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Introduction

By a number field, we mean in this paper any finite extension of
the field $Q$ of rational numbers. For any natural number $n,$ $\zeta_{n}$ means
a primitive n-th root of unity. Let $l$ be an odd prime fixed throughout
this paper.

It was proved by Yahagi [8] that there exist infinitely many number
fields whose l-class groups are isomorphic to any given finite abelian l-group.
Some weaker results had been obtained by Gerth [1] and Iimura [5]. The
degrees of those number fields given in [1], [5] and [8] are all divisible by
$l$ , and the methods in these papers do not seem to yield any number fields
with degree relatively prime to $l$ , even if we require these fields to
satisfy only a weaker condition to have the class number divisible by $l$ .

On the other hand, Satg\’e [7] constructed infinitely many quadratic
extensions of $Q(\zeta_{\iota}+\zeta_{l}^{-1})$ , whose class numbers are divisible by $l$ . This
is a generalization of the result in Honda [4] where the case $l=3$ is
treated.

In this paper, we shall give one of the ways of constructing ex-
tensions $K$ of a given number field $k$ (satisfying a few conditions given
below), such that $[K:k]|l-1$ and the class numbers of $K$ are divisible
by $l$ . We shall show that there exist infinitely many such extensions $K$.
In particular, we can apply this to the case $k$ is any proper subfield of
$Q(\zeta_{\iota})$ , and get a similar result to $Satg\acute{e}’ s$ . We can show namely that
there exist infinitely many extensions of $k$ with degree $l-1$ over $Q$ ,
which are independent of $Q(\zeta_{l})$ over $k$. and whose class numbers are
divisible by $l$ .

Our method is based on the following simple idea. Let $K$ be an
arbitrary number field. According to the class field theory, the class
number of $K$ is divisible by $l$ if and only if there exists an unramified
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cyclic extension $L/K$ of degree $l$ . Furthermore, the existence of such an
extension $L/K$ is equivalent to the existence of an unramified Kummer
extension $L^{\prime}/K(\zeta_{l})$ of degree $l$ such that $L^{\prime}/K$ is abelian. So, the condition
that the class number of $K$ be divisible by $l$ can be discribed in terms
of the ramification theory of Kummer extension (Proposition 1). Now,
we shall give a certain polynomial $f(X)ek[X]$ (see below \S 1) so that
the field $K$ defined by $f(X)=0$ satisfies the condition given in Proposition
1. Finally, we shall show, using local conditions, that infinitely many
$K’ s$ exist.

NOTATIONS. $Z$ denotes as usual the ring of rational integers. For
an arbitrary field $K,$ $K^{x}$ denotes its multiplicative group. If $K$ is a
number field, then $0_{K}$ denotes the ring of integers of $K$. Moreover for
a prime ideal $\mathfrak{P}$ of $K$ and $aeK^{X},$ $v_{S}(a)$ denotes the order of $\alpha$ at $\mathfrak{P}$ .

\S 1. Preliminary propositions.

Let $k$ be a number field such that $\zeta_{l}\not\in k$ . Put $k‘=k(\zeta_{l})$ and $m=[k^{\prime}:k]$ .
Then $k’/k$ is cyclic of degree $m$ and $m|l-1$ . Asvume that there exists
a prime ideal I of $k$ which is totally ramified in $k^{\prime}$ . Note that $I|l$ . Let
$G$ be the Galois group of $k/k,$ $s$ be a generator of $G$ and $g$ be a positive
integer such that $\zeta_{l}\cdot=\zeta_{l}^{g}$ . We fix $s$ and $g$ . Then $G$ is isomorphic to a
subgroup of $(Z/lZ)^{x}$ under the map

$G\ni s‘\mapsto g^{i}$ mod $l\in(Z/lZ)^{x}$ , $(0\leqq i\leqq m-1)$ .
We denote by $\omega$ the element $\sum_{=0}^{*-\iota}g^{i}\epsilon^{-}$ of the group ring $Z[G]$ . Set

$F(X, Y)=\prod_{l\in G}(X-\zeta_{l}Y)$ . $(*)$

Then $F(X, Y)\in 0_{k}[X, Y]$ and $F(X, 1)$ is the minimal polynomial of Ci over
$k$ . Take $h(X)\in 0_{k}[X]$ which is constant or monic, $y\in 0_{k}$ such that $h(O)$

and $ly$ are relatively prime, and a unit $\epsilon$ of $0_{k}$ . For these, we define a
polynomial of $0_{k}[X]$

$f(X)=F(X, ly)-\epsilon h(X)$‘.

Let $\theta$ be a root of $f(X)$ . Put $K=k(\theta)$ and $K^{\prime}=K(\zeta_{l})$ . The above notations
$\omega,$ $h(X),$ $y,$ $\epsilon,$ $f(X),$ $\theta,$ $K$ and $K^{\prime}$ will be fixed throughout this paragraph.
Denote by $f’(X)$ the derivative of $f(X)$ . Then we get $f(X)\equiv X^{n}-\epsilon h(X)^{l}$

(mod I) and $f^{\prime}(X)\equiv mX^{n-1}$ (mod I). As $1fm$ and $h(O)$ and $ly$ are relatively
prime, $f(X)$ mod I is a separable polynomial of $(0_{k}/I)[X]$ . This implies that
I is unramified in $K$. As I is totally ramified in $k’$ , we have $K\cap k^{\prime}=k$ .
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Therefore the Galois group of $K^{\prime}/K$ can be identified with $G$ , as we shall
do in the following. The group ring $Z[G]$ acts on $K^{j\times}$ .

LEMMA 1. Let $L^{\prime}/K^{\prime}$ be a cyclic extension of degree $l$ . Then $L^{\prime}$ is
abelian over $K$ if and only if $L’=K’(l\sqrt{\alpha})$ for some $a\in(K^{\prime x})^{\omega}$ .

PROOF. See Long [5] \S 1.

The following lemma is well-known in the theory of Kummer ex-
tension (e.g. Hecke [3] \S 39).

LEMMA 2. $L’/K$ is an unramified cyclic extension of degree $l$ if
and only if $L‘=K’(\iota\sqrt{\alpha})$ for some $\alpha\in 0_{K^{\prime}},$

$\alpha\neq 0$ , satisfying the following
conditions:

(1) $\alpha\not\in K^{l}$ .
(2) $\nu_{2^{\prime}}(\alpha)\equiv 0(mod l)$ for any prime ideal $\mathfrak{P}^{\prime}$ of $K$ .
(3) $a$ and $l$ are relatively prime and the congruence $ X^{l}\equiv\alpha$

$(mod (1-\zeta_{l})^{l})$ is solvable in $0_{K^{\prime}}$ .
The above two lemmas yield, in virtue of the class field theory as

mentioned in the introduction, the following

PROPOSITION 1. The class number of $K$ is divisible by $l$ if and only
if there exists $\alpha\in 0_{K^{\prime}},$

$\alpha\rightarrow 0$ , satisfying the conditions (1), (2) and (3) of
Lemma 2 and that $\alpha\gamma^{t}\in(K^{\prime x})^{\omega}$ for $s$ome $\gamma\in K^{x}$ .

Now, set $\beta=\theta-ly\zeta_{l}$ and $\alpha=\beta^{\omega}$ The8e are the elements of $0_{K^{\prime}}$ .
LEMMA 3. (i) $N_{K^{\prime}/K}\beta=\epsilon h(\theta)^{l}$ , where $N_{K^{\prime}/K}$ is the norm map from $K$

to K. (ii) No prime factor $\mathfrak{P}$

’ of $\beta$ of $K$’ divides $\beta^{t}$ for any $t\in G,$ $t\fallingdotseq 1$ .
(iii) All prime ideals $\mathfrak{P}$ of $K$ dividing $h(\theta)$ are decomposed completely
in $K’$ .

PROOF. By the definition of $F(X, Y)$ , we have $N_{K^{\prime}/K}\beta=F(\theta, ly)=$

$\epsilon h(\theta)^{l}$ . To see (ii), assume $\beta\equiv\beta^{i}\equiv 0(mod \Psi)$ for some $\mathfrak{P}$

’ and $s\fallingdotseq 1$ .
Then $ly\zeta_{l}(1-\zeta_{l}^{g-1}:)\equiv 0(mod \Psi)$ . Since $g^{i}\not\equiv 1(mod l)$ , we have $1-\zeta_{l}^{g-1}:|l$ .
Hence $ly\equiv 0(mod \mathfrak{P}^{\prime})$ and $\theta\equiv 0(mod \mathfrak{P}^{\prime})$ . On the other hand, we have
$h(\theta)\equiv 0(mod \mathfrak{P}^{\prime})$ , from (i). So we have $ly\equiv h(O)\equiv 0(mod \mathfrak{P}^{\prime})$ . This is a
contradiction. (iii) is shown easily from (i) and (ii). So our lemma is
proved.

PROPOSITION 2. If $\alpha\not\in K^{\prime l}$ then the class number of $K$ is divisible
by $l$ .

PROOF. By Proposition 1, it is sufficient to show that $\alpha=\beta^{\omega}$
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satisfies the conditions (2) and (3) of Lemma 2. Let $\mathfrak{P}^{\prime}$ be a prime ideal
of $K$ and as the prime ideal of $K$ defined by $\mathfrak{P}=\mathfrak{P}^{j}\cap 0_{K}$. By Lemma 3, we
have $\nu_{2^{\prime}}(\beta)=0$ or $\nu_{\iota^{\prime}}(\beta)=\nu,(N_{K^{\prime}/K}\beta)=\nu_{2}(\epsilon h(9)^{l})\equiv 0(mod l)$ . Therefore, we
have $\nu_{l^{\prime}}(\alpha)=\sum_{=0}^{n-1}g^{i}\nu_{\iota^{\prime}}.(\beta)=0(mod l)$ , for any prime ideal $\mathfrak{P}^{\prime}$ of $K$‘. So,
(2) is satisfied. Next, $\beta\equiv 9-ly(mod (1-\zeta_{l})^{l})$ , as $(l)=(1-\zeta_{l})^{l-1}$ . Hence
$a=\beta^{\omega}\equiv\prod_{i=0}^{-1}(\theta-ly)^{g}$

‘
$(mod (1-\zeta_{l})^{l})$ . From the choice of $h(X)$ and $y$ , we

see easily that 9 and $l$ are relatively prime, and so are also $\alpha$ and $l$ .
We have $\sum_{=0}^{n-1}g^{i}\equiv 0(mod l)$ , since $m\neq 1$ . This shows that $a$ satisfies
(3), and the proof is completed.

Next, take a prime ideal $\mathfrak{p}$ of $k$ such that $N\mathfrak{p}\underline{=}1(mod l)$ (where $N\mathfrak{p}$

is the absolute norm of $\mathfrak{p}$). Then we can find $ueo_{k}$ satisfying the con-
gruence $F(u, 1)\equiv 0(mod \mathfrak{p})$ . For such $u$ , set

$\lambda_{*}=(lu)^{l-n}\prod_{=1}^{n-1}(1-u^{\overline{\sigma}-1})^{\iota-1}::$ , $(\#)$

where $\overline{g}$ is a positive integer such that $\overline{g}g\equiv 1(mod l)$ . N. mod $\mathfrak{p}$ is uni-
quely determined in $(0_{k}/\mathfrak{p})^{x}$ independing of the choice of $\overline{g}$ since $u^{l}\equiv 1$ ,
$u\not\equiv 1$ (mod p).

PROPOSITION 3. If (i) $f(X)$ is irreducible, (ii) $h(lyu)\equiv 0(mod \mathfrak{p})$ and
(iii) $\epsilon y^{\iota-}\lambda$. is not an l-th power mod $\mathfrak{p}$ , then the class number of $K$ is
divisible by $l$ .

PROOF. By the choice of $u$ , we have $F(lyu, ly)\equiv 0$ (mod p). We first
claim that there exists $x\in 0_{k}$ such that Plm $F(x, ly)$ and $x\equiv lyu(mod \mathfrak{p})$ . It
is sufficient to show this in ca8e $F(lyu, ly)\equiv 0(mod \mathfrak{p}^{2})$ . Set $\Phi(X)=F(X, ly)$

and take $\Psi(X)eo_{k}[X]$ such that $\Phi(X)\Psi(X)=X^{l}-(ly)^{l}$ . Then we have
$\Phi^{\prime}(lyu)\Psi(lyu)\equiv l(lyu)^{l-1}$ (mod p). Since $ly$ and $h(O)$ are relatively prime,
and consequently $y\not\equiv O(mod \mathfrak{p})$ , we get $\Phi^{\prime}(lyu)\not\equiv O(mod \mathfrak{p})$ . Set $ x=lyu+\pi$ ,
where $\pi e$ p–p2. Then, using Taylor’s formula,

$\Phi(x)\equiv\Phi(lyu)+\Phi^{\prime}(lyu)\pi\equiv\Phi^{\prime}(lyu)\pi\not\equiv O$ $(mod \mathfrak{p}^{2})$ ,

and so we have $\mathfrak{p}||F(x, ly)$ and $x\cong lyu$ (mod p). Now, from (ii), $\mathfrak{p}|f(x)$ .
On the other hand, we have $N_{K/k}(9-x)=\pm f(x)$ , since $f(X)$ is irreducible.
Hence $\mathfrak{p}||N_{K/k}(\theta-x\rangle$ . So there exists a prime ideal $\mathfrak{P}$ of $K$ such that
$N_{K/k}\mathfrak{P}=\mathfrak{p}$ and $9\equiv x(mod \mathfrak{P})$ . Then we have $N_{K^{\prime}/K}\beta\equiv 0(mod \mathfrak{P})$ , since
$N_{K^{\prime}/K}\beta=\epsilon h(9)^{l}$ , and there exists a prime ideal $\mathfrak{P}^{\prime}$ of $K^{\prime}$ which divides $\beta$

and $\mathfrak{P}$ . As $\mathfrak{P}$ is decomposed completely in $K$‘, we have $N_{K^{\prime}/k}\mathfrak{P}’=\mathfrak{p}$ .
Next, we see $\theta\equiv ly\zeta_{l}(mod \mathfrak{P}^{\prime})$ since $\beta\equiv 0(mod \mathfrak{P}’)$ . On the other

hand, $9\equiv x\equiv lyu(mod \mathfrak{P})$ . Therefore $u\equiv\zeta_{l}(mod \mathfrak{P}^{\prime})$ and we get
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$\beta^{-i}=\theta-ly\zeta_{l}^{\pi^{i}}\equiv lyu(1-u^{\sigma-1}:)(mod \mathfrak{P}^{\prime})$ , $(1\leqq i\leqq m-1)$ .

Set $\alpha^{\prime}=\alpha/h(\theta)^{l}$ . Then $\alpha’\in 0_{K}$ , and

$\alpha^{\prime}=\epsilon\prod_{i=1}^{n-1}\beta^{-i_{(g^{i}-1)}}\equiv\epsilon\prod_{i=1}^{-1}\{(lyu)^{g-1}:(1-u^{r^{i}-1})^{\sigma-1}:\}$ $(mod \mathfrak{P}^{\prime})$ .
As we have $\sum_{i=1}^{n-1}(g^{i}-1)\equiv-m(mod l)$ , we get

$\alpha^{\prime}\equiv v^{\iota}\epsilon(lyu)^{l-n}\prod_{i=1}^{n-1}(1-u^{\eta^{i}-1})^{\sigma-1}\equiv v^{\iota}\epsilon y^{l-n}\lambda_{*}$
:

$(mod \mathfrak{P}^{\prime})$ ,

for some $veo_{k}$ such that $\mathfrak{p}^{\backslash }$ト $v$ . Therefore, the assumption (iii) shows
that $\alpha^{\prime}$ is not an l-th power mod $\mathfrak{P}^{\prime}$ , since $N_{K^{\prime}/k}\mathfrak{P}^{j}=\mathfrak{p}$ . Thus $a^{\prime}\not\in K^{\iota}$ and
$\alpha\not\in K^{\eta}$ . Our proposition follows from this and Proposition 2.

REMARK. It is easy to see that for $\mathfrak{p},$ $u$ and $\epsilon$ there exists $y\in 0_{k}$

satisfying (iii) of Proposition 3.

\S 2. Main theorem.

THEOREM. Let $k$ be a number field such that $\zeta_{l}\not\in k$ and assume that
there exists a prime ideal of $k$ which is totally ramified in $k(\zeta_{l})$ . Set
$m=[k(\zeta_{l}):k]$ . Then there exist infinitely many number fields $K$ with the
following properties:

(a) $K=k(\theta),$ $\theta$ being any root of the polynomial $f(X)=F(X, ly)-z^{l}$ ,
where $F(X, Y)$ is the polynomial of $0_{k}[X, Y]$ as defined by $(^{*})$ and $y,$ $z$

are suitably chosen elements of $0_{k}$ .
(b) The class number of $K$ is divisible by $l$ .
(c) $K\cap k(\zeta_{l})=k$ .
(d) $[K:k]=m$ .

Furthermore, in case $\zeta_{l\hslash}\not\in k$ , we may add the following condition on $K$:
(e) $K/k$ is non-Galois.

PROOF. We apply Proposition 3 with $\epsilon=1$ and $h(X)=constant$ . Re-
call that $k(\zeta_{l})/k$ is cyclic and $F(X, 1)$ is the minimal polynomial of $\zeta_{l}$ over
$k$ . So, there exists a prime ideal $\mathfrak{p}_{1}$ of $k$ such that $F(X, 1)$ mod $\mathfrak{p}_{1}$ is
irreducible in $(0_{k}/\mathfrak{p}_{1})[X]$ . Next, take a prime ideal $\mathfrak{p}_{2}$ of $k$ and $u\in 0_{k}$

satisfying the congruences $N\mathfrak{p}_{2}\equiv 1(mod l)$ and $F(u, 1)\equiv 0(mod \mathfrak{p}_{2})$ . Obvi-
ously $\mathfrak{p}_{1}\neq \mathfrak{p}_{2}$ because $\mathfrak{p}_{1}$ is inert while $\mathfrak{p}_{2}$ is decomposed completely in $k(\zeta_{l})$ .
Let $N_{u}$ be defined by $(\#)$ . Take $y,$ $z\in 0_{k}$ such that

(i) $ly\equiv 1(mod \mathfrak{p}_{1})$ ,
(ii) $ y^{l-n}\lambda$. is not an l-th power mod $\mathfrak{p}_{2}$ ,
(iii) $z\equiv 0(mod \mathfrak{p}_{1})$ ,
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(iv) $z\equiv 0(mod \mathfrak{p}_{\iota})$ ,
(v) $ly$ and $z$ are relatively prime.

It is clear that such $y,$ $z$ exist. Let $\theta$ be any root of $f(X)=F(X, ly)-z^{l}$

and $K=k(\theta)$ . Then (c) is shown in \S 1. From (i) and (iii), we have
$f(X)\equiv F(X, 1)(mod \mathfrak{p}_{1})$ . So $f(X)$ is irreducible in $0_{k}[X]$ by the choice of
$\mathfrak{p}_{1}$ . Then, by Proposition 3, (b) and (d) are satisfied.

Next, we consider the case $\zeta_{n}\not\in k$ . We can find a prime ideal $\mathfrak{p}_{\epsilon}$ of
$k$ which is not decomposed completely in $k(\zeta_{n})$ . We may assume that
$\mathfrak{p}_{1},$ $\mathfrak{p}_{2}$ and $\mathfrak{p}_{8}$ are distinct and $\mathfrak{p}_{8}\uparrow m$ . Then it is easy to see that $y,$ $z$ can
be chosen so that the following additional conditions are satisfied:

(vi) $ly\equiv 0(mod \mathfrak{p}_{s})$ ,
(vii) $z\equiv 1(mod \mathfrak{p}_{\epsilon})$ .

In this case, we have $f(X)\equiv X^{n}-1(mod \mathfrak{p}_{3})$ . Therefore $\mathfrak{p}_{\epsilon}$ has a prime
divisor in $K$ with relative degree 1. Assume that $K/k$ is Galois. Then
$f(X)$ mod $\mathfrak{p}_{s}$ factors into a product of distinct linear factors in $(0_{k}/\mathfrak{p}_{\epsilon})[X]$ .
This shows that $\mathfrak{p}_{3}$ is decomposed completely in $k(\zeta_{n})$ , since the minimal
polynomial of $\zeta_{n}$ over $k$ is the irreducible factor of $X-1$ . This con-
tradicts the choice of $\mathfrak{p}_{s}$ , and (e) is satisfied.

To see that there are infinitely many choices of $K=k(\theta)$ , it is
sufficient to 8how that, for any finite set $S$ of such $K’ s$ , there exists
another field with properties $(a)-(d)$ (and also (e) in case $\zeta_{f*}\not\in k$) which is
not contained in $S$. Let $S=\{K_{1}, \cdots, K_{n}\}$ . For each $i(1\leqq i\leqq n)$ , we can
find a prime ideal $\mathfrak{Q}_{i}\uparrow l$ of $K$ which is not decomposed completely in
$K_{i}(\zeta_{l})$ . Put $\mathfrak{q}_{i}=\mathfrak{Q}_{i}\cap 0_{k}$ and $a=q_{1}\cdots q_{n}$ . Choose prime ideals $\mathfrak{p}_{1},$ $\mathfrak{p}_{l}$ (and $\mathfrak{p}_{8}$ ,
if $\zeta_{n}\not\in k$) as above which do not divide $\mathfrak{a}$ . Then we can find $y,$ $z$ satis-
fying in addition to $(i)-(v)$ (and (vi), (vii), if $\zeta_{n}\not\in k$) also the condition:

(viii) $z\equiv 0$ (mod a).
Now, the field $K$ defined as above for such $y,$ $z$ satisfies the properties
$(a)-(d)$ (and also (e) in case $\zeta_{*}\not\in k$), and every prime ideal of $K$ lying
above $q_{i}$ is decomposed completely in $K(\zeta_{l})$ by Lemma 3 $(1\leqq i\leqq n)$ . Hence
$K\not\in S$ and our theorem is proved.

COROLLARY 1. For any proper subfield $M$ of $Q(\zeta_{l})$ , there exist in-
finitely many number fields $K$ satisfying the following conditions:

(a) The class number of $K$ is divisible by $l$ .
(b) $K\cap Q(\zeta_{l})=M$.
(c) $[K:Q]=l-1$ .

If $[Q(\zeta_{l}):M]>2$ i.e., $M\neq Q(\zeta_{l}+\zeta_{l}^{-1})$ , we may add the following condition
on $K$

(d) $K/M$ is non-Galois (therefore $K/Q$ is also non-Galois).
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COROLLARY 2. For a given divisor $m\neq 1$ of $l-1$ , there exist in-
finitely many extensions of $Q(\zeta_{l})$ of degree $m$ whose class numbers are
divisible by $l$ .

References

[1] F. GERTH III, Number fields with prescribed l-class group, Proc. Amer. Math. Soc., 49
(1975), 284-288.

[2] G. GRAS, Sur les l-classes d’id\’eaux dans les extensions cycliques relatives de degr\’e
premier l, Ann. Inst. Fourier, vol. 23, no. 3 (1973), 1-48.

[3] E. HECKE, Vorlesungen \"uber die Theorie der Algebraischen Zahlen, Che18ea, New York,
1970.

[4] T. HONDA, On real quadratic fields whose class numbers are multiple of 3, J. Reine
Angew. Math., 233 $(1\Re 8),$ 101-102.

[5] K. IIMURA, On the l-class group of an algebraic number field, J. Reine Angew. Math.,
322 (1981), 136-144.

[61 R. LONG, Steinitz classes of cyclic extensions of prime degree, J. Reine Angew. Math.,
25O (1971), 87-98.

[7] P. SATGB, Corps r\’esolubles et divisibilit\’e de nombres de classes d’id\’eaux, Enseignement
Math., 25 (1979), 165-188.

[81 0. YAHAGI, Construction of number fields with prescribed l-class groups, Tokyo J. Math.,
1 (1978), 275-283.

[91 Y. YAMAMOTO, On unramified Galois extensions of quadratic number fields, Osaka J.
Math., 7 (1970), 57-76.

Present Address:
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
GAKUSHUIN UNIVERSITY
MEJIRO, TOSHIMA-KU
TOKYO 171


