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Introduction

In [2] Lickorish produced many prime knots and links in $S^{8}$ by using
prime tangles. In this paper we give the analogue for simple knots and
links.

We work in the piecewise linear category and refer to [2] for the
definitions of tangles, prime tangles and so on. Tangles, in the paper,
are always 2-string. We say a tangle $(B, t)$ is simple if $(B, t)$ is a prime
tangle and $B-t$ contains no incompressible embedded torus. Let $F$ be
a submanifold of a manifold $M$. We denote by $N(F, M)$ a regular
neighborhood of $F$ in $M$. Let $L$ be a link in $S^{8}$ . Then $E(L)=S^{s}-$
int $N(L, S^{3})$ is called the exterior of $L$ in $S^{s}$ . We say a link $L$ in $S^{s}$ is
simple if $L$ is non-splittable and every incompressible torus embedded
in $E(L)$ is isotopic to a boundary component. A simple link is prime;
the converse is not true.

In \S 1 we show that a sum of two simple tangles is a simple link
(Theorem 1). In \S 2 we show that six of seven prime tangles given by
Lickorish [2, Figure 2] are simple and a partial sum of two simple tangles
is also a simple tangle (Theorem 2). In \S 3 we show that a link in $S^{s}$

is concordant to a simple link with the same Alexander invariant (Theo-
rem 3). (Compare the last result with those of R. Myers [4] and Y.
Nakanishi [5], also S. Bleiler [1].)

I am grateful to Yasutaka Nakanishi for his several improvements
of my original proofs.

\S 1. Sums of simple tangles.

First we prove the following two lemmas. Let $X$ be a finite set.
We denote by $\#(X)$ the number of elements of $X$.

LEMMA 1. Let $(A, t)$ be a prime tangle $anaT$ an incompressible
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torus embedded in $A-t$ . Let $D$ be a $compres\epsilon ible$ disk for $T$ in $A$ such
that $D$ is transverse to $t$ . Then we have $\#(D\cap t)\geqq 2$ .

PROOF. Since $T$ is incompressible in $A-t$ , we have $\#(Dnt)\geqq 1$ . We
suppose that $\#(D\cap t)=1$ . Let $S$ be a 2-sphere in $A$ obtained by doing
surgery on $T$ along $D$ and $B$ a 3-ball in $A$ bounded by $S$ . Since $(A, t)$

is prime, $B\cap t$ is an unknotted arc in $B$. Hence $V=\overline{(B-N(B\cap t,B))}$ is a
solid torus in $A-t$ . We may assume that $\partial V=T$. Therefore $T$ is
compressible in $V$ (hence in $A-t$), a contradiction. This completes the
proof. $\square $

Let $X$ be a topological space. We denote by $|X|$ the number of
connected components of $X$. Let $F$ be a properly embedded, compact,
2-sided n-submanifold of compact $(n+1)$-manifold $M$. Then we denote
by $M_{F}$ the compact $(n+1)$-manifold obtained by splitting $M$ along $F$.

LEMMA 2. Let $(B, t)$ be a simple tangle, $(C, u)$ a prime tangle and
$h:(\partial C, \partial u)\rightarrow(\partial B, \partial t)$ a homeomorphism. We set $(S^{S}, L)=(B, t)U_{h}(C, u)$ .
Let $T$ be an incompressible, non-boundary-parallel torus in $E(L)$ . Then
$T$ is isotopic in $S^{s}-L$ to a torus contained in $C-u$ .

$PR\infty F$ . We set $F=\partial B-\partial t=\partial C-\partial u$ . Since $F$ is incompressible in
both $B-t$ and $C-u$, so is it in $S^{8}-L$ . After adjusting by an isotopy,
we may assume that $T$ is transverse to $F$ and chosen to minimize
$|F\cap T|$ . Since $S^{s}-L$ is irreducible and both $F$ and $T$ are incompressible
in $S^{8}-L$ , each component of $F\cap T$ is essential (i.e., not null-homotopic)

in both $F$ and $T$. We suppose that $|F\cap T|\neq 0$ . Then $T_{P\cap T}$ consists of
$n(\geqq 2)$ annuli $A_{1},$

$\cdots,$
$A_{n}$ . We may assume that $A_{1}\subset B-t$ . Then $\partial B_{\partial A_{1}}$

consists of two disks $D_{1},$ $D_{2}$ and an annulus $E$. Since $\partial A_{\iota}$ is essential
in $F$, we have $ D\cap t\neq\emptyset$ .

First we show that $ E\cap t=\emptyset$ . If $ E\cap t\neq\emptyset$ , we have $\#(E\cap t)\geqq 1$ .
Since $\#(\partial B\cap t)=4$ , either $\#(D_{1}\cap t)=1$ or $\#(D_{2}\cap t)=1$ . We may assume that
$\#(D_{1}\cap t)=1$ . Let $l_{1}$ be an inner most loop of $F\cap T\cap D_{1}$ in $D_{1}$ . Hence $l_{1}$

bounds a disk $D$: in $D_{1}$ such that $\#(D_{1}^{\prime}\cap t)=1$ and $D_{1}^{\prime}\cap T=l_{1}$ . Then it is
easy to show that $L$ is a composite link (see [6, \S 14, Satz 1] when $L$

is a knot). This contradicts that $L$ is prime (see [2, Theorem 1]).

Therefore we have $ E\cap t=\emptyset$ . Hence $T_{1}=EUA_{1}$ is a torus embedded in
$B-t$ . Then $T_{1}$ bounds a compact 3-manifold $G$ in $B-t$ . Since $(B, t)$ is
simple, $T_{1}$ is compressible in $B-t$ . Let $D_{0}$ be a compressing disk for $T_{1}$ in
$B-t$ . Then $T_{1}$ bounds a solid torus $V$ in $S^{8}$ with a meridian disk $D_{0}$ .

We suppose that $V=G$ . Since $\partial D_{1}$ and $\partial D_{2}$ are meridians of a solid
torus $S^{8}$ -int $G$ , we may assume that $\partial D_{0}\cap\partial D$ (for $i=1,2$) is a single
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point, that is, $\partial D_{1},$ $\partial D_{2}$ are ’longitudes’ of $V$. Hence $A_{1}$ is isotopic to $E$

rel $\partial A_{1}$ in $V$. Therefore we can modify $T$ in a small neighborhood of $V$

in $S^{8}-L$ to contradict our minimality assumption
Hence we have $V=S^{B}$ -int $G$ . Since $D_{0},$ $D_{1}$ are meridian disks of

$V,$ $\partial D_{1}$ is homotopic to $\partial D_{0}$ in $T_{1}$ , so II it in $S^{8}-L$ . Since $D_{0}\cap L=\emptyset,$ $\partial D$

is contractible in $S^{\theta}-L$ . Therefore $T$ is compressible in $S^{8}-L$ a $con$
;

tradiction. Hence we have $ F\cap T=\emptyset$ . Since $(B, t)$ is simple, $T$ is contained
in $C-u$ . This completes the proof. $\square $

The following theorem is straightforward from Lemma 2.

THEOREM 1. Let $(A, t)$ and $(B, u)$ be simple tangles and $ h:(\partial A, \partial t)\rightarrow$

$(\partial B, \partial u)$ a homeomorphism. We set $(S^{s}, L)=(A, t)\bigcup_{h}(B, u)$ . Then $L$ isa simple link in $S^{8}$ .
\S 2. Examples of simple tangles.

In this section, we give some examples of simple tangles. Let $\tau$

be a simplicial l-subcomplex of a 8-ball $B$. Then we say $ C=B-\partial B\cup\tau$
$\tau$

is the open complement of $\tau$ in $B$.
We prove the following lemma which we use to prove Theorem 3in \S 3.

LEMMA 3. A tangle $(B, t_{1}\cup t_{2})$ of Figure 1 is simple.

FIGURE 1

PROOF. First we note that $(B, t_{1}\cup t_{2})$ is prime (see [1, Lemma 2.1]).
Let $C$ be the open complement of $t_{1}\cup t_{2}$ in $B$. Let $D$ be a 2-disk in $B$

shown in Figure 1 such that $D\cap t_{1}=t_{1},$ $D\cap t_{2}$ consists of two points $p_{1},$ $p_{2}$

and $\partial D=t_{1}\cup(D\cap\partial B)$ . We set $F=D-\{p_{1}, p_{2}\}$ .
We show that $F$ is incompressible in $C$. If not, there is a $compre8sIng$

disk $\Delta_{1}$ for $F$ in $C$. Obviously $\partial\Delta_{1}$ bounds a 2-disk $\Delta_{2}$ in $D$ such that
$\Delta_{2}\cap t_{2}=\{p_{1}, p_{2}\}$ . Then $N=N$($DUA_{1}$ -int $\Delta_{2},$ $B-t_{2}$) is a 3-ball in $B$ such
that $t_{1}\subset N$ and $ t_{2}\cap N=\emptyset$ . Hence $\overline{(\partial N-\partial N\cap\partial B)}$ is a 2-disk in $B$ which
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separates $t_{1}$ and $t_{l}$ . This contradicts that $(B, t_{1}\cup t_{2})$ is prime.
Next we show that $C-D\cap C$ is homotopy equivalent to $S^{1}\vee S^{1}\vee S^{1}$ .

It is easily checked that $C-D\cap C$ is homeomorphic to the open comple-
ments $C_{\tau_{1}},$ $C_{\tau_{2}}$ of l-subcomplexies $\tau_{1},$ $\tau_{2}$ in $B$ shown in Figure 2. And
obviously $C_{\tau_{2}}$ is homotopy equivalent to $S^{1}\vee S^{1}\vee S^{1}$ .

FIGURE 2

Now we suppose that there exists an incompressible torus $T$ in $C$.
After adjusting by an isotopy, we may assume that $T$ is transverse to
$F$ and chosen to minimize $|F\cap T|$ . Then each component of $F\cap T$ is
essential in both $F$ and $T$.

If $|F\cap T|=0$ , then $T$ is contained in $C-D\cap C$. Since $T$ is incom-
pressible in $C$, so is it in $C-D\cap C$. Hence the homomorphism $\pi_{1}T\approx Z\times Z\rightarrow$

$\pi_{1}(C-D\cap C)\approx Z*Z*Z$ induced by the inclusion is injective. This con-
tradicts that any non-trivial subgroup of a free group is also free (see

[3, p. 95, Corollary 2.9]). Therefore we have $|F\cap T|\neq 0$ .
Let $l$ be an inner most loop of $F\cap T$ in $D$ . By Lemma 1, $l$ boundI

a disk $D_{0}$ in $D$ such that $D_{0}\cap t_{2}=\{p_{1}, p_{2}\}$ . Hence all components of $F\cap T$

are mutually parallel in $F$. Note that $T_{F\cap T}$ consists of $n(\geqq 2)$ annuli.
Let $l_{0}$ be a loop shown in Figure 3. Since $H_{1}(B;Z)=0$ , we have $[l_{0}]\cdot[T]=$

FIGURE 3

$0$ . Therefore there is a component $A$ of $T_{P\cap T}$ such that $\partial A$ bounds an
annulus $E$ in $F$ and such that, after adjusting by an isotopy in $C$, one can
assume that torus $T_{0}=A\cup E$ has no intersection with $D$ and bounds a
compact 3-manifold $G$ in $C-D\cap G$ (see Figure $4(a)$). By the argument
above, $T_{0}$ is compressible in $C-D\cap C$ . Similarly in Lemma 2, modifying
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$T$ by an isotopy in a small neighborhood of $G$, we can reduce the number
$|F\cap T|$ (see Figure $4(b)$). This contradicts our minimality assumption.
Hence $(B, t_{1}Ut_{2})$ must be simple. This completes the proof. $\square $

Cross sections

(a) (b)
FIGURE 4

FIGURE 5
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Lickorish [2, \S 2] showed that seven tangles of Figure 5 are prime.
Let $(A, t_{1})$ be a tangle and $D_{1}$ a 2-disk shown in (i). Then $A-t_{1}\cup D_{1}$

is homotopy equivalent to $S^{1}\vee S^{1}$ . The argument similar to that in Lemma
3 shows that $(A, t_{1})$ is simple.

Let $(A, t_{2})$ be a tangle shown in (ii). Since there exists an incom-
pressible torus $T$ in $A-t_{2}$ , tangle (ii) is not simple.

Let $(A, t_{\dot{J}})$ be a tangle and $D_{j}$ a 2-disk, where $j=3,4,5$ or7. Since
$A-t_{j}\cup D_{j}$ is homotopy equivalent to $S^{1}S^{1}\vee S^{1},$ $(A, t_{j})$ is simple.

Let $(A, t_{6})$ be a tangle and $D_{t}$ a 2-disk shown in (vi). Then $ A-t_{0}\cup$

$D_{6}\cup\partial A$ is homeomorphic to the open complement $C_{1}$ of tangle (i). Hence
tangle (vi) is simple.

Every example $(A, t)$ which we have given has a property that at
least one component of $t$ is unknotted in $A$ . The following theorem
makes us possible to construct an example of a tangle $(A, t)$ such that
each component of $t$ is knotted in $A$ .

THEOREM 2. Let $(C, v)$ be a tangle and $D$ a 2-disk properly embedded
in Cthat separates $(C, v)$ into two tangles $(A, t)$ and $(B, u)$ . If $(A, t)$ is
simple or untangle, $(B, u)$ is simple and $D-v\cap D$ is incompressible in
$A-t$ , then $(C, v)$ is simple.

PROOF. The argument similar to that of [2, Theorem 2] implies that
$(C, v)$ is prime. Since $D-v\cap D$ is incompressible in $C-v$ , one can prove
that $(C, v)$ is simple as Lemmas 2 and 8 above.

By Theorem 2, a tangle $(C, v)$ of Figure 6 is simple and each com-
ponent of $v$ is knotted in $C$.

FIGURE 6

\S 3. Simple links and Alexander invariants.

In this section we prove the following theorem.
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THEOREM 3. A link in $S^{s}$ is concordant to a simple link with the
same Alexander invariant.

PROOF. Let $L$ be a link in $S^{a}$ . By Nakanishi [5, p. 567, Theorem],
we may assume that $L$ is prime. Let $\infty eS^{8}$ be a point such that
$\infty\cap L=\emptyset$ , and let $\infty\prime eS^{\epsilon}$ . Let $\pi:S^{s}-\infty\rightarrow S^{2}-\infty$ be a projection such
that $\pi/L$ is an embedding up to finite double crossing points $p_{1},$ $\cdots,$ $p_{n}$

in $ S^{2}-\infty$ ($i.e.,$ $\pi$ is a regular projection). Moreover we suppose that
$\pi$ satisfies the following properties.

(i) For each crossing point $p_{i}$ , there is a 3-ball $B_{i}$ in $ S^{8}-\infty$ such
that $(B_{i}, B\cap L)$ is a (2-string) trivial tangle and $ B\cap B_{j}=\emptyset$ for $i,$ $j$ ,
$i\neq j$ .

(ii) $D_{i}=\pi(B)$ is a regular neighborhood of $p_{i}$ in $ S^{2}-\infty$ ’ such that
$ D\cap D_{\dot{f}}=\emptyset$ for $i,$ $j,$ $i\neq j$ , and $\pi(L)\cap D$ consists of two proper arcs in
$D$ which intersect each other in one point $p$ .

(iii) Of all projections which have the properties (i), (ii), $\pi$ has the
minimal number of the crossing point of $\pi/L$ .

We set $M=S^{s}$ -int $(B_{1}\cup\cdots\cup B_{n})$ and $F=S^{2}$ -int $(D_{1}\cup\cdots\cup D_{n})$ . Let
$i:F\rightarrow M$ be the natural inclusion such that $ i(\infty)=\infty$ and $i(\pi(L)\cap F)=$

$L\cap M$. We identify $F$ and $i(F)$ . We set $E=B-L\cap B$ and $G=D-$
$\pi(L)\cap D$ . Hence $\partial E_{i}=\partial B_{i}-$ {$four$ points} and $\partial G_{i}=\partial D_{i}-$ {$four$ points}.

(3.1) Let $l$ be a simple loop in $F$ such that $l$ meets $\pi(L)$ transversely
in two points. Since $L$ is prime, the property (iii) of $\pi$ implies that $l$

bounds a 2-disk $D$ in $S^{2}$ such that $D\cap(D_{1}\cup\cdots\cup D_{n})=\emptyset,$ $i.e.,$ $D\subset F$. Then,
obviously, $D\cap\pi(L)$ is an arc.

(3.2) Similarly, for any proper arc $\alpha$ in $F-\pi(L)\cap F$ such that
$\partial\alpha\subset\partial G_{i}$ , there is an arc $\alpha_{0}\subset\partial G_{i}$ such that $\partial\alpha_{0}=\partial\alpha$ and a loop $\alpha_{0}Ua$

bounds a 2-disk in $F-\pi(L)\cap F$.
First we show that $\partial E_{i}$ is incompressible in $M-L\cap M$. If not, there

i8 a compressible disk $D$ for $\partial E_{i}$ in $M-L\cap M$. Then $\partial D$ bounds two 2-
disks $\Delta_{1},$ $\Delta_{2}$ in $\partial B_{i}$ such that $\Delta_{1}\cap\Delta_{2}=\partial D$ and $\#(\Delta_{1}\cap L)=\#(\Delta_{2}\cap L)=2$ . We
may assume that $D$ is transverse to $F$ and has the minimal $|D\cap F|$ of
all 2-disks which are properly isotopic to $D$ in $M-L\cap M$. Now we sup-
pose that $|D\cap F|\neq 0$ . Then $D\cap F$ consists of proper arcs in $F-\pi(L)\cap F$

whose boundaries are contained in $\partial G_{i}$ . By (3.2), for each component
of $D\cap F$, there is an arc in $\partial G_{i}$ such that the union of these two arcs
is a loop which bounds a 2-disk in $F-\pi(L)\cap F$. Let $D_{0}$ be inner most
one of such 2-disks. Then $D_{0}\cap D$ is a proper arc in $D$ . By doing surgery
on $D$ along $D_{0}$ , we obtain two 2-disks $D_{1},$ $D_{2}$ such that $D_{;}\subset M-L\cap M$ and
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$\partial D_{\dot{J}}\subset\partial E$ for $j=1,2$ . We may assume that $\Delta_{1}\supset\partial D_{1}\cup\partial D_{2}$ , that is, an arc
$D_{0}\cap\partial B$ separates $A_{1}$ into two 2-disks $\Delta_{11},$ $\Delta_{12}$ such that $\partial\Delta_{11}=\partial D_{1},$ $\partial\Delta_{12}=$

$\partial D_{2}$ . Since $\#(\Delta_{1j}\cap L)\neq 1$ , we may assume that $\#(\Delta_{11}\cap L)=0$ and $\#(\Delta_{12}\cap L)=$

2. Since $M-L\cap M$ is irreducible, 2-sphere $D_{1}\cup\Delta_{11}$ bounds a 3-ball $B$ in
$M-L\cap M$. Then one can modify $D$ by a proper isotopy in a small
neighborhood of $B$ to contradict our minimality assumption. Therefore
we have $|D\cap F|=0$ . Then $\partial D$ is contained in $\partial E_{i}-\partial E_{i}\cap F(\cong$ two open
hemispheres). Hence $\partial D$ bounds a 2-disk in $\partial E_{:}-\partial E_{i}\cap F\subset\partial E_{i}$ . This
contradicts that $D$ is a compressing disk for $\partial E_{i}$ . Therefore $\partial E_{i}$ must
be incompressible in $M-L\cap M$.

Let $L_{0}$ be a link obtained from $(S^{8}, L)$ by removing trivial tangles
$(B_{i}, B_{i}\cap L)$ and sewing back new tangles $(B_{i}, t_{i})$ which are $n$ copies of
the tangle of Figure 1. By [5, Lemma 3], $L$ is concordant to $L_{0}$ and
they have the same Alexander invariant. Since, for each $i,$ $\partial E_{i}$ is in-
compressible in both $B_{i}-t$ and $M-L\cap M$, so is it in $S^{s}-L_{0}$ .

ASSERTION 1. $L_{0}$ is prime.

$PR\infty F$ . Let $S$ be a 2-sphere in $S^{s}$ such that $S$ meets $L_{0}$ transversely
in two points. We may assume that $S$ is transverse to $\bigcup_{i=1}^{n}\partial E_{i}$ and has
the minimal $|S\cap(\cup^{*}=1\partial E_{i})|$ of all 2-spheres $S^{j}$ in $S^{8}$ such that $(S^{\prime}, S^{\prime}\cap L_{0})$

is isotopic to $(S, S\cap L_{0})$ in $(S^{s}, L_{0})$ . Since both $\partial E_{i}$ and $S-L_{0}\cap S$ are
incompressible in $S^{s}-L_{0}$ , each component of $S\cap(\bigcup_{i=1}^{n}\partial E_{i})$ is essential in
both $\partial E_{i}$ and $S-L_{0}\cap S$.

If $|S\cap(\bigcup_{i=1}^{n}E_{i})|\neq 0$ , then there is an inner most loop $l$ of $S\cap(\cup^{n}=1\partial E_{i})$

in $S$. Then $l$ bounds a 2-disk $D$ in $S$ such that $D\cap(\bigcup_{i=1}^{n}\partial E_{i})=l$ and
$D\cap L_{0}$ is a single point. We may assume that $l\subset\partial E_{1}$ . By the primeness
of $(B_{1}, t_{1})$ and the minimality of $|S\cap(\bigcup_{i=1}^{n}\partial E_{i})|$ , we have $D\subset M$. If $l$

bounds a 2-disk $D_{1}$ in $\partial B_{1}$ such that $\#(D_{1}\cap L_{0})=2$ , 2-sphere $S_{1}=D\cup D_{1}$

meets $L_{0}$ transversely in three points. This contradicts that $S_{1}$ separates
$S^{s}$ into two 3-balls. Hence $l$ bounds a 2-disk $D_{2}$ in $\partial B_{1}$ such that
$\#(D_{2}\cap L_{0})=1$ . We set $S_{2}=D\cup D_{2}$ . Then we may assume that $S_{2}\cap F$ is
a simple loop $l_{0}$ such that $\#(l_{0}\cap L_{0})=2$ . By (3.1), $l_{0}$ bounds a 2-disk $D_{s}$

in $F$ such that $D_{8}\cap L_{0}$ is an arc. Then $S_{2}$ bounds a 3-ball $B$ in $M$ such
that $(D_{s}, \partial D_{s})\subset(B, \partial B)$ . Then one can modify $(S, S\cap L_{0})$ by an isotopy in
a small neighborhood of $(B, B\cap L_{0})$ to contradict our minimality assump $\cdot$

tion. Hence we have $|S\cap(\cup^{n}=1\partial E)|=0$ , i.e., either $S\subset M$ or $S\subset B_{i}$ for
some $i$ . By (3.1) and the primeness of $(B_{i}, t),$ $S$ bounds a 3-ball $B$ in $S^{8}$

such that $B\cap L_{0}$ is an unknotted arc in $B$. Therefore $L_{0}$ is prime. $\square $

ASSERTION 2. $L_{0}$ is simple.
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PROOF. We suppose that there exists an incompressible torus $T$ in
int $E(L_{0})$ which is not boundary-parallel in $E(L_{0})$ . Since $L_{0}$ is prime and
$(B_{t}, t_{i})$ is simple (Lemma 3), after modifying $T$ by an isotopy in $S^{s}-L_{0}$ ,
we may assume $T\subset M-L_{0}\cap M$ by the argument similar to that in Lemma
2. Since $\pi_{1}(M-L_{0}\cap M)$ is a free group, $T$ is compressible in $M-L_{0}\cap M$,
so is in $S^{s}-L_{0}$ , a contradiction. Hence $L_{0}$ is simple. This completes the
proof of Theorem 3. $\square $
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