A Note on Rings with Finite Local Cohomology

Shiro GOTO and Tsukane OGAWA

Nihon University and Gakushuin University
(Communicated by T. Mitsui)

Introduction

Let A be a Noetherian local ring of $\dim A = n$ and m the maximal ideal of A. Let $H^i_{\mathfrak{m}}(\cdot)$ stand for the i^{th} local cohomology functor relative to m. Then we say that A has finite local cohomology, if the A-module $H^i_{\mathfrak{m}}(A)$ is finitely generated for every $i \neq n$.* In this note we shall characterize rings with finite local cohomology in terms of d-sequences. Recall that a sequence x_1, x_2, \dots, x_r of elements in A is called a d-sequence if the equality

$$(x_1, \dots, x_{i-1}): x_j = (x_1, \dots, x_{i-1}): x_i x_j$$

holds whenever $1 \le i \le j \le r$ ([5]). With this definition our result is stated as follows:

THEOREM. The following conditions are equivalent.

- (1) A has finite local cohomology.
- (2) There exists an integer N>0 such that every system of parameters of A contained in m^N is a d-sequence.

When this is the case, $\mathfrak{m}^{N} \cdot H_{\mathfrak{m}}^{i}(A) = (0)$ for all $i \neq n$.

Our theorem is a natural extension of Huneke's characterization of Buchsbaum rings. Recall that a Noetherian local ring A is called Buchsbaum if the difference

$$l_A(A/\mathfrak{q}) - e_{\mathfrak{q}}(A)$$

is an invariant of A not depending on the choice of a parameter ideal \mathfrak{q} of A, where $l_A(A/\mathfrak{q})$ and $e_{\mathfrak{q}}(A)$ denote the length of the A-module A/\mathfrak{q} and the multiplicity of A relative to \mathfrak{q} , respectively ([10]). Buchsbaum rings have, as is well-known (cf. [6]), finite local cohomology, and

Received October 12, 1982.

^{*)} In [8], rings with finite local cohomology are called generalized Cohen-Macaulay.

Huneke [5] showed that a given local ring A is Buchsbaum if and only if every system of parameters for A is a d-sequence.

In a certain special situation a Noetherian local ring A is Buchsbaum once it has finite local cohomology. More explicitly, let p>0 be a prime number and assume that A has characteristic p. Let $F: A \rightarrow A$ denote the Frobenius endomorphism of A, i.e., $F(a)=a^p$ for each $a \in A$ and let B stand for A when A is regarded, via F, as an algebra over itself. Then we say that A is F-pure if for every A-module M, the map

$$F_{\mathtt{M}}: M \longrightarrow B \bigotimes_{\mathtt{A}} M$$

defined by $F_{M}(x) = 1 \otimes x$ for each $x \in M$ is a monomorphism ([4]). With this terminology, as a consequence of Theorem, we have the following

COROLLARY. Let A be a Noetherian local ring of characteristic p, a prime number and assume that A is F-pure. Then A is Buchsbaum if and only if A has finite local cohomology.

This result is known by Schenzel [7] in graded case. However his proof depends on a characterization of Buchsbaum rings in terms of dualizing complexes and is essentially appealing to the surjectivity criterion obtained by [9] and [11]. Our proof is much more elementary and the result obviously contains his assertion.

We will prove Theorem and its corollary in sections 2 and 3, respectively.

Throughout this paper let A denote a Noetherian local ring of $\dim A = n$ and m the maximal ideal of A.

§1. Proof of Theorem.

First of all we note

LEMMA 1.1. Let x_1, x_2, \dots, x_r be elements of A and assume that x_1, x_2, \dots, x_r is a d-sequence. Then x_2, x_3, \dots, x_r also forms a d-sequence in A/x_1A .

This follows immediately from the definition of d-sequences.

LEMMA 1.2. Let a be an element of m and assume that the length $l_A([0]:a]_A)$ is finite. Then there exists an exact sequence

$$0 \longrightarrow H^{0}_{\mathfrak{m}}(aA) \longrightarrow H^{0}_{\mathfrak{m}}(A) \longrightarrow H^{0}_{\mathfrak{m}}(A/aA) \longrightarrow H^{1}_{\mathfrak{m}}(A) \stackrel{a}{\longrightarrow} H^{1}_{\mathfrak{m}}(A) \longrightarrow H^{1}_{\mathfrak{m}}(A/aA) \longrightarrow H^{1}_{\mathfrak$$

of local cohomology modules.

PROOF. Let W = [0]a. First of all, split the exact sequence

$$0 \longrightarrow W \longrightarrow A \xrightarrow{a} A \longrightarrow A/aA \longrightarrow 0$$

into short exact sequences

$$(1) 0 \longrightarrow W \longrightarrow A \longrightarrow aA \longrightarrow 0$$

$$0 \longrightarrow aA \longrightarrow A \longrightarrow A/aA \longrightarrow 0$$

and apply the functors $H_m^i(\cdot)$ to the sequence (1) (resp. (2)). Then we get isomorphisms

$$H_{\mathfrak{m}}^{\mathfrak{i}}(A) \cong H_{\mathfrak{m}}^{\mathfrak{i}}(aA)$$

for all i>0 (resp. a long exact sequence

$$(3) \qquad 0 \longrightarrow H_{\mathfrak{m}}^{0}(aA) \longrightarrow H_{\mathfrak{m}}^{0}(A) \longrightarrow H_{\mathfrak{m}}^{0}(A/aA) \longrightarrow H_{\mathfrak{m}}^{1}(aA)$$

$$\longrightarrow H_{\mathfrak{m}}^{1}(A) \longrightarrow H_{\mathfrak{m}}^{1}(A/aA) \longrightarrow \cdots \longrightarrow H_{\mathfrak{m}}^{i-1}(A/aA)$$

$$\longrightarrow H_{\mathfrak{m}}^{i}(aA) \longrightarrow H_{\mathfrak{m}}^{i}(A) \longrightarrow H_{\mathfrak{m}}^{i}(A/aA) \longrightarrow \cdots$$

of local cohomology modules.) Replace $H_{m}^{i}(aA)$ by $H_{m}^{i}(A)$ for i>0 in the sequence (3) and we shall have the required exact sequence at once.

PROOF OF THEOREM. $(1) \Rightarrow (2)$: By [8, (3.3)] we may choose an integer N>0 so that for every system a_1, a_2, \dots, a_n of parameters of A contained in m^n and for every integer $1 \leq i \leq n$, the equality

(#)
$$(a_1, \dots, a_{i-1}): a_i = (a_1, \dots, a_{i-1}): \mathfrak{m}^N$$

holds. Now take a system a_1, a_2, \dots, a_n of parameters of A so that a_k is in m^N for all $1 \le k \le n$ and let $1 \le i \le j \le n$ be integers. Then as both the systems a_1, \dots, a_{i-1}, a_j and $a_1, \dots, a_{i-1}, a_i a_j$ are contained in m^N and may be extended to systems of parameters of A, we get by (\sharp) that

$$(a_1, \dots, a_{i-1}): a_i = (a_1, \dots, a_{i-1}): \mathfrak{m}^N = (a_1, \dots, a_{i-1}): a_i a_j$$

whence a_1, a_2, \dots, a_n is, by definition, a d-sequence.

(2) \Rightarrow (1): It is enough to show that $\mathfrak{m}^{N} \cdot H_{\mathfrak{m}}^{n}(A) = (0)$ for all $i \neq n$. We may assume that $n = \dim A > 0$. Let us fix an element a of \mathfrak{m}^{N} so that $\dim A/aA = n-1$.

CLAIM.
$$[(0): a]_A = H_m^0(A)$$
.

In fact, choose a system $a_1=a$, a_2 , \cdots , a_n of parameters in m^n . Then

as a_1, a_2, \dots, a_n is by the assumption (2) a d-sequence, we see that

(a)
$$[(0): a]_A = [(0): a^2]_A$$
 and (b) $[(0): a_i]_A = [(0): aa_i]_A$

 $(2 \le i \le n)$. Let $x \in H_m^0(A)$. Then as $a^*x = 0$ for some s > 0, we see by (a) that ax = 0. Conversely let $x \in [(0): a]_A$. Then since $(aa_i)x = 0$, we get by (b) that $a_ix = 0$ for all $1 \le i \le n$. Therefore $(a_1, a_2, \dots, a_n)x = (0)$ whence $x \in H_m^0(A)$. Thus we conclude that $[(0): a]_A = H_m^0(A)$.

It follows from this claim that $\mathfrak{m}^N \cdot H^0_{\mathfrak{m}}(A) = (0)$, because the ideal \mathfrak{m}^N can be generated by the elements a such that $\dim A/aA = n-1$. In particular we get our implication for n=1. Now let $n \ge 2$ and assume that our assertion is true for n-1. Let $1 \le i \le n-1$ be an integer. Then because every system of parameters for A/aA contained in \mathfrak{m}^N forms a d-sequence in A/aA (cf. Lemma 1.1), we have by the hypothesis of induction on n that $\mathfrak{m}^N \cdot H^{i-1}_{\mathfrak{m}}(A/aA) = (0)$. Hence

(##)
$$\mathfrak{m}^{N} \cdot [(0): a]_{H^{i}_{\mathfrak{m}}(A)} = (0)$$

as the A-module $[(0):a]_{H_{\mathfrak{m}}^{\mathfrak{l}}(A)}$ is a homomorphic image of $H_{\mathfrak{m}}^{\mathfrak{l}-1}(A/aA)$ (cf. Lemma 1.2). Notice that the equality $(\sharp\sharp)$ holds for any element a of \mathfrak{m}^{N} with dim A/aA=n-1. Let $x\in H_{\mathfrak{m}}^{\mathfrak{l}}(A)$ and choose an integer s>0 so that $a^{\mathfrak{l}}x=0$. Then applying the equality $(\sharp\sharp)$ to $a^{\mathfrak{l}}$ instead of a, we immediately get that $\mathfrak{m}^{N}x=(0)$. Thus $\mathfrak{m}^{N}\cdot H_{\mathfrak{m}}^{\mathfrak{l}}(A)=(0)$ as required.

Let S(I) (resp. $R(I) = \bigoplus_{s \ge 0} I^s$) denote, for a given ideal I of A, the symmetric algebra of the A-module I (resp. the Rees algebra of I). Notice that there is a canonical epimorphism

$$h_r: S(I) \longrightarrow R(I)$$

of A-algebras.

COROLLARY 1.3. Suppose that A has finite local cohomology. Then there is an integer N>0 such that the canonical map

$$h_I: S(I) \longrightarrow R(I)$$

is an isomorphism for any ideal I of A which is generated by a subsystem of parameters of A contained in $\mathfrak{m}^{\mathbb{N}}$.

PROOF. Choose an integer N>0 for which the condition (2) of Theorem is fulfilled. Let a_1, a_2, \dots, a_r be a subsystem of parameters of A contained in m^N , and put $I=(a_1, a_2, \dots, a_r)$. Then we get, immediately by [3, 2.5], that the canonical map $h_I: S(I) \to R(I)$ is an isomorphism since a_1, a_2, \dots, a_r forms a d-sequence.

Let N(A) denote, in case A has finite local cohomology, the smallest integer N>0 for which the condition (2) of Theorem is fulfilled.

Example 1.4. Let N>0 be an integer. Then there exists a Noetherian local domain A satisfying the following conditions:

- (1) dim A=2.
- (2) The A-module $H_{\mathfrak{m}}^{1}(A)$ is finitely generated.
- (3) N(A) = N.

PROOF. Let S=k[X, Y, Z, W] be a polynomial ring over an infinite field k, and choose a graded prime ideal P of S with height 2 so that

$$H_{\scriptscriptstyle M}^{\scriptscriptstyle 1}(S/P)\!\cong\!S/M^{\scriptscriptstyle N}$$

as S-modules, where M=(X, Y, Z, W)S (cf., e.g., [1]). We put $A=S_{M}/PS_{M}$ and m=MA. Then dim A=2 and

$$(\sharp) \qquad \qquad H^{\scriptscriptstyle 1}_{\scriptscriptstyle \mathfrak{m}}(A) \cong A/\mathfrak{m}^{\scriptscriptstyle N}$$

clearly. Let a, b be a system of parameters of A contained in \mathfrak{m}^N . Then as $a \cdot H^1_{\mathfrak{m}}(A) = (0)$, we get by Lemma 1.2 an isomorphism $H^0_{\mathfrak{m}}(A/\alpha A) \cong H^1_{\mathfrak{m}}(A)$ of local cohomology modules, whence we find that

$$\mathfrak{m}^{N} \cdot H_{\mathfrak{m}}^{0}(A/aA) = (0)$$
.

On the other hand, recalling that $(A/aA)/H_m^0(A/aA)$ is a one-dimensional Cohen-Macaulay A-module and b is a parameter for $(A/aA)/H_m^0(A/aA)$, we have that

$$[(0):b]_{A/aA}\subset H^0_{\mathfrak{m}}(A/aA)$$
.

Therefore $\mathfrak{m}^{N} \cdot [(0): b]_{A/aA} = (0)$ and consequently

$$aA: b=aA: m^N$$
.

Thus by virtue of Proof of Theorem (cf. Proof of $[(1)\Rightarrow(2)]$), we see that every system of parameters of A contained in \mathfrak{m}^N forms a d-sequence, whence we find that $N(A) \leq N$. The opposite inequality $N(A) \geq N$ follows from the last assertion in Theorem, because (0): $H^1_{\mathfrak{m}}(A) = \mathfrak{m}^N$ by (\sharp) . Thus N(A) = N, which guarantees that the ring A is a required example.

§2. Proof of Corollary.

We note

PROPOSITION 2.1 ([5, (1.7)]). The following conditions are equivalent.

- (1) A is a Buchsbaum ring.
- (2) Every system of parameters of A is a d-sequence.

Let $f: R \rightarrow S$ be a homomorphism of commutative rings. Then f is said to be *pure* if for every R-module M, the map

$$f_{\mathcal{M}}: M \longrightarrow S \bigotimes_{\mathcal{D}} M$$

defined by $f_{\kappa}(x) = 1 \otimes x$ for each $x \in M$ is a monomorphism.

LEMMA 2.2. Let $f: R \rightarrow S$ be a pure homomorphism of commutative rings. Then

$$IS \cap R = I$$

for every ideal I of R.

This follows from the fact that the canonical map $f_{R/I}: R/I \rightarrow S \bigotimes_R R/I = S/IS$ is a monomorphism.

PROOF OF COROLLARY. We have only to prove the if part. Let a_1, a_2, \dots, a_n be a system of parameters of A and we will show that a_1, a_2, \dots, a_n is a d-sequence. First of all, let N>0 be an integer for which the condition (2) of Theorem is fulfilled and choose an integer e>0 so that $p^e \ge N$. Let $1 \le i \le j \le n$ be integers and $x \in (a_1, \dots, a_{i-1})$: $a_i a_j$. Then since $(a_i^{p^e} a_j^{p^e}) \cdot x^{p^e}$ is in $(a_1^{p^e}, \dots, a_{i-1}^{p^e})$ and since $a_1^{p^e}, a_2^{p^e}, \dots, a_n^{p^e}$ is a d-sequence (recall that by our choice of N and e, $a_k^{p^e} \in \mathbb{M}^N$ for all $1 \le k \le n$), we get that

$$a_j^{p^e} \cdot x^{p^e} \in (a_1^{p^e}, \dots, a_{i-1}^{p^e})$$
.

Therefore applying Lemma 2.2 to the situation where R=S=A, $f=F^{\bullet}$, and $I=(a_1, \dots, a_{i-1})$, we find that

$$a_i x \in (a_1, \dots, a_{i-1}) S \cap R = (a_1, \dots, a_{i-1})$$

whence

$$(a_1, \cdots, a_{i-1}): a_j = (a_1, \cdots, a_{i-1}): a_i a_j.$$

Thus a_1, a_2, \dots, a_n is a d-sequence and so A is, by Proposition 2.1, a Buchsbaum ring.

COROLLARY 2.3. Let dim A=2 and assume that (1) A is a homomorphic image of a Cohen-Macaulay ring and (2) A is an integral domain of positive characteristic. Then A is Buchsbaum if A is F-pure.

PROOF. As A is an integral domain of dim A=2, the ring A_{p} must be a Cohen-Macaulay local ring of dim $A_{p}=2-\dim A/p$ for every prime ideal p of A ($p\neq m$). Therefore by the assumption (1) and [8, (2.5) and (3.8)], A must have finite local cohomology. Hence the assertion follows from Corollary.

EXAMPLE 2.4. Let $R = k[X_1, X_2, \dots, X_{2n}]$ $(n \ge 2)$ be a formal power series ring over a perfect field k of characteristic p > 0. We put

$$A = R/(X_1, \dots, X_n) \cap (X_{n+1}, \dots, X_{2n})$$
.

Then

- (1) A is a Buchsbaum ring of dim A = n.
- (2) $H_{\mathfrak{m}}^{1}(A) = A/\mathfrak{m}$ and $H_{\mathfrak{m}}^{i}(A) = (0)$ $(i \neq 1, n)$.
- (3) A is F-pure.

PROOF. (1) and (2) See [6, p. 469, Beispiel].

(3) Let F be the Frobenius endomorphism of R and let S denote R when R is considered to be an algebra, via F, over itself. Then S is a finitely generated free R-module with basis $\{X_1^{c_1}X_2^{c_2}\cdots X_{2n}^{c_{2n}}|0\leq c_i< p\}$ for all $1\leq i\leq 2n\}$. Let $G\colon S\to R$ be the R-linear map defined by

$$G(X_1^{c_1}X_2^{c_2}\cdots X_{2n}^{c_{2n}}) = 1 \ (c_i = 0 \ \text{for all} \ 1 \leq i \leq 2n)$$

= 0 (otherwise)

for each $X_1^{c_1}X_2^{c_2}\cdots X_{2n}^{c_{2n}}$ with $0\leq c_i < p$. Then as $G\cdot F=1_R$, in order to see that A is F-pure it is enough to check that the ideal $I=(X_1,\cdots,X_n)\cap (X_{n+1},\cdots,X_{2n})$ of R is stable under the action of G, i.e., $G(I)\subset I$. This is routine and we omit it.

EXAMPLE 2.5. Let k be a perfect field of characteristic p>0 and K/k a finite extension of fields with degree $m \ge 2$. Let $R = K[X_1, X_2, \cdots, X_n]$ $(n \ge 2)$ be a formal power series ring and put

$$A = \{ f \in R | f(0, 0, \dots, 0) \in k \}$$
.

Then

- (1) A is a Buchsbaum complete local domain of dim A=n.
- (2) $H_{\mathfrak{m}}^{1}(A) = (A/\mathfrak{m})^{m-1} \text{ and } H_{\mathfrak{m}}^{1}(A) = (0) \ (i \neq 1, n).$
- (3) A is F-pure.

PROOF. (1) and (2), see [2, (5.6)].

(3) Let S denote R which is regarded as an algebra over itself by the Frobenius endomorphism F. Then S is a free R-module with basis

 $\{X_1^{c_1}X_2^{c_2}\cdots X_n^{c_n}|0\leq c_i Let <math>G\colon S\to R$ be the R-linear map defined by

$$G(X_1^{c_1}X_2^{c_2}\cdots X_n^{c_n})=1 (c_i=0 \text{ for all } 1\leq i\leq n)$$

$$=0 \text{ (otherwise)}$$

for each $X_1^{c_1}X_2^{c_2}\cdots X_n^{c_n}$ with $0 \le c_i < p$. Then A is clearly stable under the action of G, whence it must be F-pure (notice that $G \cdot F = 1_R$).

We close this paper with the following

REMARK 2.6. (1) In case dim A>2, the conclusion of Corollary 2.3 is not true in general. For instance, take n=2 in the example A of Example 2.5 and let $B=A[Y_1, Y_2, \dots, Y_r]$ $(r\ge 1)$ be a formal power series ring. Then B is an F-pure ring of dim B=r+2 and satisfies both the conditions (1) and (2) of Corollary 2.3. However B is not Buchsbaum (cf. [8, (4.6)]).

(2) The converse of Corollary 2.3 is not true, i.e., all two-dimensional Buchsbaum local domains of positive characteristic are not F-pure. For example, let k[s,t] be a formal power series ring over a field k of positive characteristic and put $A = k[s^2, s^3, t, st]$ in k[s, t]. Then A is Buchsbaum but not F-pure.

References

- [1] E. G. EVANS JR. and P. A. GRIFFITH, Local cohomology modules for normal domains, J. London Math. Soc., 19 (1979), 277-284.
- [2] S. Goto and Y. Shimoda, On Rees algebras over Buchsbaum rings, J. Math. Kyoto Univ., 20 (1980), 179-213.
- [3] J. Herzog, A. Simis and W. Vasconcelos, Approximation complexes of blowing-up rings, J. Algebra, 74 (1982), 466-493.
- [4] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math., 13 (1974), 115-175.
- [5] C. Huneke, The theory of d-sequences and powers of ideals, Advances in Math., to appear.
- [6] B. RENSCHUCH, J. STÜCKRAD und W. VOGEL, Weitere Bemerkungen zu einem Problem der Schnittheorie und über ein Maß von A. Seidenberg für die Imperfektheit, J. Algebra, 37 (1975), 447-471.
- [7] P. Schenzel, Applications of dualizing complexes to Buchsbaum rings, Advances in Math., 44 (1982), 61-77.
- [8] P. Schenzel, N. V. Trung und N. T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr., 85 (1978), 57-73.
- [9] J. STÜCKRAD, Über die kohomologische Characteriserung von Buchsbaum-Moduln, Math. Nachr., 95 (1980), 265-272.
- [10] J. STÜCKRAD und W. VOGEL, Eine Verallgemeinerung der Cohen-Macaulay-Ringe und

Anwendungen auf ein Problem der Multiplizitätstheorie, J. Math. Kyoto Univ., 13 (1973), 513-528.

[11] J. STÜCKRAD and W. VOGEL, Toward a theory of Buchsbaum singularities, Amer. J. Math., 100 (1978), 727-746.

Present Address:
DEPARTMENT OF MATHEMATICS
NIHON UNIVERSITY
SAKURAJŌSUI, SETAGAYA-KU
TOKYO 156

DEPARTMENT OF MATHEMATICS GAKUSHUIN UNIVERSITY MEJIRO, TOSHIMA-KU TOKYO 171