\right\|$	$(q-1)\left(q^{2}-1\right)$		
$\{2,3,5,7$,	S_{4}	ξ		$(q-1)\left(q^{2}-1\right)$	$2 \mid q-1$					$(q+1)\left(q^{2}-1\right)$		
10)	$8_{1}: 2 \rightarrow 2$	$\xi \pi$		$(q+1)\left(q^{2}-1\right)$	$2 \mid q-1$				$\left.\right\|^{2} A_{2}\left(q^{2}\right)\| \| A_{1}\left(q^{3}\right) \mid$	$q^{3}+1$		
3 ${ }_{1}$	$3 \rightarrow 3$	$\boldsymbol{\kappa} \boldsymbol{\xi} \pi$		$(q+1)^{3}$	$2 \mid q-1$					$(q-1)\left(q^{2}-q+1\right)$		
\{9, 13, 14\}	$5 \rightarrow 5$	${ }_{1}$	$\left\|A_{1}\left(q^{2}\right)\right\|\left\|A_{1}(q)\right\|^{3}$	$(q-1)\left(q^{2}-1\right)$	$2 \mid q-1$	$2 A_{2}+A_{1}$	$S_{3} \times\left(\bar{Z}_{2}\right)^{2}$		$\left\|A_{2}(q)\right\|^{2}\left\|A_{1}(q)\right\|$	$(q-1)^{3}$		
	$7 \rightarrow 10$	$\xi 8_{1}$		$+1)\left(q^{2}-(q 1)\right.$	$2 \mid q-1$					$(q-1)\left(q^{2}-1\right)$		
	$9 \rightarrow 14$	πs_{1}		$(q-1)\left(q^{2}+1\right)$	$2 \mid q-1$					$q^{3}-1$		
	$13 \rightarrow 13$	$\xi \pi s_{1}$		$(q+1)\left(q^{2}+1\right)$	$2 \mid q-1$				$\left\|A_{2}\left(q^{2}\right)\right\|\left\|A_{1}(q)\right\|$	$(q-1)\left(q^{2}-1\right)$		
	s_{2} : $2 \rightarrow 2$	$8_{1} 8_{2}$	$\left\|A_{1}\left(q^{8}\right)\right\|\left\|A_{1}(q)\right\|^{2}$	$q^{3}-1$	$2 \mid q-1$					$(q+1)\left(q^{2}-1\right)$		
	$3 \rightarrow 3$	$\xi 8_{1} 8_{2}$		$q^{3}+1$	$2 \mid q-1$					$(q-1)\left(q^{2}-q+1\right)$		
	$5 \leftrightarrow 7$	$8_{1} 88_{8} 8_{3}$	$\left\|A_{1}\left(q^{4}\right)\right\|\left\|A_{1}(q)\right\|$	$(q-1)\left(q^{2}-1\right)$	$2 \mid q-1$				$\left.\right\|^{2} A_{2}\left(q^{2}\right){ }^{2}\left\|A_{1}(q)\right\|$	$(q+1)^{3}$		
	$9 \rightarrow 9$	$\xi_{1} 8_{1} 8_{2} 8_{3}$		$(q-1)\left(q^{2}+1\right)$	$2 \mid q-1$					$(q+1)\left(q^{2}-1\right)$		
	$10 \rightarrow 10$	$\pi 8_{1} 8_{2} 8_{3}$		$(q+1)\left(q^{2}-1\right)$	$2 \mid q-1$					$q^{3}+1$		
	$13 \leftrightarrow 14$	$\xi \pi 8_{1} 8_{2} 8_{3}$		$(q+1)\left(q^{2}+1\right)$	$2 \mid q-1$				$\left\|A_{2}\left(q^{2}\right)\right\|\left\|A_{1}(q)\right\|$	$(q-1)\left(q^{2}-1\right)$		
	8_{8} : $2 \oplus 5$	$8_{1} 8_{3}$	$\left\|A_{1}\left(q^{2}\right)\right\|^{2}\left\|A_{1}(q)\right\|$	$(q-1)^{3}$	$2 \mid q-1$					$(q+1)\left(q^{2}-1\right)$		
	$3 \rightarrow 3$	$\xi_{8_{1} 8_{3}}$		$(q-1)\left(q^{2}-1\right)$	$2 \mid q-1$					$(q+1)\left(q^{2}+q+1\right)$		

(Continued)

(Continued)

(Continued)

(Continued)

Δ_{J}	Ω_{J}	$\left\|\left(M^{0}\right)^{*}\right\|$	$\left\|\left(S^{0}\right)_{o}\right\|$	Condition for occurrence	Δ_{J}	Ω_{J}	$\left\|\left(M^{*}\right)^{\prime}\right\|$	$\left\|\left(S^{\%}\right)^{\prime}\right\|$	Condition for occurrence	
$D_{4}+A_{2}$	$S_{8} \times \boldsymbol{Z}_{2}$		$\begin{aligned} & \hline q^{2}-1 \\ & (q-1)^{2} \end{aligned}$	$\begin{aligned} & 2 \mid q-1 \\ & 2 \mid q-1 \end{aligned}$	$\begin{array}{r} A_{8}+A_{2} \\ +2 A_{1} \end{array}$	$\left(Z_{2}\right)^{2}$	$\begin{aligned} & \left\|A_{3}(q)\right\|\left\|A_{2}(q)\right\| \\ & \times\left\|A_{1}(q)\right\|^{2} \mid \end{aligned}$	$q-1$	$2 \mid q-1$	
		$\left\|D_{4}(q)\right\|\left\|A_{2}(q)\right\|$	$(q-1)^{2}$				$\begin{aligned} & \left.\right\|^{2} A_{8}\left(q^{2}\right)\| \|^{2} A_{2}\left(q^{2}\right) \mid \\ & \times\left\|A_{1}(q)\right\|^{2} \end{aligned}$	$q+1$	$2 \mid q-1$	
		$\left.\right\|^{2} D_{4}\left(q^{2}\right)\left\|{ }^{2} A_{2}\left(q^{2}\right)\right\|$ $\left.\left.\right\|^{3} D^{(}\left(q^{8}\right)\| \|\right\|_{2}(q) \mid$	$q^{2}-1$ $q^{2}+q+1$					q-1	$2 \mid q-1$	
		$\left\|{ }^{3} D_{4}\left(q^{8}\right)\right\|\left\|A_{2}(q)\right\|$	$q^{2}+q+1$				$\times\left\|A_{1}\left(q^{2}\right)\right\|$	q-1	$2 \mid q-1$	
		$\left.\left\|D_{4}(q)\right\|\right\|^{2} A_{2}\left(q^{2}\right) \mid$ $\left.\right\|^{2} D_{4}\left(q^{2}\right)\left\|A_{2}(q)\right\|$	$(q+1)^{2}$ $q^{2}-1$				$\begin{aligned} & \left\|A_{s}(q)\right\| \\|_{i}^{i} A_{2}\left(q^{2}\right) \mid \\ & \times\left\|A_{1}\left(q^{2}\right)\right\| \end{aligned}$	$q+1$	$2 \mid q-1$	
$D_{5}+A_{1}$	$\left(Z_{2}\right)^{2}$	\| ${ }^{2} D_{4}\left(q^{2}\right)\| \| A_{2}(q) \mid$	$q^{2}-1$ $q^{2}-q+1$		$2 A_{3}+A_{1}$	$\left(Z_{2}\right)^{3}$	$\left\|A_{3}(q)\right\|^{2}\left\|A_{1}(q)\right\|$	$q-1$	$4 \mid q-1$	
		$\left\|D_{5}(q)\right\|\left\|A_{1}(q)\right\|$	$(q-1)^{2}$					$q+1$	$4 \mid q-1$	
			$q^{2}-1$				$\left.\left.\right\|^{2} A_{3}\left(q^{2}\right)\right\|^{2}\left\|A_{1}(q)\right\|$	$q-1$	$4 \mid q+1$	
		$\left.\right\|^{2} D_{5}\left(q^{2}\right)\| \| A_{1}(q) \mid$	$q^{2}-1$					$q+1$	$4 \mid q+1$ $4 \mid q+1$	
$D_{\text {b }}$	$W\left(B_{2}\right)$		$(q+1)^{2}$				$\left\|A_{3}\left(q^{2}\right)\right\|\left\|A_{1}(q)\right\|$	$q-1$ $q+1$	$4 \mid q+1$ $4 \mid q+1$	
		$\left\|D_{8}(q)\right\|$	$(q-1)^{2}$ $q^{2}-1$					$q-1$	$4 \mid q-1$	
			$(q+1)^{2}$					$q+1$	$4 \mid q-1$	
		$\left\|{ }^{2} D_{8}\left(q^{2}\right)\right\|$	$q^{2}-1$		$\begin{aligned} A_{4} & +A_{2} \\ & +A_{1} \end{aligned}$	Z_{2}	$\underset{\|c\|}{\left\|A_{4}(q)\right\|\left\|A_{2}(q)\right\|}$	q-1		
			$q^{2}+1$				$\left.\right\|^{2} A_{4}\left(q^{2}\right)\| \|^{2} A_{2}\left(q^{2}\right) \mid$			
$E_{\text {b }}$	$S_{3} \times \boldsymbol{Z}_{\mathbf{2}}$	$\left\|E_{8}(q)\right\|$	$(q-1)^{2}$				${ }_{\times\left\|A_{1}(q)\right\|}{ }^{(2)}$	$q+1$		
			$q^{2}-1$		$A_{4}+A_{3}$	Z_{2}	$\left\|A_{4}(q)\right\|\left\|A_{8}(q)\right\|$	q-1		
			$q^{2}+q+1$				$\left.\right\|^{2} A_{4}\left(q^{2}\right)\| \|^{2} A_{3}\left(q^{2}\right) \mid$	$q+1$		
		$\left\|{ }^{2} E_{6}\left(q^{2}\right)\right\|$	$(q+1)^{2}$		$A_{5}+2 A_{1}$	\boldsymbol{Z}_{2}	$\left\|A_{5}(q)\right\|\left\|A_{1}(q)\right\|^{2}$	$q-1$	$2 \mid q-1$	
			$q^{2}-1$				$\left.\right\|^{2} A_{5}\left(q^{2}\right) \\|\left. A_{1}(q)\right\|^{2}$	$q+1$	$2 \mid q-1$	
			$q^{2}-q+1$		$A_{5}+A_{2}$	$\left(Z_{2}\right)^{2}$	$\left\|A_{5}(q)\right\|\left\|A_{2}(q)\right\|$	$q-1$	$3 \mid q-1$	
$3 A_{2}+A_{1}$	$S_{3} \times \boldsymbol{Z}_{2}$	$\left\|A_{2}(q)\right\|^{3}\left\|A_{1}(q)\right\|$	$q-1$	$3 \mid q-1$				$q+1$	$3 \mid q-1$	
		$\left\|A_{2}\left(q^{2}\right)\right\|{ }^{2} A_{2}\left(q^{2}\right) \mid$	$q-1$	$3 \mid q+1$			$\left.\right\|^{2} A_{5}\left(q^{2}\right)\| \|{ }^{2} A_{2}\left(q^{2}\right) \mid$	q-1	$3 \mid q+1$	
		$\times\left\|A_{1}(q)\right\|$ ${ }^{2} A_{2}\left(q^{2}\right){ }^{3}\left\|A_{1}(q)\right\|$	$q-1$ $q+1$	$3 \mid q+1$				$q+1$	$3 \mid q+1$	
		$\left.\right\|^{2} A_{2}\left(q^{2}\right){ }^{3}\left\|A_{1}(q)\right\|$	$q+1$	$3 \mid q+1$	$A_{8}+A_{1}$	\boldsymbol{Z}_{2}	$\left\|A_{8}(q)\right\|\left\|A_{1}(q)\right\|$	$q-1$		
		$\begin{aligned} & \left\|A_{2}\left(q^{2}\right)\right\|\left\|A_{2}(q)\right\| \\ & \times\left\|A_{1}(q)\right\| \end{aligned}$	$q+1$	$3 \mid q-1$			$\left.\right\|^{2} A_{6}\left(q^{2}\right)\| \| A_{1}(q) \mid$	$q+1$		
		${ }^{\left\|A_{2}\left(q^{3}\right)\right\|\left\|A_{1}(q)\right\|}$	$q-1$	$3 \mid q-1$	$\left[A_{7}\right]^{\prime}$	\boldsymbol{Z}_{2}	$\left\|A_{7}(\underline{q})\right\|$	$q-1$		
		$\left.\right\|^{2} A_{2}\left(q^{8}\right)\| \| A_{1}(q) \mid$	$q+1$	$3 \mid q+1$			$\left\|{ }^{2} A_{7}\left(q^{2}\right)\right\|$	$q+1$		

(Continued)

Δ_{J}	Ω_{J}	$\left\|\left(M^{0}\right)^{\prime}\right\|$	$\left\|\left(S^{p}\right)^{\prime}\right\|$	Condition for occurrence	Δ_{J}	Ω_{J}	$\left\|\left(M^{v}\right)_{\sigma}\right\|$	$\left\|\left(S^{0}\right)^{\prime}\right\|$	$\begin{aligned} & \text { Condition } \\ & \text { for } \\ & \text { occurrence } \end{aligned}$	
${ }^{\left[A_{7}\right]^{\prime \prime}}$	$\left(Z_{2}\right)^{2}$	$\left\|A_{7}(q)\right\|$	$q-1$	$2 \mid q-1$	E_{7}	Z_{2}	$\left\|E_{7}(q)\right\|$	$q-1$		
			$q+1$	$2 \mid q-1$	$2 A_{4}$			$q+1$		
		$\left.\right\|^{2} A_{7}\left(q^{2}\right) \mid$	$q-1$	$2 \mid q-1$		Z_{4}	$\left\|A_{4}(q)\right\|^{2}$	$q+1$	$5 \mid q-1$	
	$\left(Z_{2}\right)^{2}$		$q+1$	$2 \mid q-1$			$\left.\left.\right\|^{2} A_{4}\left(q^{2}\right)\right\|^{2}$	1	$5 \mid q-4$	
$D_{4}+A_{3}$		$\left\|D_{4}(q)\right\|\left\|A_{3}(q)\right\|$	$q-1$	$2 \mid q-1$			$\left.\right\|^{2} A_{4}\left(q^{4}\right) \mid$	1	$5 \mid q-3$	
		$\left.\right\|^{2} D_{4}\left(q^{2}\right) \\|^{2} A_{3}\left(q^{2}\right) \mid$	$q-1$	$2 \mid q-1$			$\mid \mathrm{A}_{4}(\underline{\text { q }}$)	1	$5 \mid q-3$ $5 \mid q-2$	
		$\left.\right\|^{2} D_{4}\left(q^{2}\right)\| \| A_{3}(q) \mid$	$q+1$	$2 \mid q-1$	$A_{5}+A_{2}$	\boldsymbol{Z}_{2}	$\left\|A_{5}(q)\right\|\left\|A_{2}(q)\right\|$			
		$\left.\left\|D_{4}(q)\right\|\right\|^{2} A_{3}\left(q^{2}\right) \mid$	$q+1$	$2 \mid q-1$	$+A_{1}$	\boldsymbol{Z}_{2}	$\times\left\|A_{1}(q)\right\|$	1	$6 \mid q-1$	
$D_{8}+2 A_{1}$	$\left(Z_{2}\right)^{2}$	$\left\|D_{5}(q)\right\|\left\|A_{1}(q)\right\|^{2}$	$q-1$	$2 \mid q-1$	$A_{7}+A_{1}$	\boldsymbol{Z}_{2}	${ }^{\mid 12} A_{5}\left(q^{2}\right)\| \|^{2} A_{2}\left(q^{2}\right) \mid$	1	$6 \mid q+1$	
		$\left.\right\|^{2} D_{5}\left(q^{2}\right)\| \| A_{1}\left(q^{2}\right) \mid$	$q-1$	$2 \mid q-1$			${ }^{-1} A_{7}(q)\| \| A_{1}(q) \mid$	1	$4 \mid q-1$	
		$\left.\left.\right\|^{2} D_{5}\left(q^{2}\right)\| \| A_{1}(q)\right\|^{2}$	$q+1$	$2 \mid q-1$			${ }^{\mid c} A^{2} A_{7}\left(q^{2}\right)\| \| A_{1}(q) \mid$		$4 \mid q+1$	
		$\left\|D_{5}(q)\right\|\left\|A_{1}\left(q^{2}\right)\right\|$ $\left\|D_{5}(q)\right\| A_{2}(q) \mid$	$q+1$	$2 \mid q-1$	A_{8}	Z_{2}	$\begin{aligned} & \left\|A_{8}(q)\right\| \\ & \left\|\left.\right\|^{2} A_{8}\left(q^{2}\right)\right\| \end{aligned}$	1		
$D_{6}+A_{2}$	\boldsymbol{Z}_{2}	$\left\|D_{5}(q)\right\|\left\|A_{2}(q)\right\|$ $\left.\right\|^{2} D_{5}\left(q^{2}\right)\left\|{ }^{2} A_{2}\left(q^{2}\right)\right\|$	q-1					1	$3 \mid q+1$	
$D_{6}+A_{1}$	\boldsymbol{Z}_{2}	$\left\|D_{8}(q)\right\|\left\|A_{1}(q)\right\|$	q-1	$\begin{aligned} & 2 \mid q-1 \\ & 2 \mid q-1 \end{aligned}$	$D_{5}+A_{3}$	\boldsymbol{Z}_{2}	$\left.\right\|^{2} D_{5}\left(q^{2}\right)\| \|^{2} A_{3}\left(q^{2}\right) \mid$	1	$4 \mid q-1$$4 \mid q+1$	
			$\underline{q-1}$							
$E_{6}+A_{1}$	\boldsymbol{Z}_{2}	$\begin{aligned} & \left\|E_{6}(q)\right\|\left\|A_{1}(q)\right\| \\ & \left.\right\|^{2} E_{\theta}\left(q^{2}\right)\| \| A_{1}(q) \mid \\ & \left\|D_{7}(q)\right\| \\ & \left.\right\|^{2} D_{7}\left(q^{2}\right) \mid \end{aligned}$	q-1			T	$\left\|D_{8}(q)\right\|$	1	$2 \mid q-1$	
			$\underline{q-1}$		$E_{6}+A_{2}$	\boldsymbol{Z}_{2}	$\left\|E_{6}(q)\right\|\left\|A_{2}(q)\right\|$	1	$3 \mid q-1$	
D_{7}	\boldsymbol{Z}_{2}		$q-1$				$\left.\right\|^{2} E_{6}\left(q^{2}\right)\left\|{ }^{2} A_{2}\left(q^{2}\right)\right\|$	1	$3 \mid q+1$	
			$q+1$		$E_{7}+A_{1}$	1	$\left\|E_{7}(q)\right\|\left\|A_{1}(q)\right\|$	1	$2 \mid q-1$	

the tori which are obtained by twisting the maximal split torus T_{0} by the elements of Ω_{ϕ}, where here Ω_{ϕ} is the whole Weyl group W. The conjugacy classes of W are known [3], therefore, the reader can have a complete list of the tori $\left(T_{w}\right)_{o}, w \in W$, and their orders from the material of [3]. Thus we have not included in our tables the cases $J=\varnothing$.

We note that from the above tables one can obtain the degrees of Deligne-Lusztig [7] representations of the groups E_{7} and E_{8} of adjoint type. In fact, these degrees are the p^{\prime}-parts of $\left|G_{o}\right| /\left|C_{G_{o}}(x)\right|$, where G is a simply connected group E_{7} or E_{8} and $C_{G_{o}}(x)$ are the centralizers in G_{σ} of semisimple elements in G_{0}.

References

[1] A. Borel, et. al. Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Math., 131, Springer, 1970.
[2] R. W. Carter, Simple Groups of Lie Type, Wiley, London-New York, 1972.
[3] R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math., 25, Fasc. 1, 1972, 1-59.
[4] R. W. Carter, Centralizers of semisimple elements in finite groups of Lie type, Proc. London Math. Soc., 37 (1978), 491-507.
[5] R. W. Carter, Centralizers of semisimple elements in the finite classical groups, Proc. London Math. Soc., 42 (1981), 1-41.
[6] B. Chang and R. Ree, The Character Tables of $G_{2}(q)$, Institute Nazionale di Alta Matematica, Symposia Math. XIII, Academic Press, London-New York, 1974, 395-413.
[7] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math., 103 (1976), 103-161.
[8] I. D. Deriziotis, Ph. D. Thesis, University of Warwick, 1977.
[9] I. D. Deriziotis, The Brauer complex of a Chevalley group, to appear in J. Algebra, 70 (1981).
[10] B. E. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl., 6 (1957), 111-245.
[11] K. Mizuno, The conjugacy classes of finite Chevalley groups of type (E_{8}), J. Fac. Sci. Univ. Tokyo, 24 (1977), 525-563.
[12] T. Shosi, The conjugacy classes of Chevalley groups of type F_{4} over finite fields of char. $p \neq 2$, J. Fac. Sci. Univ. Tokyo, 21 (1974), 1-17.

