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Introduction

A leaf of a codimension one foliation of a closed manifold is called
stable if it has a saturated tubular neighborhood foliated as a product.
About 1950, G. Reeb [12] (See also A. Haefliger [6].) showed that a
compact leaf is stable if and only if it has a trivial holonomy group.
It seems reasonable to conjecture that a proper leaf with a finitely
generated fundamental group will be stable if it has a trivial holonomy
group. (Note that the fundamental groups of compact leaves are al-
ways finitely generated and see also T. Inaba [11].) In fact, in 1976, T.
Inaba [9], [10] extended Reeb’s original theorem for proper leaves with
finitely generated fundamental groups of codimension one foliations of
closed three-manifolds. But this result is false if the fundamental groups
of the leaves are not finitely generated. (See H. Imanishi [8].) In this
paper, we extend Inaba’s result for semiproper leaves and show that this
extension is also false for leaves with infinitely generated fundamental
groups by constructing a counterexample explicitly.

Section 1 gives basic definitions and fundamental properties of
holonomy. Section 2 shows that Inaba’s result is valid for semiproper
leaves as well. Section 3 summarizes the result of G. Hector [7] for $U8e$

in Section 4. Section 4 is devoted to constructing an example of unstable
semiproper exceptional leaves without holonomy.

I would like to express my gratitude to T. Inaba for his valuable
advice and hearty encouragement during the preparation of this paper.

\S 1. Introduction to the techniques.

First of all we recall some definitions and basic notions. Throughout
this paper, $L\mathscr{F}$ will denote a transversely orientable $C^{f}(0\leqq r\leqq\infty)$ codi-
mension one foliation with $C^{\infty}$ leaves of a closed manifold $M$ and $\mathscr{L}$ will
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denote a fixed one-dimensional $C^{\infty}$ foliation transverse to $\ovalbox{\tt\small REJECT}^{-}$ (Such a
transverse foliation $\mathscr{L}$ always exists if $r\geqq 1$ , while if $r=0$ we will only
treat the case in which such an $\mathscr{L}$ exists, say, the case in which every
leaf of $\mathscr{L}^{-}$ is integral to a $C^{0}$ hyperplane field.)

A leaf $L$ of $\mathscr{G}^{-}$ can be locally dense (i.e. int $\overline{L}\neq\emptyset$ ), proper (locally
closed, hence a regular submanifold of $M$), or exceptional (all other cases).
An $F$-saturated set is a subset of $M$ which is a union of leaves of ,S7:
The $\mathscr{J}$-saturation of a subset $X$ of $M$ is the smallest .4-saturated
set containing $X$ and is denoted by sat, $X$. An injective immersion
$f:(M, \mathscr{G}^{-})\rightarrow(M^{\prime}, \mathscr{G}^{-\prime})$ of a foliated manifold $(M, \mathscr{G}^{-})$ into another foliated
manifold $(M^{\prime}, \mathscr{G}^{-\prime})$ is foliation-preserving if $f$ maps each leaf of $\mathscr{L}^{-}$ onto
a leaf of $\mathscr{G}^{-}$ .

DEFINITION 1. (See T. Inaba [11].) A proper leaf $L$ of $ Z$ is stable
if there exist an open $T$-saturated neighborhood $U$ of $L$ in $M$ and a
foliation-preserving $di$ffeomorphism

$\varphi:(L\times]-1,1[, \{L\times\{t\}\}_{el-1,1\mathfrak{c}})\rightarrow(U, \mathscr{L}^{-}|U)$

such that $\varphi(L\times\{0\})=L$ . Otherwise, $L$ is called unstable.

Sides of leaves of $\mathscr{L}^{-}$ are the leaves of $q^{*}\mathscr{J}_{1}$ where $q:M\rightarrow M$ is the
unit tangent bundle to $\mathscr{L}$ A side $\tilde{L}$ of a leaf $L=q(\tilde{L})$ of $\mathscr{G}^{-}$ is proper
if a transversal $\tau:[0,1]\rightarrow M$ starting from $L$ in the direction $\tilde{L}$ satisfies
$\tau(10, \epsilon[)\cap L=\emptyset$ for some $\epsilon>0$ . A leaf of $\backslash \pi$ is $\epsilon emiproper$ if it has a
proper side. Note that semiproper leaves are always nowhere dense.

DEFINITION 1’. A semiproper leaf $L$ with a proper side $\tilde{L}$ of $\mathscr{L}^{-}$ Is
stable on $\tilde{L}$ if there exists a foliation-preserving injective immersion

$\varphi:(L\times[0,1[, \{L\times\{t\}\}_{e\mathfrak{c}0.1\mathfrak{c}})\rightarrow(M_{1}\mathscr{L}^{-})$

such that $\varphi(x, O)=x$ and $d\varphi_{(x.0)}(\partial/\partial t)$ points in the direction $\tilde{L}$ for all $ x\in$

$L$. Otherwise, $L$ is called $un\epsilon table$ on $\tilde{L}$ .
For all $xeM$, we let L. and $T_{*}$ denote the leaves of $\mathscr{G}^{-}$ and $\mathscr{L}$

which contain $x$ respectively. Let $L$ be a leaf of $\mathscr{G}^{-}$ and $ l:([0,1], \{0,1\})\rightarrow$

$(L, x)$ a loop in $L$ at $xeL$ . By the standard argument for the foliated
structures, we can construct a fence $F$ at $x$ such that the following
conditions are satisfied:

(1) $F:[0,1]\times V\rightarrow M$ is a continuous map, where $V$ is a neighborhood
of $0$ in $R$ .
(2) $F(\cdot, 0)=l:[0,1]\rightarrow L$ .
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(3) $F(t, s)\in L_{F(0,*)}\cap T_{F\langle t,0)}$ for all $(t, s)e[0,1]\times V$ .
(4) $F(0, ):V\rightarrow M$ is a $C^{r}$ embedding.
Similarly, we can define a fence $F$ at $x$ on a side $\tilde{L}$ of $L$ . In this situa-tion, we require that $V$ is a neighborhood of $0$ in [$0,$ $\infty$ [ and $dF_{(t,0)}(\partial/\partial s)$

points in the direction $\tilde{L}$ for all $t\in[0,1]$ .
For each fence $F$ at $x$ , the local diffeomorphism

$\gamma_{F}:F(\{0\}\times V)\rightarrow F(\{1\}\times V)$

$\omega$
$(D$

$F(0, s)$ $\mapsto F(1, s)$

at $x$ is defined. The pseudogroup of all $\gamma_{F}’ s$ is called the holonomy
pseudogroup of $L$ at $x$ and is denoted by $\mathscr{G}\ovalbox{\tt\small REJECT}(L, x)$ . The set of germs
of elements of $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}(L, x)$ (called holonomies) forms a group called the
holonomy group of $L$ at $x$ and is denoted by $\ovalbox{\tt\small REJECT}(L, x)$ . The isomorphism
class of $\ovalbox{\tt\small REJECT}(L, x)$ is independent of the choice of the base point $x$ ,
therefore we will sometimes omit it. The well-defined map

$\Psi:\pi_{1}(L, x)\rightarrow\ovalbox{\tt\small REJECT}(L, x)$

$(D$ $(D$

$[F(\cdot, 0)]\}\rightarrow the$ germ of $\gamma_{F}$ at $x$

is a surjective homomorphism called the holonomy homomorphism, where
$F$ is a fence at $x$ and $[F(\cdot, 0)]$ is the homotopy class represented by
$F(\cdot, 0)$ . Similarly, by using fences at $x$ on a side $\tilde{L}$ of $L$ , the holonomy
pseudogroup $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}_{L}^{\sim}(L, x)$ of $L$ at $x$ on $\tilde{L}$ and the holonomy group $\ovalbox{\tt\small REJECT}_{L}^{\sim}(L, x)$

at $x$ on $\tilde{L}$ are defined.

DEFINITION 2. (See T. Inaba [11] and R. Sacksteder and A. J. Schwartz
[13].) Let $L$ be a leaf of $\mathscr{G}^{-}x\in L,\tilde{L}$ aside $ofL$ , and $\tau:([0,1], O)\rightarrow(T x)$

a transversal starting in the direction $\tilde{L}$ . Then $\mathscr{G}\ovalbox{\tt\small REJECT}(L, x)$ [resp.
$\mathscr{G}\ovalbox{\tt\small REJECT}_{L}\sim(L, x)]$ is locally trivial if there exists a neighborhood $N_{x}$ of $x$ in
$T_{x}$ [resp. $\tau([0,1])\cap T_{x}$ ] such that the restriction to $N_{x}$ of every element
of $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}(L, x)$ [resp. $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}_{L}^{\sim}(L,$ $x)$ ] is the identity. Otherwise, $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}(L, x)$

[resp. $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}_{L}\sim(L,$ $x)$ ] is called locally infinite.
We let $K$ denote the interval $I=[-1,1]$ or the circle $S^{1}$ .
DEFINITION 3. (See A. Haefliger [6, 1.8].) $(\xi;\mathscr{G}^{-})=(p, E, B;\mathscr{G}^{-})$ is

called a foliated K-bundle over $B$ if $E$ is the total space of a K-bundle
$\xi$ over $B,$ $p:E\rightarrow B$ is the bundle projection, and $\mathscr{F}^{-}$ is a codimension one
foliation of $E$ such that each fiber of $\xi$ is transverse to $\pi$

Given a manifold $B$ with base point $x$ and a homomorphism
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$\varphi:\pi_{1}(B, x)\rightarrow Diff^{f}K$, where Diff${}^{t}K$ is the group of $C^{f}$ diffeomorphisms of
$K,$ $\pi_{1}(B, x)$ acts on the universal covering space $\tilde{B}$ of $B$ by covering

transformations. It also acts on $K$ via $\varphi$ , and on $\tilde{B}\times K$ by acting on
each factor:

$\pi_{1}(B, x)\times(\tilde{B}\times K)\rightarrow\tilde{B}\times K$ .
$(D$ $(D$

$(\omega, (y, t))\mapsto(y\cdot\omega, \varphi(\omega^{-1})(t))$

A foliated K-bundle $(\xi;\mathscr{G}^{-})=(p, E, B;\mathscr{F}(\varphi))$ is defined so that the total
space of $\xi$ is a foliated manifold $(E, \mathscr{G}^{-}(\varphi))=(\tilde{B}\times K\sim’\{\tilde{B}\times\{t\}\}_{t\in K})/\pi_{1}(B, x)$

and the bundle projection $p:E=(\tilde{B}\times K)/\pi_{1}(B, x)\rightarrow B/\pi_{1}(B, x)=B$ is the

natural map between orbit spaces. Conversely given a foliated K-bundle
$(\xi;\mathscr{G}^{-})=(p, E, B;\mathscr{G}^{-})$ and $x\in B$, leaves of $\mathscr{G}^{-}$ are covering spaces of $B$

and a loop $l:([0,1], \{0,1\})\rightarrow(B, x)$ at $x$ determines a diffeomorphism
$\sim\sim l(0)\vdash\rightarrow l(1)$ of the fiber at $x$ , where $\sim l:[0,1]\rightarrow L_{l\langle 0)}^{\wedge}$ is the unique path with
initial point $\sim l(0)$ which covers $l$ . It is clear that this diffeomorphism

depends only on the homotopy class of $l$ and this procedure gives a
homomorphism $\varphi:\pi_{1}(B, x)\rightarrow Diff^{f}K$ such that $\mathscr{G}^{-}=\mathscr{G}^{-}(\varphi)$ . We call $\varphi$ the

total holonomy homomorphism for $(\xi;\mathscr{G}^{-})$ and $F\mathscr{G}(\mathscr{G}^{-})=\varphi(\pi_{1}(B, x))$ the

total holonomy group for $(\xi;\mathscr{F}^{-})$ . The foliation $\mathscr{F}^{-}=\mathscr{G}^{-}(\varphi)$ has proper-
ties analogous to those of the orbit space of the action of $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}(y)$ on
$K$:

$\Gamma;\ovalbox{\tt\small REJECT}\overline{\mathscr{F}}(\mathscr{F})\times K\rightarrow K$ .
$(D$ $(D$

$(f, t)-f(t)$

Since we assumed in this paper that $\mathscr{G}^{-}$ is transversely orientable,
$\ovalbox{\tt\small REJECT}\overline{\mathscr{G}}(\mathscr{G}^{-})$ is a subgroup of the group Diff$f+K$ of orientation-preserving
$C^{f}$ difteomorphisms of $K$ and $\xi$ is orientable. Especially, if $K=I,$ $\xi$ is

trivial. If $K=S^{1}$ , however, $\xi$ is not always trivial. (See J. W. Wood
[16, Theorem 1.1].) Such orientable $S^{1}$-bundles are classified by their

Euler class $\chi(\xi)\in H^{2}(B;Z)$ . Fortunately both foliated S’-bundles $(p^{\prime},$
$E^{\prime}$ ,

$\Sigma_{s};\mathscr{G}^{-}(\chi^{\prime}))$ and $(p, E, \Sigma_{3};\mathscr{G}^{-}(\chi))$ over the compact orientable surface $\Sigma_{s}$

of genus three which we will construct in Sections 3 and 4 are trivial

as $S^{1}$-bundles by the following criterion:

PROPOSITION I. Let $(\xi;\mathscr{G}^{-})=(p, E, \Sigma_{g};\mathscr{G}^{-})beaC^{f}foliated(orientable)$

$S^{1}$-bundle over a compact orientable surface $\Sigma_{g}$ of genus $g\geqq 1$ with base

point $x$ and $\varphi:\pi_{1}(\Sigma_{g}, x)\rightarrow Diff_{+}^{f}S^{1}$ the total holonomy homomorphism for
$(\xi;\mathscr{F}^{-})$ . Then $\xi$ is trivial if $\varphi$ factors through a free group $F_{n}$ on $n$

generators, that is, there exist two homomorphisms $\psi$ and $h$ such that

the following diagram commutes:
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$\pi_{1}(\Sigma_{g}, x)-\rightarrow F_{n}h$

$\backslash _{\varphi\backslash }$ $\Lambda^{\psi}/$

$Diff_{+}^{r}S^{1}$

PROOF. Let $(\eta;\mathcal{G})=(q, X, BF_{n};\mathcal{G})$ be the foliated $S^{1}$-bundle over
$BF_{n}=K(F_{n}, 1)=S^{1}\vee\cdots\vee S^{1}$ (n-times) for which $\psi$ is the total holonomy
homomorphism. Take a map $g:\Sigma_{g}=K(\pi_{1}(\Sigma_{g}, x),$ $1$ ) $\rightarrow BF_{n}=K(F_{n}, 1)$ such
that $g_{\#}=h$ . ( $g$ is a classifying map for the principal $F_{n}$-bundle over $\Sigma_{g}$

determined by $h.$ ) Then $ g^{*}\eta=\xi$ . $H^{2}(K(F_{n}, 1);Z)=0$ , especially $\chi(\eta)=0$

and $\eta$ is trivial. $\chi(\xi)\in g^{*}(H^{2}(K(F_{n}, 1);Z))\subset H^{2}(\Sigma_{g};Z)\cong Z$. Hence $\chi(\xi)=0$

and $\xi$ is trivial. q.e. $d$ .
\S 2. Reeb stability for semiproper leaves.

Various authors have investigated stability for proper leaves of
codimension one foliations ($e.g.$ , G. Reeb [12], T. Inaba [9], [10], [11],
P. R. Dippolito [4], [5], J. Cantwell and L. Conlon [1], [2], etc.). Our
starting point is the following fundamental theorem:

THEOBEM 1. (See G. Reeb [12] and A. Haefliger [6, p. 381].) Let $L$

be a compact leaf of $\mathscr{G}^{-}$ Then $L$ is stable if and only if $L$ has a
trivial holonomy group.

In 1976, T. Inaba succeeded in generalizing Theorem 1 for proper
leaves of codimension one foliations of closed manifolds as follows:

THEOREM 2. (See T. Inaba [9], [10].) Suppose that $M$ is a closed three-
manifold and let $L$ be a proper leaf of $L\mathscr{F}$ such that the fundamental
group of $L$ is .finitely generated. Then $L$ is stable if and only if $L$ has
a trivial holonomy group.

Theorem 2 is a direct corollary of following two theorems. (See T.
Inaba [9], [10].)

THEOREM 3. Let $L$ be a proper leaf $of\sim Z$ Then $L$ is stable if and
only if $L$ has a locally trivial holonomy pseudogroup.

THEOREM 4. Let $M$ be a compact three-manifold (possibly with
boundary) and $L$ a leaf of $\mathscr{G}^{-}$ such that the fundamental group of $L$ is
finitely generated. $\backslash \mathscr{F}$ is supposed to be tangent to $\partial M$ if $\partial M\neq\emptyset$ . Then
$L$ has a trivial holonomy group if and only if $L$ has a locally trivial
holonomy pseudogroup.
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We generarize Theorem 2 as follows:

THEOREM A. Suppose that $M$ is a closed three-manifold and let $L$

be a semiproper leaf of $\mathscr{F}$ with a proper side $\tilde{L}$ such that the funda-
mental group of $L$ is finitely generated. Then $L$ is stable on $\tilde{L}$ if and
only if the holonomy group of $L$ on $\tilde{L}$ is trivial.

Theorem A is a direct consequence from Theorem 4 and the following
“proper-side-version” of Theorem 3.

THEOREM B. Let $L$ be a semiproper leaf of $\mathscr{G}^{-}$ with a proper side
$\tilde{L}$ . Then $L$ is stable on $\tilde{L}$ if and only if the holonomy pseudogroup of
$L$ on $\tilde{L}$ is locally trivial.

PROOF. For each point $x$ of $L$ , let $\tau^{x}:([0,1], 0)\rightarrow(T_{x}, x)$ be a trans-
versal starting in the direction $\tilde{L}$ and $U$ a component of $M\backslash \overline{L}$ containing
$\tau^{x}(]0, e[)$ for some $\epsilon>0$ . On the completion $\hat{U}$ of $U$ in the metric induced
from a Riemannian metric of $M$, the pullback $ i^{*}\mathscr{G}^{-}\wedge$ has a boundary leaf
$L_{0}\subset\partial\hat{U}$ containing the limit of $\tau^{x}(t)$ as $t\backslash O$ , where $ i;\hat{U}\rightarrow M\wedge$ is the iso-
metric immersion induced from the inclusion map $i:U\subset\rightarrow M$. (See P. R.
Dippolito [4].) $L_{0}$ covers $L$ and is diffeomorphic to $\tilde{L}$ :

$\tilde{L}-\rightarrow L_{0}\cong$ .
$(D$ $tU$

$d\tau_{0}^{x}(d/dt)/||d\tau_{0}^{x}(d/dt)||-\lim_{t\backslash 0}\tau^{x}(t)$

Therefore the local triviality of $\mathscr{G}\mathscr{J}_{t}^{\sim}(L, x)$ is equivalent to the local
triviality of $\mathscr{G}\mathscr{J}(L_{0}, x_{0})$ , where $x_{0}=\lim_{t\lambda 0}\tau^{x}(t)$ in $\hat{U}$. Consequently, the
proof of Theorem 3 (See T. $Inaba_{\wedge}[9].$ ) is also valid for Theorem $B$ , via
the induced isometric immersion $i$ . q.e.d.

However there are counterexamples to Theorems 2 and A if the
assumption that $L$ has a finitely generated fundamental group is got rid
of. The example of H. Imanishi [8, p. 622] is the one to Theorem 2.
We will construct a counterexample to Theorem A without that assump-
tion in Section 4.

On the other hand, it seems quite natural to conjecture that Theorems
2 and A can be extended for closed manifolds of dimension greater than
three. (According to T. Inaba [11], we call this conjecture the “gen-
eralized Reeb stability conjecture” or abbreviately the $GRS$ conjecture”.)

But in 1980, T. Inaba [11] has constructed a $C^{0}$ foliation of a closed
manifold of dimension five or greater than five with an unstable proper
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leaf which has a finitely generated fundamental group and a trivial
holonomy group. This Inaba foliation is a counterexample to the GRS
conjecture for $C^{0}$ foliations of closed manifolds of $dimension\geqq 5$ . The
GRS conjecture for $C^{1}$ foliations or for closed four-manifolds remains an
interesting but difficult open question.

\S 3. Hector’s $C^{\infty}$ diffeomorphisms of $S^{1}$ .
Let $G$ be a subgroup of $Diff_{+}^{\infty}S^{1}$ . A subset $C$ of $S^{1}$ is called a minimal

set of $G$ if $C$ is a nonempty closed subset invariant under $G$ which has
no proper subsets with such properties. A minimal set $C$ of $G$ is excep-
tional if $C$ is neither a single closed orbit nor all of $S^{1}$ .

In this section, we recall the construction of orientation-preserving
$C^{\infty}$ diffeomorphisms $f$ and $g$ of $S^{1}$ in G. Hector [7] such that the group
$G$ ’ generated by $f$ and $g$ admits an exceptional minimal set $C’$ .

We consider $S^{1}$ as the circle obtained from the interval [-2, 14] by
identifying its endpoints. At first, we define $f$ by

$f(t)=t+4$ mod 16 for all $t\in[-2,14]$ .

FIGURE 1. Graphs of $f$ and $g$
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Next define $g$ so that

(1) supp $g=\{t\in S^{1};g(t)\neq t\}=[1,11]$ ,

(2) the graph of $g$ is symmetric with respect to the line $s=-t+12$ ,

(3) $\left\{\begin{array}{ll}g(t)<t & for all t\in] 1,11[,\\g(t)=t+4 & for all t\in[7,9],\\g^{\prime}(t)<1 & for all t\in] 1,7[ ,\end{array}\right.$

(4) $g(4)=2$ and the graph of $g|[1,7]$ is symmetric with respect to the
point $(4, 2)^{*)}$

Finally define the set C’ by $C‘=S^{1}\backslash \bigcup_{teI}\Gamma_{G^{\prime}}(t)$ , where $\Gamma_{G^{\prime}}:G^{\prime}\times S^{1}\rightarrow S^{1}$ is
the action of $G$’ on $S^{1},$ $\Gamma_{G^{\prime}}(t)$ is the orbit of $t\in S^{1}$ under $\Gamma_{G^{\prime}}$ , and $I=$

$[-1,1]$ .
The following is essential to our construction in Section 4.

PROPOSITION 2. (See G. Hector [7].) $\Gamma_{G^{\prime}}$ is trivial on Iand $C^{\prime}$ is an
exceptional minimal set of $G$‘.

PROOF. See G. Hector [7].

Let $\Sigma_{s}$ be a compact orientable surface of genus three with base
point $x$ . The fundamental group of $\Sigma_{3}$ based at $x$ is presented as follows:

$\pi_{1}(\Sigma_{3}, x)=\langle\alpha_{\ell}, \beta_{i}(i=1,2,3)|\prod_{l=1}^{s}[\alpha_{i}, \beta_{i}]=e\rangle$ .
We define a homomorphism

$x’:\pi_{1}(\Sigma_{3}, x)\rightarrow Diff_{+}^{\infty}S^{1}$

as $x^{\prime}(\beta_{1})=f,$ $\chi’(\beta_{2})=g$ , and $x^{\prime}(\beta_{3})=x^{\prime}(\alpha_{i})=id$ for $i=1,2,3$ . This provides
a $C^{\infty}$ foliated $S^{1}$-bundle $(\xi;\mathscr{F})=(p^{\prime}, E’, \Sigma_{s};\mathscr{G}^{-}(x^{\prime}))$ for which $x^{\prime}$ is the
total holonomy homomorphism. Since $x^{\prime}$ factors through a free group
$F_{2}$ on two generators, $\xi$ is trivial by Proposition 1 and $p^{\prime};\Sigma_{3}\times S^{1}\rightarrow\Sigma_{3}$

is the projection to the first factor.
Since each $t\in\Gamma_{G^{\prime}}(-1)\cup\Gamma_{G^{\prime}}(1)$ is an endpoint of a gap of the excep-

tional minimal set C’ of $G$‘, the following is a direct corollary of Pro-
position 2.

PROPOSITION 3. $L\mathscr{F}(x^{\prime})|sat_{\ovalbox{\tt\small REJECT}^{-}(\chi^{\prime})}(\{x\}\times I)$ is trivial. Both leaves $L_{(x,-1)}^{\prime}$

$*)$ In G. Hector [7, p. 252], a confusion prevails, that is, the condition (4) we required
above is used without request.
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and $L_{(x,1)}$ of $\mathscr{G}^{-}(x^{\prime})$ are semiproper exceptional leaves. The positive side
$\tilde{L}_{tx,-1)}^{\prime}$ of $L_{(x,-1)}^{\prime}$ and the negative side $\tilde{L}_{(x,1)}^{\prime}$ of $L_{(x,1)}^{\prime}$ are proper sides.

REMARK. Especially, $L_{(x,i)}^{\prime}$ is stable on $\tilde{L}_{(x,i)}^{\prime}$ for $i=-1,1$ .
For making short, we let $\tilde{x}$ and $L$ denote $(x, -1)$ and $L_{(x,-1)}^{\prime}$ respec-

tively. The definition of $\chi$
’ shows:

PROPOSITION 4. There exists a $C^{\infty}$ injective immersion

$\varphi:L\times I\rightarrow\Sigma_{3}\times S^{1}$

such that the following properties are satisfied:
(1) $\varphi(L\times I)=sat,(\chi)(\{x\}\times I)$ ,

(2) $\varphi:(L\times I, \{L\times\{t\}\}_{teI}, \{\{y\}\times I\}_{y\in L})\rightarrow(\Sigma_{s}xS^{1}, \mathscr{G}^{-}(x^{\prime}),$ $\{\{z\}\times S^{1}\}_{\iota e\Sigma_{3}}$)

is foliation-preserving,

(3) $\varphi(\tilde{x}, t)=(x, t)$ for all $t\in I$ ,

(4) $\varphi(\cdot, -1):L\subset\rightarrow\Sigma_{3}\times S^{1}$ is the inclusion map.

\S 4. Unstable semiproper exceptional leaves without holonomy.

In this section, we prove the following theorem, which is the main
result of this paper.

THEOREM C. There exist a closed $C^{\infty}$ manifold $M$ of dimension $n\geqq 3$

and a $C^{\infty}$ codimension one foliation $\mathscr{G}^{-}$ of $M$ such that $\mathscr{F}$ has a semi-
proper exceptional leaf $L$ with a proper side $\tilde{L}$ satisfying the following
properties:

(1) $\pi_{1}(L)$ is not finitely generated,

(2) $\mathscr{G}_{L}^{\sim}(L)$ is trivial,

(3) $\mathscr{G}\ovalbox{\tt\small REJECT}_{L}^{\sim}(L)$ is locally infinite (hence $L$ is unstable on $\tilde{L}$).

PROOF. The proof is performed by constructing an example explicitly.
Our first job is to choose an orientation-preserving $C^{\infty}$ diffeomorphism

$h$ of $S^{1}$ . Again we regard $S^{1}$ as the interval [-2, 14] with its endpoints

identified. $f$ and $g$ are the same as those in Section 3. We start with
a sequence $\{a_{n}\}_{n=0,1}\ldots$ such that

(1) $0<a_{n}\nearrow 1$ .
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Next define two sequences $\{b_{n}\}_{n=0,1}\ldots$ and $\{c_{n}\}_{n=0.1},\ldots$ :

$b_{n}=\{g^{n}f(a_{n})-g^{n}f(-a_{n})\}/2a$ ,
$c_{n}=\{g^{n}f(a_{n})+g^{n}f(-a_{n})\}/2b_{n}$ ,

where $0<a<1$ . Then

(2) $0<b_{n}\rightarrow 0$ .
Choose a $C^{\infty}$ function $\lambda;R\rightarrow R$ such that

(3) $\overline{\{teR;\lambda(t)\neq 0}$} $=[-a, a]$ ,

(4) $\max\{|\lambda^{\prime}(t)|;t\in R\}<1/\max\{b_{n}^{n-1};n\in Z^{+}\}$ ,

(5) $\lambda$ is $C^{\infty}$ tangent to the zero function at $-a$ and $a$ .
Next define $\mu_{n}:R\rightarrow R$ for $n=0,1,$ $\cdots$ :

$\mu_{n}(t)=t-b_{n}^{n}\lambda(t/b_{n}-c_{n})$ for all $t\in R$ .
Then

FIGURE 2. Graph of $h$
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(6) $supp\mu_{n}=\{\overline{t\in R;\mu_{n}(t)\neq}t\}=[g^{n}f(-a_{n}), g^{n}f(a_{n})]\subset intI_{n}$ ,
where $I_{n}=[g^{n}f(-1), g^{n}f(1)]$ ,

(7) $\mu_{n}^{\prime}(t)>0$ for all $t\in R$ .
Finally define an orientation-preserving homeomorphism $h$ of $S^{1}$ by

$h=\left\{\begin{array}{ll}\mu_{n} & on I_{n} for n=0,1, \cdot\cdot e ,\\id & on S^{1}\backslash U_{0}I_{n}n\Rightarrow\infty\end{array}\right.$

By (2), $h$ is $C^{\infty}$ tangent to the identity at 1. This completes the defini-
tion of $h$ . Thus $h\in Diff_{+}^{\infty}S^{1}$ .

We let $G$ denote the subgroup of $Diff_{+}^{\infty}S^{1}$ generated by $f,$ $g$ and $h,$ $\Gamma_{a}$

the action of $G$ on $S^{1},$ $\Gamma_{a}(t)$ the orbit of $t\in S^{1}$ under $\Gamma_{a}$ and $C$ the set
$\overline{S^{1}\backslash \bigcup_{teI}\Gamma_{a}(t).}$ Let $G^{\prime}$ and $C$‘ be as in Section 3.

PROPOSITION 5. $C=C$’ and $C$ is an exceptional minimal set of $G$ .
$p_{R\infty F}$ . This follows from Proposition 2 and the definition of $h$ .
We define a homomorphism

$x:\pi_{1}(\Sigma_{3}, x)\rightarrow Diff_{+}^{\infty}S^{1}$

as $\chi(\beta_{1})=f,$ $\chi(\beta_{2})=g,$ $\chi(\beta_{8})=h,$ $\chi(\alpha_{i})=id$ for $i=1,2,3$ . This provides a $C^{\infty}$

foliated $S^{1}$-bundle $(\xi;\mathscr{G}^{-})=(p, E, \Sigma_{s};\mathscr{F}(\chi))$ for which $\chi$ is the total
holonomy homomorphism. Since $\chi$ factors through a free group $F_{\epsilon}$ on
three generators, $\xi$ is trivial by Proposition 1 and $p:E=\Sigma_{8}\times S^{1}\rightarrow\Sigma_{8}$ is
the projection to the first factor. Let $x,$ $\mathscr{G}^{-}(x^{\prime}),$ $L_{(x,i)}^{\prime}$ for $i=-1,1$ , etc.
be as in Section 3. Each $t\in\Gamma_{a}(-1)\cup\Gamma_{a}(1)$ is an endpoint of a gap of
the exceptional minimal set $C$ of $G$ . So the following is a direct conse-
quence from Proposition 5.

PROPOSITION 6. sat, $(\chi)(\{x\}\times I)$ coincides with $sat_{F(\chi^{\prime})}(\{x\}\times I)$ , especially
$L_{(x,i)}\in \mathscr{F}^{-}(\chi)$ coincides with $L_{(x,l)}^{\prime}\in \mathscr{G}^{-}(x^{\prime})$ for $i=-1,1$ . Both leaves $L_{(n,-1)}$

and $L_{\{x,1)}$ are semiproper exceptional leaves. The positive side $\tilde{L}_{(x,-1)}$ of
$L_{\{x,-1)}$ and the negative side $\tilde{L}_{(x,1)}$ of $L_{(x,1)}$ are proper sides.

Choose two simple loops $u$ and $v:([0,1], \{0,1\})\rightarrow(\Sigma_{s}, x)$ which represent
$\alpha_{s}$ and $\beta_{\theta}$ respectively so that $u([0,1])\cap v([0,1])=\{x\}$ . For $n=0,1,$ $\cdots$ ,
we can lift $u$ [resp. $v$] to $\Sigma_{3}\times S^{\iota}$ so that the unique lift $\tilde{u}_{n}$ [resp. $v_{\iota}\sim,$]
with initial point $(x, g^{n}f(-1))$ is a loop in $L$ and $\tilde{u}_{n}([0,1])=u([0,1])\times$

$\{g^{n}f(-1)\}$ [resp. $v_{n}\sim([0,1])=v([0,1])\times\{g^{n}f(-1)\}$] because $g^{n}f(-1)$ is a fixed
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point of $id=x(\alpha_{3})$ [resp. $h=\chi(\beta_{s})$]. These $\tilde{u}_{n}’ s$ [resp. $v_{n}\sim s$] are pairwise
disjoint countably many embedded loops on account of the ”unique-lifting
property” for $p$ . Since

$\tilde{u}_{n}([0,1])\cap v_{*}\sim,([0,1])=\left\{\begin{array}{ll}\{g^{n}f(-1)\} & for n=m,\\\phi & for n\neq m\end{array}\right.$

by the choice of $u$ and $v,$ $L\backslash \bigcup_{n=0}^{\infty}v_{n}\sim([0,1])$ is connected. Hence $L$ has
countably many handles so that $\pi_{1}(L,\tilde{x})$ is not finitely generated.

Let $\ovalbox{\tt\small REJECT}\overline{\mathscr{G}}(\mathscr{G}^{-}(\chi))_{t}$ be the isotropy group of $teS^{1}$ in $Z\mathscr{F}(\mathscr{G}^{-}(\chi))$

and $H=\{\gamma\in\pi_{1}(\Sigma_{S}, x);\chi(\gamma)(-1)=-1\}=x^{-1}(F\ovalbox{\tt\small REJECT}(\mathscr{G}^{-}(\chi))_{-1})$ . Then $H$ is a
subgroup of $\pi_{1}(\Sigma_{S}, x)$ and is obviously isomorphic to $\pi_{1}(L,\tilde{x})$ :

$(p\circ\varphi),:\pi_{1}(L, x\sim)\cong H$ ,

where $\varphi:L\times I\rightarrow\Sigma_{3}\times S^{1}$ is the $C^{\infty}$ injective immersion in Proposition 4.

$\pi_{1}(L,\tilde{x})\rightarrow^{\cong}H\rightarrow^{\chi|H}Diff_{+}^{\infty}I$

$\varphi_{l}\downarrow$ $\cap$

$\pi_{1}(\Sigma_{s}\times S^{1},\tilde{x})\rightarrow\pi_{1}(\Sigma_{s}, x)p_{1}\rightarrow Diff_{+}^{\infty}S^{1}x$

$H$ is also isomorphic to $\pi_{1}(L_{(x.1)}, (x, 1))$ because $ F\ovalbox{\tt\small REJECT}(\mathscr{G}^{-}(\chi))_{-1}\equiv$

$\ovalbox{\tt\small REJECT}^{-}\ovalbox{\tt\small REJECT}(\mathscr{G}^{-}(\chi))_{1}$ by the definition of $\chi$ . Moreover a $C^{\infty}$ diffeomorphism
$k:(L,\tilde{x})\rightarrow(L_{(x,1)}, (x, 1))$ is defined as follows: For each $(y, t)\in L,$ $k(y, t)$ is
the point at which the path on the fiber $p^{-1}(y)=\{y\}\times S^{1}$ starting from
$(y, t)$ in the positive direction $\tilde{L}$ meets $L_{(x,1)}$ at the first time. Note
that $p|L=(p|L_{(ae.1)})\circ k$ .

Let $q:L\times I\rightarrow L$ is the projection to the first factor. Then $(\eta;\mathscr{G}^{-}(\psi))=$

$(q, L\times I, L;\varphi^{*}\mathscr{G}^{-}(\chi))$ is a $C^{\infty}$ foliated I-bundle for which $\psi=(\chi|H)\circ p_{t^{\circ}}\varphi_{t}$ :
$\pi_{1}(L, x\sim)\rightarrow Diff_{+}^{\infty}I$ is the total holonomy homomorphism, where $\varphi_{\iota}:\pi_{1}(L,\tilde{x})\rightarrow$

$\pi_{1}(\Sigma_{3}\times S^{1}, x\sim)$ and $p_{*}:\pi_{1}(\Sigma_{S}\times S^{1}, x\sim)\rightarrow\pi_{1}(\Sigma_{a}, x)$ are the homomorphisms induced
from $\varphi$ and $p$ respectively.

Hence stability of $L$ [resp. $L_{(x,1)}$ ] on $\tilde{L}$ [resp. $\tilde{L}_{(g1)}$ ] in $\mathscr{G}^{-}(\chi)$ is
equivalent to stability of $L\times\{-1\}$ [resp. $L\times\{1\}$] in $\backslash \mathscr{F}(\psi)$ . Let $\overline{\mu}_{n}=$

$(g^{n}f|I)^{-1}(\mu_{n}|I_{n})(g^{n}f|I)\in Diff_{+}^{\infty}I$. By (6),

$(\overline{6})$ $supp\overline{\mu}_{n}=[-a_{n}, a_{n}]\subset int$ $I$ for $n=0,1,$ $\cdots$ .
By the first part of Proposition 3, (6), and the definition of $\psi,$ $\mathscr{G}(L\times$

$\{-1\},$ $(\tilde{x}, -1))$ [resp. $\ovalbox{\tt\small REJECT}(L\times\{1\},$ $(\tilde{x},$ $1))$ ] is trivial but $\mathscr{G}\ovalbox{\tt\small REJECT}(L\times\{-1\}$ ,
$(x\sim, -1))$ [resp. $\mathscr{G}\ovalbox{\tt\small REJECT}(L\times\{1\},$ $(x\sim,$ $1))$ ] is locally infinite by (1) and (6). Thus
$\ovalbox{\tt\small REJECT}_{L}^{\sim}(L, x\sim)$ [resp. $\ovalbox{\tt\small REJECT}_{L_{(x,1)}}^{\vee}(L_{(x,1)},$ $(x,$ $1))$] is trivial but $\mathscr{G}\ovalbox{\tt\small REJECT}_{L}\sim(L,\tilde{x})$ [resp.
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$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}_{L_{(x.1)}}\sim(L_{(x,1)}, (x, 1))]$ is locally infinite, that is $L$ [resp. $L_{(x,1)}$ ] is unstable
on $\tilde{L}$ [resp. $\tilde{L}_{(x,1)}$ ] by Theorem B. This completes our construction if $n=3$ .
And if $n\geqq 4$ , the foliated manifold $(S^{n-3}\times\Sigma_{3}\times S^{1}, S^{n-3}\times \mathscr{G}^{-}(\chi))$ and the
leaf $S^{n-3}\times L_{(x,i)}\in S^{n-3}\times \mathscr{G}^{-}(\chi)$ for $i=-1,1$ suffices. q.e. $d$ .

REMARK 1. Similarly, we can construct a $C^{1}$ (but not $C^{2}$) foliation of
$\Sigma_{2}\times S^{1}$ which has unstable semiproper exceptional leaves without holonomy
by using Denjoy’s $C^{1}$ (but not $C^{2}$) diffeomorphism $f_{D}$ (See A. Denjoy [3]
or P. A. Schweitzer [15, Appendix].) instead of by using Hector’s $C^{\infty}$

diffeomorphisms $f$ and $g$ , where $\Sigma_{2}$ is a compact orientable surface of
genus two.

REMARK 2. R. Sacksteder [13] had already constructed a $C^{\infty}$ foliation
with an exceptional minimal set when G. Hector [7] constructed such a
foliation. However Sacksteder’s semiproper exceptional leaves have
holonomy, so the Sacksteder foliation can not be used for our construc-
tion.

References

[1] J. CANTWELL and L. CONLON, Poincar\’e-Bendixson theory for leaves of codimension one,
Trans. Amer. Math. Soc., 265 (1981), 181-209.

[2] J. CANTWELL and L. CONLON, Reeb stability for noncompact leaves in foliated 3-manifolds,
Proc. Amer. Math. Soc., 83 (1981), 408-410.

[3] A. DENJOY, Sur les courbes d\’efinies par les \’equations diff\’erentielles \‘a la surface du tore,
J. Math. Pures Appl., 11 (1932), 338-375.

[4] P. R. DIPPOLITO, Codimension one foliations of closed manifolds, Ann. of Math., 1O7
(1978), 403-453.

[5] P. R. DIPPOLITO, Corrections to ”Codimension one foliations of closed manifolds”, Ann.
of Math., 11O (1979), 203.

[6] A. HAEFLIGER, Vari\’et\’es feuillet\’ees, Ann. Scuola Norm. Sup. Pisa, 16 (1962), 367-397.
[7] G. HECTOR, Quelques exemples de feuilletages–Esp\‘eces rares, Ann. Inst. Fourier (Gre-

noble), 26 (1976), 239-264.
[8] H. IMANISHI, On the theorem of Denjoy-Sacksteder for codimension one foliations without

holonomy, J. Math. Kyoto Univ., 14 (1974), 607-684.
[9] T. INABA, On stability of proper leaves of codimension one foliations, J. Math. Soc.

Japan, 29-4 (1977), 771-778.
[10] T. INABA, Stability of Proper Leaves of Codimension One Foliations (Japanese), Kyoto

Univ. Surikaiseki-Kenkyujo Kokyuroku, 286 (1977), 46-55.
[11] T. INABA, Reeb stability for noncompact leaves, Topology, 22 (1983), 105-118.
[12] G. REEB, Sur les Propri\’et\’es Topologiques des Vari\’et\’es Feuillet\’ees, Act. Sci. et Ind. 1183,

Hermann, Paris, 1952.
[13] R. SACKSTEDER, On the existence of exceptional leaves in foliations of codimension one,

Ann. Inst. Fourier (Grenoble), 14 (1964), 221-226.
[14] R. SACKSTEDER and A. J. Schwartz, Limit sets of foliations, Ann. Inst. Fourier (Gre-

noble), 15 (1965), 201-214.



108 AKIRA SEITOH

[15] P. A. SCHWmTZER, Counterexamples to the Seifert conjecture and opening closed leaves
of foliations, Ann. of Math., 100 (1971), 3&4w.

[16] J. W. WOOD, Bundles with totally disconnected structure group, Comment. Math. Helv.,
46 (1971), 257-273.

Present address:
DEPARTMFNT $oP$ MATHEMATICS
GAKUSHUIN UNIVERSITY
MEnRO, TOSHiA-KU, TOKYO, 171


