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Introduction

We consider the delay differential equations including state dependent
lags,

(E’) $x_{i}(t)=f_{i}(t, x(t),$ $x(g_{2}(t, x(t))),$
$\cdots,$ $x(g_{m}(t, x(t))))$ ,

$i=1,$ $\cdots,$
$d$ , under the assumption that $f_{i}$ satisfies the Caratheodory con-

dition, where $x(t)$ stands for $(x_{1}(t), \cdots, x_{d}(t))$ and prime denotes differentia-
tion with respect to $t$ . We assume the existence of a finite number $\alpha$

such that for each $j=2,$ $\cdots,$ $m,$ $\alpha\leqq g_{j}(t, x)\leqq t$ , whenever $g_{j}(t, x)$ is defined;
the delays $t-g_{j}(t, x)$ may be unbounded. This type of system arises in
studying a two-body problem of classical electrodynamics $[6, 7]$ . Driver
[4] developed the basic theory (existence, uniqueness and dependence of
solutions, etc.) for the initial value problem for delay differential
equations (E) with continuous $f_{i}[5]$ . Since then the theory of delay
differential equations (E) has been studied by many authors. Among
them Bullock [1] showed the existence theorem and uniqueness theorem
for delay differential equations (E’) of Caratheodory type. On the other
hand, Strauss and Yorke [13] constructed a fundamental theory for
ordinary differential equations by using the convergence theorem which
is a generalization of Kamke’s theorem (see [8], Theorem 3.2). Their
method proves to be very important in studying the fundamental theory
of functional (or delay) differential equations. Costello [3] extended their
results to functional differential equations of Caratheodory type with
finite delay,
$(E^{\prime})$ $x^{\prime}(t)=F(t, x_{t})$ ,

where $x_{t}(\theta)=x(t+\theta)$ , $-r\leqq\theta\leqq 0$ . Rybakowski [14] also states without
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proof Kamke’s theorem for the system $(E$
“

$)$ under the very mild
condition of Caratheodory type. The object of this paper is to give
an extension of these results [13] to delay differential equations (E’)
together with the convergence theorem, the existence of noncontinu-
able solutions and the dependence of solutions on initial conditions and
on the functions $f_{i}$ . We emphasize that the equations (E’) cannot be
represented by the above form, since the delays $t-g_{j}(t, x)$ may be
unbounded. We introduce a modification of uniform convergence for the
sequence of continuous functions $\phi_{n};[a_{n}, b_{n}]\rightarrow R^{d}$ , where $\{a_{n}\}$ and $\{b_{n}\}$

converge. This modification plays an essential role in proving the
convergence theorem, which is very advantageous when we consider the
dependence of solutions on initial conditions and on the right-hand side
of (E’).

In section 1, we explain explicit discription of the notations and give
the initial value problem for delay differential equations (E’). In section
2, we introduce a modification of uniform convergence mentioned above,
and by using its properties, the convergence theorem is established,
which is one of our main theorem (Theorem 2.1) in the paper. In
section 3, by using a nonstandard argument as pointed out in [13], the
existence of noncontinuable solutions and the extension of solutions are
given. In section 4, from the convergence theorem, the dependence of
solutions is obtained.

\S 1. Definition and Notations.

Let $R$ (or $R^{1}$) denote the set of real numbers and $R^{d}$ denote the
d-dimensional real Euclidean space. Let

$(t, X)=(t, x_{11}, \cdots, x_{1d}, x_{21}, \cdots, x_{2d}, \cdots, x_{nd})$

be a vector in $R^{dm+1}$ and $(t, x)=(t, x_{11}, \cdots, x_{1d})$ be the $d+1$-dimensional
vector consisting of the first $d+1$ coordinates of $(t, X)$ . Let $D$ be a
domain (an open connected set) of $R^{d_{1*}+1}$ and $D^{*}$ the set of vectors $(t, x)$

in $R^{d+1}$ such that $(t, x, y)$ lies in $D$ for some $y$ in $R^{d(f\hslash-1)}$ . In system (E’),
the function $f(t, X)$ is a mapping from $D$ into $R^{d}$ and the function $g(t, x)=$

$(g_{1}(t, x),$ $\cdots,$ $g_{n}(t, x))$ is a mapping from $D^{*}$ into $R^{m}$ , where $g_{1}(t, x)\equiv t$ for
$(t, x)\in D^{*}$ . For a continuous function $x(t)$ mapping an interval $I$ into $R^{\delta}$ ,
we define a function $xg:D^{*}\rightarrow R^{dn}f$ by $xg(t, \xi)=(x(g_{1}(t, \xi)),$

$\cdots,$ $x(g_{n}(t, \xi)))$

for $(t, \xi)\in D^{*}$ , whenever every composition $x(g_{j}(t, \xi)),$ $j=1,$ $\cdots,$ $m$ , has a
meaning. Using this notation, we can rewrite the system (E) as
(E) $x’(t)=f(t, xg(t, x(t)))$ .
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We impose the following conditions on the functions $f$ and $g$ ;
(F-1) $f(t, X)$ is continuous in $X$ for each fixed $t$ .
(F-2) $f(t, X)$ is Lebesgue measurable in $t$ for each fixed $X$.
(F-3) For each compact set $Q$ in $D,$ $f(t, X)$ is bounded on $Q$ .
(G-1) $g(t, x)$ is continuous in $(t, x)\in D^{*}$ .
(G-2) $g_{1}(t, x)\equiv t$ for all $(t, x)\in D^{*}$ .
(G-3) there exists an $\alpha\in R$ such that $\alpha\leqq g_{j}(t, x)\leqq t,$ $j=2,$ $\cdots,$ $m$ , for

all $(t, x)eD^{*}$ .
Let $M_{D}$ be the class of functions $f$, defined on $D$ in $R^{dm+1}$ , which

satisfy the conditions (F-1), (F-2) and (F-3) above.
A real d-dimensional vector function $\phi(t)=(\phi_{1}(t), \cdots, \phi_{d}(t))$ defined on

$[\alpha, \sigma_{0}],$ $\alpha\leqq\sigma_{0}$ , is said to be an initial function if it is continuous and the
point $(\sigma_{0}, \phi g(\sigma_{0}, \phi(\sigma_{0})))$ lies in $D$ . For such a function $\phi$ , an initial value
problem for the delay differential equations (E) is to find an $R^{d}$-valued
function $x(t)=(x_{1}(t), \cdots, x_{d}(t))$ defined for $\alpha\leqq t<\beta$ , where $\sigma_{0}<\beta\leqq\infty$ , which
satisfies the following conditions;

(I-1) $x(t)=\phi(t)$ for $\alpha\leqq t\leqq\sigma_{0}$ .
(I-2) $x(t)$ is locally absolutely continuous for $\sigma_{0}\leqq t<\beta$ .
(I-3) $(t, xg(t, x(t)))\in D$ for $\sigma_{0}\leqq t<\beta$

(I-4) $x^{\prime}(t)=f(t, xg(t, x(t)))$ almost everywhere on $[\sigma_{0}, \beta$).

Such a function $x(t)$ (or $x(t,$ $\sigma_{0},$
$\phi)$ ) is called a solution of the system (E)

for the initial function $\phi$ on $[\alpha, \sigma_{0}]$ or simply a solution of (E) through
$(\sigma_{0}, \phi)$ . Clearly, a function $x(t)$ defined on $[\alpha, \beta$) is a solution of (E)

through $(\sigma_{0}, \phi)$ if and only if it satisfies

$x(t)=\left\{\begin{array}{ll}\phi(t) & for t\in[\alpha, \sigma_{0}]\\\phi(\sigma_{0})+\int_{\sigma_{0}}^{t}f(s, xg(s, x(s)))ds & for t\in[\sigma_{0}, \beta).\end{array}\right.$

Finally, for a convenience’s sake, we introduce some notations. For
a continuous function $\phi$ mapping $[a, b]$ into $R^{d}$ , we set $|\phi|_{[a,b]}=$

$sup\{|\phi(s)|:s\in[a, b]\}$ , where . $|$ is an arbitrary norm in $R^{d}$ . For a $\underline{s}etQ$

in $R^{k+1}$ , int $Q$ denote the interior of $Q,$ $\partial Q$ the boundary of $Q,$ $Q$ the
closure of $Q$ and $prQ=$ {$t:(t,$ $x)\in Q$ for some $x\in R^{k}$}.

\S 2. Convergence theorem.

The result in this section is the main tool to develop the fundamental
theory on the initial value problem of (E) in the following sections.

We say that a sequence of compact intervals $\{[a_{n}, b_{n}]\}$ converges to
a compact interval $[a, b]$ (or $[a_{n},$ $b_{n}]\rightarrow[a,$ $b]$) if $a_{n}\rightarrow a$ and $b_{n}\rightarrow b$ as $ n\rightarrow\infty$ .
The function $\tau_{n}$ mapping $[a, b]$ onto $[a_{n}, b_{n}]$ is defined as
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$\tau_{n}t=\tau_{n}(b_{n}, a_{n}, b, a)t=\frac{b_{n}-a_{n}}{b-a}t+\frac{a_{n}b-ab_{n}}{b-a}$ for all $t\in[a, b]$ ,

if $a<b$ . To emphasize the domain of a function, we denote by $\phi|[a, b]$

a function $\phi$ defined on $[a, b]$ . Also, this symbol means the restriction
of $\phi$ on $[a, b]$ , where $\phi$ is defined on a domain containing $[a, b]$ . First,
we introduce a modification of uniform convergence.

DEFINITION 1. A sequence of (continuous) functions, $\{\phi_{n}|[a_{n}, b_{n}]\}$ , is
said to converge uniformly to a function $\phi|[a, b]$ if the following condi-
tions are satisfied;

(1) $[a_{n}, b_{n}]\rightarrow[a, b]$ as $ n\rightarrow\infty$ ,
(2) in case $a<b,$ $|\tilde{\phi}_{n}-\phi|_{[a,b]}\rightarrow 0$ as $ n\rightarrow\infty$ , where $\tilde{\phi}_{n}(t)=\phi_{n}(\tau_{n}(b_{n},$

$a_{n}$ ,
$b,$ $a$) $t$) for $te[a, b]$ ; in case $a=b$ ,

$\sup_{a\leq t\leq b}|\phi_{n}(t)-\phi(a)|\rightarrow 0$ as $ n\rightarrow\infty$ .
It is obvious from the definition that, if a sequence of continuous

functions $\{\phi_{n}|[a_{n}, b_{n}]\}$ converges uniformly to a function $\phi|[a, b]$ , then the
function $\phi(t)$ is continuous on $[a, b]$ . In the ca8e $a_{n}=a,$ $b_{n}=b$ for all $n$ ,
the uniform convergence of the sequence $\{\phi_{n}|[a_{n}, b_{n}]\}$ coincides with the
usual uniform convergence.

EXAMPLE 1. If the function $\phi_{n}(t),$ $n=1,2,$ $\cdots$ , is given by

$\phi_{n}(t)=\left\{\begin{array}{ll}-nt & for te[-1/n, 0]\\0 & for te[0,1]\\nt- n & for t\in[1,1+1/n],\end{array}\right.$

then $\{\phi_{n}|[0,1]\}$ converges uniformly to $0|[0,1]$ , but $\{\phi_{n}|[-1/n, 1+1/n]\}$

does not converge uniformly.

EXAMPLJ 2. If the function $\psi_{n}(t),$ $n=1,2,$ $\cdots$ , is given by

$\psi_{n}(t)=\left\{\begin{array}{ll}-nt+1 & for t\in[0,1/n]\\0 & for t\in[1/n, 1-1/n]\\nt-n+1 & for te[1-1/n, 1],\end{array}\right.$

then $\{\psi_{n}|[1/n, 1-1/n]\}$ converges uniformly to $0|[0,1]$ , but $\{\psi_{n}|[0,1]\}$ does
not converge uniformly.

DEFINITION 2. A sequence of continuous functions, $\{\phi_{n}|[a_{n}, b_{n}]\}$ ,
$n=1,2,$ $\cdots$ , is said to be uniformly bounded if there is a constant $M\geqq 0$

such that $|\phi_{n}|_{[a_{\hslash},b_{\hslash}]}\leqq M$ for all $n$ . The sequence is said to be equicon-
tinuous if for any $\epsilon>0$ , there exists a $\delta>0$ such that $|t-s|<\delta,$ $t,$ $ s\in$

$[a_{n}, b_{n}]$ , implies $|\phi_{n}(t)-\phi_{n}(s)|<\epsilon$ for all $n$ .
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The following lemma is immediately obtained from Definitions 1, 2.
LEMAA 2.1. Suppose $[a_{n}, b_{n}]\rightarrow[a, b]$ as $ n\rightarrow\infty$ , where $a_{n}<b_{n},$ $a<b$ . Then

the sequence $\{\phi_{n}|[a_{n}, b_{n}]\}$ is equicontinuous if and only if the sequence $\{\tilde{\phi}_{n}\}$

is equicontinuous on $[a, b]$ , where $\tilde{\phi_{n}}(t)=\phi_{n}(\tau_{n}t),$ $\tau_{n}t=\tau_{n}(b_{n}, a_{n}, b, a)t$ .
PROOF. If we set $\sigma_{n}=\tau_{n}^{-1}$ , then $\phi_{n}=\tilde{\phi}_{n}\circ\sigma_{n}$ . Since $[a_{n}, b_{n}]\rightarrow[a, b]$ as

$ n\rightarrow\infty$ , all $\tau_{n}$ and $\sigma_{n}$ are Lipschitz continuous with a common Lipschitz
constant, that is, $|\tau_{n}t-\tau_{n}s|\leqq M|t-s|$ for $t,$ $s\in[a, b]$ and $|\sigma_{n}t-\sigma_{n}s|\leqq M|t-s|$

for $t,$ $s\in[a_{n}, b_{n}]$ , where $M$ is a positive constant. Therefore the relations
$\tilde{\phi}_{n}=\phi_{n}\circ\tau_{n}$ and $\phi_{n}=\tilde{\phi}_{n}\circ\sigma_{n}$ imply the equivalence between the equicontinuous
of $\{\phi_{n}|[a_{n}, b_{n}]\}$ and { $\tilde{\phi}_{n}|[a,$ $ bIf\cdot$ This completes the proof.

Combining Definition 1, Lemma 2.1 and Ascoli-Arzela’s theorem, we
obtain immediately the following lemma.

LEMMA 2.2. Suppose that the function $\phi_{n}|[a_{n}, b_{n}],$ $n=1,2,$ $\cdots$ , is
continuous, where $[a_{n}, b_{n}]\rightarrow[a, b]$ as $ n\rightarrow\infty$ . Then every subsequence of
$\{\phi_{n}|[a_{n}, b_{n}]\}$ contains a subsequence which converges uniformly if and
only if $\{\phi_{n}|[a_{n}, b_{n}]\}$ is uniformly bounded and equicontinuous.

LEMMA 2.3. Suppose that the function $\phi_{n}(t),$ $n=1,2,$ $\cdots$ , defined on
$[a_{n}, b_{n}]$ is continuous and $a_{n}\rightarrow a,$ $b_{n}\rightarrow b$ and $c_{n}\rightarrow c$ as $ n\rightarrow\infty$ , where $ a_{n}\leqq$

$c_{n}\leqq b_{n}$ . Then $\{\phi_{n}|[a_{n}, b_{n}]\}$ converges uniformly to $\phi|[a, b]$ if and only if
$\{\phi_{n}|[a_{n}, c_{n}]\}$ and $\{\phi_{n}|[c_{n}, b_{n}]\}$ converge uniformly to $\phi|[a, c]$ and $\phi|[c, b]$ ,
respectively. In particular, if $\{\phi_{n}|[a_{n}, b_{n}]\}$ converges uniformly to $\phi|[a, b]$ ,
then $\phi_{n}(c_{n})$ converges to $\phi(c)$ .

PROOF. We prove only in the case $a<c<b$ . Set $\tau_{n}t=\tau_{n}(b_{n}, a_{n}, b, a)t$ ,
$\tau_{n}^{1}t=\tau_{n}(c_{n}, a_{n}, c, a)t$ and $\tau_{n}^{2}t=\tau_{n}(b_{n}, c_{n}, b, c)t$ . Then we have

(2.1) $\tilde{\phi}_{n}(t)-\phi(t)=\left\{\begin{array}{ll}\phi_{n}(\tau_{n}t)-\phi_{n}(\tau_{n}^{1}t)+\phi_{n}(\tau_{n}^{1}t)-\phi(t) & for t\in[a, c]\\\phi_{n}(\tau_{n}t)-\phi_{n}(\tau_{n}^{2}t)+\phi_{n}(\tau_{n}^{2}t)-\phi(t) & for t\in[c, b] ,\end{array}\right.$

where $\tilde{\phi}_{n}(t)=\phi_{n}(\tau_{n}t)$ . Suppose that $\{\phi_{n}|[a_{n}, b_{n}]\}$ converges uniformly to
$\phi|[a, b]$ . Then Lemma 2.2 says that the sequence $\{\phi_{n}|[a_{n}, b_{n}]\}$ is equi-
continuous. Therefore, since $|\tau_{n}-\tau_{n}^{1}|_{[a,c]},$ $|\tau_{n}-\tau_{n}^{2}|_{[c,b]}\rightarrow 0$ as $ n\rightarrow\infty$ , we
have $|\phi_{n}\circ\tau_{n}-\phi_{n}\circ\tau_{n}^{1}|_{[a,c]},$ $|\phi_{n}\circ\tau_{n}-\phi_{n}\circ\tau_{n}^{2}|_{[c,b]}\rightarrow 0$ as $ n\rightarrow\infty$ . Relation (2.1)
implies $|\phi_{n}\circ\tau_{n}^{1}-\phi|_{[a,c]},$ $|\phi_{n}\circ\tau_{n}^{2}-\phi|_{[c,b]}\rightarrow 0$ as $ n\rightarrow\infty$ . This shows the “only
if“ part of the lemma, and vice versa.

The following lemma is important to prove the main theorem.

LEMMA 2.4. Let $f\in M_{Q}$ , where $Q$ is a compact subset of D. Suppose
that a continuous function $x_{n}(t),$ $n=1,2,$ $\cdots$ , defined on $[\alpha, \beta_{n}]$ satisfies
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$x_{n}(t)=x_{n}(\sigma_{n})+\int_{\sigma_{\hslash}}^{t}f(s, x_{n}g(s, x_{n}(s)))ds+G_{n}(t)$ for $t\in[\sigma_{n}, \beta_{n}]$ ,

where $\alpha\leqq\sigma_{n}<\beta_{n}$ , $\{[\sigma_{n}, \beta_{\hslash}]\}$ converges to $[\sigma_{0}, \beta]$ , $\sigma_{0}<\beta$ , and that
$(t, x_{n}g(t, x_{n}(t)))\in Q$ for all $t\in[\sigma_{n}, \beta_{n}]$ . If $\{x.|[a, \sigma.]\}$ and $\{|G_{n}||[\sigma_{n}, \beta_{n}]\}$

converge uniformly to $\phi|[\alpha, \sigma_{0}]$ and $0|[\sigma_{0}, \beta]$ , respectively, then there
exists a subsequence of $\{x_{n}|[\alpha, \beta_{n}]\}$ which converges uniformly to a solution
$x|[\alpha, \beta]$ of (E) through $(\sigma_{0}, \phi)$ .

PROOF. We set

$\psi_{n}(t)=\int_{\sigma_{t}}^{t}f(s, x_{n}g(s, x_{n}(t)))ds$ for $t\in[\sigma_{n}, \beta_{n}]$ .
Since the function $f$ is bounded on the compact set $Q$ , the sequence
$\{\psi_{n}|[\sigma_{n}, \beta_{n}]\}$ is uniformly bounded and equicontinuous. Hence, from
Lemma 2.2, by taking a subsequence if necessary, we may assume that
$\{\psi_{n}|[\sigma_{n}, \beta_{n}]\}$ converges uniformly. Lemma 2.3 implies $x_{n}(\sigma_{n})\rightarrow\phi(\sigma_{0})$ as
$ n\rightarrow\infty$ , while $\{|G_{n}||[\alpha_{n}, \beta_{n}]\}$ converges uniformly to $0|[\sigma_{0}, \beta]$ . Since
$x_{n}(t)=x_{n}(\sigma_{n})+\psi_{n}(t)+G_{n}(t)$ for $\sigma_{n}\leqq t\leqq\beta_{n}$ the sequence $\{x_{n}|[\sigma_{n}, \beta_{n}]\}$ converges
uniformly to a function $x|[\sigma_{0}, \beta]$ . From Lemma 2.3, it follows that
$\{x_{n}|[\alpha, \beta_{n}]\}$ converges to $x|[\alpha, \beta]$ , where $x|[\alpha, \sigma_{0}]=\phi|[\alpha, \sigma_{0}]$ .

Let $t$ be a fixed number in $(\sigma_{0}, \beta$]. Then for any $\epsilon,$ $(1/3)(t-\sigma_{0})>\epsilon>0$ ,
there exists an $N_{1}$ such that $n>N_{1}$ implies $|\sigma_{n}-\sigma_{0}|<\epsilon$ and $|\tau_{n}t-t|<\epsilon$ ,
where $\tau_{n}t=\tau_{n}(\beta_{n}, \sigma_{n}, \beta, \sigma_{0})t$ . Thus for all $n>N_{1}$ , the function $x_{n}(t)$ is
defined on $[\alpha, t-\epsilon]$ . For a fixed $s,$ $\sigma_{0}+\epsilon\leqq s\leqq t-\epsilon$ , it follows from the
hypotheses (G-1) and (G-3) that $\alpha\leqq g_{j}(s, x_{n}(s))\leqq s$ and $g_{\dot{f}}(s, x_{n}(s))\rightarrow g_{j}(s, x(s))$

as $ n\rightarrow\infty$ . Hence from Lemma 2.3 we have $x_{n}g_{j}(s, x_{n}(s))\rightarrow xg_{j}(s, x(s))$ as
$ n\rightarrow\infty$ , that is, $x_{n}g(s, x_{n}(s))\rightarrow xg(s, x(s))$ as $ n\rightarrow\infty$ . Using the hypothesis
(F-1), we obtain $f(s, x_{n}g(s, x_{n}(s)))\rightarrow f(s, xg(s, x(s)))$ as $ n\rightarrow\infty$ . Moreover,
by using the Lebesgue dominated convergence theorem, for any $\epsilon_{1}>0$ ,
we can find $N_{2}$ such that $n>N_{2}$ implies

$|\int_{\sigma_{0}+\epsilon}^{t-\epsilon}f(s, x_{n}g(s, x_{n}(s)))ds-\int_{\sigma_{0}+\epsilon}^{t-\epsilon}f(s, xg(s, x(s)))ds|<\epsilon_{1}$ .
If we set

$\psi(t)=\int_{\sigma_{0}}^{t}f(s, xg(s, x(s)))ds$ for $te[\sigma_{0}, \beta]$ ,

then, by dividing the intervals of integrals, for all $n>N$, $N=$

max $\{N_{1}, N_{2}\}$ , we have
$|\psi_{n}(\tau_{n}t)-\psi(t)|$

$\leqq|\int_{\sigma_{n}}^{\tau_{\#}t}f(s, x_{n}g(s, x_{n}(s)))ds-\int_{\sigma_{0}}^{t}f(s, xg(s, x(s)))ds|$



DELAY DIFFERENTIAL EQUATIONS 115
$<6M\epsilon+\epsilon_{1}$ ,

where $M=\sup_{Q}|f|$ . Since $t\in[\sigma_{0}, \beta]$ is arbitrary, we have $x(t)=\phi(\sigma_{0})+\psi(t)$

for $t\in[\sigma_{0}, \beta]$ . Namely $x(t)$ is a solution of (E) through $(\sigma_{0}, \phi)$ . This proves
the lemma.

PROPOSITION. Let $f\in M_{Q}$ , where $Q$ is a compact subset of domain
$D\subset R^{d+1}$ and $(\sigma_{0}, x_{0})\in$ int Q. Let $x_{n}(t)$ be defined on $[a_{n}, b_{n}]$ and let $(\sigma_{n}, x_{n})\rightarrow$

$(\sigma_{0}, x_{0}),$ $[a_{n}, b_{n}]\rightarrow[a, b],$ $a<b$ , as $ n\rightarrow\infty$ , where $\sigma_{n}\in[a_{n}, b_{n}]$ . Suppose a
function $G_{n}(t)$ is defined by

$G_{n}(t)=x_{n}(t)-x_{n}-\int_{\sigma_{n}}^{t}f(s, x_{n}(s))ds$

for all $t\in[a_{n}, b_{n}]$ and that $(t, x_{n}(t))\in Q$ for $t\in[a_{n}, b_{n}]$ . If $x_{n}(t)$ is measur-
able on $[a_{n}, b_{n}]$ and if $|G_{n}|_{[a_{n},b_{n}]}\rightarrow 0$ as $ n\rightarrow\infty$ , then $\{x_{n}|[a_{n}, b_{n}]\}contain\epsilon$

a subsequence which converges uniformly on $[a, b]$ to a solution $x_{0}(t)$ of
(E) $x^{\prime}(t)=f(t, x(t))$ , $x(\sigma_{0})=x_{0}$ .

PROOF. Since $x_{n}(t)$ is measurable on $[a_{n}, b_{n}],$ $x_{n}-G_{n}|[a_{n}, b_{n}]$ is con-
tinuous. Therefore $\{x_{n}-G_{n}|[a_{n}, b_{n}]\}$ is uniformly bounded and equi-
continuous. From Lemma 2.2, by taking a subsequence if necessary,
we may assume that $\{x_{n}-G_{n}|[a_{n}, b_{n}]\}$ converges uniformly to a function
$x_{0}(t)$ defined on $[a, b]$ . From the same argument used in the proof of
Lemma 2.4, it follows that $x_{0}(t)$ is a solution of $(E_{0})$ .

This proposition generalizes Lemma 1 in [13]. In fact, if $[a_{n}, b_{n}]=$

$[a, b]$ for all $n$ , proposition coincides with Lemma 1 in [13].

DEFINITION 3. Let $D$ be a domain of $R^{dm+1}$ and let $g$ be an $R^{m}-$

valued function defined on $D^{*}$ , which satisfies (G-l, 2, 3). Let $x(t)$ be a
continuous function mapping some interval $I$ into $R^{d}$ . Then $x(t)$ is said
to be a noncontinuable function (with respect to $D$ and g) if
$(t, xg(t, x(t)))\in D$ for all $t\in I$ and if there exists a sequence $\{t_{n}\}$ in $I$ such
that $t_{n}\rightarrow\sup I$ as $ n\rightarrow\infty$ and that for each compact subset $Q$ of $D$ , there
exists a number $N=N(Q)$ such that

$(t_{n}, xg(t_{n}, x(t_{n})))\in D-Q$ for all $n\geqq N$ .
Furthermore, if $x(t)$ is a solution of (E) and $D$ is the domain of $f$,

then it is called a noncontinuable solution of (E). If a noncontinuable
solution $x(t)$ of (E) through $(\sigma_{0}, \phi)$ is defined on $[\sigma_{0}, \beta$), $\sigma_{0}<\beta$ , then we
sometimes write $D.(\sigma_{0})=[\sigma_{0}, \beta)$ or $ D_{x}=[\sigma_{0}, \beta$).

Although Definition 3 above may look slightly different from the
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usual definition for noncontinuable solution (cf. [7, 9]), but as we shall
see later they are equivalent to each other (Theorem 3.2).

DEFINITION 4 [13]. Let $x(t)$ be a continuous function mapping some
(possibly unbounded) interval $I$ into $R^{d}$ . A sequence of continuous
functions $\{x_{n}(t)\}$ is said to converge compactly to $x(t)$ if for every compact
subset $J$ of $I,$ $x_{n}(t)$ is defined on $J$ for sufficiently large $n$ and $\{x_{n}|J\}$

converges uniformly to $x|J$.
The following is the main result of this section.

THEOREM 2.1. Let $f\in M_{D}$ and $x_{n}(t)$ be a noncontinuable function,
defined on $[\alpha, \beta_{n}$), which satisfies
(E) $x_{n}(t)=x_{n}(\sigma_{n})+\int_{\sigma_{\iota}}^{t},f(s, x_{n}g(s, x_{n}(s)))ds+G_{n}(t)$ for $t\in[\sigma_{n}, \beta_{n}$),

where $\alpha\leqq\sigma_{n}<\beta_{n},$ $\alpha\leqq\sigma_{0}$ , and $\sigma_{n}\rightarrow\sigma_{0}$ as $ n\rightarrow\infty$ . Suppose that the sequence
$\{x_{n}|[\alpha, \sigma_{n}]\}$ converges uniformly to $\phi|[\alpha, \sigma_{0}],$ $(\sigma_{0}, \phi g(\sigma_{0}, \phi(\sigma_{0})))\in D$ , and that
for every compact subset $Q$ of $D$ with $(\sigma_{0}, \phi g(\sigma_{0}, \phi(\sigma_{0})))\in$ int $Q$ , there exists a
sequence $\{\omega_{n}(Q)\}$ such that $|G_{n}(t)|\leqq\omega_{n}(Q)$ on $[\sigma_{n}, t_{n}^{*}]$ and $\omega_{n}(Q)\rightarrow 0$ as $ n\rightarrow\infty$ ,
where $t_{n}^{*}=t_{n}^{*}(Q)=\inf\{t>\sigma_{n};(t, x_{n}g(t, x_{n}(t)))\in\partial Q\}$ . Then there exists a non-
continuable solution $x(t)$ of (E) through $(\sigma_{0}, \phi)$ and a subsequence of $\{x_{n}(t)\}$

which converges compactly to $x(t)$ .
PROOF. Since $(\sigma_{n}, x_{n}g(\sigma_{n}, x_{n}(\sigma_{n})))\rightarrow(\sigma_{0}, \phi g(\sigma_{0}, \phi(\sigma_{0})))\in D$ as $ n\rightarrow\infty$ , we can

choose a sequence of compact sets $\{Q_{k}\}$ such that $ Q_{k}\in$ int $Q_{k+1},$ $D=\bigcup_{k=0}^{\infty}Q_{k}$

and $(\sigma_{n}, x_{n}g(\sigma_{n}, x_{n}(\sigma_{n})))\in intQ_{0}$ for all $n$ . Put $t_{n}(k)=t_{n}^{*}(Q_{k})$ . Then there
exists a subsequence $\{x_{n_{i}}\}\subset\{x_{n}\}$ such that $\{t_{n_{i}}(k)\}$ converges as $ i\rightarrow\infty$ for
all $k$ . In fact, since

(2.2) $(t_{n}(k), x_{n}g(t_{n}(k), x_{n}(t_{n}(k))))\in\partial Q_{k}$ for all $n$ ,
$\{t_{n}(k)\}_{n=1}^{\infty}$ is contained in the compact set $prQ_{k}$ . Thus first we can choose
a subsequence $\{t_{n(i,0)}(0)\}_{i=1}^{\infty}$ of $\{t_{n}(0)\}$ which converges. Next we can also
choose a subsequence $\{n(i, 1)\}_{i=1}^{\infty}$ of $\{n(i, 0)\}_{i=1}^{\infty}$ such that $\{t_{n(i,1)}(1)\}_{l=1}^{\infty}$ con-
verges. Continuing in this fashion, one obtains the required subsequence
by the well known diagonal method. We denote such a subsequence by
$\{x_{n}\}$ again. Furthermore, since $Q_{k-1}\subset intQ_{k}$ , we have $t_{n}(k-1)<t_{n}(k)$ for
all $n$ . If we set $W_{k}=\lim_{n\rightarrow\infty}t_{n}(k)$ , then we obtain

(2.3) $\sigma_{0}\leqq W_{0}\leqq W_{1}\leqq\cdots\leqq W_{k}\leqq\cdots$

Put $W=\lim_{k\rightarrow\infty}W_{k}$ .
Next, by taking a subsequence if necessary, we shall show that for

all $k$ , $\{x_{n}|[\alpha, t_{n}(k)]\}$ converges uniformly. Since $t_{n}(k)\rightarrow W_{k}$ as $ n\rightarrow\infty$ ,
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Lemma 2.4 assures that there exists a subsequence of $\{x_{n}|[\alpha, t_{n}(k)]\}$ which
converges uniformly. Thus, by the familiar diagonal method, we can
extract a convergent sequence. Now, let the limit of the sequence
$\{x_{n}|[\alpha, t_{n}(k)]\}$ be denoted by $x^{k}|[\alpha, W_{k}]$ . Since $\sigma_{0}\leqq t_{n}(k-1)<t_{n}(k)$ for all
$n$ , we have $x^{k-1}|[a, W_{k-1}]=x^{k}|[\alpha, W_{k-1}]$ by Lemma 2.3. From this fact,
there exists a unique function $x|[\alpha, W$) such that $x|[a, W_{k}]=x^{k}|[\alpha, W_{k}]$

for all $k$ . Consequently, for all $k$ the sequence $\{x_{n}|[\alpha, t_{n}(h)]\}$ converges
uniformly to $x|[\alpha, W_{k}]$ .

By using this fact and Lemma 2.3, we have $(t, xg(t, x(t)))\in Q_{k}$ for
all $t\in[\sigma_{0}, W_{k}]$ , and hence $(t, xg(t, x(t)))\in D$ for all $t\in[\sigma_{0}, W$). Moreover,
since $x_{n}(t_{n}(k))\rightarrow x(W_{k})$ as $ n\rightarrow\infty$ , it follows from the continuity of $g$ that
$g(t_{n}(k), x_{n}(t_{n}(k)))\rightarrow g(W_{k}, x(W_{k}))$ as $ n\rightarrow\infty$ . However, from the hypothesis
(G-3), we have $\alpha\leqq g(t_{n}(k), x_{n}(t_{n}(k)))\leqq t_{n}(k)$ . Thus by Lemma 2.3 again, we
have $x_{n}g(t_{n}(k), x_{n}(t_{n}(k)))\rightarrow xg(W_{k}, x(W_{k}))$ as $ n\rightarrow\infty$ . Therefore it follows
from (2.2) that

(2.4) $(W_{k}, xg(W_{k}, x(W_{k})))\in\partial Q_{k}$ .
From (2.3) and $Q_{k-1}$ cint $Q_{k}$ , we have

(2.5) $\sigma_{0}\leqq W_{0}<W_{1}<\cdots<W_{k}<W_{k+1}<\cdots\rightarrow W$ .
Thus from (2.5) and $t_{n}(k+1)\rightarrow W_{k+1}$ as $ n\rightarrow\infty$ , it follows that $[\alpha, W_{k}]\subset$

$[a, t_{n}(k+1)]$ for safficiently large $n$ . By Lemma 2.3 again, $\{x_{n}|[\alpha, W_{k}]\}$

converges uniformly to $x|[\alpha, W_{k}]$ , and hence $\{x_{n}|[\alpha, \beta_{n})\}$ converges com-
pactly to $x|[\alpha, W$).

Finally, we show that $x(t)$ is a noncontinuable solution of (E). For
any compact set $Q$ in $D$ there exists an $N=N(Q)$ such that $Q$ is con-
tained in int $Q_{k}$ for all $k\geqq N$. Then the relation (2.4) means that
$(W_{k}, xg(W_{k}, x(W_{k})))\in D-Q$ for all $k\geqq N$. In view of Lemma 2.4 the
function $x(t)$ is a noncontinuable solution of (E). This completes the
proof.

REMARK. Under the same assumptions as in Theorem 2.1, if a sub-
sequence $\{x_{n_{i}}(t)\}$ of $\{x_{n}(t)\}$ converges compactly to noncontinuable solution
$x(t)$ of (E) through $(\sigma_{0}, \phi)$ , then we have $supD_{x}\leqq\lim\inf_{i\rightarrow\infty}$

$supD_{x_{n_{i}}}$ .
COROLLARY 2.1. Let $f^{n},$ $f\in M_{D},$ $n=1,2,$ $\cdots$ . Let a noncontinuable

function $x_{n}(t)$ defined on $[\alpha, \beta_{n}$) satisfies
(E) $x_{n}(t)=x_{n}(\sigma_{n})+\int_{\sigma_{n}}^{t}f^{n}(s, x_{n}g(s, x_{n}(s)))ds$ for $t\in[\sigma_{n}, \beta_{n}$)

where, $\alpha\leqq\sigma_{n}<\beta_{n},$ $\alpha\leqq\sigma_{0}$ and $\sigma_{n}\rightarrow\sigma_{0}$ as $ n\rightarrow\infty$ . If the sequence $\{x_{n}|[\alpha, \sigma_{n}]\}$
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converges uniformly to $\phi|[\alpha, \sigma_{0}],$ $(\sigma_{0}, \phi g(\sigma_{0}, \phi(\sigma_{0})))eD$, and if
(2.6) $\lim_{n\rightarrow\infty}\int_{prQ}\sup_{X\in Q_{t}}|f^{n}(t, X)-f(t, X)|dt=0,$ $Q_{t}=\{X:(t, X)\in Q\}$ ,

for every compact set $Q\in D$ such that $(\sigma_{0}, \phi g(\sigma_{0}, \phi(\sigma_{0})))$ is in int $Q$ , then
there exists a subsequence of $\{x_{n}(t)\}$ which converges compactly to a non-
continuable solution of (E) through $(\sigma_{0}, \phi)$ .

PROOF. If we set

$ G_{n}(t)=\int_{\sigma_{n}}^{t}|f^{n}(s, x_{n}g(s, x_{n}(s)))-f(s, x_{n}g(s, x_{n}(s)))|d\epsilon$ ,

then we can rewrite $(E_{2})$ as $(E_{1})$ . Given any such compact set $Q\subset D$,
put

$\omega_{n}(Q)=\int_{prQ}\sup_{XeQ_{t}}|f^{n}(t, X)-f(t, X)|dt$ .
Since $\omega_{n}(Q)\rightarrow 0$ as $ n\rightarrow\infty$ , from (2.6) and $G_{n}(t)\leqq\omega_{n}(Q)$ , we have the
conclusion.

COROLLARY 2.2. Let $f^{n},$ $f$ be continuous functions on a domain $D$

in $R^{dn+1}$ . If we replace condition (2.6) in Corollary 2.1 by the condition
that $f^{n}$ converges compactly to $f$ on $D$, then the conclusion of Corollary
2.1 is true.

We note that recently, Kato [12] shows Kamke’s theorem in func-
tional differential equations with infinite delay on an abstract phase
space (cf. [10]).

\S 3. Existence of noncontinuable solutions.

In this section, by applying Theorem 2.1 we show that a noncon-
tinuable solution of (E) through $(\sigma_{0}, \phi)$ always exists.

THEOREM 3.1. Suppose $f\in M_{D}$ . Then for every initial function
$\phi|[\alpha, \sigma_{0}]$ , there exists a noncontinuable solution of (E) through $(\sigma_{0}, \phi)$ .

$PR\infty F$ . For each $n$ , define $x_{n}(t)$ as follows;

$x_{n}(t)=\left\{\begin{array}{ll}\phi(t) & for \alpha\leqq t\leqq\sigma_{0}\\\phi(\sigma_{0}) & for \sigma_{0}\leqq t\leqq\sigma_{0}+\frac{1}{n}\\\phi(\sigma_{0})+\int_{\sigma_{0}}^{t-1/n}f(s, x_{n}g(s, x_{n}(s)))ds & for \sigma_{0}+\frac{1}{n}\leqq t.\end{array}\right.$
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Note first that this formula is meaningful for $n$ large enough since
functions $\phi,$ $g$ are continuous and $(\sigma_{0}, \phi g(\sigma_{0}, \phi(\sigma_{0})))\in D$ . In this recursive
way $x_{n}$ is defined on $[\sigma_{0}+k/n, \sigma_{0}+(k+1)/n]$ for $k=0,1,$ $\cdots$ , provided
$(s, x_{n}g(s, x_{n}(s)))$ belongs to $D$ on the previous interval. Thus this process
can be continued either for all $t$ or until the first point $\beta_{n}$ at which
$(\beta_{n}, x_{n}g(\beta_{n}, x_{n}(\beta_{n})))\in\partial D$ . Hence each $x_{n}(t)$ is continuous on $[\alpha, \beta_{n}$) and
noncontinuable with respect to $D$ and $g$ . Furthermore, $x_{n}(t)$ satisfies

$x_{n}(t)=\left\{\begin{array}{ll}\phi(t) & for \alpha\leqq t\leqq\sigma_{0}\\\phi(\sigma_{0})+\int_{\sigma_{0}}^{t}f(s, x_{n}g(s, x_{n}(s)))ds+G_{n}(t) & for \sigma_{0}\leqq t<\beta_{n} ,\end{array}\right.$

where

$G_{n}(t)=\left\{\begin{array}{ll}-\int_{\sigma_{0}}^{t}f(s, x_{n}g(s, x_{n}(s)))ds & for \sigma_{0}\leqq t\leqq\sigma_{0}+\frac{1}{n}\\-\int_{t-1/n}^{t}f(s, x_{n}g(s, x_{n}(s)))ds & for \sigma_{0}+\frac{1}{n}\leqq t<\beta_{n}.\end{array}\right.$

For every compact set $Q$ in $D$ with $(\sigma_{0}, \phi g(\sigma_{0}, \phi(\sigma_{0})))\in intQ$ , we have
$|G_{n}(t)|\leqq(1/n)M_{Q}$ for $t\in[\sigma_{0}, t_{n}^{*}(Q)]$ , where $M_{Q}=\sup_{Q}|f|$ . Therefore we
obtain the conclusion from Theorem 2.1.

Bullock [1] stated without proof the local existence of solution for
(E) of Caratheodory type, but we obtain immediately the existence of
noncontinuable solutions of (E) without appealing to the local existence.

REMARK. Let $f\in M_{D},$ $D=(a, b)\times R^{dm}$ , and let $x(t)$ is a noncontinu-
able solution of (E). We note from Definition 3 that if $c=\sup D_{x}<b$ ,
then $\lim\sup_{t\rightarrow c-0}|x(t)|=+\infty$ . This conclusion does not necessarily imply
$\lim_{t\rightarrow c-0}|x(t)|=+\infty$ . Papers $[2, 11]$ pointed out that, in general, for
delay differential equations a noncontinuable solution $x(t)$ may not have
the property

$\lim_{t\rightarrow c-0}x(t)=\lim_{t\rightarrow c}\sup_{-0}x(t)=\infty$

In particular, Herdman [11] constructed a counter example.

THEOREM 3.2. Let $D$ be a domain of $R^{dm+1}$ and let $x(t)$ be a contin-
uous function mapping some interval I into $R^{d}$ . Then the following
statements are equivalent:

(1) $x(t)$ is not a noncontinuable function with respect to $D$ and $g$ .
(2) Put $S=\{(t, xg(t, x(t))):t\in I\}\subset D$ . Then the closure $\overline{S}$ of $S$ is

compact and $\overline{S}\subset D$ .
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Moreover, if $f\in M_{D}$ and $x(t)$ is a solution of (E), then they are equivalent
to the following statement:

(3) $\lim_{t\rightarrow b-0}xg(t, x(t))=X_{0}$ and $(b, X_{0})\in D$, where $b=\sup I$.
$PR\infty F$ . If (1) is satisfied, then $S$ is bounded, and hence $\overline{S}$ is compact.

Let now $(t_{n}, Y_{n})\in S\rightarrow(b, Y_{0})\in\partial\overline{S}$ as $ n\rightarrow\infty$ , where $Y_{n}=xg(t_{n}, x(t_{n}))$ . Then
it follows from (1) that the point $(b, Y_{0})$ belongs to $D$, that is, $\overline{S}\subset D$ .
One easily sees that (2) implies (1) and that (3) implies (2). Thus we
show that (2) implies (3). Since $f$ is bounded on the compact set $\overline{S}$ from
(F-3), we have $|x(t)-x(s)|\leqq M(\overline{S})|t-s|$ for all $t,$ $s\in I$, where $M(\overline{S})=\sup_{\overline{s}}|f|$ .
Hence, by the Cauchy convergence criterion $\lim_{t\rightarrow b-0}x(t)$ exists, so that
$X_{0}=\lim_{t\rightarrow b-0}xg(t, x(t))$ exists and $(b, X_{0})$ is in $D$ . This completes the proof.

REMARK. It follows from Theorem 3.2 that Definition 3 is equivalent
to the standard definition for noncontinuable solutions (cf. [7, 9]).

THEOREM 3.3. (Extension). Let $f\in M_{D}$ . Then every solution of (E)

can be extended to a noncontinuable solution.

PROOF. Let $x(t)$ , defined on $[\sigma_{0}, b$), be not a noncontinuable solution
of (E) through $(\sigma_{0}, \phi)$ . Then it follows from Theorem 3.2 that
$\lim_{t\rightarrow b-0}xg(t, x(t))=X_{0}$ and $(b, X_{0})\in D$ . Thus by Theorem 3.1 we obtain
that there is a noncontinuable solution of (E) through $(b,\tilde{x})$ , where
$\tilde{x}(t)=x(t)$ for $t\in[\alpha, b$) and $\tilde{x}(b)=x_{0}$ .

THEOREM 3.4. Suppose $f\in M_{D}$ . Then of all intervals on which some
noncontinuable solution (E) through $(\sigma_{0}, \phi)$ is defined, there is a smallest
interval on which such a noncontinuable solution is defined.

$PR\infty F$ . Let $NS$ denote the family of all the noncontinuable solutions
of (E) through $(\sigma_{0}, \phi)$ and set $J=\bigcap_{xeNS}D_{x}$ . If we set $\beta=\sup J$, then there
exists a sequence $\{\beta_{n}\}$ such that $\beta_{1}\geqq\beta_{2}\geqq\cdots\geqq\beta_{n}\geqq\cdots\rightarrow\beta$ as $ n\rightarrow\infty$ , where
$\beta_{n}$ is the right end point of a noncontinuable solution $x_{n}(t)$ , that is, $D_{x_{\hslash}}=$

$[\sigma_{0}, \beta_{n})$ . By applying Theorem 2.1, we find a subsequence of $\{x_{n}\}$ which
converges compactly to a noncontinuable solution $x(t)$ of (E) through
$(\sigma_{0}, \phi)$ . Then in view of Remark of Theorem 2.1, we have $D_{x}\subseteqq J$. From
the definition of $J$ we have $J\subseteqq D_{x}$ , and hence $Dae=J$. This implies that
a noncontinuable solution of (E) through $(\sigma_{0}, \phi)$ defined on $J$ exists. This
completes the proof.

\S 4. Dependence of solutions.

In this section, we shall discuss the dependence of solutions on the
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initial condition and on the right hand sides of the delay differential
equations (E). In particular, the result on the dependence of solutions
due to Yoshizawa [15. Theorem 5.1] for ordinary differential equations
shall be extended to our system (E).

THEOREM 4.1. Let $f\in M_{D}$ and let $I=[\sigma_{0}, b],$ $\sigma_{0}<b$ , be the subinterval
of $J$, where $J$ is the smallest interval given in Theorem 3.4. Then for
any $\epsilon>0$ , there exists a $\delta>0$ for which the following condition holds: if
$|\sigma-\sigma_{0}|<\delta,$ $|\tilde{\phi}-\phi_{0}|_{\iota\alpha,\sigma_{0}}j<\delta$ in case $\alpha<\sigma_{0}$ ( $|\phi(\alpha)-\phi_{0}(\alpha)|<\delta$ in case $\alpha=\sigma_{0}$),
where $\tilde{\phi}=\phi(\tau(\sigma, \alpha, \sigma_{0}, \alpha)t)$ , and if $q(t),$ $t\in J_{1}=[\alpha, \sigma_{0}]\cup J$, is a bounded
and integrable function with $\int_{J_{1}}|q(t)|dt<\delta$ , then every noncontinuable
solution $y(t, \sigma, \phi)$ of
(E) $y^{\prime}(t)=f(t, yg(t, y(t)))+q(t)$ ,

is always continued beyond $t=b$ and satisfies
(4.1) $|y(t, \sigma, \phi)-x(t, \sigma_{0}, \phi_{0})|<\epsilon$ for $t\in[\max\{\sigma, \sigma_{0}\}, b]$

for some noncontinuable solution $x(t, \sigma_{0}, \phi_{0})$ of (E) which may depend on
$y(t, \sigma, \phi)$ .

PROOF. It is sufficient to prove only in the case $\alpha<\sigma_{0}$ . First, we
show that there exists a $\delta_{0}>0$ such that, if $|\sigma-\sigma_{0}|<\delta_{0},$ $|\tilde{\phi}-\phi_{0}|_{[\alpha,\sigma_{0}]}<\delta_{0}$

and $\int_{J_{1}}|q(t)|dt<\delta_{0}$ , then $supD_{y}>b$ for every noncontinuable solution
$y(t, \sigma, \phi)$ of $(E_{3})$ . Suppose not. Then there exist sequences $\{\sigma_{k}\},$ $\{\phi_{k}|[\alpha, \sigma_{k}]\}$

and $\{q_{k}(t)\}$ such that

(4.2) $\sigma_{k}\rightarrow\sigma_{0},$ $\phi_{k}|[\alpha, \sigma_{k}]\rightarrow\phi|[\alpha, \sigma_{0}]$ and $\int_{J_{1}}|q_{k}(t)|dt\rightarrow 0$ as $ k\rightarrow\infty$

and moreover $supD_{\nu_{k}}\leqq b$ , where $y_{k}(t)$ is a noncontinuable solution of

(4.3) $y(t)=\left\{\begin{array}{ll}\phi_{k}(t) & for \alpha\leqq t\leqq\sigma_{k}\\\phi_{k}(\sigma_{k})+\int_{\sigma_{k}}^{t}\hat{f}(s, yg(s, y(s)))ds+\int_{\sigma_{k}}^{t}q_{k}(s)ds & for \sigma_{k}<t,\end{array}\right.$

where $\hat{f}$ denotes the restriction of $f$ on $D\cap(J_{1}\times R^{dm})$ . Since

$|\int_{\sigma_{k}}^{t}q_{k}(s)ds|\leqq\int_{J_{1}}|q_{k}(s)|ds$

$\equiv\omega_{k}\rightarrow 0$ as $ k\rightarrow\infty$ ,

it follows from Theorem 2.1 that there exists a subsequence of $\{y_{k}(t)\}$ ,
denoted by $\{y_{k}(t)\}$ again, which converges compactly to a noncontinuable
solution $y_{0}(t, \sigma_{0}, \phi_{0})$ of (E). By Remark of Theorem 2.1, we have
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$supD_{l_{0}}\leqq\lim_{k\rightarrow\infty}\inf[\sup D_{u_{k}}]\leqq b$ ,

a contradiction.
Next we show the inequality (4.1) holds. Now suppose the conclusion

is false. Then there exist $\{\sigma_{k}\}\{\phi_{k}\}$ and $\{q_{k}\}$ such that the condition (4.2)
holds and that the equation (4.3) has a noncontinuable solution $y_{k}(t)$

having the property that for any noncontinuable solution $x(t, \sigma_{0}, \phi_{0})$ of
(E),

$|y_{k}(t_{k})-x(t_{k}, \sigma_{0}, \phi_{0})|\geqq\epsilon$ for some $t_{k}\in[\max\{\sigma_{k}, \sigma_{0}\}, b]$ ,

where $t_{k}$ may depend on $x(t, \sigma_{0}, \phi_{0})$ . By repeating the same argument,
it follows that for a sufficiently large $k$ ,

$|y_{k}(t)-y_{0}(t, \sigma_{0}, \phi_{0})|<\epsilon$ for all $t\in[\alpha, b]$ ,

a contradiction. This completes the proof.

THEOREM 4.2. Let $F,$ $f\in M_{D}$ and let $I=[\sigma_{0}, b],$ $\sigma_{0}<b$ , be the sub-
interval of $J$, where $J$ is the smallest interval in Theorem 4.1. Then
for any $\epsilon>0$ , there exists a $\delta>0$ such that, if $|\sigma-\sigma_{0}|<\delta,$ $|\tilde{\phi}-\phi_{0}|_{\mathfrak{c}\alpha,\sigma_{0}}l<\delta$

in case $\alpha<\sigma_{0}$ ( $|\phi(\alpha)-\phi_{0}(\alpha)|<\delta$ in case $\alpha=\sigma_{0}$), where $\tilde{\phi}(t)=\phi(\tau(\sigma, \alpha, \sigma_{0}, \alpha)t)$ ,
and if $F$ satisfies

$\int_{prQ}\sup_{X\in Q_{t}}|f(t, X)-F(t, X)|dt<\delta$

for every compact set $Q\subset D$, then every noncontinuable solution $y(t, \sigma, \phi)$

of
$y^{\prime}(t)=F(t, yg(t, y(t)))$

satisfies
$|y(t, \sigma, \phi)-x(t, \sigma_{0}, \phi_{0})|<\epsilon$ for all $t\in[\max\{\sigma, \sigma_{0}\}, b]$ ,

where $x(t, \sigma_{0}, \phi_{0})$ is a noncontinuable solution of (E) which may depend
on $y(t, \sigma, \phi)$ .

We can easily prove this theorem by Corollary 2.1 and by the argu-
ment used in the proof of Theorem 4.1.

COROLLARY 4.1. Suppose that $f$ is in the class $M_{D}$ and that a non-
continuable solution $x(t, \sigma_{0}, \phi_{0})$ of (E) through $(\sigma_{0}, \phi_{0})$ is defined on $D_{x}$ and
is unique. Let $I=[\sigma_{0}, b],$ $\sigma_{0}<b$ , be the subinterval of $D_{x}$ . Then for $\epsilon>0$ ,
there exists a $\delta>0$ such that, if $|\sigma-\sigma_{0}|<\delta,$ $|\tilde{\phi}-\phi_{0}|_{\mathfrak{c}\alpha,\sigma_{0}}J<\delta$ in case $\alpha<\sigma_{0}$
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( $|\phi(\alpha)-\phi_{0}(\alpha)|<\delta$ in case $\alpha=\sigma_{0}$), where $\tilde{\phi}(t)=\phi(\tau(\sigma, \alpha, \sigma_{0}, a)t)$ , and if $q(t)$ ,
$t\in J_{1}=[\alpha, \sigma_{0}]\cup D_{x}$ , is a bounded and integrable function with $\int_{J_{1}}|q(t)|dt<\delta$ ,

then every noncontinuable solution $y(t, \sigma, \phi)$ of $(E_{3})$ satisfies (4.1).

Note that the result corresponding to Corollary 4.1 for Theorem 4.2
can be obtained similary.

The following is the familiar theorem on the continuous dependence
of solutions on initial conditions.

COROLLARY 4.2. Let $f\in M_{D}$ . Suppose that a solution $x(t, \sigma_{0}, \phi_{0})$ of (E)
through $(\sigma_{0}, \phi_{0})$ is defined on $[\sigma_{0}, \sigma_{0}+A],$ $A>0$ , and is unique. Then for
any $\epsilon>0$ , there exists a $\delta>0$ such that, if $|\sigma-\sigma_{0}|<\delta$ and $|\tilde{\phi}-\phi_{0}|_{\mathfrak{c}\alpha.\sigma_{0}}l<\delta$

in case $a<\sigma_{0}$ ( $|\phi(\alpha)-\phi_{0}(\alpha)|<\delta$ in case $\alpha=\sigma_{0}$), where $\tilde{\phi}(t)=\phi(\tau(\sigma, a, \sigma_{0}, \alpha)t)$ ,
then every solution $x(t, a, \phi)$ of (E) satisfies $|x(t, \sigma, \phi)-x(t, \sigma_{0}, \phi_{0})|<\epsilon$ for
all $t\in[\max\{\sigma, \sigma_{0}\}, \sigma_{0}+A]$ .
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