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Introduction

In [2] Lickorish produced many prime knots and links in S® by using
prime tangles. In this paper we give the analogue for simple knots and
links.

We work in the piecewise linear category and refer to [2] for the
definitions of tangles, prime tangles and so on. Tangles, in the paper,
are always 2-string. We say a tangle (B, t) is simple if (B, t) is a prime
tangle and B—t contains no incompressible embedded torus. Let F be
a submanifold of a manifold M. We denote by N(F, M) a regular
neighborhood of F in M. Let L be a link in S® Then E(L)=8%—
int N(L, S°) is called the exterior of L in S®. We say a link L in S° is
simple if L is non-splittable and every incompressible torus embedded
in E(L) is isotopic to a boundary component. A simple link is prime;
the converse is not true.

In §1 we show that a sum of two simple tangles is a simple link
(Theorem 1). In §2 we show that six of seven prime tangles given by
Lickorish [2, Figure 2] are simple and a partial sum of two simple tangles
is also a simple tangle (Theorem 2). In §8 we show that a link in S®
is concordant to a simple link with the same Alexander invariant (Theo-
rem 3). (Compare the last result with those of R. Myers [4] and Y.
Nakanishi [5], also S. Bleiler [1].)

I am grateful to Yasutaka Nakanishi for his several improvements
of my original proofs.

§1. Sums of simple tangles.

First we prove the following two lemmas. Let X be a finite set.
We denote by #(X) the number of elements of X.

LEMMA 1. Let (A,t) be a prime tangle and T an incompressible
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torus embedded in A—t. Let D be a compressible disk for T in A such
that D is transverse to t. Then we have $(DNt)=2.

PrROOF. Since T is incompressible in A—t, we have $(DNt)=1. We
suppose that #(DNt)=1. Let S be a 2-sphere in A obtained by doing
surgery on T along D and B a 8-ball in A bounded by S. Since (4, ?)
is prime, BNt is an unknotted arc in B. Hence V=(B—N(BNt, B)) is a
solid torus in A—¢t. We may assume that dV=T. Therefore T is
compressible in V (hence in A—t), a contradiction. This completes the
proof. O

Let X be a topological space. We denote by |X| the number of
connected components of X. Let F be a properly embedded, compact,
2-sided n-submanifold of compact (n-+1)-manifold M. Then we denote
by M, the compact (n+1)-manifold obtained by splitting M along F.

LEMMA 2. Let (B, t) be a simple tangle, (C, w) a prime tangle and
h: (3C, du)— (0B, t) a homeomorphism. We set (S°, L)=(B, t)U.(C, w).
Let T be an incompressible, non-boundary-parallel torus in E(L). Then
T i8 isotopic in S*—L to a torus contained in C—u.

PROOF. We set FF=0B—0t=0C—ou. Since F is incompressible in
both B—t and C—u, so is it in S*—L. After adjusting by an isotopy,
we may assume that T is transverse to F' and chosen to minimize
|FNT|. Since S*—L is irreducible and both F' and T are incompressible
in S*—L, each component of F'NT is essential (i.e., not null-homotopic)
in both F and 7. We suppose that |FNT|#0. Then Ty, consists of
n(=2) annuli A,, ---, A,. We may assume that A,cB—¢. Then 0B,
consists of two disks D,, D, and an annulus E. Since 04, is essential
in F, we have D,Nt# Q.

First we show that Ent=@. If ENnt+®, we have #(ENt)=1.
Since $(0BNt)=4, either #(D,Nt)=1or #D,Nt)=1. We may assume that
#(D,Nt)=1. Let I, be an inner most loop of FNTND, in D,. Hence [,
bounds a disk D) in D, such that #D;Nt)=1 and DN T=I,. Then it is
easy to show that L is a composite link (see [6, §14, Satz 1] when L
is a knot). This contradicts that L is prime (see [2, Theorem 1]).
Therefore we have ENt=g. Hence T,=EUA, is a torus embedded in
B—t. Then T, bounds a compact 3-manifold G in B—t. Since (B, t) is
simple, 7T, is compressible in B—¢. Let D, be a compressing disk for T in
B—t. Then T, bounds a solid torus V in S® with a meridian disk D,.

We suppose that V=G. Since dD, and 4D, are meridians of a solid
torus S*—int G, we may assume that 6D,NoD, (for i=1, 2) is a single
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point, that is, oD, 0D, are ‘longitudes’ of V. - Hence A, is isotopic to K
rel 64, in V. Therefore we can modify T in a small neighborhood of V'
in S*—L to contradict our minimality assumption ‘ '
Hence we have V=8*—int G. Since D,, D, are meridian disks of
V, 4D, is homotopic to 8D, in T, so is it in S*—L. Since D,N L=, oD,
is contractible in S*— 1. Therefore T is compressible in S*—L, a con-
tradiction. Hence we have FN T= . Since (B, t) is simple, T is contained
in C—u. This completes the proof. ]

The following theorem is straightforward from Lemma 2.

THEOREM 1. Let (A, t) and (B, u) be simple tangles and h: (0A, ot)—
(0B, 0u) a homeomorphism. We set (8% L)=(A, t)Uu(B, w). Then L is
a simple link in S

§2. Examples of simple tangles.

In this section, we give some examples of simple tangles. Let ¢
be a simplicial 1-subcomplex of a 8-ball B. Then we say C.=B—oBUT
is the open complement of ¢ in B.

We prove the following lemma which we use to prove Theorem 8
in §3.

LEMMA 3. A tangle (B, t,Ut,) of Figure 1 is simple.

/ D s \
t %

1

FIGURE 1

PrROOF. First we note that (B, t,Ut,) is prime (see [1, Lemma 2.1]).
Let C be the open complement of t,Ut, in B. Let D be a 2-disk in B
shown in Figure 1 such that Dn t,=t,, DN, consists of two points p,, p,
and 0D=t,U(DNJB). We set F=D—{p, p,}.

We show that F'is incompressible in C. If not, there is a compressing
disk A, for F' in C. Obviously 0A, bounds a 2-disk A, in D such that
A, Nt={p, »,}. Then N=N(DUA,—int A,, B—t,) is a 8-ball in B such
that ¢, CN and {,NN=@. Hence GN—aNN 0B) is a 2-disk in B which
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separates ¢, and #,. This contradicts that (B, ¢,Ut,) is prime.

Next we show that C—DNC is homotopy equivalent to S'VvS'VvS.
It is easily checked that C—DNC is homeomorphic to the open comple-
ments C,, C., of l-subcomplexies z,, 7, in B shown in Figure 2. And

obviously C., is homotopy equivalent to StvStv St

onees| B g

Now we suppose that there exists an incompressible torus T in C.
After adjusting by an isotopy, we may assume that T is transverse to
F and chosen to minimize |FFNT|. Then each component of FNT is
essential in both F and T.

If |FNT|=0, then T is contained in C—DNC. Since T is incom-
pressible in C, so is it in C—DNC. Hence the homomorphism 7, T~ Z X Z—
7,(C—DNC)~Z*xZ+Z induced by the inclusion is injective. This con-
tradicts that any non-trivial subgroup of a free group is also free (see
[3, p. 95, Corollary 2.9]). Therefore we have |F'N T'|+=0.

Let I be an inner most loop of FNT in D. By Lemma 1, [ bounds
a disk D, in D such that D,N¢t,={p,, p,}. Hence all components of FNT
are mutually parallel in F. Note that T,, consists of n(=2) annuli.
Let 1, be a loop shown in Figure 8. Since H,(B; Z)=0, we have [I,]-[T]=

T
r\/d »%swnr

oY

FIGURE 3

FIGURE 2

0. Therefore there is a component A of Tr,r such that A bounds an
annulus E in F and such that, after adjusting by an isotopy in C, one can
assume that torus 7,=AUFE has no intersection with D and bounds a
compact 3-manifold G in C—DNC (see Figure 4(a)). By the argument
above, T, is compressible in C—DNC. Similarly in Lemma 2, modifying
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T by an isotopy in a small neighborhood of G, we can reduce the number
[F'NT| (see Figure 4(b)). This contradicts our minimality assumption.
Hence (B, t,Ut,) must be simple. This completes the proof. ]

Cross sections

FIGURE 5
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Lickorish [2, § 2] showed that seven tangles of Figure 5 are prime.

" Let (4, t) be a tangle and D, a 2-disk shown in (i). Then A—¢,UD,

is homotopy equivalent to S'\VVS'. The argument similar to that in Lemma
3 shows that (A4, t,) is simple.

Let (4, t,) be a tangle shown in (ii). Since there exists an incom-
pressible torus T in A—¢,, tangle (ii) is not simple.

Let (4, t;) be a tangle and D; a 2-disk, where j=38,4,50r 7. Since
A—t;UD; is homotopy equivalent to S'VS'VS', (4, t;) is simple.

Let (A, t,) be a tangle and D, a 2-disk shown in (vi). Then A—¢,U
D,UdA is homeomorphic to the open complement C, of tangle (i). Hence
tangle (vi) is simple.

Every example (4, t) which we have given has a property that at
least one component of ¢ is unknotted in A. The following theorem
makes us possible to construct an example of a tangle (4, ¢) such that
each component of ¢ is knotted in A.

THEOREM 2. Let (C,v) be a tangle and D a 2-disk properly embedded
in C that separates (C, v) into two tangles (A,t) and (B, w). If (A,t) is
simple or untangle, (B, ) i8 simple and D—vND 1is incompressible in
A—t, then (C, v) i3 simple.

PrOOF. The argument similar to that of [2, Theorem 2] implies that
(C, v) is prime. Since D—vND is incompressible in C—wv, one can prove
that (C, v) is simple as Lemmas 2 and 3 above. O

By Theorem 2, a tangle (C, v) of Figure 6 is simple and each com-
ponent of v is knotted in C.

——

)

FIGURE 6

§3. Simple links and Alexander invariants.

In this section we prove the following theorem.
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THEOREM 3. A link in S® is concordant to a simple link with the
same Alexander invariant.

PROOF. Let L be a link in S°. By Nakanishi [5, p. 567, Theorem],
we may assume that L is prime. Let -~ ¢S® be a point such that
o NL=@, and let «'e S’ Let m: S8*~o00—8%— o’ be a projection such
that n/L is an embedding up to finite double crossing points p,, ---, p,
in §*—co’ (i.e., 7w is a regular projection). Moreover we suppose that
 satisfies the following properties.

(i) For each crossing point p,, there is a 3-ball B, in S*— o such
that (B, B,nL) is a (2-string) trivial tangle and B,NB;,=@ for 1, j,
1% 7.

(ii) D,==n(B;) is a regular neighborhood of p, in S*— «’ such that
D,NnD;=g for 4, j, 1+3j, and wn(L)N D, consists of two proper ares in
D, which intersect each other in one point p,.

(ili) Of all projections which have the properties (i), (ii), # has the
minimal number of the crossing point of x/L.

We set M=S*—int(B,U---UB,) and F=8*—int(D,U---UD,). Let
1: F'—M be the natural inclusion such that i(c’)=c and i(x(L)N F)=
LNM. We identify F' and i(F'). We set E,=B,—LNB, and G,=D,—
n(L)ND,. Hence 0E,=3B,—{four points} and 6G,=oD,—{four points}.

(8.1) Let I be a simple loop in F' such that [ meets (L) transversely
in two points. Since L is prime, the property (iii) of = implies that 1
bounds a 2-disk D in S? such that DN (D,U---UD,) =, i.e., DCF. Then,
obviously, DN=(L) is an are. ‘

(8.2) Similarly, for any proper arc a in F—=n(L)NF such that
daC0G,, there is an arc «,C0G,; such that da,=da and a loop a,Ua
bounds a 2-disk in F—=n(L)N F. :

First we show that 4, is incompressible in M—LN M. If not, there
is a compressible disk D for o0FE, in M—LNM. Then 6D bounds two 2-
disks A,, A, in 0B, such that A,NA,=dD and #A,NL)=#A,NL)=2. We
may assume that D is transverse to F' and has the minimal |DNF| of
all 2-disks which are properly isotopic to D in M—LNM. Now we sup-
pose that | DN F'|#0. Then DN F consists of proper ares in F—a(L)NF
whose boundaries are contamed in 8G;. By (3.2), for each component
of DN F, there is an arc in 8G, such that the union of these two arcs
is a loop which bounds a 2-disk in F—z(L)NF. Let D, be inner most
one of such 2-disks. Then D,N D is a proper arc in D. By doing surgery
on D along D, we obtain two 2-disks D,, D, such that D,c M—LNM and
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0D;CoE, for j=1,2. We may assume that A, DadD,UdoD, that is, an arc
D,N 0B, separates A, into two 2-disks A, A,;, such that 0A,;,=0dD,, dA,=
0D,. Since #(A,;NL)+#1, we may assume that $(A,NL)=0 and §(A.,NL)=
2. Since M—LNM is irreducible, 2-sphere D,UA,, bounds a 3-ball B in
M—LNM. Then one can modify D by a proper isotopy in a small
neighborhood of B to contradict our minimality assumption. Therefore
we have |DN F|=0. Then 0D is contained in 0E,—0E,NF (= two open
hemispheres). Hence 6D bounds a 2-disk in o0E,—oE,NFcCoKE, This
contradicts that D is a compressing disk for 6E,. Therefore oE, must
be incompressible in M—L N M.

Let L, be a link obtained from (S° L) by removing trivial tangles
(B, B.NL) and sewing back new tangles (B, t,) which are » copies of
the tangle of Figure 1. By [5, Lemma 3], L is concordant to L, and
they have the same Alexander invariant. Since, for each %, dF, is in-
compressible in both B,—t, and M—LNM, so is it in S*—L,.

ASSERTION 1. L, i8 prime.

PrOOF. Let S be a 2-sphere in S® such that S meets L, transversely
in two points. We may assume that S is transverse to |J?-,0F,; and has
the minimal | SN (UL, oF,)| of all 2-spheres S’ in S°® such that (S', S'N L,)
is isotopic to (S, SNL, in (S% L,). Since both 6K, and S—L,NS are
incompressible in S®*—L,, each component of SN (U?-,0F,) is essential in
both 0E; and S—L,NS.

If |SN (Ui, E)|+#0, then there is an inner most loop ! of SN (Ui, 0E))
in 8. Then ! bounds a 2-disk D in S such that DN (Ur,oE)=1 and
DN L, is a single point. We may assume that [CdE,. By the primeness
of (B, t,) and the minimality of |SN(U?.0E,)|, we have DcM. If !
bounds a 2-disk D, in 4B, such that #(D,NL,)=2, 2-sphere S,=DUD,
meets L, transversely in three points. This contradicts that S, separates
S® into two 3-balls. Hence ! bounds a 2-disk D, in 0B, such that
$(D,NL,)=1. We set S,=DUD, Then we may assume that S,NF is
a simple loop I, such that #(,NL,)=2. By (8.1), I, bounds a 2-disk D
in F such that D,NL, is an arc. Then S, bounds a 3-ball B in M such
that (D,, 0D,)c(B, dB). Then one can modify (S, SNL, by an isotopy in
a small neighborhood of (B, BN L, to contradict our minimality assump-
tion. Hence we have |SN(U:-,0F)|=0, i.e., either SCcM or ScB, for
some i. By (8.1) and the primeness of (B, t,), S bounds a 3-ball Bin S*
such that BN L, is an unknotted arc in B. Therefore L, is prime. []

ASSERTION 2. L, 18 simple.
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ProoF. We suppose that there exists an incompressible torus T in
int B(L,) which is not boundary-parallel in E(L,. Since L, is prime and
(B, t.) is simple (Lemma 3), after modifying T by an isotopy in S*—L,,
we may assume TCM—L,N M by the argument similar to that in Lemma
2. Since m,(M—L,NM) is a free group, T is compressible in M—L,N M,
so is in S°*~L,, a contradiction. Hence L, is simple. This completes the
proof of Theorem 3. O
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