A Note on Rings with Finite Local Cohomology

Shiro GOTO and Tsukane OGAWA
Nihon University and Gakushuin University
(Communicated by T. Mitsui)

Introduction

Let A be a Noetherian local ring of $\operatorname{dim} A=n$ and \mathfrak{m} the maximal ideal of A. Let $H_{m}^{i}(\cdot)$ stand for the $i^{\text {th }}$ local cohomology functor relative to \mathfrak{m}. Then we say that A has finite local cohomology, if the A-module $H_{\mathrm{m}}^{i}(A)$ is finitely generated for every $i \neq n .^{*}$ In this note we shall characterize rings with finite local cohomology in terms of d-sequences. Recall that a sequence $x_{1}, x_{2}, \cdots, x_{r}$ of elements in A is called a d sequence if the equality

$$
\left(x_{1}, \cdots, x_{i-1}\right): x_{j}=\left(x_{1}, \cdots, x_{i-1}\right): x_{i} x_{j}
$$

holds whenever $1 \leqq i \leqq j \leqq r$ ([5]). With this definition our result is stated as follows:

Theorem. The following conditions are equivalent.
(1) A has finite local cohomology.
(2) There exists an integer $N>0$ such that every system of parameters of A contained in \mathfrak{m}^{N} is a d-sequence.

When this is the case, $\mathfrak{m}^{N} \cdot H_{\mathrm{m}}^{i}(A)=(0)$ for all $i \neq n$.
Our theorem is a natural extension of Huneke's characterization of Buchsbaum rings. Recall that a Noetherian local ring A is called Buchsbaum if the difference

$$
l_{\Delta}(A / \mathfrak{q})-e_{q}(A)
$$

is an invariant of A not depending on the choice of a parameter ideal \mathfrak{q} of A, where $l_{A}(A / q)$ and $e_{q}(A)$ denote the length of the A-module A / \mathfrak{q} and the multiplicity of A relative to \mathfrak{q}, respectively ([10]). Buchsbaum rings have, as is well-known (cf. [6]), finite local cohomology, and

[^0]Huneke [5] showed that a given local ring A is Buchsbaum if and only if every system of parameters for A is a d-sequence.

In a certain special situation a Noetherian local ring A is Buchsbaum once it has finite local cohomology. More explicitly, let $p>0$ be a prime number and assume that A has characteristic p. Let $F: A \rightarrow A$ denote the Frobenius endomorphism of A, i.e., $F(a)=a^{p}$ for each $a \in A$ and let B stand for A when A is regarded, via F, as an algebra over itself. Then we say that A is F-pure if for every A-module M, the map

$$
F_{\mu}: M \longrightarrow B{\underset{A}{*}} M
$$

defined by $F_{M}(x)=1 \otimes x$ for each $x \in M$ is a monomorphism ([4]). With this terminology, as a consequence of Theorem, we have the following

Corollary. Let A be a Noetherian local ring of characteristic p, a prime number and assume that A is F-pure. Then A is Buchsbaum if and only if A has finite local cohomology.

This result is known by Schenzel [7] in graded case. However his proof depends on a characterization of Buchsbaum rings in terms of dualizing complexes and is essentially appealing to the surjectivity criterion obtained by [9] and [11]. Our proof is much more elementary and the result obviously contains his assertion.

We will prove Theorem and its corollary in sections 2 and 3, respectively.

Throughout this paper let A denote a Noetherian local ring of $\operatorname{dim} A=n$ and \mathfrak{m} the maximal ideal of A.

§1. Proof of Theorem.

First of all we note
Lemma 1.1. Let $x_{1}, x_{2}, \cdots, x_{r}$ be elements of A and assume that $x_{1}, x_{2}, \cdots, x_{r}$ is a d-sequence. Then $x_{2}, x_{3}, \cdots, x_{r}$ also forms a d-sequence in $A / x_{1} A$.

This follows immediately from the definition of d-sequences.
Lemma 1.2. Let a be an element of \mathfrak{m} and assume that the length $\left.l_{\Lambda}(\dot{[}(0): a]_{4}\right)$ is finite. Then there exists an exact sequence

$$
\begin{gathered}
0 \longrightarrow H_{\mathrm{m}}^{0}(a A) \longrightarrow H_{\mathrm{m}}^{0}(A) \longrightarrow H_{\mathrm{m}}^{0}(A / a A) \longrightarrow H_{\mathrm{m}}^{1}(A) \xrightarrow{a} H_{\mathrm{m}}^{1}(A) \longrightarrow H_{\mathrm{m}}^{1}(A / a A) \\
\longrightarrow
\end{gathered}
$$

of local cohomology modules.
Proof. Let $W=[(0): a]_{4}$. First of all, split the exact sequence

$$
0 \longrightarrow W \longrightarrow A \xrightarrow{a} A \longrightarrow A / a A \longrightarrow 0
$$

into short exact sequences

$$
\begin{equation*}
0 \longrightarrow W \longrightarrow A \longrightarrow a A \longrightarrow 0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
0 \longrightarrow a \longrightarrow A \longrightarrow A / a A \longrightarrow 0, \tag{2}
\end{equation*}
$$

and apply the functors $H_{m}^{i}(\cdot)$ to the sequence (1) (resp. (2)). Then we get isomorphisms

$$
H_{\mathrm{m}}^{\imath}(A) \cong H_{\mathrm{m}}^{\iota}(a A)
$$

for all $i>0$ (resp. a long exact sequence

$$
\begin{gather*}
0 \longrightarrow H_{\mathrm{m}}^{0}(a A) \longrightarrow H_{\mathrm{m}}^{0}(A) \longrightarrow H_{\mathrm{m}}^{0}(A / a A) \longrightarrow H_{\mathrm{m}}^{1}(a A) \tag{3}\\
\longrightarrow H_{\mathrm{m}}^{1}(A) \longrightarrow H_{\mathrm{m}}^{1}(A / a A) \longrightarrow H_{\mathrm{m}}^{i-1}(A / a A) \\
\longrightarrow H_{\mathrm{m}}^{i}(a A) \longrightarrow \rightarrow
\end{gather*}
$$

of local cohomology modules.) Replace $H_{m}^{i}(a A)$ by $H_{m}^{i}(A)$ for $i>0$ in the sequence (3) and we shall have the required exact sequence at once.

Proof of Theorem. (1) \Rightarrow (2): By [8, (3.3)] we may choose an integer $N>0$ so that for every system $a_{1}, a_{2}, \cdots, a_{n}$ of parameters of A contained in \mathfrak{m}^{N} and for every integer $1 \leqq i \leqq n$, the equality

$$
\left(a_{1}, \cdots, a_{i-1}\right): a_{i}=\left(a_{1}, \cdots, a_{i-1}\right): \mathfrak{m}^{N}
$$

holds. Now take a system $a_{1}, a_{2}, \cdots, a_{n}$ of parameters of A so that a_{k} is in \mathfrak{m}^{N} for all $1 \leqq k \leqq n$ and let $1 \leqq i \leqq j \leqq n$ be integers. Then as both the systems $a_{1}, \cdots, a_{i-1}, a_{j}$ and $a_{1}, \cdots, a_{i-1}, a_{i} a_{j}$ are contained in \mathfrak{m}^{N} and may be extended to systems of parameters of A, we get by (\#) that

$$
\left(a_{1}, \cdots, a_{i-1}\right): a_{j}=\left(a_{1}, \cdots, a_{i-1}\right): \mathfrak{m}^{N}=\left(a_{1}, \cdots, a_{i-1}\right): a_{i} a_{j}
$$

whence $a_{1}, a_{2}, \cdots, a_{n}$ is, by definition, a d-sequence.
$(2) \Rightarrow(1)$: It is enough to show that $\mathfrak{m}^{N} \cdot H_{m}^{i}(A)=(0)$ for all $i \neq n$. We may assume that $n=\operatorname{dim} A>0$. Let us fix an element a of \mathfrak{m}^{N} so that $\operatorname{dim} A / a A=n-1$.

CLAIm. $\quad[(0): a]_{A}=H_{\mathrm{w}}^{0}(A)$.
In fact, choose a system $a_{1}=a, a_{2}, \cdots, a_{n}$ of parameters in \mathfrak{m}^{N}. Then
as $a_{1}, a_{2}, \cdots, a_{n}$ is by the assumption (2) a d-sequence, we see that
(a) $[(0): a]_{\Lambda}=\left[(0): a^{2}\right]_{\Delta}$ and
(b) $\left[(0): a_{i}\right]_{A}=\left[(0): a a_{i}\right]_{A}$
$(2 \leqq i \leqq n)$. Let $x \in H_{m}^{0}(A)$. Then as $a^{*} x=0$ for some $s>0$, we see by (a) that $a x=0$. Conversely let $x \in[(0): a]_{4}$. Then since $\left(a a_{i}\right) x=0$, we get by (b) that $a_{i} x=0$ for all $1 \leqq i \leqq n$. Therefore ($\left.a_{1}, a_{2}, \cdots, a_{n}\right) x=(0)$ whence $x \in H_{\mathrm{m}}^{0}(A)$. Thus we conclude that [(0): $\left.a\right]_{A}=H_{\mathrm{m}}^{0}(A)$.

It follows from this claim that $\mathfrak{m}^{N} \cdot H_{\mathrm{m}}^{9}(A)=(0)$, because the ideal \mathfrak{m}^{N} can be generated by the elements a such that $\operatorname{dim} A / a A=n-1$. In particular we get our implication for $n=1$. Now let $n \geqq 2$ and assume that our assertion is true for $n-1$. Let $1 \leqq i \leqq n-1$ be an integer. Then because every system of parameters for $A / a A$ contained in \mathfrak{m}^{N} forms a d-sequence in $A / a A$ (cf. Lemma 1.1), we have by the hypothesis of induction on n that $\mathfrak{m}^{N} \cdot H_{\mathfrak{m}}^{i-1}(A / a A)=(0)$. Hence

$$
\mathfrak{m}^{N} \cdot[(0): a]_{H_{m}^{t}(A)}=(0)
$$

as the A-module [(0): $a]_{H_{m}^{i}(A)}$ is a homomorphic image of $H_{m}^{i-1}(A / a A)$ (cf. Lemma 1.2). Notice that the equality (\#\#) holds for any element a of \mathfrak{m}^{N} with $\operatorname{dim} A / a A=n-1$. Let $x \in H_{m}^{i}(A)$ and choose an integer $s>0$ so that $a^{s} x=0$. Then applying the equality (\#\#) to a^{2} instead of a, we immediately get that $\mathfrak{m}^{N} x=(0)$. Thus $\mathfrak{m}^{N} \cdot H_{\mathfrak{m}}^{i}(A)=(0)$ as required.

Let $S(I)$ (resp. $R(I)=\oplus_{s \geq 0} I^{*}$) denote, for a given ideal I of A, the symmetric algebra of the A-module I (resp. the Rees algebra of I). Notice that there is a canonical epimorphism

$$
h_{I}: S(I) \longrightarrow R(I)
$$

of A-algebras.
Corollary 1.3. Suppose that A has finite local cohomology. Then there is an integer $N>0$ such that the canonical map

$$
h_{I}: S(I) \longrightarrow R(I)
$$

is an isomorphism for any ideal I of A which is generated by a subsystem of parameters of A contained in \mathfrak{m}^{N}.

Proof. Choose an integer $N>0$ for which the condition (2) of Theorem is fulfilled. Let $a_{1}, a_{2}, \cdots, a_{r}$ be a subsystem of parameters of A contained in \mathfrak{m}^{N}, and put $I=\left(a_{1}, a_{2}, \cdots, a_{r}\right)$. Then we get, immediately by [3, 2.5], that the canonical map $h_{I}: S(I) \rightarrow R(I)$ is an isomorphism since $a_{1}, a_{2}, \cdots, a_{r}$ forms a d-sequence.

Let $\mathrm{N}(A)$ denote, in case A has finite local cohomology, the smallest integer $N>0$ for which the condition (2) of Theorem is fulfilled.

Example 1.4. Let $N>0$ be an integer. Then there exists a Noetherian local domain A satisfying the following conditions:
(1) $\operatorname{dim} A=2$.
(2) The A-module $H_{\mathrm{m}}^{1}(A)$ is finitely generated.
(3) $\mathrm{N}(A)=N$.

Proof. Let $S=k[X, Y, Z, W]$ be a polynomial ring over an infinite field k, and choose a graded prime ideal P of S with height 2 so that

$$
H_{d H}^{1}(S / P) \cong S / M^{N}
$$

as S-modules, where $M=(X, Y, Z, W) S$ (cf., e.g., [1]). We put $A=$ $S_{\mu} / P S_{\mathcal{H}}$ and $\mathfrak{m}=M A$. Then $\operatorname{dim} A=2$ and

$$
H_{\mathfrak{m}}^{1}(A) \cong A / \mathfrak{n}^{N}
$$

clearly. Let a, b be a system of parameters of A contained in \mathfrak{m}^{N}. Then as $a \cdot H_{\mathrm{m}}^{1}(A)=(0)$, we get by Lemma 1.2 an isomorphism $H_{\mathrm{m}}^{0}(A / a A) \cong H_{\mathrm{m}}^{1}(A)$ of local cohomology modules, whence we find that

$$
\mathfrak{m}^{N} \cdot H_{\mathrm{m}}^{0}(A / a A)=(0)
$$

On the other hand, recalling that $(A / a A) / H_{\mathrm{m}}^{0}(A / a A)$ is a one-dimensional Cohen-Macaulay A-module and b is a parameter for $(A / a A) / H_{\mathrm{m}}^{0}(A / a A)$, we have that

$$
[(0): b]_{A / a \Lambda} \subset H_{\mathrm{m}}^{0}(A / a A)
$$

Therefore $\mathfrak{m}^{N} \cdot[(0): b]_{A / a A}=(0)$ and consequently

$$
a A: b=a A: \mathfrak{m}^{N}
$$

Thus by virtue of Proof of Theorem (cf. Proof of $[(1) \Rightarrow(2)]$), we see that every system of parameters of A contained in \mathfrak{m}^{N} forms a d sequence, whence we find that $\mathrm{N}(A) \leqq N$. The opposite inequality $\mathrm{N}(A) \geqq N$ follows from the last assertion in Theorem, because (0): $H_{\mathrm{m}}^{1}(A)=$ $\mathfrak{m}^{\boldsymbol{N}}$ by (\#). Thus $\mathrm{N}(A)=N$, which guarantees that the ring A is a required example.

§2. Proof of Corollary.

We note

Proposition 2.1 ($[5,(1.7)]$). The following conditions are equivalent.
(1) A is a Buchsbaum ring.
(2) Every system of parameters of A is a d-sequence.

Let $f: R \rightarrow S$ be a homomorphism of commutative rings. Then f is said to be pure if for every R-module M, the map

$$
f_{\mathbb{K}}: M \longrightarrow S{\underset{R}{\otimes}} M
$$

defined by $f_{N}(x)=1 \otimes x$ for each $x \in M$ is a monomorphism.
Lemma 2.2. Let $f: R \rightarrow S$ be a pure homomorphism of commutative rings. Then

$$
I S \cap R=I
$$

for every ideal I of R.
This follows from the fact that the canonical map $f_{R / I}: R / I \rightarrow$ $S \otimes_{R} R / I=S / I S$ is a monomorphism.

Proof of Corollary. We have only to prove the if part. Let $a_{1}, a_{2}, \cdots, a_{n}$ be a system of parameters of A and we will show that $a_{1}, a_{2}, \cdots, a_{n}$ is a d-sequence. First of all, let $N>0$ be an integer for which the condition (2) of Theorem is fulfilled and choose an integer $e>0$ so that $p^{0} \geqq N$. Let $1 \leqq i \leqq j \leqq n$ be integers and $x \in\left(a_{1}, \cdots, a_{i-1}\right): a_{i} a_{j}$. Then since $\left(a_{i}^{p^{\circ}} a_{j}^{p^{\circ}}\right) \cdot x^{p^{\circ}}$ is in $\left(a_{1}^{p o}, \cdots, a_{i-1}^{p o}\right)$ and since $a_{1}^{p o}, a_{2}^{p^{\circ}}, \cdots, a_{n}^{p o}$ is a d-sequence (recall that by our choice of N and $e, a_{k}^{p^{\circ}} \in \mathfrak{m}^{N}$ for all $1 \leqq k \leqq n$), we get that

$$
a_{j}^{p_{0}^{0}} \cdot x^{p^{0}} \in\left(a_{1}^{p o}, \cdots, a_{i-1}^{p o}\right) .
$$

Therefore applying Lemma 2.2 to the situation where $R=S=A, f=F^{\circ}$, and $I=\left(a_{1}, \cdots, a_{i-1}\right)$, we find that

$$
a_{j} x \in\left(a_{1}, \cdots, a_{t-1}\right) S \cap R=\left(a_{1}, \cdots, a_{t-1}\right)
$$

whence

$$
\left(a_{1}, \cdots, a_{i-1}\right): a_{j}=\left(a_{1}, \cdots, a_{i-1}\right): a_{i} a_{j}
$$

Thus $a_{1}, a_{2}, \cdots, a_{n}$ is a d-sequence and so A is, by Proposition 2.1, a Buchsbaum ring.

Corollary 2.3. Let $\operatorname{dim} A=2$ and assume that (1) A is a homomorphic image of a Cohen-Macaulay ring and (2) A is an integral domain of positive characteristic. Then A is Buchsbaum if A is F-pure.

Proof. As A is an integral domain of $\operatorname{dim} A=2$, the ring A_{p} must be a Cohen-Macaulay local ring of $\operatorname{dim} A_{\mathfrak{p}}=2-\operatorname{dim} A / \mathfrak{p}$ for every prime ideal \mathfrak{p} of $A(\mathfrak{p} \neq \mathfrak{m})$. Therefore by the assumption (1) and [8, (2.5) and (3.8)], A must have finite local cohomology. Hence the assertion follows from Corollary.

Example 2.4. Let $R=k \llbracket X_{1}, X_{2}, \cdots, X_{2 n} \rrbracket(n \geqq 2)$ be a formal power series ring over a perfect field k of characteristic $p>0$. We put

$$
A=R /\left(X_{1}, \cdots, X_{n}\right) \cap\left(X_{n+1}, \cdots, X_{2 n}\right)
$$

Then
(1) A is a Buchsbaum ring of $\operatorname{dim} A=n$.
(2) $H_{\mathrm{m}}^{1}(A)=A / \mathfrak{m}$ and $H_{\mathrm{m}}^{i}(A)=(0)(i \neq 1, n)$.
(3) A is F-pure.

Proof. (1) and (2) See [6, p. 469, Beispiel].
(3) Let F be the Frobenius endomorphism of R and let S denote R when R is considered to be an algebra, via F, over itself. Then S is a finitely generated free R-module with basis $\left\{X_{1}^{c_{1}} X_{2}^{c_{2}} \cdots X_{2 n}^{c_{2} n} \mid 0 \leqq c_{i}<p\right.$ for all $1 \leqq i \leqq 2 n\}$. Let $G: S \rightarrow R$ be the R-linear map defined by

$$
\begin{aligned}
G\left(X_{1}^{c_{1}} X_{2}^{c_{2}} \cdots X_{2 n}^{c_{2 n}}\right) & =1\left(c_{i}=0 \text { for all } 1 \leqq i \leqq 2 n\right) \\
& =0 \text { (otherwise) }
\end{aligned}
$$

for each $X_{1}^{c_{1}} X_{2}^{c_{2}} \cdots X_{2 n}^{c_{2}}$ with $0 \leqq c_{i}<p$. Then as $G \cdot F=1_{R}$, in order to see that A is F-pure it is enough to check that the ideal $I=\left(X_{1}, \cdots, X_{n}\right) \cap$ ($X_{n+1}, \cdots, X_{2 n}$) of R is stable under the action of G, i.e., $G(I) \subset I$. This is routine and we omit it.

Example 2.5. Let k be a perfect field of characteristic $p>0$ and K / k a finite extension of fields with degree $m \geqq 2$. Let $R=K \llbracket X_{1}, X_{2}, \cdots$, X_{n} 】($n \geqq 2$) be a formal power series ring and put

$$
A=\{f \in R \mid f(0,0, \cdots, 0) \in k\}
$$

Then
(1) A is a Buchsbaum complete local domain of $\operatorname{dim} A=n$.
(2) $H_{\mathrm{m}}^{1}(A)=(A / \mathfrak{m})^{m-1}$ and $H_{\mathrm{w}}^{i}(A)=(0)(i \neq 1, n)$.
(3) A is F-pure.

Proof. (1) and (2), see [2, (5.6)].
(3) Let S denote R which is regarded as an algebra over itself by the Frobenius endomorphism F. Then S is a free R-module with basis
$\left\{X_{1}^{c_{1}} X_{2}^{c_{2}} \cdots X_{n}^{c_{n}} \mid 0 \leqq c_{i}<p\right.$ for all $\left.1 \leqq i \leqq n\right\}$. Let $G: S \rightarrow R$ be the R-linear map defined by

$$
\begin{aligned}
G\left(X_{1}^{c_{1}} X_{2}^{c_{2}} \cdots X_{n}^{c_{n}}\right) & =1\left(c_{i}=0 \text { for all } 1 \leqq i \leqq n\right) \\
& =0 \text { (otherwise) }
\end{aligned}
$$

for each $X_{1}^{c_{1}} X_{2}^{c_{2}} \cdots X_{n}^{c_{n}}$ with $0 \leqq c_{i}<p$. Then A is clearly stable under the action of G, whence it must be F-pure (notice that $G \cdot F=1_{R}$).

We close this paper with the following
Remark 2.6. (1) In case $\operatorname{dim} A>2$, the conclusion of Corollary 2.3 is not true in general. For instance, take $n=2$ in the example A of Example 2.5 and let $B=A \llbracket Y_{1}, Y_{2}, \cdots, Y_{r} \rrbracket(r \geqq 1)$ be a formal power series ring. Then B is an F-pure ring of $\operatorname{dim} B=r+2$ and satisfies both the conditions (1) and (2) of Corollary 2.3. However B is not Buchsbaum (cf. [8, (4.6)]).
(2) The converse of Corollary 2.3 is not true, i.e., all two-dimensional Buchsbaum local domains of positive characteristic are not F-pure. For example, let $k \llbracket s, t \rrbracket$ be a formal power series ring over a field k of positive characteristic and put $A=k \llbracket s^{2}, s^{3}, t, s t \rrbracket$ in $k \llbracket s, t \rrbracket$. Then A is Buchsbaum but not F-pure.

References

[1] E. G. Evans Jr. and P. A. Griffith, Local cohomology modules for normal domains, J. London Math. Soc., 19 (1979), 277-284.
[2] S. Goto and Y. Shimoda, On Rees algebras over Buchsbaum rings, J. Math. Kyoto Univ., 20 (1980), 179-213.
[3] J. Herzog, A. Simis and W. Vasconcelos, Approximation complexes of blowing-up rings, J. Algebra, 74 (1982), 466-493.
[4] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math., 13 (1974), 115-175.
[5] C. Hunere, The theory of d-sequences and powers of ideals, Advances in Math., to appear.
[6] B. Renschuch, J. Stückrad und W. Vogel, Weitere Bemerkungen zu einem Problem der Schnittheorie und über ein $\mathrm{Maß}$ von A. Seidenberg für die Imperfektheit, J. Algebra, 37 (1975), 447-471.
[7] P. Schenzel, Applications of dualizing complexes to Buchsbaum rings, Advances in Math., 44 (1982), 61-77.
[8] P. Schenzel, N. V. Trung und N. T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr., 85 (1978), 57-73.
[9] J. Stückrad, Uber die kohomologische Characteriserung von Buchsbaum-Moduln, Math. Nachr., 95 (1980), 265-272.
[10] J. Stückrad und W. Vogel, Eine Verallgemeinerung der Cohen-Macaulay-Ringe und

Anwendungen auf ein Problem der Multiplizitätstheorie, J. Math. Kyoto Univ., 13 (1973), 513-528.
[11] J. Stückrad and W. Vogel, Toward a theory of Buchsbaum singularities, Amer. J. Math., 100 (1978), 727-746.

Present Address:

Department of Mathematics Nihon University
Sakurajosul, Setagaya-ku Tokyo 156

Department of Mathematics Gakushuin University Mejiro, Toshima-ku
Toкyo 171

[^0]: Received October 12, 1982.
 *) In [8], rings with finite local cohomology are called generalized Cohen-Macaulay.

