Токуо Ј. Матн. Vol. 6, No. 1, 1983

Simple Links and Tangles

Teruhiko SOMA

Waseda University

Introduction

In [2] Lickorish produced many prime knots and links in S^{*} by using prime tangles. In this paper we give the analogue for simple knots and links.

We work in the piecewise linear category and refer to [2] for the definitions of tangles, prime tangles and so on. Tangles, in the paper, are always 2-string. We say a tangle (B, t) is simple if (B, t) is a prime tangle and B-t contains no incompressible embedded torus. Let F be a submanifold of a manifold M. We denote by N(F, M) a regular neighborhood of F in M. Let L be a link in S^3 . Then $E(L)=S^3-$ int $N(L, S^3)$ is called the *exterior* of L in S^3 . We say a link L in S^3 is simple if L is non-splittable and every incompressible torus embedded in E(L) is isotopic to a boundary component. A simple link is prime; the converse is not true.

In §1 we show that a sum of two simple tangles is a simple link (Theorem 1). In §2 we show that six of seven prime tangles given by Lickorish [2, Figure 2] are simple and a partial sum of two simple tangles is also a simple tangle (Theorem 2). In §3 we show that a link in S^3 is concordant to a simple link with the same Alexander invariant (Theorem 3). (Compare the last result with those of R. Myers [4] and Y. Nakanishi [5], also S. Bleiler [1].)

I am grateful to Yasutaka Nakanishi for his several improvements of my original proofs.

§1. Sums of simple tangles.

First we prove the following two lemmas. Let X be a finite set. We denote by #(X) the number of elements of X.

LEMMA 1. Let (A, t) be a prime tangle and T an incompressible Received April 12, 1982

torus embedded in A-t. Let D be a compressible disk for T in A such that D is transverse to t. Then we have $\#(D \cap t) \ge 2$.

PROOF. Since T is incompressible in A-t, we have $\#(D \cap t) \ge 1$. We suppose that $\#(D \cap t)=1$. Let S be a 2-sphere in A obtained by doing surgery on T along D and B a 3-ball in A bounded by S. Since (A, t) is prime, $B \cap t$ is an unknotted arc in B. Hence $V = (\overline{B-N(B \cap t, B)})$ is a solid torus in A-t. We may assume that $\partial V = T$. Therefore T is compressible in V (hence in A-t), a contradiction. This completes the proof.

Let X be a topological space. We denote by |X| the number of connected components of X. Let F be a properly embedded, compact, 2-sided *n*-submanifold of compact (n+1)-manifold M. Then we denote by M_F the compact (n+1)-manifold obtained by splitting M along F.

LEMMA 2. Let (B, t) be a simple tangle, (C, u) a prime tangle and h: $(\partial C, \partial u) \rightarrow (\partial B, \partial t)$ a homeomorphism. We set $(S^{\mathfrak{s}}, L) = (B, t) \cup_{\mathfrak{s}} (C, u)$. Let T be an incompressible, non-boundary-parallel torus in E(L). Then T is isotopic in $S^{\mathfrak{s}}-L$ to a torus contained in C-u.

PROOF. We set $F = \partial B - \partial t = \partial C - \partial u$. Since F is incompressible in both B-t and C-u, so is it in $S^{s}-L$. After adjusting by an isotopy, we may assume that T is transverse to F and chosen to minimize $|F \cap T|$. Since $S^{s}-L$ is irreducible and both F and T are incompressible in $S^{s}-L$, each component of $F \cap T$ is essential (i.e., not null-homotopic) in both F and T. We suppose that $|F \cap T| \neq 0$. Then $T_{F \cap T}$ consists of $n(\geq 2)$ annuli A_{1}, \dots, A_{n} . We may assume that $A_{1} \subset B-t$. Then $\partial B_{\partial A_{1}}$ consists of two disks D_{1}, D_{2} and an annulus E. Since ∂A_{1} is essential in F, we have $D_{i} \cap t \neq \emptyset$.

First we show that $E \cap t = \emptyset$. If $E \cap t \neq \emptyset$, we have $\#(E \cap t) \ge 1$. Since $\#(\partial B \cap t) = 4$, either $\#(D_1 \cap t) = 1$ or $\#(D_2 \cap t) = 1$. We may assume that $\#(D_1 \cap t) = 1$. Let l_1 be an inner most loop of $F \cap T \cap D_1$ in D_1 . Hence l_1 bounds a disk D'_1 in D_1 such that $\#(D'_1 \cap t) = 1$ and $D'_1 \cap T = l_1$. Then it is easy to show that L is a composite link (see [6, §14, Satz 1] when L is a knot). This contradicts that L is prime (see [2, Theorem 1]). Therefore we have $E \cap t = \emptyset$. Hence $T_1 = E \cup A_1$ is a torus embedded in B-t. Then T_1 bounds a compact 3-manifold G in B-t. Since (B, t) is simple, T_1 is compressible in B-t. Let D_0 be a compressing disk for T_1 in B-t. Then T_1 bounds a solid torus V in S^3 with a meridian disk D_0 .

We suppose that V=G. Since ∂D_1 and ∂D_2 are meridians of a solid torus S^3 —int G, we may assume that $\partial D_0 \cap \partial D_i$ (for i=1, 2) is a single

point, that is, ∂D_1 , ∂D_2 are 'longitudes' of V. Hence A_1 is isotopic to E rel ∂A_1 in V. Therefore we can modify T in a small neighborhood of V in S^3-L to contradict our minimality assumption

Hence we have $V = S^3 - \operatorname{int} G$. Since D_0, D_1 are meridian disks of $V, \partial D_1$ is homotopic to ∂D_0 in T_1 , so is it in $S^3 - L$. Since $D_0 \cap L = \emptyset$, ∂D_1 is contractible in $S^3 - L$. Therefore T is compressible in $S^3 - L$, a contradiction. Hence we have $F \cap T = \emptyset$. Since (B, t) is simple, T is contained in C-u. This completes the proof.

The following theorem is straightforward from Lemma 2.

THEOREM 1. Let (A, t) and (B, u) be simple tangles and $h: (\partial A, \partial t) \rightarrow (\partial B, \partial u)$ a homeomorphism. We set $(S^{3}, L) = (A, t) \cup_{h} (B, u)$. Then L is a simple link in S^{3} .

 $\S 2$. Examples of simple tangles.

In this section, we give some examples of simple tangles. Let τ be a simplicial 1-subcomplex of a 3-ball *B*. Then we say $C_{\tau} = B - \partial B \cup \tau$ is the open complement of τ in *B*.

We prove the following lemma which we use to prove Theorem 3 in § 3.

LEMMA 3. A tangle $(B, t_1 \cup t_2)$ of Figure 1 is simple.

FIGURE 1

PROOF. First we note that $(B, t_1 \cup t_2)$ is prime (see [1, Lemma 2.1]). Let C be the open complement of $t_1 \cup t_2$ in B. Let D be a 2-disk in B shown in Figure 1 such that $D \cap t_1 = t_1$, $D \cap t_2$ consists of two points p_1 , p_2 and $\partial D = t_1 \cup (D \cap \partial B)$. We set $F = D - \{p_1, p_2\}$.

We show that F is incompressible in C. If not, there is a compressing disk Δ_1 for F in C. Obviously $\partial \Delta_1$ bounds a 2-disk Δ_2 in D such that $\Delta_2 \cap t_2 = \{p_1, p_2\}$. Then $N = N(D \cup \Delta_1 - \operatorname{int} \Delta_2, B - t_2)$ is a 3-ball in B such that $t_1 \subset N$ and $t_2 \cap N = \emptyset$. Hence $\overline{(\partial N - \partial N \cap \partial B)}$ is a 2-disk in B which

separates t_1 and t_2 . This contradicts that $(B, t_1 \cup t_2)$ is prime.

Next we show that $C-D\cap C$ is homotopy equivalent to $S^1 \vee S^1 \vee S^1$. It is easily checked that $C-D\cap C$ is homeomorphic to the open complements C_{τ_1}, C_{τ_2} of 1-subcomplexies τ_1, τ_2 in B shown in Figure 2. And obviously C_{τ_2} is homotopy equivalent to $S^1 \vee S^1 \vee S^1$.

Now we suppose that there exists an incompressible torus T in C. After adjusting by an isotopy, we may assume that T is transverse to F and chosen to minimize $|F \cap T|$. Then each component of $F \cap T$ is essential in both F and T.

If $|F \cap T| = 0$, then T is contained in $C-D \cap C$. Since T is incompressible in C, so is it in $C-D \cap C$. Hence the homomorphism $\pi_1 T \approx Z \times Z \rightarrow \pi_1(C-D \cap C) \approx Z * Z * Z$ induced by the inclusion is injective. This contradicts that any non-trivial subgroup of a free group is also free (see [3, p. 95, Corollary 2.9]). Therefore we have $|F \cap T| \neq 0$.

Let l be an inner most loop of $F \cap T$ in D. By Lemma 1, l bounds a disk D_0 in D such that $D_0 \cap t_2 = \{p_1, p_2\}$. Hence all components of $F \cap T$ are mutually parallel in F. Note that $T_{F \cap T}$ consists of $n(\geq 2)$ annuli. Let l_0 be a loop shown in Figure 3. Since $H_1(B; Z) = 0$, we have $[l_0] \cdot [T] =$

0. Therefore there is a component A of $T_{F\cap T}$ such that ∂A bounds an annulus E in F and such that, after adjusting by an isotopy in C, one can assume that torus $T_0 = A \cup E$ has no intersection with D and bounds a compact 3-manifold G in $C-D\cap C$ (see Figure 4(a)). By the argument above, T_0 is compressible in $C-D\cap C$. Similarly in Lemma 2, modifying

T by an isotopy in a small neighborhood of G, we can reduce the number $|F \cap T|$ (see Figure 4(b)). This contradicts our minimality assumption. Hence $(B, t_1 \cup t_2)$ must be simple. This completes the proof.

FIGURE 5

Lickorish [2, § 2] showed that seven tangles of Figure 5 are prime. Let (A, t_1) be a tangle and D_1 a 2-disk shown in (i). Then $A-t_1 \cup D_1$ is homotopy equivalent to $S^1 \vee S^1$. The argument similar to that in Lemma 3 shows that (A, t_1) is simple.

Let (A, t_2) be a tangle shown in (ii). Since there exists an incompressible torus T in $A-t_2$, tangle (ii) is not simple.

Let (A, t_j) be a tangle and D_j a 2-disk, where j=3, 4, 5 or 7. Since $A-t_i \cup D_j$ is homotopy equivalent to $S^1 \vee S^1 \vee S^1$, (A, t_j) is simple.

Let (A, t_0) be a tangle and D_0 a 2-disk shown in (vi). Then $A-t_0 \cup D_0 \cup \partial A$ is homeomorphic to the open complement C_1 of tangle (i). Hence tangle (vi) is simple.

Every example (A, t) which we have given has a property that at least one component of t is unknotted in A. The following theorem makes us possible to construct an example of a tangle (A, t) such that each component of t is knotted in A.

THEOREM 2. Let (C, v) be a tangle and D a 2-disk properly embedded in C that separates (C, v) into two tangles (A, t) and (B, u). If (A, t) is simple or untangle, (B, u) is simple and $D-v \cap D$ is incompressible in A-t, then (C, v) is simple.

PROOF. The argument similar to that of [2, Theorem 2] implies that (C, v) is prime. Since $D-v \cap D$ is incompressible in C-v, one can prove that (C, v) is simple as Lemmas 2 and 3 above.

By Theorem 2, a tangle (C, v) of Figure 6 is simple and each component of v is knotted in C.

In this section we prove the following theorem.

70

THEOREM 3. A link in S^3 is concordant to a simple link with the same Alexander invariant.

PROOF. Let L be a link in S^3 . By Nakanishi [5, p. 567, Theorem], we may assume that L is prime. Let $\infty \in S^3$ be a point such that $\infty \cap L = \emptyset$, and let $\infty' \in S^3$. Let $\pi: S^3 - \infty \rightarrow S^2 - \infty'$ be a projection such that π/L is an embedding up to finite double crossing points p_1, \dots, p_n in $S^2 - \infty'$ (i.e., π is a regular projection). Moreover we suppose that π satisfies the following properties.

(i) For each crossing point p_i , there is a 3-ball B_i in $S^3 - \infty$ such that $(B_i, B_i \cap L)$ is a (2-string) trivial tangle and $B_i \cap B_j = \emptyset$ for $i, j, i \neq j$.

(ii) $D_i = \pi(B_i)$ is a regular neighborhood of p_i in $S^2 - \infty'$ such that $D_i \cap D_j = \emptyset$ for $i, j, i \neq j$, and $\pi(L) \cap D_i$ consists of two proper arcs in D_i which intersect each other in one point p_i .

(iii) Of all projections which have the properties (i), (ii), π has the minimal number of the crossing point of π/L .

We set $M = S^{*} - \operatorname{int} (B_{1} \cup \cdots \cup B_{n})$ and $F = S^{2} - \operatorname{int} (D_{1} \cup \cdots \cup D_{n})$. Let $i: F \to M$ be the natural inclusion such that $i(\infty') = \infty$ and $i(\pi(L) \cap F) = L \cap M$. We identify F and i(F). We set $E_{i} = B_{i} - L \cap B_{i}$ and $G_{i} = D_{i} - \pi(L) \cap D_{i}$. Hence $\partial E_{i} = \partial B_{i} - \{\text{four points}\}$ and $\partial G_{i} = \partial D_{i} - \{\text{four points}\}$.

(3.1) Let l be a simple loop in F such that l meets $\pi(L)$ transversely in two points. Since L is prime, the property (iii) of π implies that lbounds a 2-disk D in S^2 such that $D \cap (D_1 \cup \cdots \cup D_n) = \emptyset$, i.e., $D \subset F$. Then, obviously, $D \cap \pi(L)$ is an arc.

(3.2) Similarly, for any proper arc α in $F-\pi(L)\cap F$ such that $\partial \alpha \subset \partial G_i$, there is an arc $\alpha_0 \subset \partial G_i$ such that $\partial \alpha_0 = \partial \alpha$ and a loop $\alpha_0 \cup \alpha$ bounds a 2-disk in $F-\pi(L)\cap F$.

First we show that ∂E_i is incompressible in $M-L\cap M$. If not, there is a compressible disk D for ∂E_i in $M-L\cap M$. Then ∂D bounds two 2disks Δ_1, Δ_2 in ∂B_i such that $\Delta_1 \cap \Delta_2 = \partial D$ and $\#(\Delta_1 \cap L) = \#(\Delta_2 \cap L) = 2$. We may assume that D is transverse to F and has the minimal $|D \cap F|$ of all 2-disks which are properly isotopic to D in $M-L\cap M$. Now we suppose that $|D \cap F| \neq 0$. Then $D \cap F$ consists of proper arcs in $F-\pi(L) \cap F$ whose boundaries are contained in ∂G_i . By (3.2), for each component of $D \cap F$, there is an arc in ∂G_i such that the union of these two arcs is a loop which bounds a 2-disk in $F-\pi(L) \cap F$. Let D_0 be inner most one of such 2-disks. Then $D_0 \cap D$ is a proper arc in D. By doing surgery on D along D_0 , we obtain two 2-disks D_1 , D_2 such that $D_i \subset M - L \cap M$ and

 $\partial D_j \subset \partial E_i$ for j=1, 2. We may assume that $\Delta_1 \supset \partial D_1 \cup \partial D_2$, that is, an arc $D_0 \cap \partial B_i$ separates Δ_1 into two 2-disks Δ_{11}, Δ_{12} such that $\partial \Delta_{11} = \partial D_1, \ \partial \Delta_{12} = \partial D_2$. Since $\#(\Delta_{1j} \cap L) \neq 1$, we may assume that $\#(\Delta_{11} \cap L) = 0$ and $\#(\Delta_{12} \cap L) = 2$. Since $M - L \cap M$ is irreducible, 2-sphere $D_1 \cup \Delta_{11}$ bounds a 3-ball B in $M - L \cap M$. Then one can modify D by a proper isotopy in a small neighborhood of B to contradict our minimality assumption. Therefore we have $|D \cap F| = 0$. Then ∂D is contained in $\partial E_i - \partial E_i \cap F$ (\cong two open hemispheres). Hence ∂D bounds a 2-disk in $\partial E_i - \partial E_i \cap F \subset \partial E_i$. This contradicts that D is a compressing disk for ∂E_i . Therefore ∂E_i must be incompressible in $M - L \cap M$.

Let L_0 be a link obtained from (S^3, L) by removing trivial tangles $(B_i, B_i \cap L)$ and sewing back new tangles (B_i, t_i) which are *n* copies of the tangle of Figure 1. By [5, Lemma 3], L is concordant to L_0 and they have the same Alexander invariant. Since, for each $i, \partial E_i$ is incompressible in both $B_i - t_i$ and $M - L \cap M$, so is it in $S^3 - L_0$.

ASSERTION 1. L_0 is prime.

PROOF. Let S be a 2-sphere in S^s such that S meets L_0 transversely in two points. We may assume that S is transverse to $\bigcup_{i=1}^{n} \partial E_i$ and has the minimal $|S \cap (\bigcup_{i=1}^{n} \partial E_i)|$ of all 2-spheres S' in S^s such that $(S', S' \cap L_0)$ is isotopic to $(S, S \cap L_0)$ in (S^s, L_0) . Since both ∂E_i and $S-L_0 \cap S$ are incompressible in S^s-L_0 , each component of $S \cap (\bigcup_{i=1}^{n} \partial E_i)$ is essential in both ∂E_i and $S-L_0 \cap S$.

If $|S \cap (\bigcup_{i=1}^{n} E_i)| \neq 0$, then there is an inner most loop l of $S \cap (\bigcup_{i=1}^{n} \partial E_i)$ in S. Then l bounds a 2-disk D in S such that $D \cap (\bigcup_{i=1}^n \partial E_i) = l$ and $D \cap L_0$ is a single point. We may assume that $l \subset \partial E_1$. By the primeness of (B_i, t_i) and the minimality of $|S \cap (\bigcup_{i=1}^n \partial E_i)|$, we have $D \subset M$. If l bounds a 2-disk D_1 in ∂B_1 such that $\#(D_1 \cap L_0) = 2$, 2-sphere $S_1 = D \cup D_1$ meets L_0 transversely in three points. This contradicts that S_1 separates Hence l bounds a 2-disk D_2 in ∂B_1 such that S^{3} into two 3-balls. $\#(D_2 \cap L_0) = 1$. We set $S_2 = D \cup D_2$. Then we may assume that $S_2 \cap F$ is a simple loop l_0 such that $\#(l_0 \cap L_0) = 2$. By (3.1), l_0 bounds a 2-disk D_3 in F such that $D_{\mathfrak{s}} \cap L_{\mathfrak{o}}$ is an arc. Then $S_{\mathfrak{s}}$ bounds a 3-ball B in M such that $(D_3, \partial D_3) \subset (B, \partial B)$. Then one can modify $(S, S \cap L_0)$ by an isotopy in a small neighborhood of $(B, B \cap L_0)$ to contradict our minimality assumption. Hence we have $|S \cap (\bigcup_{i=1}^n \partial E_i)| = 0$, i.e., either $S \subset M$ or $S \subset B_i$ for some i. By (3.1) and the primeness of (B_i, t_i) , S bounds a 3-ball $B \text{ in } S^3$ such that $B \cap L_0$ is an unknotted arc in B. Therefore L_0 is prime.

ASSERTION 2. L_0 is simple.

SIMPLE LINKS AND TANGLES

PROOF. We suppose that there exists an incompressible torus T in int $E(L_0)$ which is not boundary-parallel in $E(L_0)$. Since L_0 is prime and (B_i, t_i) is simple (Lemma 3), after modifying T by an isotopy in $S^s - L_0$, we may assume $T \subset M - L_0 \cap M$ by the argument similar to that in Lemma 2. Since $\pi_1(M - L_0 \cap M)$ is a free group, T is compressible in $M - L_0 \cap M$, so is in $S^s - L_0$, a contradiction. Hence L_0 is simple. This completes the proof of Theorem 3.

References

- S. A. BLEILER, Realizing concordant polynomials with prime knots, Pacific J. Math., 100 (1982), 249-257.
- [2] W. B. R. LICKORISH, Prime knots and tangles, Trans. Amer. Math. Soc., **267** (1981), 321-332.
- [3] W. MAGNUS, A. KARRASS and D. SOLITAR, Combinatorial Group Theory, Pure and Applied Math. Vol. 13, John Wiley and Sons, Inc., 1966.
- [4] R. MYERS, Homology cobordisms, link concordances, and hyperbolic 3-manifolds, preprint.
- Y. NAKANISHI, Prime links, concordance and Alexander invariants, Math. Sem. Notes, Kobe Univ., 8 (1980), 561-568.
- [6] H. SHUBERT, Knoten und Vollringe, Acta Math., 90 (1953), 131-286.

Present Address: DEPARTMENT OF MATHEMATICS SCHOOL OF EDUCATION WASEDA UNIVERSITY NISHI-WASEDA, SHINJUKU-KU, TOKYO 160