Simple Links and Tangles

Teruhiko SOMA

Waseda University

Introduction

In [2] Lickorish produced many prime knots and links in S^{3} by using prime tangles. In this paper we give the analogue for simple knots and links.

We work in the piecewise linear category and refer to [2] for the definitions of tangles, prime tangles and so on. Tangles, in the paper, are always 2 -string. We say a tangle (B, t) is simple if (B, t) is a prime tangle and $B-t$ contains no incompressible embedded torus. Let F be a submanifold of a manifold M. We denote by $N(F, M)$ a regular neighborhood of F in M. Let L be a link in S^{3}. Then $E(L)=S^{3}-$ int $N\left(L, S^{3}\right)$ is called the exterior of L in S^{3}. We say a link L in S^{3} is simple if L is non-splittable and every incompressible torus embedded in $E(L)$ is isotopic to a boundary component. A simple link is prime; the converse is not true.

In §1 we show that a sum of two simple tangles is a simple link (Theorem 1). In § 2 we show that six of seven prime tangles given by Lickorish [2, Figure 2] are simple and a partial sum of two simple tangles is also a simple tangle (Theorem 2). In § 3 we show that a link in S^{3} is concordant to a simple link with the same Alexander invariant (Theorem 3). (Compare the last result with those of R. Myers [4] and Y. Nakanishi [5], also S. Bleiler [1].)

I am grateful to Yasutaka Nakanishi for his several improvements of my original proofs.

§ 1. Sums of simple tangles.

First we prove the following two lemmas. Let X be a finite set. We denote by $\#(X)$ the number of elements of X.

Lemma 1. Let (A, t) be a prime tangle and T an incompressible

[^0]torus embedded in $A-t$. Let D be a compressible disk for T in A such that D is transverse to t. Then we have $\#(D \cap t) \geqq 2$.

Proof. Since T is incompressible in $A-t$, we have $\#(D \cap t) \geqq 1$. We suppose that $\#(D \cap t)=1$. Let S be a 2 -sphere in A obtained by doing surgery on T along D and B a 3 -ball in A bounded by S. Since (A, t) is prime, $B \cap t$ is an unknotted arc in B. Hence $V=\overline{(B-N(B \cap t, B)})$ is a solid torus in $A-t$. We may assume that $\partial V=T$. Therefore T is compressible in V (hence in $A-t$), a contradiction. This completes the proof.

Let X be a topological space. We denote by $|X|$ the number of connected components of X. Let F be a properly embedded, compact, 2 -sided n-submanifold of compact ($n+1$)-manifold M. Then we denote by M_{F} the compact ($n+1$)-manifold obtained by splitting M along F.

Lemma 2. Let (B, t) be a simple tangle, (C, u) a prime tangle and $h:(\partial C, \partial u) \rightarrow(\partial B, \partial t)$ a homeomorphism. We $\operatorname{set}\left(S^{3}, L\right)=(B, t) \cup_{h}(C, u)$. Let T be an incompressible, non-boundary-parallel torus in $E(L)$. Then T is isotopic in $S^{3}-L$ to a torus contained in $C-u$.

Proof. We set $F=\partial B-\partial t=\partial C-\partial u$. Since F is incompressible in both $B-t$ and $C-u$, so is it in $S^{3}-L$. After adjusting by an isotopy, we may assume that T is transverse to F and chosen to minimize $|F \cap T|$. Since $S^{3}-L$ is irreducible and both F and T are incompressible in $S^{s}-L$, each component of $F \cap T$ is essential (i.e., not null-homotopic) in both F and T. We suppose that $|F \cap T| \neq 0$. Then $T_{F \cap T}$ consists of $n(\geqq 2)$ annuli A_{1}, \cdots, A_{n}. We may assume that $A_{1} \subset B-t$. Then $\partial B_{\partial A_{1}}$ consists of two disks D_{1}, D_{2} and an annulus E. Since ∂A_{1} is essential in F, we have $D_{i} \cap t \neq \varnothing$.

First we show that $E \cap t=\varnothing$. If $E \cap t \neq \varnothing$, we have $\#(E \cap t) \geqq 1$. Since $\#(\partial B \cap t)=4$, either $\#\left(D_{1} \cap t\right)=1$ or $\#\left(D_{2} \cap t\right)=1$. We may assume that $\#\left(D_{1} \cap t\right)=1$. Let l_{1} be an inner most loop of $F \cap T \cap D_{1}$ in D_{1}. Hence l_{1} bounds a disk D_{1}^{\prime} in D_{1} such that $\#\left(D_{1}^{\prime} \cap t\right)=1$ and $D_{1}^{\prime} \cap T=l_{1}$. Then it is easy to show that L is a composite link (see [6, §14, Satz 1] when L is a knot). This contradicts that L is prime (see [2, Theorem 1]). Therefore we have $E \cap t=\varnothing$. Hence $T_{1}=E \cup A_{1}$ is a torus embedded in $B-t$. Then T_{1} bounds a compact 3 -manifold G in $B-t$. Since (B, t) is simple, T_{1} is compressible in $B-t$. Let D_{0} be a compressing disk for T_{1} in $B-t$. Then T_{1} bounds a solid torus V in S^{3} with a meridian disk D_{0}.

We suppose that $V=G$. Since ∂D_{1} and ∂D_{2} are meridians of a solid torus $S^{3}-\operatorname{int} G$, we may assume that $\partial D_{0} \cap \partial D_{i}$ (for $i=1,2$) is a single
point, that is, $\partial D_{1}, \partial D_{2}$ are 'longitudes' of V. Hence A_{1} is isotopic to E rel ∂A_{1} in V. Therefore we can modify T in a small neighborhood of V in $S^{3}-L$ to contradict our minimality assumption

Hence we have $V=S^{3}$-int G. Since D_{0}, D_{1} are meridian disks of $V, \partial D_{1}$ is homotopic to ∂D_{0} in T_{1}, so is it in $S^{3}-L$. Since $D_{0} \cap L=\varnothing, \partial D_{i}$ is contractible in $S^{3}-L$. Therefore T is compressible in $S^{8}-L$, a contradiction. Hence we have $F \cap T=\varnothing$. Since (B, t) is simple, T is contained in $C-u$. This completes the proof.

The following theorem is straightforward from Lemma 2.
Theorem 1. Let (A, t) and (B, u) be simple tangles and $h:(\partial A, \partial t) \rightarrow$ $(\partial B, \partial u)$ a homeomorphism. We set $\left(S^{3}, L\right)=(A, t) \cup_{h}(B, u)$. Then L is a simple link in \mathbf{S}^{3}.

§ 2. Examples of simple tangles.

In this section, we give some examples of simple tangles. Let τ be a simplicial 1 -subcomplex of a 3 -ball B. Then we say $C_{\tau}=B-\partial B \cup \tau$ is the open complement of τ in B.

We prove the following lemma which we use to prove Theorem 3 in § 3.

Lemma 3. A tangle $\left(B, t_{1} \cup t_{2}\right)$ of Figure 1 is simple.

Figure 1
Proof. First we note that ($B, t_{1} \cup t_{2}$) is prime (see [1, Lemma 2.1]). Let C be the open complement of $t_{1} \cup t_{2}$ in B. Let D be a 2-disk in B shown in Figure 1 such that $D \cap t_{1}=t_{1}, D \cap t_{2}$ consists of two points p_{1}, p_{2} and $\partial D=t_{1} \cup(D \cap \partial B)$. We set $F=D-\left\{p_{1}, p_{2}\right\}$.

We show that F is incompressible in C. If not, there is a compressing disk Δ_{1} for F in C. Obviously $\partial \Delta_{1}$ bounds a 2-disk Δ_{2} in D such that $\Delta_{2} \cap t_{2}=\left\{p_{1}, p_{2}\right\}$. Then $N=N\left(D \cup \Delta_{1}-\right.$ int $\left.\Delta_{2}, B-t_{2}\right)$ is a 3 -ball in B such that $t_{1} \subset N$ and $t_{2} \cap N=\varnothing$. Hence $\overline{(\partial N-\partial N \cap \partial B)}$ is a 2-disk in B which
separates t_{1} and t_{2}. This contradicts that ($B, t_{1} \cup t_{2}$) is prime.
Next we show that $C-D \cap C$ is homotopy equivalent to $S^{1} \vee S^{1} \vee S^{1}$. It is easily checked that $C-D \cap C$ is homeomorphic to the open complements $C_{\tau_{1}}, C_{\tau_{2}}$ of 1-subcomplexies τ_{1}, τ_{2} in B shown in Figure 2. And obviously $C_{\tau_{2}}$ is homotopy equivalent to $S^{1} \vee S^{1} \vee S^{1}$.

Figure 2
Now we suppose that there exists an incompressible torus \boldsymbol{T} in \boldsymbol{C}. After adjusting by an isotopy, we may assume that T is transverse to F and chosen to minimize $|F \cap T|$. Then each component of $F \cap T$ is essential in both F and T.

If $|F \cap T|=0$, then T is contained in $C-D \cap C$. Since T is incompressible in C, so is it in $C-D \cap C$. Hence the homomorphism $\pi_{1} T \approx Z \times Z \rightarrow$ $\pi_{1}(C-D \cap C) \approx Z * Z * Z$ induced by the inclusion is injective. This contradicts that any non-trivial subgroup of a free group is also free (see [3, p. 95, Corollary 2.9]). Therefore we have $|F \cap T| \neq 0$.

Let l be an inner most loop of $F \cap T$ in D. By Lemma $1, l$ bounds a disk D_{0} in D such that $D_{0} \cap t_{2}=\left\{p_{1}, p_{2}\right\}$. Hence all components of $F \cap T$ are mutually parallel in F. Note that $T_{F \cap T}$ consists of $n(\geqq 2)$ annuli. Let l_{0} be a loop shown in Figure 3. Since $H_{1}(B ; Z)=0$, we have $\left[l_{0}\right] \cdot[T]=$

Figure 3
0. Therefore there is a component A of $T_{F \cap T}$ such that ∂A bounds an annulus E in F and such that, after adjusting by an isotopy in C, one can assume that torus $T_{0}=A \cup E$ has no intersection with D and bounds a compact 3 -manifold G in $C-D \cap C$ (see Figure 4(a)). By the argument above, T_{0} is compressible in $C-D \cap C$. Similarly in Lemma 2, modifying
T by an isotopy in a small neighborhood of G, we can reduce the number $|F \cap T|$ (see Figure 4(b)). This contradicts our minimality assumption. Hence ($B, t_{1} \cup t_{2}$) must be simple. This completes the proof.

Figure 5

Lickorish [2, §2] showed that seven tangles of Figure 5 are prime.
Let (A, t_{1}) be a tangle and D_{1} a 2 -disk shown in (i). Then $A-t_{1} \cup D_{1}$ is homotopy equivalent to $S^{1} \vee S^{1}$. The argument similar to that in Lemma 3 shows that (A, t_{1}) is simple.

Let $\left(A, t_{2}\right)$ be a tangle shown in (ii). Since there exists an incompressible torus T in $A-t_{2}$, tangle (ii) is not simple.

Let (A, t_{j}) be a tangle and D_{j} a 2 -disk, where $j=3,4,5$ or 7 . Since $A-t_{j} \cup D_{j}$ is homotopy equivalent to $S^{1} \vee S^{1} \vee S^{1},\left(A, t_{j}\right)$ is simple.

Let (A, t_{t}) be a tangle and D_{f} a 2 -disk shown in (vi). Then $A-t_{\mathrm{e}} \cup$ $D_{8} \cup \partial A$ is homeomorphic to the open complement C_{1} of tangle (i). Hence tangle (vi) is simple.

Every example (A, t) which we have given has a property that at least one component of t is unknotted in A. The following theorem makes us possible to construct an example of a tangle (A, t) such that each component of t is knotted in A.

Theorem 2. Let (C, v) be a tangle and D a 2 -disk properly embedded in C that separates (C, v) into two tangles (A, t) and (B, u). If (A, t) is simple or untangle, (B, u) is simple and $D-v \cap D$ is incompressible in $A-t$, then (C, v) is simple.

Proof. The argument similar to that of [2, Theorem 2] implies that (C, v) is prime. Since $D-v \cap D$ is incompressible in $C-v$, one can prove that (C, v) is simple as Lemmas 2 and 3 above.

By Theorem 2, a tangle (C, v) of Figure 6 is simple and each component of v is knotted in C.

Figure 6
§ 3. Simple links and Alexander invariants.
In this section we prove the following theorem.

Theorem 3. A link in S^{3} is concordant to a simple link with the same Alexander invariant.

Proof. Let L be a link in S^{3}. By Nakanishi [5, p. 567, Theorem], we may assume that L is prime. Let $\infty \in S^{8}$ be a point such that $\infty \cap L=\varnothing$, and let $\infty^{\prime} \in S^{3}$. Let $\pi: S^{3}-\infty \rightarrow S^{2}-\infty^{\prime}$ be a projection such that π / L is an embedding up to finite double crossing points p_{1}, \cdots, p_{n} in $S^{2}-\infty^{\prime}$ (i.e., π is a regular projection). Moreover we suppose that π satisfies the following properties.
(i) For each crossing point p_{i}, there is a 3 -ball B_{i} in $S^{3}-\infty$ such that ($B_{i}, B_{i} \cap L$) is a (2-string) trivial tangle and $B_{i} \cap B_{j}=\varnothing$ for i, j, $i \neq j$.
(ii) $D_{i}=\pi\left(B_{i}\right)$ is a regular neighborhood of p_{i} in $S^{2}-\infty^{\prime}$ such that $D_{i} \cap D_{j}=\varnothing$ for $i, j, i \neq j$, and $\pi(L) \cap D_{i}$ consists of two proper arcs in D_{i} which intersect each other in one point p_{i}.
(iii) Of all projections which have the properties (i), (ii), π has the minimal number of the crossing point of π / L.

We set $M=S^{3}-\operatorname{int}\left(B_{1} \cup \cdots \cup B_{n}\right)$ and $F=S^{2}-\operatorname{int}\left(D_{1} \cup \cdots \cup D_{n}\right)$. Let $i: F \rightarrow M$ be the natural inclusion such that $i\left(\infty^{\prime}\right)=\infty$ and $i\left(\pi(L) \cap F^{\prime}\right)=$ $L \cap M$. We identify F and $i(F)$. We set $E_{i}=B_{i}-L \cap B_{i}$ and $G_{i}=D_{i}-$ $\pi(L) \cap D_{i}$. Hence $\partial E_{i}=\partial B_{i}-\{$ four points $\}$ and $\partial G_{i}=\partial D_{i}-$ \{four points $\}$.
(3.1) Let l be a simple loop in F such that l meets $\pi(L)$ transversely in two points. Since L is prime, the property (iii) of π implies that l bounds a 2-disk D in S^{2} such that $D \cap\left(D_{1} \cup \cdots \cup D_{n}\right)=\varnothing$, i.e., $D \subset F$. Then, obviously, $D \cap \pi(L)$ is an arc.
(3.2) Similarly, for any proper arc α in $F-\pi(L) \cap F$ such that $\partial \alpha \subset \partial G_{i}$, there is an arc $\alpha_{0} \subset \partial G_{i}$ such that $\partial \alpha_{0}=\partial \alpha$ and a loop $\alpha_{0} \cup \alpha$ bounds a 2 -disk in $F-\pi(L) \cap F$.

First we show that ∂E_{i} is incompressible in $M-L \cap M$. If not, there is a compressible disk D for ∂E_{i} in $M-L \cap M$. Then ∂D bounds two 2disks Δ_{1}, Δ_{2} in ∂B_{i} such that $\Delta_{1} \cap \Delta_{2}=\partial D$ and $\#\left(\Delta_{1} \cap L\right)=\#\left(\Delta_{2} \cap L\right)=2$. We may assume that D is transverse to F and has the minimal $|D \cap F|$ of all 2-disks which are properly isotopic to D in $M-L \cap M$. Now we suppose that $|D \cap F| \neq 0$. Then $D \cap F$ consists of proper arcs in $F-\pi(L) \cap F$ whose boundaries are contained in ∂G_{i}. By (3.2), for each component of $D \cap F$, there is an arc in ∂G_{i} such that the union of these two arcs is a loop which bounds a 2 -disk in $F-\pi(L) \cap F$. Let D_{0} be inner most one of such 2-disks. Then $D_{0} \cap D$ is a proper arc in D. By doing surgery on D along D_{0}, we obtain two 2 -disks D_{1}, D_{2} such that $D_{j} \subset M-L \cap M$ and
$\partial D_{j} \subset \partial E_{i}$ for $j=1,2$. We may assume that $\Delta_{1} \supset \partial D_{1} \cup \partial D_{2}$, that is, an arc $D_{0} \cap \partial B_{i}$ separates Δ_{1} into two 2-disks Δ_{11}, Δ_{12} such that $\partial \Delta_{11}=\partial D_{1}, \partial \Delta_{12}=$ ∂D_{2}. Since $\#\left(\Delta_{1 j} \cap L\right) \neq 1$, we may assume that $\#\left(\Delta_{11} \cap L\right)=0$ and $\#\left(\Delta_{12} \cap L\right)=$ 2. Since $M-L \cap M$ is irreducible, 2-sphere $D_{1} \cup \Delta_{11}$ bounds a 3-ball B in $M-L \cap M$. Then one can modify D by a proper isotopy in a small neighborhood of B to contradict our minimality assumption. Therefore we have $|D \cap F|=0$. Then ∂D is contained in $\partial E_{i}-\partial E_{i} \cap F$ (\cong two open hemispheres). Hence ∂D bounds a 2-disk in $\partial E_{i}-\partial E_{i} \cap F \subset \partial E_{i}$. This contradicts that D is a compressing disk for ∂E_{i}. Therefore ∂E_{i} must be incompressible in $M-L \cap M$.

Let L_{0} be a link obtained from (S^{3}, L) by removing trivial tangles ($B_{i}, B_{i} \cap L$) and sewing back new tangles (B_{i}, t_{i}) which are n copies of the tangle of Figure 1. By [5, Lemma 3], L is concordant to L_{0} and they have the same Alexander invariant. Since, for each $i, \partial E_{i}$ is incompressible in both $B_{i}-t_{i}$ and $M-L \cap M$, so is it in $S^{3}-L_{0}$.

ASSERTION 1. L_{0} is prime.
Proof. Let S be a 2 -sphere in S^{8} such that S meets L_{0} transversely in two points. We may assume that S is transverse to $\bigcup_{i=1}^{n} \partial E_{i}$ and has the minimal $\left|S \cap\left(U_{i=1}^{n} \partial E_{i}\right)\right|$ of all 2-spheres S^{\prime} in S^{3} such that ($S^{\prime}, S^{\prime \prime} \cap L_{0}$) is isotopic to ($S, S \cap L_{0}$) in (S^{3}, L_{0}). Since both ∂E_{i} and $S-L_{0} \cap S$ are incompressible in $S^{3}-L_{0}$, each component of $S \cap\left(\bigcup_{i=1}^{n} \partial E_{i}\right)$ is essential in both ∂E_{i} and $S-L_{0} \cap S$.

If $\left|S \cap\left(\bigcup_{i=1}^{n} E_{i}\right)\right| \neq 0$, then there is an inner most loop l of $S \cap\left(\bigcup_{i=1}^{n} \partial E_{i}\right)$ in S. Then l bounds a 2-disk D in S such that $D \cap\left(\cup_{i=1}^{n} \partial E_{i}\right)=l$ and $D \cap L_{0}$ is a single point. We may assume that $l \subset \partial E_{1}$. By the primeness of $\left(B_{1}, t_{1}\right)$ and the minimality of $\left|S \cap\left(\bigcup_{i=1}^{n} \partial E_{i}\right)\right|$, we have $D \subset M$. If l bounds a 2-disk D_{1} in ∂B_{1} such that $\#\left(D_{1} \cap L_{0}\right)=2$, 2-sphere $S_{1}=D \cup D_{1}$ meets L_{0} transversely in three points. This contradicts that S_{1} separates S^{3} into two 3-balls. Hence l bounds a 2-disk D_{2} in ∂B_{1} such that $\#\left(D_{2} \cap L_{0}\right)=1$. We set $S_{2}=D \cup D_{2}$. Then we may assume that $S_{2} \cap F$ is a simple loop l_{0} such that $\#\left(l_{0} \cap L_{0}\right)=2$. By (3.1), l_{0} bounds a 2-disk D_{3} in F such that $D_{3} \cap L_{0}$ is an arc. Then S_{2} bounds a 3 -ball B in M such that $\left(D_{3}, \partial D_{3}\right) \subset(B, \partial B)$. Then one can modify ($S, S \cap L_{0}$) by an isotopy in a small neighborhood of ($B, B \cap L_{0}$) to contradict our minimality assumption. Hence we have $\left|S \cap\left(\bigcup_{i=1}^{n} \partial E_{i}\right)\right|=0$, i.e., either $S \subset M$ or $S \subset B_{i}$ for some i. By (3.1) and the primeness of $\left(B_{i}, t_{i}\right), S$ bounds a 3 -ball B in S^{s} such that $B \cap L_{0}$ is an unknotted arc in B. Therefore L_{0} is prime.

ASSERTION 2. L_{0} is simple.

Proof. We suppose that there exists an incompressible torus T in int $E\left(L_{0}\right)$ which is not boundary-parallel in $E\left(L_{0}\right)$. Since L_{0} is prime and (B_{i}, t_{i}) is simple (Lemma 3), after modifying T by an isotopy in $S^{3}-L_{0}$, we may assume $T \subset M-L_{0} \cap M$ by the argument similar to that in Lemma 2. Since $\pi_{1}\left(M-L_{0} \cap M\right)$ is a free group, T is compressible in $M-L_{0} \cap M$, so is in $S^{3}-L_{0}$, a contradiction. Hence L_{0} is simple. This completes the proof of Theorem 3.

References

[1] S. A. Bleiler, Realizing concordant polynomials with prime knots, Pacific J. Math., 100 (1982), 249-257.
[2] W. B. R. Lickorish, Prime knots and tangles, Trans. Amer. Math. Soc., 267 (1981), 321-332.
[3] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Pure and Applied Math. Vol. 13, John Wiley and Sons, Inc., 1966.
[4] R. Myers, Homology cobordisms, link concordances, and hyperbolic 3-manifolds, preprint.
[5] Y. Nakanishi, Prime links, concordance and Alexander invariants, Math. Sem. Notes, Kobe Univ., 8 (1980), 561-568.
[6] H. Shubert, Knoten und Vollringe, Acta Math., 90 (1953), 131-286.
Present Address:
Department of Mathematics
School of Education
Waseda University
Nishi-Waseda, Shinjuku-ku, Tokyo 160

[^0]: Received April 12, 1982

