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Introduction

In this paper we study functions which operate on a Banach space
which is the real part of a Banach function algebra. We say that $A$ is
a Banach function algebra if $A$ is a Banach algebra lying in $C(X)$ , the
algebra of all complex-valued continuous functions on a compact Hausdorff
space $X$ which separates the points of $X$ and contains constant functions.
The history of this problem probably begins with J. Wermer’s paper [8]
in which he proved that the real part of a non-trivial function algebra
is not closed under multiplication. ${\rm Re} A=\{u\in C_{R}(X):\exists f\in A, {\rm Re} f=u\}$ ,
the space of the real part of a Banach function algebra $A$ with the
norm $N(\cdot)$ on a compact Hausdorff space $X$, is complete with the norm
$N_{R}(\cdot)$ defined as follows. For each $u$ in ${\rm Re} A$

$N_{R}(u)=\inf\{N(f):f\in A, {\rm Re} f=u\}$ .
Suppose that $h$ is a real-valued continuous function on a non-degenerate

interval $I$, we say that $h$ operates by composition on ReA if $h\circ u$ is in
${\rm Re} A$ whenever $u\in{\rm Re} A$ has range in $I$. J. Wermer’s theorem is made
a change in the wording that $t\mapsto t^{2}$ does not operate by composition on
the real part of a non-trivial function algebra. Obviously each affine
function has such a property for any Banach function algebra. It is
natural to consider whether this result may be extended to any Banach
function algebra. However, we easily find many counter examples for
which the question does not hold, $e.g.$ ,

$C^{(n)}[0,1],$ $A(\Gamma)=\{f\in C(\Gamma):\sum_{-\infty}^{\infty}|\hat{f}(n)|<\infty\}$ ,

where $\Gamma$ is the unit circle in the complex plane and $\hat{f}(n)$ is the n-th
Fourier coefficient, and so on.
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\S 1. Ultraseparability.

One of our objective is to find conditions under which the result
holds good. For the case of a function algebra it is shown inductively
by J. Wermer’s theorem that any polynomial of degree more than 1 does
not operate by composition on the real parts of a non-trivial function
algebra. But because of difference between uniform norm and $N_{R}(\cdot)$ on
${\rm Re}$ $A$ it is not clear in the context that any nonaffine continuous function
does not operate by composition on the real part of a non-trivial function
algebra.

Boundedness condition for $h$ induced by A. Bernard [2] has an effect
to attack the problem. We say that $h$ operates boundedly on ${\rm Re}$ $A$ if there
exist an $\epsilon>0$ and a $\delta>0$ such that $ N_{R}(h\circ u)<\epsilon$ for every $u$ in ${\rm Re}$ $A$ with
$ N_{R}(u)<\delta$ . S. J. Sidney [7] and $0$ . Hatori [5] proved the problem for the
case of a function algebra by applying weak boundedness principles in
a suitable sense. We study in this paper more general case through
some kind of boundedness principle for $h$ .

Suppose that $E$ is a (real or complex) Banach space with the norm
$N(\cdot)$ . We define $l^{\infty}(N, E)$ the space of all bounded sequences in $E$ and
the norm $\tilde{N}(\cdot)$ on $l^{\infty}(N, E)$ by $\tilde{N}(\hat{f})=\sup\{N(f_{n}):\tilde{f}=(f_{n})\}$ . Then $l^{\infty}(N, E)$

is a Banach space with the norm $\tilde{N}(\cdot)$ and we denote $\tilde{E}=l^{\infty}(N, E)$ in
this paper. If $A$ is a Banach algebra we also define a Banach algebra
$\tilde{A}$ by the same way as above.

We say that $E$ is a Banach function space on $X$ if $E$ is a (real or
complex) Banach space of (real or complex) continuous functions on a
compact Hausdorff space $X$ whose norm $N(\cdot)$ dominates the supremum
norm $||\cdot||_{X}$ and $E$ separates the points of $X$ and contains 1. Let $B$ be a
Banach function space (algebra) with the norm $N(\cdot)$ on $X$, and let $K$ be a
compact subset of $X$. We denote $B|K=\{f\in C(K):\exists F\in B, F|K=f\}$ where
$F|K$ is the restriction of $F$ to $K$ and $N^{K}(f)=\inf\{N(F):F|K=f, F\in B\}$ ,
then $B|K$ is a Banach function space (algebra) with respect to the norm
$N^{K}(\cdot)$ . Let $E$ be a Banach space (algebra) lying in $C(X)$ we naturally
identify $\tilde{E}$ a Banach space (algebra) lying in $C(\tilde{X})$ where $\tilde{X}=\beta(N\times X)$

is the $Stone-\check{C}ech$ compactification of the product space $N\times X$ of the
discrete space of the positive integers and $X$ (it is noted that it is in
rare cases that the space $\beta(N\times X)$ is naturally homeomorphic to the
direct product of $N$ and $X[4]$). Obviously $\tilde{E}$ contains constants but $\tilde{E}$

may not separate the points of $\tilde{X}$. We say that a Banach function
space (algebra) $E$ is ultraseparating on $X$ if $\tilde{E}$ separates the points of
$\tilde{X}$. Suppose that $A$ is a Dirichlet algebra on $X$, that is, $A$ is a function
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algebra such that ${\rm Re} A$ is uniformly dense in $C_{R}(X)$ , then $A$ is ultra-
separating on $X$. In general ultraseparability of a Banach function
algebra does not depend on uniform density of the real part in $C_{R}(X)$ .
Suppose that $A$ is a Banach function space (algebra) and that $Y$ is a
compact subset of $X$, then $(A|Y)^{\sim}=\tilde{A}|\tilde{Y}$ and $({\rm Re} A)^{\sim}={\rm Re}\tilde{A}$ . If $A$ is a
ultraseparating Banach function space (algebra), then $A|Y$ and ${\rm Re}$ $A$ are
also $ultraseparating\sim[2]$ . If $A$ is a ultraseparating Banach function algebra
then $A$ is also ultraseparating [1]. Suppose that $X_{1}$ and $X_{2}$ are compact
subsets of $X$, then $X_{1}\cup\tilde{X}_{2}=(X_{1}\cup X_{2})^{\sim}$ (for a characterization of ultra-
separability for Banach function algebras, see [1]).

S. J. Sidney [7] showed that $A=C(X)$ if $A$ is a ultraseparating
Banach function algebra such that a “highly nonaffine” function operates
by composition on ${\rm Re} A$ .

Throughout this paper $\Vert\cdot\Vert_{Y}$ is the uniform norm on $C(Y)$ , the space
of all complex-valued bounded continuous functions on a topological space
Y. For a subset $E$ of $C(Y),$ $c1(E)$ is the uniform closure of $E$ in $C(Y)$ .
For $f\in C(Y),\overline{f}$ denotes the element $(f, f, f, \cdots)$ of $C(\tilde{Y})$ if $Y$ is a compact
Hausdorff space.

\S 2. The main results.

THEOREM. Suppose that $A$ is a ultraseparating Banach function
algebra on a compact Hausdorff space $X$ and that $h$ is a nonaffine con-
tinuous function on an interval. If $h$ operates by composition on ${\rm Re} A$ ,
then $A=C(X)$ .

COROLLARY 1. Suppose that $A$ is a ultraseparating Banach function
algebra, especially a Dirichlet algebra, on a compact Hausdorf space $X$.
Then for each compact subset of $K$ either of the following are satisfied.

1) $A|K=C(K)$ .
2) Only affine functions operate by composition on ${\rm Re} A|K$.
PROOF. For each compact subset of $K,$ $A|K$ is a ultraseparating

Banach function algebra on $K$ Thus the conclusion follows from Theorem.

COROLLARY 2 ([5], [7]). Suppose that $A$ is a function algebra on $X$

and $h$ satisfies the same conditions as Theorem. If $h$ operates by com-
position on ${\rm Re} A$ , then $A=C(X)$ .

PROOF. If $h$ operates by composition on ${\rm Re} A$ , then ${\rm Re}$ $A$ is uniformly
dense in $C_{R}(X)$ , that is $A$ is a Dirichlet algebra on $X$ by a theorem of
de Leeuw and Katznelson [3]. Thus $A$ is ultraseparating on $X$, so $A=$
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$C(X)$ . In order to prove Theorem we show the following Lemma.

LEMMA. Suppose that $F$ is a Banach space with the norm $N(\cdot)$ that
is continuously embeded in $C_{R}(K)$ with norm 1 and that $F$ separates the
$po$ints of a compact Hausdorf space $K$ and that $F$ contains at least one
positive function on $K$ and that $h$ is a nonaffine real valued continuous
function on an interval $[a, b]$ such that $c$ is a point of which $h$ is
nonaffine on any open neighborhood. Let $V=\{\tilde{u}\in C_{R}(\tilde{K}):\forall v\sim\in\tilde{F}, v\tilde{u}\sim\in c1(ff)\}$

and $V^{\prime}$ be a subalgebra of V. Suppose that there is a $u_{F}$ in $F$ such that
$ a+\gamma<u_{F}<b-\gamma$ on $K$ for a small $\gamma>0$ and put $J=\{u+u_{F}:u\in F, N(u)<\gamma\}$ .
Suppose that for any diferent $\tilde{x}$ and $\tilde{y}$ in $\tilde{K}$ one of the following condition
is satisfied.

1) There exists a $\tilde{u}\in\tilde{F}$ with $\tilde{N}(\tilde{u})<\gamma$ such that $\tilde{u}(\tilde{x})=0,\tilde{u}(\tilde{y})\neq 0$ and
$(\tilde{u}+\overline{u}_{F})(\tilde{y})=c$ .

2) $V^{\prime}$ separates $\tilde{x}$ and $\tilde{y}$ .
If $h$ operates boundedly on a dense subset of $J$ with respect to the topology
induced by $N(\cdot)$ , then $F=C_{R}(K)$ .

PROOF. Let $g$ be a positive function on $F$. For sufficiently small $\delta$

let $\lambda_{\delta}$ be a non-negative continuously differentiable function on $R$ sup-
ported in $(-\delta, \delta)$ with integral 1. Let $H_{\delta}(x, y)$ denote

$H_{\delta}(x, y)=\int h(x-yt)\lambda_{\iota}dt$ .
Since $h$ is defined on $[a, b]$ we define $H_{\delta}(x, y)$ on $\{(x, y)\in R^{2}:a+\delta||g\Vert_{K}\leqq$

$x\leqq b-\delta\Vert g\Vert_{K},$ $|y|\leqq||g\Vert_{K}$ }. Let $S=\{(x, y)\in R^{2}:a<x<b, 0<y<||g||_{K}\}$ . $H_{f}(x, y)$

is continuously differentiable and converges uniformly to $h(x)$ on any
compact subset of $S$ as $\delta$ tends to $0$ . $V$ is a uniformly closed subalgebra
of $C_{R}(\tilde{K})$ and $Vv\sim=\{\tilde{u}v:\tilde{u}\sim\in V\}$ is in $c1(\tilde{F})$ for each $ v\sim$ in $c1(\tilde{F})$ . Let $d(J)$

be a dense subset of $J$ on which $h$ operates boundedly. For any $\tilde{u}=(u_{n})$

in $\tilde{J}=\{\tilde{u}:\tilde{u}=(u_{n}), u_{n}\in J\}$ we have $h\circ\tilde{u}$ is in $c1(\tilde{F})$ . For if $u_{n}$ is in $d(J)$

for every $n$ , then $\{h\circ u_{n}\}$ is bounded sequence by the boundedness con-
dition for $h$ we have $(h\circ u_{n})=h\circ\tilde{u}$ is in $\tilde{F}$ so in $c1(\tilde{F})$ . In general for
every $\tilde{u}=(u_{n})$ in $\tilde{J}$ and for any $\epsilon>0$ there exists a $u_{n(\epsilon)}$ in $d(J)$ such
that $ N(u_{n}-u_{n(\epsilon)})<\epsilon$ so $||u_{n}-u_{nt*)}||_{K}<\epsilon$ and $h\circ(u_{n(*)})$ is in $\tilde{F}$, then by the
uniform continuity of $h,$ $||h\circ\tilde{u}-h\circ(u_{n(*)})||_{\tilde{K}}$ tends to $0$ as $\epsilon$ tends to $0$ . So
we have $h\circ\tilde{u}$ is in $c1(\tilde{F})$ . Thus for every $\tilde{u}$ in $J$ such that $a<\tilde{u}<b$ and
for a small $th\circ(\tilde{u}-\overline{g}t)$ is in $c1(\tilde{F})$ . So $H_{\delta}(\tilde{u},\overline{g})$ is in $c1(\tilde{F})$ for a small $\delta$ .
Similarly $H,(\tilde{u}+\Delta v\sim, ff)$ is in $c1(\tilde{F})$ for a small $\delta$ and a small $\Delta$ and a $ v\sim$

in $c1(\tilde{F})$ . Since $\{(H_{\delta}(\tilde{u}+\Delta v\sim,\overline{g})-H_{\delta}(\tilde{u},\overline{g})\}/\Delta$ tends to $(\partial/\partial x)H_{\delta}(\tilde{u},\overline{g})v\sim$ as $\Delta$

tends to $0,$ $(\partial/\partial x)H_{\delta}(\tilde{u},\overline{g})\tilde{v}$ is in $c1(\tilde{F})$ for a $ v\sim$ in cl(fi) and a small $\delta$ .



BANACH FUNCTION ALGEBRA 427

Let $\tilde{x}$ and $\tilde{y}$ be in $\tilde{K}$ and 2) is not satisfied. Then there exists a $\tilde{u}$ in
$\tilde{F}$ with $\tilde{N}(\tilde{u})<\gamma$ such that $\tilde{u}(\tilde{x})=0$ and $\tilde{u}(\tilde{y})\neq 0$ and $(\tilde{u}+\overline{u}_{F})(\tilde{y})=c$ . We
shall find $\tilde{w}$ in $\tilde{J}$ and a small $\delta$ such that $(\partial/\partial x)H_{\delta}(\tilde{w},\overline{g})(\tilde{x})\neq(\partial/\partial x)H_{\delta}(\tilde{w},\overline{g})(\tilde{y})$ .
If $(\partial/\partial x)H_{\delta}(\tilde{u}+\overline{u}_{F},\overline{g})(\tilde{x})\neq(\partial/\partial x)H_{f}(\tilde{u}+\overline{u}_{F},\overline{g})(\tilde{y})$ , put $\tilde{w}=\tilde{u}+\overline{u}_{F}$ . Suppose that
$(\partial/\partial x)H_{\delta}(\tilde{u}+\overline{u}_{F},\overline{g})(\tilde{x})=(\partial/\partial x)H_{\delta}(\tilde{u}+\overline{u}_{F},\overline{g})(\tilde{y})$ . For any open neighborhood
$\theta$ of $(\tilde{u}+\overline{u}_{F})(\tilde{y})$ , there exists a smalI $\delta^{\prime}$ such that $t\mapsto H_{\delta^{\prime}}(t,\overline{g}(\tilde{y}))$ is not
collinear on $\theta$ . So we can choose a small $s$ and a small $\delta^{\prime}$ such that
$(1+\alpha)\tilde{u}\in\tilde{F}$ with $\tilde{N}(\tilde{u})<\gamma/(1+\alpha)$ for $\alpha=s/\tilde{u}(\tilde{y})$ and $(\partial/\partial x)H_{\delta^{\prime}}(\tilde{u}+\overline{u}_{F},\overline{g})(\tilde{y})\neq$

$(\partial/\partial x)H_{\delta},(\tilde{u}+\overline{u}_{F}+s,\overline{g})(\tilde{y})$ . Thus $(\partial/\partial x)H_{\delta}(\tilde{w},\overline{g})(\tilde{x})\neq(\partial/\partial x)H_{\delta^{\prime}}(\tilde{w},\overline{g})(\tilde{y})$ for $\tilde{w}=$

$(1+\alpha)\tilde{u}+\overline{u}_{F}$ . In either case we can choose $\tilde{w}$ in 7 and a $\delta>0$ such that
$(\partial/\partial x)H_{\delta}(\tilde{w},\overline{g})(\tilde{x})\neq(\partial/\partial x)H_{\delta}(\tilde{w},\overline{g})(\tilde{y})$ . Thus for all different $\tilde{x}$ and $\tilde{y}$ in $\tilde{K}$

there exists a $ v\sim$ in $V$ or $V^{\prime}$ which separates $\tilde{x}$ and $\tilde{y}$ and infact $V$ con.
tains $V^{\prime}$ so $V$ separates the points of $\tilde{K}$ and $V$ contains 1 so $V=C_{R}(K)$ .
Let $V\overline{g}=\{v\overline{g}:v\in V\}$ . By the definition of $V,$ $V\overline{g}\subset c1(\tilde{F})$ . So $C_{R}(\tilde{K})\overline{g}=$

$\{v\overline{g}:v\in C_{R}(\tilde{K})\}\subset c1(\tilde{F})$ . Thus $C_{R}(\tilde{K})=c1(\tilde{F})$ since $\overline{g}>0$ on $\tilde{K}$.

\S 3. Proof of Theorem.

Without loss of generality we may assume that the domain of $h$ is
the interval [-1, 1] and $h$ is not affine on any open neighborhood of $0$ .
For any $x$ in $X$ we will choose a compact neighborhood which is also an
interpolation set for $A$ . Then by compactness of $X$ there exist $x_{1},$ $x_{2}$ ,

$x_{n}$ in $X$ and subsets $Y_{1},$ $Y_{2},$
$\cdots,$

$Y_{n}$ of $X$ such that $X=\bigcup_{i}Y_{i}$ and for
each $i=1,2,$ $\cdots,$ $n,$ $Y_{i}$ is a compact neighborhood of $x_{i}$ which is also an
interpolation set for $A$ . Then $\tilde{X}=\bigcup_{i}\tilde{Y}_{i}$ and $\tilde{A}|\tilde{Y}_{i}=C(\tilde{Y}_{l})$ so $\tilde{A}$ is uniformly
dense in $C(\tilde{X})$ . Thus $A=C(X)$ by Bernard’s lemma [2; Lemma 4.5].

Let $x_{0}$ be a fixed point in $X$. We construct a desired compact neigh-
borhood $Y$ of $x_{0}$ as follows. Let $B_{0}=\{u\in{\rm Re} A:u(x_{0})=0, -1\leqq u\leqq 1\}$ , then
$B_{0}$ is nonempty and closed with respect to the norm $N_{R}(\cdot)$ . For every
positive integer $n$ we denote $B_{n}=\{u\in B_{0}:N_{R}(h\circ u)<n\}$ . Then $B_{0}=\bigcup_{n}B_{n}$

and for some number $mB_{m}$ , the closure in $B_{0}$ , contains an open set by
the Baire category theorem. Thus there are a $u_{0}$ in $B_{m}$ and a 8mall
$\epsilon>0$ such that $|u_{0}|<1-\epsilon$ and $U=\{u\in B_{0}:N_{R}(u-u_{0})<\epsilon\}$ is contained in
$B_{m}$ . $(\tilde{A})^{\sim}$ is ultraseparating since $A$ is ultraseparating [1]. Suppose that
$\sigma(x, y)=\sup\{|f(x)|:f\in A, f(y)=0, N(f)\leqq 1\}$ for $x$ and $y$ in $(\tilde{X})^{\sim}$ . Then
$2M=\inf\{\sigma(x, y):x, y\in(\tilde{X})^{\sim}, x\neq y\}$ is greater than $0$ (see [1]). Let $\epsilon^{\prime}=$

$(\epsilon M^{2})/9$ and $Y=\{y\in X:|u_{0}(y)|\leqq\epsilon’\}$ . $Y$ is a compact neighborhood of $x_{0}$

and will be shown an interpolation set for $A$ .
Let $A_{0}=\{f\in A:f(x_{0})=0\}$ and $D=[(A_{0}|Y)^{\sim}, 1]$ be the uniformly closed

subalgebra of $C(\tilde{Y})$ which is generated by $(A_{0}|Y)^{\sim}$ and constants. Let
$\tilde{Y}_{0}$ be a quotient space reduced by $\tilde{Y}$ identified the points which are not
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separated by $(A_{0}|Y)^{\sim}$ . In fact there is only one point in $\tilde{Y}_{0}$ which is
identified more than one point in $\tilde{Y}$. Let $W\subset\tilde{Y}$ be a set of which the
points and $(1, x_{0})\in N\times Y\subset Y$ are not separated by $(A_{0}|Y)^{\sim}$ . Since $A|Y$

is ultraseparating it is easy to show that $(A_{0}|Y)^{\sim}$ separates the points
of $\tilde{Y}_{0}$ . So we may assume that $D$ is a function algebra on $\tilde{Y}_{0}$ where
we denote by $\tilde{y}_{0}\in\tilde{Y}_{0}$ a point which $\cdot$ corresponds to $W$. Since $[D, (c_{n})]=$

cl $((A|Y)^{\sim})$ and an algebra $\{(c_{n})\}$ separates the points of $W$. Suppose
that it follows that $D=C(\tilde{Y}_{0})$ . Then $c1((A|Y)^{\sim})=C(\tilde{Y})$ . Thus $A|Y=C(Y)$

by the Bernard’s lemma.
For any points in $\tilde{Y}_{0}$ which is not $\tilde{y}_{0}$ we construct a compact neigh-

borhood of the point. Suppose that it follows that the compact neigh-
borhoods are interpolation sets for $D$ . Then $D=C(\tilde{Y}_{0})$ since $D$ is a
function algebra on $\tilde{Y}_{0}$ . Let $ z\sim$ be in $\tilde{Y}_{0}$ which is not $\tilde{y}_{0}$ and fix it. $\sim So$

there exists a $ g\sim$ in $({\rm Re} A_{0}|Y)^{\sim}$ such that $g\sim(z\sim)=1$ . We denote $G=\{\tilde{x}\in Y_{0}$ :
$g\sim(x\sim)\geqq 1/2\}$ and $G$ is a compact neighborhood of $ z\sim$ and $G$ will be shown
a interpolation set for $D$ by applying Lemma.

Let $F=({\rm Re} A_{0})^{\sim}|G,$ $K=G,$ $V’=\{\tilde{u}\in C_{R}(\tilde{G}):\exists\tilde{f}=(f_{n})\in({\rm Re}\tilde{A})^{\sim},\tilde{f}|\tilde{G}=\tilde{u},$ $f_{n}$

is constant on $\{k\}\times X$ for each positive integer $n$ and $k$ }, $u_{F}=\overline{u}_{0}|G$ and
$\gamma=\epsilon$ . Then the hypotheses of Lemma hold. By definition $V^{\prime}$ is clearly
a subalgebra of $V$. Suppose that $\tilde{x}$ and $\tilde{y}$ are $different\sim$ points of $\tilde{G}$ and
that $V^{\prime}$ does not separate $\tilde{x}$ and $\tilde{y}$ . Let $v=((v_{nk})_{k})_{n}\in(A)^{\sim}$ such that $v(\tilde{x})=$

$0,$ $v(\tilde{y})=1$ and $(\tilde{N})^{\sim}(v)\leqq 1/M$, then $v’=v-((v_{nk}(x_{0}))_{k})_{n}$ is in $(\tilde{A}_{0})^{\sim}$ and since
$((v_{nk}(x_{0}))_{k})_{n}\in V^{\prime}$ does not separate $\tilde{x}$ and $\tilde{y},$ $v^{\prime}(\tilde{y})-v^{\prime}(\tilde{x})=1$ and $(\tilde{N})^{\sim}(v’)\leqq$

$2/M$. Without loss of generality we may assume $|v^{\prime}(\tilde{y})|\geqq 1/2$ . Let $\tilde{u}^{\prime}=$

${\rm Re}(\epsilon M^{2}/4)v^{\prime}ve^{l\theta}$ where $v^{\prime}ve^{i\theta}(\tilde{y})$ is positive. Then $\tilde{u}^{\prime}$ is in $({\rm Re}\tilde{A}_{0})^{\sim},\tilde{u}^{\prime}(\tilde{x})=$

$0,\tilde{u}^{\prime}(\tilde{y})\geqq\epsilon M^{2}/8$ and $(\tilde{N})_{R}^{\wedge}(u^{\prime})\leqq(N)^{\sim}((\epsilon M^{2}/4)v^{\prime}ve^{l\theta})\leqq(\epsilon M^{2}/4)\cdot(1/M)\cdot(2/M)\leqq$

$\epsilon/2=\gamma/2<\gamma$ . While $|=u_{0}(w)|\leqq\epsilon M^{2}/9$ on $(Y)^{\sim}$ so on $\tilde{G}$ . So we can select
real $\xi$ such that $|\xi|<1$ and $(=u_{0}+\xi\tilde{u}^{\prime})(\tilde{y})=0$ and $(\tilde{N})_{R}^{\sim}(\xi\tilde{u}^{\prime})<\gamma$ . Thus $\tilde{u}=$

$\xi\tilde{u}|G$ is a desired function. So by Lemma $({\rm Re} A_{0})^{\sim}|G=C_{R}(G)$ thus $[h|G, 1]=$

$C(G)$ by Bernard’s extension theorem of Hoffman and Wermer [2] and
then $D|G=C(G)$ , that is, $G$ is interpolation set for $D$ .
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