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The purpose of this paper is to give in detailed tables all the cen-
tralizers and their orders of semisimple elements of the finite Chevalley
groups $E_{7}$ and $E_{8}$ . These tables are very useful since they give also the
character degrees of the semisimple irreducible complex representations
constructed by Deligne and Lusztig [7] for the finite Chevalley groups
of adjoint type. For, these degrees can be obtained if we know what
subgroups of the finite Chevalley groups of universal type are centralizers
of semisimple elements (see [7]). Similar tables giving these centralizers
for the classical groups and for the groups $G_{2},$ $F_{4}$ and $E_{6}$ have been
obtained in [5], [6], [12] and [11] respectively.

A considerable amount of detailed work was involved in the com-
pilation of our tables which has not been included in the paper. However
we outline below the general results on which we relied heavily for our
calculations.

Let $G$ be a simple linear algebraic Chevalley group of rank $l$ defined
over the algebraic closure $K$ of the prime field $F_{p}$ of $p$ elements. Let
$\Phi$ be a root system of $G$ with respect to a maximal torus $T_{0}$ of $G$ which
splits over $F_{p}$ . Consider the highest root $r_{0}$ in $\Phi$ and let $\tilde{\Delta}=\Delta\cup\{-r_{0}\}$

where $\Delta=\{r_{i};i=1, \cdots, l\}$ is a fixed fundamental basis of $\Phi$ . Also we
put $I_{0}=\{0,1,2, \cdots, l\}$ .

We have shown [8] that, except for the bad primes of $G$ (see [1, $p$ .
178]), a connected reductive subgroup $G_{1}$ of maximal rank in $G$ is the
connected centralizer of a semisimple element if and only if some proper
subset of the roots in $\tilde{\Delta}$ is equivalent under the Weyl group $W(=W(\Phi))$

to a fundamental basis of the root system of $G_{1}$ . Thus every connected
centralizer of a semisimple element in $G$ is in some $C_{J},$ $J\subsetneqq I_{0}$ , where by
$C_{J}$ we denote the set of all connected centralizers of semisimple elements
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of $G$ which are G-conjugate to the connected centralizers whose root
system is $\Phi_{J}$ , the root system generated by $\Delta_{J}=\{r_{j};j\in J\}$ . All the
centralizers belonging in a given $C_{J},$ $J\subsetneqq I_{0}$ , have the same Dynkin dia-
gram the type of which we denote $E_{J}$ . Notice (See [10].) that if two
proper subsets $\Delta_{J},$ $\Delta_{J^{\prime}}$ of $\tilde{\Delta}$ have the same Dynkin diagrams then $\Delta_{J}$ and
$\Delta_{J}$ , are W-conjugate, apart from a few exceptions when $\tilde{\Delta}$ is of type $E_{7}$

or $E_{8}$ .
We consider now the Frobenius endomorphism $\sigma$ of $G$ which raises

every matrix coefficient to its $q^{th}$ power where $q=p^{n}$ . Then the group
$G_{\sigma}$ of the fixed points under $\sigma$ is a Chevalley group over the field $F_{q}$ of
$q$ elements. To work within $G_{\sigma}$ we have to consider first the connected
centralizers of a-stable semisimple elements (which are, of course, $\sigma-$

stable subgroupv) and the question is if each set $C_{J}(J\subsetneqq I_{0})$ contains such
a centralizer. Thus for a given $J\subsetneqq I_{0}$ we consider the set $\mathscr{G}_{J}$ of all $\sigma-$

stable centralizers in $C_{J}$ . Then the group $G_{\sigma}$ acts on $\mathscr{G}_{J}$ and let $\mathscr{G}_{r}/G_{\sigma}$

be the set of $G_{\sigma}$-orbits in $\mathscr{G}_{J}$ . Finally we denote by $\Omega_{J}$ the normalizer
in $W$ of the set $\Delta_{J}$ of the simple roots $\gamma_{j}j\in J$. Now the structure of
the group of the fixed points of a centralizer in $\mathscr{G}_{J}$ under $\sigma$ has been
determined by Carter [4] as follows: Let $G_{J}\in \mathscr{G}_{J}$ . Then

(a) Each conjugacy class $[w]$ of $\Omega_{J}$ gives rise to the orbit $\overline{G^{g},}$ in
$\mathscr{G}_{J}/G_{\sigma}$ represented by the conjugate $G_{J}^{g}$ of $G_{J}$ , where $\pi(g^{-1}\sigma(g))=w,$ $\pi$

being the natural homomorphism of the normalizer $N_{a}(T_{0})$ of $T_{0}$ onto
$W$. The map $[w]\rightarrow\overline{G_{J}^{g}}$ is a bijection.

(b) If $M$ is the semisimple part of $G_{J}$ , then the group $(M^{g})$. is
isomorphic to the subgroup of the finite Chevalley group of type $M$

obtained by combining the graph automorphism $\tau$ of the Dynkin diagram
of $\Delta_{J}$ induced by $w$ with $\sigma$ and taking the fixed points of the product
$\sigma\tau$ .

(c) If $S$ is the identity component of the centre of $G_{J}$ , then the
group $(S^{ff})_{\sigma}$ is isomorphic to the group $X/\overline{P}_{J}/(qw-1)(X/\overline{P}_{J})$ . Here $X$

denotes the group (considered as an additive group) of the K-rational
characters of $T_{0}$ and $\overline{P}_{J}$ is the subgroup of $X$ consisting of all rational
linear combinations of roots in $\Phi_{J}$ .

Let $G_{J}$ be as above. Then $G_{J}=MS$ and $M\cap S=A$ is finite. Also
$M$ and $S$ are a-stable, being characteristic subgroups of $G_{J}$ and $G_{J}$ is
$F_{q}$-isogenous to the direct product $M\times S$ (since both the connected groups
$G_{J}$ and $M\times S$ are $F_{q}$-isogenous to $M/A\times S/A$ which is isomorphic to
$(M\times S)/(A\times A)$ . In general, it is known that if $H_{1},$ $H_{2}$ are two connected
algebraic groups defined over $k$ , a finite subfield of $K$, and $H_{1}$ is k-
isogenous to $H_{2}$ then the groups of the k-rational points of $H_{1}$ and $H_{2}$
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respectively have the same order. Therefore $|(G_{J})_{\sigma}|=|M_{\sigma}||S_{\sigma}|$ . In particu-
lar, if $w=\pi(g^{-1}\sigma(g))$ , then $|(G_{J}^{g})_{\sigma}|=|(M^{g})_{\sigma}||(S^{g})_{\sigma}|$ , where the order $|(M^{g})_{\sigma}|=|M_{\sigma\tau}|$

is well known (See [2, ch. 12].) and the order $|(S^{g})_{\sigma}|$ is $f(q)/g(q),$ $f(t)$ and
$g(t)$ being the characteristic polynomials of $w$ on $X\otimes R$ and on $\overline{P}_{J}\otimes R$

respectively.
From the above discussion we see that each orbit in $\mathscr{G}_{J}/G_{\sigma}$ is charac-

terized by the type $E_{J}$ of the Dynkin diagram of the centralizers in $\mathscr{G}_{J}$

and by some conjugacy class $[w]$ in $\Omega_{J}$ . If we are given such an orbit
we can now ask whether this orbit contains a centralizer of some $\sigma$-stable
semisimple element. Carter [4, Cor. 20] has shown that this depends
on whether the group $X/P_{J}+(qw-1)X$ has a character which does not
annihilate any root in $\overline{\Phi}_{J}-\Phi_{J}$ for sufficiently large values of $q$ , where
$\overline{\Phi}_{J}=\Phi\cap\overline{P}_{J}$ . We note that instead of this we have given in [8] a practical
method (using the Brauer complex of $G,$ $[9]$ ) to determine the conditions
which have to be imposed on $q$ for the occurrence of such a centralizer
in a given orbit in $\mathscr{G}_{J}/G_{\sigma}$ .

To determine, for each proper subset $J$ of $I_{0}$ , the structure and its
conjugacy classes of the group $\Omega_{J}$ we made great use of the material
of Carter’s paper [3].

In the tables which follow one row corresponds to each orbit in
$\mathscr{G}_{J}/G_{\sigma}$ . The column headed with $\Delta_{J}$ gives the type $E_{J}$ of the Dynkin
diagram of the centralizers in $\mathscr{G}_{J}$ . The column headed with $\Omega_{J}$ gives
the abstruct type of group which is isomorphic to $\Omega_{J}$ . The columns
headed with $|(M^{g})_{\sigma}|$ and $|(S^{g})_{\sigma}|$ give respectively the order of the semi-
simple and toral parts of the fixed points of the centralizers under $\sigma$

belonging to a given orbit in $\mathscr{G}_{J}/G_{\sigma}$ . In particular from the semisimple
part we can deduce what kind of graph automorphism is induced by
the elements of $\Omega_{J}$ . The last column gives the conditions which have
to be imposed on $q$ for the occurrence in the $G_{\sigma}$-orbits in $\mathscr{G}_{J}$ of centrali-
zers of semisimple elements of $G_{\sigma}$ . In this last column whenever there
is no indication of condition for occurrence this will mean that in the
corresponding $G_{\sigma}$-orbit they do occur as centralizers of semisimple elements
of $G_{\sigma}$ for all $q$ sufficiently large. For the group $E_{7}$ we shall distinguish
the simply-connected case from the adjoint one by putting $sc$

’ for the
former and $ad$ ’ for the latter.

When the group $\Omega_{J}$ is not too small, in the tables there is a column
headed with $[w]$ . In this column we give a representative element $w$

for each conjugacy class in $\Omega_{J}$ which corresponds to the $G_{\sigma}$-orbit in $\mathscr{G}_{J}$

parametrized by $[w]$ and $\Delta_{J}$ so that one can distinguish the rows which
have the same $\Delta_{J},$ $\Omega_{J},$ $|(M^{g})_{\sigma}|$ and $|(S^{g})_{\sigma}|$ . For these cases, we indicate in
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the 2nd, 3rd and 4th row of the first column the chosen $\Delta_{J}$ , the type of
the root subsystem $\Phi_{J}^{\perp}$ which is orthogonal to $\Phi_{J}$ and a fundamental
basis $\Delta_{J}^{\perp}$ of $\Phi_{J}^{\perp}$ respectively. We give also in the 2nd and 3rd row of the
second column the abstruct type of the group $Aut_{W}(\Delta_{J})$ and generators
of this group respectively. These generators are given by their action
on a suitable bases of $\Phi$ so that the reader can easily see the symmetries
of $\Delta_{J}$ induced by them.

Our notation for the types of the Dynkin diagrams will be as that
of Dynkin’s paper [10]. The root system of type $E_{8}$ is considered
to be embedded in the real vector space $R^{8}$ with orthonormal basis
$\{\epsilon_{i}\}_{1\leq i\leq 8}$ . The fundamental roots are chosen to be the vectors $1/2(\epsilon_{1}-\epsilon_{2}-$

$\epsilon_{3}-\epsilon_{4}-\epsilon_{\delta}-\epsilon_{6}-\epsilon_{7}+\epsilon_{8}),$ $\epsilon_{2}+\epsilon_{1},$ $\epsilon_{2}-\epsilon_{1},$ $\epsilon_{3}-\epsilon_{2},$ $\epsilon_{4}-\epsilon_{3},$ $\epsilon_{6}-\epsilon_{4},$ $\epsilon_{6}-\epsilon_{b}$ and $\epsilon_{7}-\epsilon_{6}$ with
respect to which the positive roots are the vectors $\pm\epsilon_{i}+\epsilon_{j},$ $i<j$ and the
vectors $1/2(\epsilon_{8}+\sum_{i=1}^{7}(-1)^{v_{i}}\epsilon_{i})$ such that $\sum_{i=1}^{7}v_{i}$ is even where $v_{i}=0,1$ . The
root system of type $E_{7}$ is the root subsystem of $E_{8}$ consisting of the
roots $\pm(\pm\epsilon_{i}+\epsilon_{j}),$ $1\leqq i<j\leqq 6,$ $\pm(\epsilon_{8}-\epsilon_{7})$ and $\pm 1/2(\epsilon_{8}-\epsilon_{7}+\sum_{i=1}^{6}(-1)^{v_{i}}\epsilon_{i})$ such
that $\sum_{i=1}^{6}v_{i}$ is odd. In the tables below, the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23 will denote respectively
the roots $1/2(\epsilon_{1}-\epsilon_{2}-\epsilon_{3}-\epsilon_{4}-\epsilon_{b}-\epsilon_{6}-\epsilon_{7}+\epsilon_{8}),$ $\epsilon_{1}+\epsilon_{2},$ $\epsilon_{2}-\epsilon_{1},$ $\epsilon_{3}-\epsilon_{2},$ $\epsilon_{4}-\epsilon_{3},$ $\epsilon_{f}-\epsilon_{4}$ ,
$\epsilon_{6}-\epsilon_{5},$ $\epsilon_{7}-\epsilon_{6},$ $\epsilon_{7}-\epsilon_{8},$

$-\epsilon_{7}-\epsilon_{8},1/2(\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{l}+\epsilon_{5}-\epsilon_{6}-\epsilon_{7}+\epsilon_{8}),$ $\epsilon_{3}+\epsilon_{2},$ $\epsilon_{4}+\epsilon_{3},$ $\epsilon_{6}+$

$\epsilon_{\delta},$
$\epsilon_{4}+\epsilon_{1},1/2(\epsilon_{1}-\epsilon_{2}+\epsilon_{3}+\epsilon_{4}+\epsilon_{b}+\epsilon_{6}-\epsilon_{7}+\epsilon_{8}),$ $1/2(-\epsilon_{1}+\epsilon_{2}-\epsilon_{3}-\epsilon_{4}+\epsilon_{b}+\epsilon_{6}-\epsilon_{7}+\epsilon_{8})$ ,

$\epsilon_{7}+\epsilon_{6},$ $\epsilon_{8}-\epsilon_{5},$ $\epsilon_{8}+\epsilon_{b},$ $1/2(-\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4}-\epsilon_{5}-\epsilon_{6}-\epsilon_{7}+\epsilon_{8}),$ $1/2(\epsilon_{1}+\epsilon_{2}+\epsilon_{3}-\epsilon_{4}-\epsilon_{5}-$

$\epsilon_{6}-\epsilon_{7}+\epsilon_{8})$ and $\epsilon_{4}-\epsilon_{1}$ . Also the letters $\alpha,$ $\beta,$ $\gamma\delta,$
$\epsilon,$

$\zeta,$ $\eta,$ $\theta,$ $\kappa,$ $x,$ $\mu,$ $\nu,$ $\xi,$ $\pi,$ $\rho$ ,
$\tau,$ $\varphi,$ $x,$ $y,$ $z,$ $\omega,$ $u$ and $i$ will denote respectively the reflections in the
hyperplanes orthogonal to the roots 1 up to 23.

We shall denote by $H_{1}$ and $H_{2}$ the following groups. Let us write the
symmetric group $S_{4}$ as the semi-direct product of $Z_{2}\times Z_{2}$ by $S_{s}$ . Then $H_{1}$

denotes the $\cdot$ semi-direct product of $Z_{2}\times Z_{2}\times Z_{2}$ by $S_{4}$ , where $S_{4}$ acts on the
normal part such that its Klein subgroup $Z_{2}\times Z_{2}$ acts trivially and $S_{a}$

purmutes the components in all possible ways. $H_{2}$ denotes the semi-
direct product of the Weyl group $W(D_{4})$ of type $D_{4}$ by $S_{4}$ , where here
the Klein subgroup acts trivially on $W(D_{4})$ and $S_{3}$ acts as in the figure:

Notice that if $ J=\emptyset$ then the groups of the a-fixed points of the cen-
tralizers in $\mathscr{G}$, are the maximal tori $(T_{\tau v})_{\sigma},$ $w\in\Omega_{\theta}$ , in $G_{\sigma}$ determined from
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the tori which are obtained by twisting the maximal split torus $T_{0}$ by

the elements of $\Omega_{\phi}$ , where here $\Omega_{\phi}$ is the whole Weyl group $W$. The
conjugacy classes of $W$ are known [8], therefore, the reader can have a
complete list of the tori $(T_{w})_{\sigma},$ $w\in W$, and their orders from the material
of [3]. Thus we have not included in our tables the cases $ J=\emptyset$ .

We note that from the above tables one can obtain the degrees of
Deligne-Lusztig [7] representations of the groups $E_{7}$ and $E_{8}$ of adjoint

type. In fact, these degrees are the p’-parts of $|G_{\sigma}|/|C_{0_{\sigma}}(x)|$ , where $G$

is a simply connected group $E_{7}$ or $E_{8}$ and $C_{a_{\sigma}}(x)$ are the centralizers in
$G_{\sigma}$ of semisimple elements in $G_{\sigma}$ .
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