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Introduction

Sometimes a group $G$ is known to be characterized by its subgroup-
lattice $L(G)$ . This means that if a group $G^{*}$ satisfies $L(G)\cong L(G^{*})$ , then
$G^{*}$ is isomorphic to $G$ . Recently T. Uzawa has proved that a finite
Coxeter group of $rank\geqq 3$ has this property. (See [4].)

In this note we prove two propositions. The first is that the alter-
nating group of degree at least 4, $A_{n}(n\geqq 4)$ is determined by its subgroup-
lattice. The second is that the affine Weyl group of $rank\geqq 4$ is determined
by its subgroup-lattice.

These two propositions are conjectured by Prof. N. Iwahori. We
were noticed recently that the first proposition was already proved by
R. Schmidt in more general forms. (See R. Schmidt [3].) But our
proof is completely different from that of R. Schmidt. In the second
proposition the author owes a great deal to the result of T. Uzawa.
We heartily express our gratitude to Prof. N. Iwahori and T. Uzawa.

\S 1. Characterization of the alternating group $A_{n}(n\geqq 4)$ by its
$8ubgroup$-lattice.

First we define a few notations. Let $G$ be a (finite or infinite)
group. Then we denote its subgroup-lattice by $L(G)$ and also we denote
the symmetric group and the alternating group of degree $n$ by $S_{n}$ and
$A_{n}$ respectively. Our first $proposit^{\alpha}1on$ is the following.

PROPOSITION 1. Let $G$ be a group. If the subgroup-lattice $L(G)$ of
$G$ is isomorphic to $L(A_{n})(n\geqq 4)$ (the subgroup-lattice of $A_{n}$), then $G$ is
isomorphic to $A_{n}$ as a group.
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REMARK. We can also prove that the symmetric group of degree
at least 4, $S_{n}(n\geqq 4)$ is determined by its subgroup-lattice using the
similar argument as in the case of $A_{n}$ . That is,

PROPOSITION. Let $G$ be a group. If the subgroup-lattice $L(G)$ of $G$

is isomorphic to $L(S_{n})(n\geqq 4)$ , then $G$ is isomorphic to $S_{n}$ as a group.

The proof of the above proposition is similar to that of Proposition
1, and so we omit it.

We will prove Proposition 1 by induction on $n$ . Before the proof
of the proposition, we must prepare a few lemmas.

LEMMA 1.1. There are exactly $n$ subgroups in $A_{n}(n\geqq 5, n\neq 6)$ which
are isomorphic to $A_{n-1}$ , and each of these subgroups is a maximal subgroup
in $A_{n}$ .

LEMMA 1.2. There are twelve subgroups in $A_{6}$ which are isomorphic
to $A_{b}$ . And under the inner action of $A_{6}$ , the number of the conjugate
orbits of these subgroups is two, and each orbit consists of 6 subgroups.
Moreover each of them is a maximal subgroup in $A_{6}$ .

We prove Lemma 1.1 and Lemma 1.2 simultaneously. Let $H$ be a
subgroup of $G=A_{n}(n\geqq 5)$ which i8 isomorphic to $A_{n-1}$ . Then we have
$[G:H]=n$ .

PROOF. First we will show that $H$ is a maximal subgroup of $G$ .
Suppose $H$ is not a maximal subgroup of $G$ . Then there is a subgroup
$H^{*}$ of $G$ such that $H\subsetneqq H^{*}\subsetneqq G$ .

Making $G$ act on $G/H^{*}$ from left, we have a permutation represen-
tation $f:G\rightarrow S_{k}$ where $k$ is the index of $H^{*}$ in $G$ . Since $G$ is a simple
group, $f$ is a monomorphism. Therefore the order of $G$ divides the
order of $S_{k}$ , hence we get $k=n$ . But because of $H\subsetneqq H^{*}\subsetneqq G,$ $k$ is a non-
trivial divisor of $n$ , which is a contradiction.

Now $H$ is a maximal subgroup of $G$ . Since $G=A_{n}(n\geqq 5)$ is a simple
group, we have $N_{a}(H)=H$. Recalling $[G:H]=n$ , we have a permutation
representation $f:G\rightarrow S_{n}$ such that the image of $H$ under $f$ is contained in
one of the $S_{n-1}’ s$ which are embedded as a stabilizer of a one point in
$S_{n}$ . Since $G$ is a simple group, $f$ is a monomorphism and $[S_{n}:f(G)]=2$ .
Therefore $f(G)=A_{n}$ and $f$ is an automorphism of $A_{n}$ . Moreover the
image of $H$ under $f$ just coincides with one of the $A_{n-1}’ s$ which are
naturally embedded as a subgroup of the stabilizer group of a one point.

Let us recall the following well-known result.
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THEOREM. If $n\neq 6,$ $Aut(A_{n})$ is isomorphic to $S_{n}$ and the action of
$S_{n}$ on $A_{n}$ is given by the conjugation. If $n=6,$ $Aut(A_{6})$ is isomorphic to
$Aut(S_{6})$ and $[Aut(S_{6}):Int(S_{6})]=2$ .

Using this theorem, if $n\neq 6,$ $f$ belongs to $Aut(A_{n})=S_{n}$ . Hence $H$

coincides with one of the $A_{n-1}’ s$ embedded as a subgroup of the stabilizer
of a one point, which complete the proof of Lemma 1.1. If $n=6,$ $f$

belongs to $Aut(A_{6})=Aut(S_{6})$ and since $[Aut(S_{6}):Int(S_{6})]=2$ , there are two
possibilities. The one is that $H$ coincides with one of the $A_{\epsilon}’ s$ naturally
embedded in $S_{6}$ , and the another is that $H$ coincides with one of the
images of the naturally embedded $A_{b}’ s$ under the outer automorphism of
$S_{6}$ . It can be easily verified that the two possibilities really occur and
the proof of Lemma 1.2 is completed.

The next lemma is due to T. Uzawa.

LEMMA 1.3. Let $G$ be a non-cyclic 2-group (of order $2^{n}$), and let $G^{*}$

be any group. If the subgroup-lattice $L(G^{*})$ of $G^{*}$ is isomorphic to the
subgroup-lattice $L(G)$ , then $G^{*}$ is also a 2-group, and the order of $G^{*}$ is
equal to that of $G$ .

PROOF. In general let $G_{0}$ be a grcup whose order is $2^{n}$ . Then $G_{0}$

has a subgroup-sequence

$G_{0}=H_{0}\supsetneqq H_{1}\supsetneqq H_{2}\cdots\supseteqq H_{n}=\{e\}$ , $[H_{i}:H_{i+1}]=2$

and $n$ is characterized by the maximal length of such subgroup-sequences.
Therefore once we can show that $G^{*}$ is also a 2-group, the order of $G^{*}$

must be equal to that of $G$ . We shall prove Lemma 1.3 by induction
on $n$ , (where $2^{n}$ is the order of $G$). If the order of $G$ is four, $G$ is
isomorphic to $Z_{2}\times Z_{2}$ and the Hasse diagram of the subgroup-lattice of

$Z_{2}\times Z_{2}$ is $\phi$ . In this case it can be easily proved that $G^{*}$ (whose

subgroup-lattice is isomorphic to that of $Z_{2}\times Z_{2}$) is isomorphic to $Z_{2}\times Z_{2}$

as a group.
Now assume that Lemma 1.3 holds for all $G$ which satisfies the

condition of Lemma 1.3 and whose order is smaller than $2^{n}$ . We shall
prove Lemma 1.3 for $G$ of order $2^{n}$ . Let $g^{*}$ be any element of $G^{*}$ whose
order is a prime number. It is sufficient to show that the order of $g^{*}$

must be two. Let $H$ be the subgroup of $G$ which corresponds to the
subgroup $\langle g^{*}\rangle$ (the group which is generated by $g^{*}$ ) of $G^{*}$ under the
isomorphism of the subgroup-lattice $L(G)\cong L(G^{*})$ . Since the order of $g^{*}$
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is a prime number, the subgroup-lattice of $\langle g^{*}\rangle$ is I $\langle g^{*}\rangle\langle e\rangle$ therefore $H$

is a cyclic group of order $p$ where $p$ is a prime number. We denote a
generator of $H$ by $g$ . Recalling that $G$ is a 2-group, $p$ must be two,
and moreover the centralizer of $g$ in $G$ is non-trivial, i.e., $Z_{a}(g)\neq\{e\}$ . If
an involution $h$ different from $g$ exists in $Z_{o}(g)$ , then $\langle g, h\rangle$ (the group
generated by $g$ and h) is isomorphic to $Z_{2}\times Z_{2}$ , hence the subgroup $H_{1}^{*}$

of $G^{*}$ which correspond $s$ to $\langle g, h\rangle$ under the isomorphism $L(G)\cong L(G^{*})$

is isomorphic to $Z_{2}\times Z_{2}$ . Since $ H_{1}^{*}\supsetneqq\langle g^{*}\rangle$ , the order of $g^{*}$ must be two,
and the proof is completed. If an involution different from $g$ does not
exist in $Z_{o}(g),$ $g$ belongs to the center of $G$ , and $g$ is a unique involution
in $G$ . Therefore $H$ is characterized as the non-trivial smallest subgroup
of $G$ . It follows that $\langle g\rangle^{*}$ is also a normal subgroup of $G^{*}$ . From the
assumptions on $G$ and $g,$ $ G/\langle g\rangle$ cannot be a cyclic group. Since the
subgroup-lattice of $ G/\langle g\rangle$ is isomorphic to that of $G^{*}/\langle g^{*}\rangle,$ $ G^{*}/\langle g^{*}\rangle$ is also
a 2-group by the induction hypothesis. According to the Sylow’s theorem,
there exists an involution $h^{*}$ in $G^{*}$ . But recalling that $\langle g^{*}\rangle$ is the non-
trivial smallest subgroup of $G^{*},$ $h^{*}$ is equal to $g^{*}$ , and the order of $g^{*}$

must be two. The proof of Lemma 1.3 is completed.

$PR\infty F$ OF PROPOSITION 1. First we will show that the proposition
holds for $n=4,5,6$ and later for general $n$ .

In case of $n=4$ , the subgroup-lattice of $A_{4}$ is just the following.

And it can be easily proved that if $L(G)$ is isomorphic to $L(A_{4})$ , then
$G$ is isomorphic to $A_{4}$ as a group.

In the case of $n=5$ , let $G$ be a group whose subgroup-lattice $L(G)$

is isomorphic to $L(A_{5})$ . Then according to the case of $n=4$ and Lemma
1.1, there are exactly 5 subgroups which are isomorphic to $A_{4}$ . We
denote these subgroups by $H_{1},$ $H_{2},$ $H_{s},$ $H_{4}$ and $H_{6}$ . We shall show that
$H_{i}$ is not a normal subgroup of $G$ for any $i$ . Suppose there is some. $i$

such that $H_{i}$ is a normal subgroup of $G$ . Then for any $jH_{i}\cap H_{j}$ is a
normal subgroup of $H_{j}$ . But according to the subgroup-lattice $L(A_{b})$ ,
there is some $j$ such that $H_{i}\cap H_{\dot{f}}$ is isomorphic to $Z_{3}$ , which is a con-
tradiction.

Since $H_{i}$ is a maximal subgroup of $G$ , we can get $N_{o}(H_{i})=H_{i}$ for
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any $i$ and each conjugate orbit of $H_{1},$ $H_{2},$ $H_{\theta},$ $H_{4},$ $H_{b}$ under the action of
$G$ consists of $N$ elements, where $N=|G/H_{i}|=|G|/|H_{i}|=|G|/(4!/2)$ . Now
considering that 5 is a prime number, we can get a homomorphism $ f:G\rightarrow$

$S_{5}$ by making $G$ act on $H_{1},$ $H_{2},$ $H_{3},$ $H_{4},$ $H_{b}$ by conjugations. According to
the subgroup-lattice $L(G),$ $f$ is a monomorphism, and the order of $G$ is
$5\times|H_{i}|=5!/2$ . Consequently the image of $G$ under $f$ is equal to $A_{f}$ . The
case of $n=5$ is proved.

In case of $n=6$ , let $G$ be a group whose subgroup-lattice is isomorphic
to that of $A_{6}$ . Then according to the case $n=5$ and Lemma 1.2, there
are exactly 12 subgroups which are isomorphic to $A_{5}$ . We denote these
subgroups by $H_{1},$ $H_{2},$

$\cdots,$
$H_{12}$ . As before we shall show that $H_{i}$ is not a

normal subgroup of $G$ for any $i$ . Suppose there is some $i$ such that $H_{i}$

is a normal subgroup of $G$ . For any $jH_{i}\cap H_{j}$ is a normal subgroup of
$H_{j}$ . Since $H_{j}$ is isomorphic to the simple group $A_{b},$ $H_{\ell}\cap H_{j}=\{e\}$ for any
$j\neq i$ . According to the structure of the subgroup-lattice $L(G)$ , this is a
contradiction. Since $H_{i}$ is a maximal subgroup of $G$ , we have $N_{G}(H_{i})=H_{i}$

and each conjugate orbit of $H_{1},$ $H_{2},$
$\cdots,$

$H_{12}$ under the action of $G$ consists
of $N$ elements, where $N=|G/H_{i}|=|G|/|H_{i}|=|G|/(5!/2)$ for any $i$ . Therefore
$N$ is a divisor of 12. We shall show that $N=6$ . Suppose $N=2$ . We
may assume $H_{1}$ and $H_{2}$ are conjugate. Then we have a homomorphism
$f:G\rightarrow S_{2}$ . Since the kernel of $f$ is equal to $H_{1}\cap H_{2},$ $H_{1}\cap H_{2}$ is anormal
subgroup of $G$ , and consequently $H_{1}\cap H_{2}$ is also a normal subgroup of
$H_{1}$ . Since $H_{1}$ is a simple group, we have $H_{1}\cap H_{2}=\{e\}$ and $f$ is a
monomorphism. But comparing the order of $G$ with that of $S_{2}$ , this
is a contradiction. In case of $N=3$ or $N=4$ , the proof is similar.
Suppose $N=12$ . Then the order of $G$ is equal to $12\times|H_{1}|=12\times|A_{b}|=720$ .
Hence the order of 2-sylow subgroup of $G$ must be equal to $2^{4}$ . On the
other hand, the order of 2-sylow subgroup of $A_{6}$ is equal to $2^{8}$ . According
to Lemma 1.3, this is a contradiction. The only remaining possibility
is 6. Therefore $N=6$ , and we have a homomorphism $f:G\rightarrow S_{6}$ . It can
be easily proved as before that $f$ is a monomorphism, hence considering
the order of $G$ , we have $f(G)=A_{6}$ . The case $n=6$ is completed.

Now using the induction on $n$ , we will prove the proposition for
general $n$ . If $n=6$ , the proposition is valid from the above argument.
Assume that the proposition is valid for $n-1(n\geqq 7)$ . Let $G$ be a group
whose subgroup-lattice is isomorphic to that of $A_{n}$ . According to Lemma
1.1 and the induction hypothesis, there exist $n$ subgroups which are
isomorphic to $A_{n-1}$ . We denote these subgroups by $H_{1},$ $H_{2},$

$\cdots,$
$H_{n}$ . We

can prove similarly as in the case $n=6$ that $H_{i}$ is not a normal subgroup
of $G$ for any $i$ . Therefore we get $N_{G}(H_{i})=H_{i}$ and each conjugate orbit
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of $H_{1},$ $H_{2},$
$\cdots,$

$H_{n}$ under the action of $G$ consists of $N$ elements, where
$N=|G/H_{i}|=|G|/|H_{i}|=|G|/((n-1)!/2)$ . Hence $N$ divides $n$ . Exchanging the
suffix if necessary, we may assume that the G-conjugate orbit of $H_{1}$ is
$\{H_{1}, H_{2}, \cdots, H_{N}\}$ . Then we have a permutation representation $f:G\rightarrow S_{N}$

by making $G$ act on $H_{1},$ $H_{2},$
$\cdots,$

$H_{N}$ by conjugations. Since the kernel
of $f$ is contained in $N_{G}(H_{1})=H_{1}$ and $H_{1}$ is a simple group, $f$ is a mono-
morphism and comparing the order of $G$ with that of $S_{N},$ $|G|=(n-1)!\times$

$N/2$ divides $|S_{N}|=N!$ . Now recalling that $N$ divides $n$ , we have $N=n$
and $|G|=n!/2$ . Therefore $f(G)=A_{n}$ , which complete the proof of Pro-
position 1.

\S 2. Characterization of affine Weyl groups by their subgroup-
lattices.

First let us recall the definition and the structure of affine Weyl
groups. (See Iwahori-Matsumoto [2], N. Bourbaki [1].) Let $V$ be a finite
dimensional Euclidean space over $R$ , and we denote the inner product on $V$

by $(, )$ . Now let us recall the definition of the reduced root system in $V$.
DEFINITION. A subset $\Delta$ of $V$ is called the reduced root system in

$V$ if $\Delta$ satisfies the following conditions.
(R1) $\Delta$ is a finite set in $V$ and the linear span of $\Delta$ is the total space

V. Also $\Delta$ does not contain $0\in V$.
(R2) For $\alpha\in\Delta$ , we denote the orthogonal reflection relative to $\alpha$ by

$s_{\alpha}$ , i.e.,

$ s_{\alpha}(x)=x-\frac{2\cdot(\alpha,x)}{(\alpha,\alpha)}\alpha$ .

Then $s_{\alpha}$ leaves $\Delta$ stable i.e., $ s_{\alpha}(\Delta)=\Delta$ .
(R3) If $\alpha\in\Delta$ , the only multiple of $\alpha$ in $\Delta$ are $\pm\alpha$ .
(R4) For any $\alpha,$ $\beta\in\Delta,$ $2\cdot(\alpha, \beta)/(\alpha, \alpha)$ is integer.

In the above definition, the group generated by the $s_{\alpha}’ s$ is called
the Weyl group of $\Delta$ and is denoted by W. $W$ is known to be a finite
group. For $\alpha\in\Delta$ and $k\in Z$, we define the hyperplane $L_{a,k}$ in $V$ by

$L_{\alpha,k}=\{x\in V|(\alpha, x)=k\}$ .
We denote the orthogonal reflection relative to $L_{\alpha,k}$ by $s_{\alpha,k}$ . Affine Weyl
group $W_{a}$ (with respect to the root system $\Delta$) is defined to be the affine
transformation group, which is generated by the $s_{\alpha,k}’ s$ for all $\alpha e\Delta$ and
all $k\in Z$. We denote the translation on $V$ given by a vector $v\in V$ by
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$T(v)$ , and also we denote by $D^{*}$ the group generated by the $T(\alpha^{*})s$ for
all $\alpha\in\Delta$ , where $\alpha^{*}=2\cdot\alpha/(\alpha, \alpha)$ . $D^{*}$ becomes a free Z-module and the
free generator of $D^{*}$ are given by $T(\alpha_{1}^{*}),$ $T(\alpha_{2}^{*}),$

$\cdots,$
$T(\alpha_{n}^{*})$ , where

$\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\}$ is a simple root system in $\Delta$ with respect to some lexico-
graphic order of $V$. As for the following proposition, see N. Bourbaki
[1].

PROPOSITION. $W_{a}=W\cdot D^{*}$ and $W\cap D^{*}=\{e\}$ , and $D^{*}$ is a normal
subgroup of $W_{a}$ .

An affine Weyl group is called irreducible if the underlying root
system is irreducible. In other words, if the root system does not admit
an orthogonal decomposition $\Delta=\Delta_{1}\cup\Delta_{2}$ , where $\Delta_{1}(\neq\emptyset)$ and $\Delta_{2}(\neq\emptyset)$ are
$s$ubroot systems and mutually orthogonal, $W_{a}$ is called irreducible.

TABLE I
$\tilde{A}_{1}$

$\underline{\infty}$

$A_{n}(n\geqq 2)$ (the loop which has $n+1$ vertices)

$\tilde{B}_{\backslash ,\vee}$

4 4

$\tilde{B}_{n}(n\geqq 3)$ ($n+1$ vertices)

$\tilde{C}_{n}(n\geqq 3)$ $\underline{4}\underline{4}------$ ($n+1$ vertices)

$D_{n}(n\geqq 4)$ ($n+1$ vertices)

$\tilde{E}_{6}$

$\tilde{E}_{7}$

$\tilde{E}_{8}$

$\ovalbox{\tt\small REJECT}_{4}|$

$\tilde{F}_{4}$

$\tilde{G}.$,
6
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The list of Coxeter diagrams of irreducible affine Weyl groups is
given in Table I. (See Bourbaki [1].)

Now we will state the main result of this section.

PROPOSITION 2. Let $W_{a}$ be an irreducible affine Weyl group whose
rank as a Coxeter group is at least 4. Let $G$ be any (finite or infinite)
group. If the subgroup-lattice $L(G)$ is isomorphic to that of $W_{a}$ , then $G$

is isomorphic to $W_{a}$ as a group.

In the above proposition, the condition that $W_{a}$ is irreducible is not
essential, and we can easily deduce the reducible cases from the irreducible
ones.

Before the proof of Proposition 2, we must prepare a few lemmas.
Following the idea of T. Uzawa in [4] and using the results in the case
of finite dihedral groups, we obtain the next lemma, inspecting the list
of Coxeter diagrams of irreducible affine Weyl groups. So we will omit
the proof.

LEMMA 2.1. Let $W_{a}$ be an affine Weyl group whose rank as a Coxeter
group is at least 4. Let $G$ be any (finite or infinite) group. If the
subgroup-lattice $L(G)$ of $G$ is isomorphic to that of $W_{a}$ , then there exists
a surjective group homomorphism $f:W_{a}\rightarrow G$ .

The next lemma essentially asserts that the homomorphism $f$ given
by Lemma 2.1 is a monomorphism.

LEMMA 2.2. Any non-trivial normal subgroup $H$ of an irreducible
affine Weyl group has a finite index in $G$ .

Using Lemma 2.1 and Lemma 2.2, we shall prove the proposition.
From Lemma 2.1 there is a surjective homomorphism $f:W_{a}\rightarrow G$ . If $f$ is
not a monomorphism, then the kernel of $f$ will be a non-trivial normal
subgroup of $W_{a}$ . In view of Lemma 2.2, $G$ becomes a finite group, and
therefore $L(G)$ must be a finite lattice. But this is a contradiction,
since $L(W_{a})$ is an infinite lattice and $L(G)\cong L(W_{a})$ .

Hence, for the proof of the proposition we have enough to prove
Lemma 2.2.

PROOF OF LEMMA 2.2. Let $H$ be a non-trivial normal subgroup of
$W_{a}$ . It is sufficient to show that $H\cap D^{*}\neq\{0\}$ and $H\cap D^{*}$ is a free Z-
module of rank $n$ (where $n$ is the dimension of $V$). First we shall show
that $H\cap D^{*}\neq\{0\}$ . Suppose $H\cap D^{*}=\{0\}$ . Let $w\cdot T(d)$ be an element of $H$,
where $w\in W,$ $w\neq e$ and $d\in Z\alpha_{1}^{*}+Z\alpha_{2}^{*}+\cdots+Z\alpha_{n}^{*}$ . Since $H$ is a normal
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subgroup of $W_{a}$ , for any $v\in Z\alpha_{1}^{*}+Z\alpha_{2}^{*}+\cdots+Z\alpha_{n}^{*}$ . We have

$(T(-v)\cdot w\cdot T(d)\cdot T(v))\cdot(w\cdot T(d))^{-1}=T(w\cdot v-v)\in H$ .
Therefore $w\cdot v=v$ for any $v\in Z\alpha_{1}^{*}+Z\alpha_{2}^{*}+\cdots+Z\alpha_{n}^{*}$ . But this is a con-
tradiction since $W$ acts on $V$ faithfully. $H\cap D^{*}$ is also a free Z-module
as the subgroup of the free Z-module $D^{*}$ . Let $T(d)$ be an element of
$H\cap D^{*}$ . For $w\in W$, we have $w\cdot T(d)\cdot w^{-1}=T(w\cdot d)$ , and so $W$ leaves
$H\cap D^{*}$ stable. Since $W$ acts on $V$ irreducibly, the rank of $H\cap D^{*}$ must
be equal to the dimension of $V$. The proof of Lemma 2.2 is completed.
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