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Introduction

A leaf of a codimension one foliation of a closed manifold is called
stable if it has a saturated tubular neighborhood foliated as a product.
About 1950, G. Reeb [12] (See also A. Haefliger [6].) showed that a
compact leaf is stable if and only if it has a trivial holonomy group.
It seems reasonable to conjecture that a proper leaf with a finitely
generated fundamental group will be stable if it has a trivial holonomy
group. (Note that the fundamental groups of compact leaves are al-
ways finitely generated and see also T. Inaba [11].) In fact, in 1976, T.
Inaba [9], [10] extended Reeb’s original theorem for proper leaves with
finitely generated fundamental groups of codimension one foliations of
closed three-manifolds. But this result is false if the fundamental groups
of the leaves are not finitely generated. (See H. Imanishi [8].) In this
paper, we extend Inaba’s result for semiproper leaves and show that this
extension is also false for leaves with infinitely generated fundamental
groups by constructing a counterexample explicitly.

Section 1 gives basic definitions and fundamental propertles of
holonomy. Section 2 shows that Inaba’s result is valid for semiproper
leaves as well. Section 3 summarizes the result of G. Hector [7] for use
in Section 4. Section 4 is devoted to constructing an example of unstable
semiproper exceptional leaves without holonomy.

I would like to express my gratitude to T. Inaba for his valuable
advice and hearty encouragement during the preparation of this paper.

§1. Introduction to the techniques.

~ First of all we recall some definitions and basic notions. Throughout
this paper, .# will denote a transversely orientable C"(0=7r=<c) codi-
mension one foliation with C~ leaves of a closed manifold M and & will
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denote a fixed one-dimensional C~ foliation transverse to &#. (Such a
transverse foliation & always exists if »=1, while if »=0 we will only
treat the case in which such an & exists, say, the case in which every
leaf of & is integral to a C° hyperplane field.)

A leaf L of . can be locally demse (i.e. int L = @), proper (locally
closed, hence a regular submanifold of M), or exceptional (all other cases).
An F-saturated set is a subset of M which is a union of leaves of ..
The .F#-saturation of a subset X of M is the smallest . #-saturated
set containing X and is denoted by sat., X. An injective immersion
f:(M, & )—>(M', ') of afoliated manifold (M, &) into another foliated
manifold (M’, &) is foliation-preserving if f maps each leaf of .& onto
a leaf of &'.

DEFINITION 1. (See T. Inaba [11].) A proper leaf L of .&# is stable
if there exist an open .#-saturated neighborhood U of L in M and a
foliation-preserving diffeomorphism

Pp: (LX]—ly 1[, {LX {t}}te]-—l,l[)_’(U’ ‘?lU)
such that @o(Lx{0})=L. Otherwise, L is called unstable.

Sides of leaves of .# are the leaves of ¢*.&#, where ¢q: Bf — M is the
unit tangent bundle to &~ A side I of a leaf L=q(L) of & is proper
if a transversal 7: [0, 1]— M starting from L in the direction I satisfies
7(J0, DN L= for some €>0. A leaf of & is semiproper if it has a
proper side. Note that semiproper leaves are always nowhere dense.

DEFINITION 1'. A semiproper leaf L with a proper side [ of & is
stable on L if there exists a foliation-preserving injective immersion

P (LX [0, 1[, {L X{t}}te[o,lt)——’(Mo '-7&'7—)

such that @(x, 0)=2 and do, (3/3t) points in the direction I for all x €
L. Otherwise, L is called unstable on L.

For all xre M, we let L, and T, denote the leaves of & and &~
which contain z respectively. Let L be a leaf of . and i: ([0, 1], {0, 1)) —
(L, x) a loop in L at x € L. By the standard argument for the foliated
structures, we can construct a fence F' at x such that the following
conditions are satisfied:

(1) F:[0,1]x V- M is a continuous map, where V is a neighborhood
of 0 in R.

(2) F(,0=1:]0,1]— L .
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(3) F'(t, 8) € Lpy,oN Try for all (¢ 8)¢c [0,1]x V.
(4) F@O, -):V—sM isacCr embedding .

Similarly, we can define a Jence F at x on a side I of L. In this situa-
tion, we require that V is a neighborhood of 0 in [0, o[ and dF, ., (0/0s)
points in the direction L for all ¢e [0, 1].

For each fence F at w, the local diffeomorphism

Tr: F{O} X V)— F({1} x V)
w w

FO,s) — F(1,s)

at « is defined. The pseudogroup of all 7r's is called the holonomy
pseudogroup of L at x and is denoted by P (L, x). The set of germs
of elements of SZA(L, x) (called holonomies) forms a group called the
holonomy group of L at x and is denoted by 2#(L, x). The isomorphism
class of S#(L,x) is independent of the choice of the base point z,
therefore we will sometimes omit it. The well-defined map

V:n(L, x)—> 57 (L, x)
w w
[F(-, 0)]——the germ of v, at x

is a surjective homomorphism called the holonomy homomorphism, where
F is a fence at « and [F(., 0)] is the homotopy class represented by
F(-,0). Similarly, by using fences at 2 on a side I, of L, the holonomy
pseudogroup S£%7; (L, x) of L at ¢ on I, and the holonomy group 57 (L, x)
at « on L are defined.

DEFINITION 2. (See T.Inaba [11] and R. Sacksteder and A.J. Schwartz
[13].) Let L be a leaf of &, xe L, L a side of L, and z: ([0, 11, 0)— (T, )
a transversal starting in the direction I. Then P (L, x) [resp.
SEPz(L, %)) is locally trivial if there exists a neighborhood N, of z in
T, [resp. z([0, 1]) N T,] such that the restriction to N, of every element
of SZF(L, x) [resp. 5273 (L, x)] is the identity. Otherwise, S22 (L, x)
[resp. S£F:(L, x)] is called locally infinite.

We let K denote the interval I=[—1, 1] or the circle S

DEFINITION 3. (See A. Haefliger [6, 1.8].) (& 5 )=(p, E, B, & ) is
called a foliated K-bundle over B if E is the total space of a K-bundle
§ over B, p: E— B is the bundle projection, and & is a codimension one
foliation of E such that each fiber of ¢ is transverse to .#-

Given a manifold B with base point « and a homomorphism
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@: 7,(B, x)—Diff” K, where Diff" K is the group of C diffeomorphisms of
K, m(B, x) acts on the universal covering space B of B by covering
transformations. It also acts on K via @, and on Bx K by acting on
each factor:

7B, x) X (Bx K)—> Bx K .
() QD
(@, (¥, t)Hr— Y- 0, P(@7*)({1))

A foliated K-bundle (¢; & )=(p, E, B; & (9)) is defined so that the total
space of & is a foliated manifold (B, & (9))=(Bx K, {Bx{t}}ex)/m(B, %)
and the bundle projection p: E=(Bx K)/n,(B, x)— B/r,(B, x)=B is the
natural map between orbit spaces. Conversely given a foliated K-bundle
(¢; F)=(p, E, B; &) and z¢€ B, leaves of & are covering spaces of B
and a loop I: ([0, 1], {0, 1})—(B, ) at x determines a diffeomorphism
7(0)—T(1) of the fiber at x, where T7:10, 11— L3, is the unique path with
initial point 7(0) which covers I. It is clear that this diffeomorphism
depends only on the homotopy class of | and this procedure gives a
homomorphism @: 7,(B, ) — Diffr K such that & =5 (). We call @ the
total holomomy homomorphism for (& &) and 927 ( % )=9(n,(B, x)) the
total holonomy group for (& &). The foliation &~ = % (@) has proper-
ties analogous to those of the orbit space of the action of 72 (% ) on
K:
I g7 (% )xK—K.

) w
(f, H—f(®)

Since we assumed in this paper that & is transversely orientable,
T2 () is a subgroup of the group Diff’K of orientation-preserving
Cr diffeomorphisms of K and ¢ is orientable. Especially, if K=1I,¢ is
trivial. If K=S', however, £ is not always trivial. (See J. W. Wood
[16, Theorem 1.1].) Such orientable S!-bundles are classified by their
Euler class X(2) e HXB; Z). Fortunately both foliated S'-bundles (9', E',
3, () and (p, E, Z; & (X)) over the compact orientable surface X,
of genus three which we will construct in Sections 8 and 4 are trivial
as S'-bundles by the following criterion:

PROPOSITION 1. Let (&; % )=(p, E, Z,; ) be a C" foliated (orientable)
St-bundle over a compact orientable surface X, of genus g=1 with base
point x and @: 7w (X, z) — Diff:.S* the total holomomy homomorphism for
(&; ). Then ¢ is trivial if @ factors through a free group F, on m
generators, that is, there exist two homomorphisms ~ and h such that
the following diagram commutes:
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ﬂl(zw x) '——h"_’ Fn

AN /
N Y
DiffrS* .

PrOOF. Let (7, £)=(q, X, BF,; ) be the foliated S'-bundle over
BF,=K(F,,1)=8'Vv--- V8" (n-times) for which 4 is the total holonomy
homomorphism. Take a map g¢: 2, =K(r,(%,, «),1)>BF,=K(F,, 1) such
that g,=h. (g is a classifying map for the principal F,-bundle over X,
determined by h.) Then g*p=¢. HYK(F,, 1); Z)=0, especially X(9)=0
and 7 is trivial. X(¢) e g*(H¥K(F',, 1); Z)CHX,; Z)=Z. Hence X(&)=0
and ¢ is trivial. q.e.d.

§2. Reeb stability for semiproper leaves.

Various authors have investigated stability for proper leaves of
codimension one foliations (e.g., G. Reeb [12], T. Inaba [9], [10], [11],
P. R. Dippolito [4], [5], J. Cantwell and L. Conlon [1], [2], ete.). Our
starting point is the following fundamental theorem:

THEOREM 1. (See G. Reeb [12] and A. Haefliger [6, p. 381]1.) Let L

be a compact leaf of F. Then L is stable if and only +f L has a
trivial holonomy group.

In 1976, T. Inaba succeeded in generalizing Theorem 1 for proper
leaves of codimension one foliations of closed manifolds as follows:

THEOREM 2. (See T. Inaba [9], [10].) Suppose that M is a closed three-
manifold and let L be a proper leaf of 57 such that the Jundamental
group of L is finitely generated. Then L is stable if and only if L has
a trivial holonomy group.

Theorem 2 is a direct corollary of following two theorems. (See T.
Inaba [9], [10].)

THEOREM 3. Let L be a proper leaf of #. Then L is stable if and
only if L has a locally trivial holonomy pseudogroup.

THEOREM 4. Let M be a compact three-manifold (possibly with
boundary) and L a leaf of & such that the Sundamental group of L is
Sfinitely generated. 5 is supposed to be tangent to oM wWf oM+~ 3. Then

L has a trivial holonomy group if and only i+f L has a locally trivial
holonomy pseudogroup.
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We generarize Theorem 2 as follows:

THEOREM A. Suppose that M is a closed three-manifold and let L
be a semiproper leaf of Z with a proper side L such that the funda-
mental group of L is finitely generated. Then L is stable on L if and
only if the holonomy group of L on L is trivial.

Theorem A is a direct consequence from Theorem 4 and the following
“proper-side-version” of Theorem 3.

THEOREM B. Let L bg a semiproper leaf of F with a proper side
L. Th~en L i8 stable on L if and only if the holonomy pseudogroup of
L on L 1is locally trivial.

PrRoOF. For each point x of L, let z*: ([0, 1], 0)— (T, ) be a trans-
versal starting in the direction  and U a component of M\L containing
7%(]0, &) for some €>0. On the completion U of U in the metric induced
from a Riemannian metric of M, the pullback ©* 5 ‘has a boundary leaf
LocaU containing the limit of z%(¢) as ¢\,0, where z U—M is the iso-
metric immersion induced from the inclusion map : U =M. (See P. R.
Dippolito [4].) L, covers L and is diffeomorphic to L:

~ ~

L — L, .
(O] ()]
dzi(d/de)/l|dzi(@/dt)|| — lim *(¢)

Therefore the local triviality of S#£7°z(L, x) is equivalent to the local
triviality of S£Z(L,, x,), Where x,=lim,,7*(t) in U. Consequently, the
proof of Theorem 3 (See T. Inaba [9].) is also valid for Theorem B, via
the induced isometric immersion 7. q.e.d.

However there are counterexamples to Theorems 2 and A if the
assumption that L has a finitely generated fundamental group is got rid
of. The example of H. Imanishi [8, p. 622] is the one to Theorem 2.
We will construct a counterexample to Theorem A without that assump-
tion in Section 4.

On the other hand, it seems quite natural to conjecture that Theorems
2 and A can be extended for closed manifolds of dimension greater than
three. (According to T. Inaba [11], we call this conjecture the “gen-
eralized Reeb stability conjecture” or abbreviately the “GRS conjecture”.)
But in 1980, T. Inaba [11] has constructed a C° foliation of a closed
manifold of dimension five or greater than five with an unstable proper
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leaf which has a finitely generated fundamental group and a trivial
holonomy group. This Inaba foliation is a counterexample to the GRS
conjecture for C° foliations of closed manifolds of dimension=5. The
GRS conjecture for C! foliations or for closed four-manifolds remains an
interesting but difficult open question.

§3. Hector’s C diffeomorphisms of S-.

Let G be a subgroup of Diff?S*. A subset C of S! is called a minimal
set of G if C is a nonempty closed subset invariant under G which has
no proper subsets with such properties. A minimal set C of G is excep-
tional if C is neither a single closed orbit nor all of S

In this section, we recall the construction of orientation-preserving
C~ diffeomorphisms f and g of S* in G. Hector [7] such that the group
G’ generated by f and g admits an exceptional minimal set C'.

We consider S* as the circle obtained from the interval [—2, 14] by
identifying its endpoints. At first, we define f by

f@#)=t+4 mod 16 for all te[-—2, 14].

.14
(
12}, y
11

_3 01 4 7 9 1,0/1‘1<12‘ 14
—92 ' f

FIGURE 1. Graphs of f and ¢
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Next define g so that

(1) suppg={t e S*; g(t)=t}=[1, 11] ,
(2) the graph of g is symmetric with respect to the line s=—¢t+12,

git)<t for all tell, 11[,
(3) git)=t+4 for all te[7,9],
gt)<1 for all tell, 7[,

(4) g¢g(4)=2 and the graph of ¢|[1, 7] is symmetric with respect to the
point (4, 2).* '

Finally define the set C' by C'=8\U,c; s (t), where I's: G xS'— 8" is
the action of G’ on S!, I';.(t) is the orbit of £t S' under Iy, and I=
[_1’ 1]'

The following is essential to our construction in Section 4.

PrOPOSITION 2. (See G. Hector [7].) [¢ 8 trivial on I and C’ is an
exceptional minimal set of G'.

Proor. See G. Hector [T7].

Let X, be a compact orientable surface of genus three with base
point x. The fundamental group of 3; based at x is presented as follows:

3
T(Zs, x)=<a;, B: (1=1, 2, 3)| g[aiy Bil=e) .
We define a homomorphism
X' (¥, x)— Diff3S*

as X'(B)=1, X'(B,)=g, and X'(GBs)=X'(a;)=id for +=1,2,8. This provides
a C> foliated S'-bundle (¢'; & )=(p’, E’, 2;; & (X')) for which X’ is the
total holonomy homomorphism. Since X' factors through a free group
F, on two generators, & is trivial by Proposition 1 and p": 3;xS'— 2,
is the projection to the first factor.

Since each teI'g(—1)UTIs(1) is an endpoint of a gap of the excep-
tional minimal set ¢’ of G’, the following is a direct corollary of Pro-
position 2.

PROPOSITION 3. & (X')|sat.({x} xI) is trivial. Both leaves Li,, _,

* In G. Hector [7, p. 252], a confusion prevails, that is, the condition (4) we required
above is used without request.
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and L, ., of F (X') are semiproper exceptional leaves. The positive side
"o OF L, _,, and the megative side L', of L, are proper sides.

REMARK. Especially, L, , is stable on L, for i=—1, 1.

For making short, we let ¥ and L denote (x, —1) and L{, _, respec-
tively. The definition of X’ shows:

PROPOSITION 4. There exists a C* injective immersion
@: LxI—> 3, xS!

such that the following properties are satisfied:
(1) P(Lx I)=sat o »n({x} xI),
(2) @ @XL ALX{Bheer, (W} X Dyer) — (T xS, @), (B} X Shez)
18 foliation-preserving,
(3) P&, t)=(x,t) for all tel,
(4) @(-, —1): L=—3;%x S* i8 the inclusion map.

§4. Unstable semiproper exceptional leaves without holonomy.

In this section, we prove the following theorem, which is the main
result of this paper.

THEOREM C. There exist a closed C= manifold M of dimension n=3
and a C* codimension one foliation ZF of M such that & has a semi-
proper exceptional leaf L with a proper side L satisfying the following
properties:

(1) (L) i8 mot finitely generated,
(2) (L) 18 trivial,
(3) SFPr(L) is locally infinite (hence L is unstable on L.

PROOF. The proof is performed by constructing an example explicitly.

Our first job is to choose an orientation-preserving C* diffeomorphism
h of S:. Again we regard S' as the interval [—2, 14] with its endpoints
identified. f and g are the same as those in Section 3. We start with
a sequence {a@,},-o ... such that

(1) 0<a, 1.
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Next define two sequences {b,},-,.... and {¢,}.—.....:

b.={9"f(a,)—9"f(—a,)}/2a ,
¢.={9"f(a,)+9"f(—a,)}/2b, ,

where 0<a<1. Then
(2) 0<b,—0.
Choose a C~ function A: R— R such that

(3) {tGR; >\.(t)=#0}=[-—a, a];
(4) max{|\'(#)|; t € R}<1/max{b,"; n e Z*},
(5) A is C~ tangent to the zero function at —a and a.

Next define p¢,: R— R for n=0,1, -..:

L. (&)=t—0b,"\(t/b,—¢c,) for all teR.

Then

[

...........

(S0 ] R e g,

Pt
~

af (—{) 9f(

Fieure 2. Graph of b
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(6) supp ,={t € R; p,(t) #t}=[g"f(—a,), 9" f(a,)] cintI,,
where I,=[g"f(~-1), g"f(1)],
(7) w.#)>0 for all teR.

Finally define an orientation-preserving homeomorphism % of S! by
¢, on I, for »=0,1,..-,

h= oo
id on S\UI,.
n=0
By (2), h is C~ tangent to the identity at 1. This completes the defini-
tion of k. Thus ke Diff>S".

We let G denote the subgroup of Diff? S* generated by f,gand h, I’y
the action of G on 8!, I'y(t) the orbit of ¢t S' under I'y and C the set
S\U:e: I's(t). Let G’ and C’ be as in Section 3.

PROPOSITION 5. C=C’ and C is an exceptional minimal set of G.

PrOOF. This follows from Proposition 2 and the definition of &.
We define a homomorphism
X: (%, x)— Diffr St

as XB)=1, X(B,)=g, X(Bs)=h, X(a,)=id for 1=1, 2,3. This provides a C*
foliated S'-bundle (& #)=(p, E, 3,;; & (X)) for which X is the total
holonomy homomorphism. Since X factors through a free group F, on
three generators, ¢ is trivial by Proposition 1 and p: E=3,x8" -2, is
the projection to the first factor. Let X', & (X'), e, for 1=—1 1, ete.
be as in Section 3. Each tel's(—1)UI'4(1) is an endpoint of a gap of
the exceptional minimal set C of G. So the following is a direct conse-
quence from Proposition 5.

PROPOSITION 6. sat, ., ({x} x I) coincides with sat s an{{x} X I), especially
L., € & (X) coincides with L, , e 5 X') for i=—1,1. Both leaves L, _y
and L, are semiproper exceptional leaves. The positive side /I:(,,,,d, of
L, _, and the negative side E(,,,l) of L. are proper sides.

Choose two simple loops % and »: ([0, 1], {0, 1}) — (Z,, #) which represent
@, and B, respectively so that w([0, 1))Nv([0, 1)={x}. For n=0,1, ---,
we can lift » [resp. ] to ¥,xS! so that the unique lift %, fresp. #,]
with initial point (», g"f(—1)) is a loop in L and #,([0, 1])=u([0, 1]) X
{g"F(=1)} [resp. 7,([0, 1) =v([0, 1]) X {9"f(—1)}] because g"f(—1) is a fixed
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point of id=X(w,) [resp. h=X(Bs)]. These #%,’s [resp. ¥,’s] are pairwise
disjoint countably many embedded loops on account of the “unique-lifting
property” for p. Since

_ _ _({g"f(=1} for n=m,
#.([0, 1) N Ta([O, 1])—{ 5 for neLm

by the choice of u and v, L\UZ,7,([0, 1]) is connected. Hence L has
countably many handles so that x,(L, %) is not finitely generated.

Let 927 (% (1), be the isotropy group of ¢teS' in T2 (F (X))
and H={7 e (3, x); X(M)(—1)=—-1}=A"(T#(F X))-).- Then H is a
subgroup of 7,(3,, x) and is obviously isomorphic to z,(L, %):

(pop)y: (L, %) = H,
where @: LxI—3,xS"' is the C* injective immersion in Proposition 4.

rL, % —— H 2E DiffsI
S"gl N
T (T X S, &) —p—-> (25, ) - Diffs St
]

H is also isomorphic to =, (L., (x, 1)) because 737 (F (X)..=
T2 (F (X)), by the definition of X. Moreover a C- diffeomorphism
k: (L, &) — (L0, (¢, 1)) is defined as follows: For each (y,?)e L, k(y, t) is
the point at which the path on the fiber p~'(y)={y}xS* starting from
(y,t) in the positive direction L meets L., at the first time. Note
that p|L=(p|L.,v)k.

Let q: L x I— L is the projection to the first factor. Then (%; & (¥))=
(g, LxI, L; p* 5 (X)) is a C= foliated I-bundle for which y=X|H)opsopy:
7 (L, ) —Diff? I is the total holonomy homomorphism, where @,: (L, %) —
(2, X S, &) and py: 7, (33 X S?, &) — w,(2,, ) are the homomorphisms induced
from @ and p respectively.

Hence stability of L [resp. L,.,] on L [resp. L,,] in & (X) is
equivalent to stability of Lx{—1} [resp. L x {1}] in & (4). Let zt,=
(o" FID (L) g" fII) e DiffT I. By (6),

(6) supp Z,=[—a,, a,]JcintI for n=0,1,---.

By the first part of Proposition 3, (6), and the definition of 4, SZ(L X
{—1}, @, —1)) [resp. £ (Lx{l}, & 1))] is trivial but 2P (Lx{-1},
(&, —1)) [resp. S£A (L x {1}, (&, 1))] is locally infinite by (1) and (6). Thus
575 (L, ¥) [resp. 7%, (Lwy, (@, 1))] is trivial but sS#Fz(L, &) [resp.
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Pz oy Liiarny (@, 1))] is locally infinite, that is L [resp. L,,,,] is unstable
on L [resp. L, ] by Theorem B. This completes our construction if %»=3.
And if n=4, the foliated manifold (S"*xJ3,x 8", S"3*x & (X)) and the
leaf S"*x L, ,eS"*x & (X) for i=—1, 1 suffices. q.e.d.

REMARK 1. Similarly, we can construct a C* (but not C? foliation of
2, X 8" which has unstable semiproper exceptional leaves without holonomy
by using Denjoy’s C* (but not C?) diffeomorphism f, (See A. Denjoy [3]
or P. A. Schweitzer [15, Appendix].) instead of by using Hector’s C~

diffeomorphisms f and g, where X, is a compact orientable surface of
genus two.

REMARK 2. R. Sacksteder [13] had already constructed a C~ foliation
with an exceptional minimal set when G. Hector [7] constructed such a
foliation. However Sacksteder’s semiproper exceptional leaves have

holonomy, so the Sacksteder foliation can not be used for our construc-
tion.
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