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Introduction

Let $\varphi:M\rightarrow\tilde{M}$ be an isometric immersion of a connected complete
Riemannian manifold $M$ into a Riemannian manifold $\tilde{M}$. If, for each
geodesic $\gamma$ of $M$, the curve $\varphi 0\gamma$ in $\tilde{M}$ has constant curvatures of osculat-
ing order $d$ which are independent of $\gamma$ , then $\varphi$ is called a helical geodesic
immersion of order $d$ (cf. Sakamoto [12]). In this paper we shall study
a helical geodesic immersion into a unit sphere.

We give an example of a helical geodesic immersion according to
Besse [2]. Suppose that the Riemannian manifold $(M, g)$ is compact. Then
it has a unique kernel for the heat equation $K:M\times M\times R+\rightarrow R$ . If there
exists a map $\Xi:R_{+}\times R_{+}^{*}\rightarrow R$ such that $K(p, q, t)=\Xi(\delta(p, q),$ $t$ ) for every
$p,$ $q\in M$ and $t\in R_{+}^{*}$ , then $M$ is called a strongly harmonic manifold, where
$\delta$ denotes the distance function. Compact symmetric spaces of rank one
are its examples. Following Besse we construct a helical geodesic and
minimal immersion of a strongly harmonic manifold $(M, g)$ into a unit
sphere. Let $V_{k}$ be the eigenspace of the Laplacian on $(M, g)$ correspond-
ing to the k-th eigenvalue $\lambda_{k}(>0)$ and dim $V_{k}=m(k)+1$ . We define an inner
product $\langle, \rangle$ on $V_{k}$ by $\langle f, h\rangle=\int_{M}f\cdot hd\mu,$ $f,$ $h\in V_{k}$ . For simplicity, we nor-
malize the canonical measure $ d\mu$ of $(M, g)$ in such a way that $\int_{M}d\mu=\dim V_{k}$ .
Denote an orthonormal basis of $V_{k}$ by $\{f_{i}\}(i=0,1, \cdots, m(k))$ and define
a map $\psi:M\rightarrow R^{m(k)+1}$ by $\psi(p)=(f_{0}(p), \cdots, f_{m(k)}(p)),$ $p\in M$. The definition
of a strongly harmonic manifold implies that there exists a function
$F:R_{+}\rightarrow R$ such that $(\psi(p), \psi(q))=\sum_{l=0}^{mtk)}f_{t}(p)f_{i}(q)=F(\delta(p, q))$ . Owing to
this equation, the map $\psi$ enjoys the following properties.

(i) $\psi$ is an isometric immersion of $(M, c_{k}\cdot g)$ into $R^{n(k)+1}$ , where
$c_{k}=\lambda_{k}/\dim M$.
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(ii) $\psi(M)$ is contained in the unit sphere se $(k)$ of $R^{*(k)+1}$ and $\psi$ is
minimal in $sr(k)$

(iii) $\psi$ is helical geodesic in $S_{1}^{*(k)}$ .
We call this map the k-th standard minimal immersion of a strongly

harmonic manifold and denote it by $\psi_{k}$ .
A helical geodesic immersion of order 1 means a totally geodesic

immersion. As for order 2 and order 3, the following result is already
gotten: If $\varphi:M\rightarrow S_{1}^{m}$ is a helical geodesic minimal immersion of order
2 or order 3, then $M$ is a compact symmetric space of rank one and $\varphi$

is equivalent to a standard minimal immersion (Sakamoto [11], Nakagawa
[8]). On the other hand, harmonic manifolds have been studied by many
authors, but the conjecture that harmonic manifolds are rank one sym-
metric spaces or Euclidean spaces is still open. The study of helical
geodesic immersions will be useful for the study of this conjecture. From
this point of view Sakamoto ([12]) proposed the following conjecture.

CONJECTURE. If $\varphi$ is a helical geodesic minimal immersion of a com-
pact Riemannian manifold into a unit sphere, then $M$ is isometric to a
compact symmetric space of rank one and $\varphi$ is equivalent to a standard
minimal immersion.

In this paper we show that a helical geodesic minimal immersion of
a real analytic strongly harmonic manifold into a unit sphere is equivalent
to a standard minimal immersion (\S 2). And we determine helical geodesic
immersions of compact rank one symmetric spaces (\S 3).

The author wishes to thank Professor K. Ogiue for his many valuable
comments.

\S 1. Rigidity Lemma.

First of all we shall define the higher fundamental forms and the
degree of an isometric immersion (Wallach [17]). Let $\tilde{M}$ be a Riemannian
manifold of constant curvature. Let $\varphi:M\rightarrow\tilde{M}$ be an isometric immersion
of a Riemannian manifold $M$ into $\tilde{M}$. Let $B_{2}$ be the second fundamental
form of $\varphi$ at $p\in M$ and $O_{p}^{2}$ be the linear span of the image of $B_{2}$

in the normal space $N_{p}(M)$ of the immersion $\varphi$ at $peM$. We call
$\varphi_{*}T_{p}M+O_{p}^{2}$ the second osculating space at $peM$. We say that peM
is degree 2 regular if $O_{p}^{2}$ is of maximal dimension. Let $R_{2}\subset M$ be the
set of all degree 2 regular points of $M$. Then $R_{2}$ is open in $M$. Let
$p\in R_{2}$ . Let $N_{2}$ be the normal projection in $N_{p}(M)$ relative to $N_{p}(M)=$

$O_{p}^{2}+(O_{p}^{2})^{\perp}$ (we write $v\rightarrow v^{N_{2}}\in(O_{p}^{2})^{\perp}$ ). We define $B_{3}(u_{1}, u_{2}, u_{3})=(\tilde{\nabla}_{r_{1}}(B_{2}(u_{2}, u_{3})))^{N_{2}}$

for $u_{1},$ $u_{2},$ $u_{S}eT_{p}M$ arbitrarily extended to vector fields on $M$, where V
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denotes the Riemannian connection on $\tilde{M}$. $B_{3}$ is well-defined and defines
a symmetric tensor field on $R_{2}$ . Let $O_{p}^{3}$ be the linear span of the image
of $B_{3}$ . We call $B_{3}$ the third fundamental form of $\varphi$ at $p$ and $\varphi_{*}T_{p}M+$

$O_{p}^{2}+O_{p}^{a}$ the third osculating space. We call a point $peR_{2}$ degree 3
regular if dim $O_{p}^{3}$ is maximal. We define $B_{j},$ $O^{j}$ for $j=2,3,$ $\cdots$ by recur-
sion as above on the space $R_{j-1}$ of all degree j-l regular points of $M$.
We call $B_{j}$ the j-th fundamental form of $\varphi$ and $\varphi_{*}T_{p}M+O_{p}^{2}+\cdots+O_{p}^{j}$

the j-th osculating space. Clearly the above process must eventually
stop since dim $(\varphi_{*}T_{p}M+O_{p}^{2}+\cdots+O_{p}^{d})\leqq\dim T_{p}\tilde{M}$. Letd be the first integer
$\geqq 2$ such that $B_{d}\not\equiv 0$ but $B_{d+1}\equiv 0$ . Then we call $d$ the degree of $\varphi$ and
the set of all d-regular points will be called the set of all completely
regular points of $M$, denoted by $M^{\prime}=R_{d}$ . In particular, when $\varphi$ is totally
geodesic, $i.e.,$ $B_{2}\equiv 0$ , we say that $\varphi$ has degree 1.

In this paper, from now on we assume that the ambient space $\tilde{M}$ is
one of the standard models of Riemannian manifolds of constant curva-
ture, namely, the Euclidean space $R^{m}$ , the sphere $S^{m}$ , the real projective
space $P_{m}(R)$ , and the hyperbolic space $H^{m}$ . It will be covenient to say
that an isometric immersion $\varphi:M\rightarrow\tilde{M}$ is full if $\varphi(M)$ is not contained
in any proper totally geodesic submanifold of $\tilde{M}$ and that two isometric
immersions $\varphi$ and $\hat{\varphi}$ of $M$ into $\tilde{M}$ are equivalent if there exists an iso-
metry $\rho$ of $\tilde{M}$ such that $\rho\circ\varphi=\hat{\varphi}$ .

In this section we show the following rigidity lemma, which is the
generalization of a Nomizu’s Theorem in [9]. This result can be derived
from the general treatment of connections in the bundles of normal
spaces given by Kowalski [6]. But since we need the process of its proof
for later applications, we shall prove it here.

LEMMA 1.1 (Rigidity Lemma). Let $\varphi$ and $\hat{\varphi}$ be two full isometric
immersions of a connected Riemannian manifold $M$ into $\tilde{M}$. We assume
that every point of $M$ is completely regular for both $\varphi$ and $\hat{\varphi}$ and that the
degree of $\varphi$ is equal to that of $\hat{\varphi}$ . If there exists a bundle isomorphism
$f$ of the normal bundle $N_{\varphi}$ for $\varphi$ onto the normal bundle $N_{\hat{\varphi}}$ for $\hat{\varphi}$ which
preserves the bundle metrics and the higher fundamental forms, i.e., for
each point $p\in M,$ $f(B_{j}(u_{1}, \cdots, u_{j}))=\hat{B}_{j}(u_{1}, \cdots, u_{j}),$

$u_{1},$ $\cdots,$ $ u_{j}\in T_{p}M2\leqq j\leqq$

the degree of $\varphi=the$ degree of $\hat{\varphi}$ , where $B_{j}$ and $\hat{B}_{j}$ denote the j-th
fundamental forms of $\varphi$ and $\hat{\varphi}$ respectively, then $\varphi$ is equivalent to $\hat{\varphi}$ .

PROOF. By the assumptions of Lemma 1.1 and a Theorem of Erbacher
[5], $N_{\varphi}$ and $N_{\hat{\varphi}}$ are decomposed respectively as follows:

$N_{\varphi}=O^{2}+\cdots+O^{d}$
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$N_{\hat{\varphi}}=\hat{O}^{2}+\cdots+\hat{O}^{d}$ ,

where $d=the$ degree of $\varphi=the$ degree of $\hat{\varphi}$ . Since $f(B_{j}(u_{1}, \cdots, u_{j}))=$

$\hat{B}_{j}(u_{1}, \cdots, u_{j}),$ $f$ induces a bundle isomorphism of $0^{j}$ onto $\hat{O}^{j}$ . Let $\nabla^{\perp}$

and $\hat{\nabla}^{\perp}$ be the normal connections in $N_{\varphi}$ and $N_{\hat{\varphi}}$ respectively. By Rigidity
Theorem (cf. Chen [3] p. 49) it is sufficient to prove that $f$ preserves
the connections. Define a linear connection V $\perp$ in the normal bundle $N_{\varphi}$

as follows. For any section $\xi$ of $N_{\varphi}$ and for any vector field $X$ on $M$,
we set $\dot{\nabla}_{X}^{\perp}\xi=f^{-1}(\hat{\nabla}_{X}^{\perp}(f\xi))$ .

Since $f$ preserves the bundle metrics, we easily see
Assertion 1. $\nabla^{\perp}Q$ is a metric connection of $N_{\varphi}$ .
Next we show

Assertion 2. For any vector fields $X,$ $Y$ and $Z$ on $M,$ $\nabla_{X}^{\perp}(B_{2}(Y, Z))0=$

$\nabla_{X}^{\perp}(B_{2}(Y, Z))$ holds.

(Proof) Using Codazzi equation, we have

\langle V $x\perp B_{2}(Y,$ $Z),$ $B_{2}(U,$ $ V)\rangle$ $-\langle\nabla_{X}^{\perp}B_{2}(Y, Z), B_{2}(U, V)\rangle$

$=\langle\hat{\nabla}_{X}^{\perp}\hat{B}_{2}(Y, Z),\hat{B}_{2}(U, V)\rangle-\langle\nabla_{X}^{\perp}B_{2}(Y, Z), B_{2}(U, V)\rangle$

$=(\hat{\nabla}_{Y}^{\perp}\hat{B}_{2}(X, Z),\hat{B}_{2}(U, V)\rangle-\langle\nabla_{Y}^{\perp}B_{2}(X, Z), B_{2}(U, V)\rangle$

$=\langle\dot{\nabla}_{Y}^{\perp}B_{2}(X, Z), B_{2}(U, V)\rangle-(\nabla_{Y}^{\perp}B_{2}(X, Z),$
$ B_{2}(U, V)\rangle$ ,

that is,

(1.1) $\langle(\nabla_{X}^{\perp}-\nabla_{X}^{\perp})B_{2}(Y, Z), B_{2}(U\circ, V)\rangle=\langle(\nabla_{Y}^{\perp}-\nabla_{Y}^{\perp})B_{2}(X, Z), B_{2}(U\circ, V)\rangle$ .
Using Assertion 1 and (1.1), we get

$\langle(\dot{\nabla}_{X}^{\perp}-\nabla_{X}^{\perp})B_{2}(Y, Z), B_{2}(U, V)\rangle=-\langle B_{2}(Y, Z), (\nabla_{X}^{\perp}-\nabla_{X}^{\perp})B_{2}(U\circ, V)\rangle$

$=-\langle B_{2}(Y, Z), (\dot{\nabla}_{U}^{\perp}-\nabla_{U}^{\perp})B_{2}(X, V)\rangle$

$=\langle(\nabla_{U}^{\perp}-\nabla_{U}^{\perp})B_{2}(Y, Z), B_{2}(XoV)\rangle$

$=-\langle B_{2}(U, Z), (\nabla_{Y}^{\perp}-\nabla_{Y}^{\perp})B_{2}(XQV)\rangle$

$=\langle(\nabla_{V}^{\perp}-\nabla_{V}^{\perp})B_{2}(U, Z), B_{2}(XQY)\rangle$

$=-\langle B_{2}(U, V), (\dot{\nabla}_{Z}^{\perp}-\nabla_{Z}^{\perp})B_{2}(X, Y)\rangle$

$=-\langle B_{2}(U, V), (\nabla_{X}^{\perp}-\nabla_{X}^{\perp})B_{2}(Y, Z)\rangle\circ$ .
Therefore we have

(1.2) \langle V$x\perp B_{2}(Y,$ $Z),$ $B_{2}(U,$ $ V)\rangle$ $=\langle\nabla_{X}^{\perp}B_{2}(Y, Z), B_{l}(U, V)\rangle$ .
We remark that (1.1) and (1.2) are proved by using only the fact
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that there exists a bundle isomorphism $f$ of $O^{2}$ onto $\hat{O}^{2}$ which preserves
bundle metrics and the second fundamental forms. Under this situation
(1.1) and (1.2) show that, for a section $\xi$ of $O^{2},$ $f$ maps the $O^{2}$-component
of $\nabla_{X}^{\perp}\xi$ to the $\hat{O}^{2}$-component of $\hat{\nabla}_{X}^{\perp}(f\xi)$ . Following definitions, we get

$[\nabla_{X}^{\perp}B_{2}(Y, Z)]^{N_{2}}=f^{-1}[f\mathring{\nabla}_{X}^{\perp}B_{2}(Y, Z)]^{N_{2}}0$

$=f^{-1}[\hat{\nabla}_{X}^{\perp}\hat{B}_{2}(Y, Z)]^{N_{2}}$

$=f^{-1}\hat{B}_{3}(X, Y, Z)$

$=B_{3}(X, Y, Z)$ ,

that is,

(1.3) $[\nabla_{X}^{\perp}B_{2}(Y, Z)]^{N_{2}}=B_{3}(XQY, Z)$ .
Since $B_{3}(X, Y, Z)=[\nabla_{X}^{\perp}B_{2}(Y, Z)]^{N_{2}}$ , Assertion 2 follows from (1.2) and (1.3).

Assertion 3. Generally we have $\nabla_{X}^{o_{1}}B_{j}(U_{1}, \cdots, U_{j})=\nabla_{X}^{\perp}B_{j}(U_{1}, \cdots, U_{j})$

for the j-th fundamental form, $3\leqq j\leqq d$ .

(Proof) We will apply the mathematical induction. We assume that
Assertion 3 holds for any $k,$ $2\leqq k\leqq j-1$ . Since $\nabla^{o_{1}}$ is a metric connection,
we get for any $k,$ $2\leqq k\leqq j-1$

\langle V $x\perp B_{j}(U_{1},$
$\cdots,$

$U_{j}),$ $B_{k}(V_{1},$ $\cdots,$
$ V_{k})\rangle$

$=X\langle B_{j}(U_{1}, \cdots, U_{j}), B_{k}(V_{1}, \cdots, V_{k})\rangle-\langle B_{j}(U_{1}, \cdots, U_{j}), \nabla_{X}^{\perp}B_{k}(V_{1}\circ, \cdots, V_{k})\rangle$

$=X\langle B_{j}(U_{1}, \cdots, U_{j}), B_{k}(V_{1}, \cdots, V_{k})\rangle-\langle B_{j}(U_{1}, \cdots, U_{j}), \nabla_{X}^{\perp}B_{k}(V_{1}, \cdots, V_{k})\rangle$

$=\langle\nabla_{X}^{\perp}B_{j}(U_{1}, \cdots, U_{j}), B_{k}(V_{1}, \cdots, V_{k})\rangle$ ,

that is,

(1.4) \langle V $x\perp B_{j}(U_{1},$
$\cdots,$

$U_{j}),$ $B_{k}(V_{1},$ $\cdots,$
$ V_{k})\rangle$

$=\langle\nabla_{X}^{\perp}B_{j}(U_{1}, \cdots, U_{j}), B_{k}(V_{1}, \cdots V_{k})\rangle$

for $2\leqq k\leqq j-1$ . Since $f$ preserves metrics and the second fundamental
forms, we easily see that $ f^{-1}\hat{R}^{\perp}(X, Y)f\xi=R^{\perp}(X, Y)\xi$ for any section $\xi$ of
$N_{\varphi}$ , where $R^{\perp}$ and $\hat{R}^{\perp}$ denote the curvature tensors of $N_{\varphi}$ and $N_{\hat{\varphi}}$ with
respect to $\nabla^{\perp}$ and $\hat{\nabla}^{\perp}$ respectively. We set the decomposition of
$\nabla_{X}^{\perp}B_{J-1}(U_{2}, \cdots, U_{j})$ as follows:

$\nabla_{X}^{\perp}B_{i-1}(U_{2}, \cdots, U_{j})=B_{j}(X, U_{2}, \cdots, U_{j})+D_{j}(X, U_{2}, \cdots, U_{j})$ ,

where $B_{j}(X, U_{2}, \cdots, U_{j})\in O^{j}$ and $D_{j}(X, U_{2}, \cdots, U_{j})\in O^{2}+\cdots+O^{j-1}$ . By
the assumption of the induction, we have
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$\dot{\nabla}_{X}^{\perp}\dot{\nabla}_{Y}^{\perp}B_{J-1}(U_{2}, \cdots, U_{j})=\nabla_{X}^{\perp}(\nabla_{r}^{\perp}B_{j-1}(U_{2}o U_{j}))$

$=\dot{\nabla}_{X}^{\perp}(B_{j}(Y, U_{2}, \cdots, U_{j})+D_{j}(Y, U_{2}, \cdots, U_{j}))$ .
By the definition, we get

$\nabla_{X}^{\perp}\nabla_{Y}^{\perp}B_{j-1}(U_{2}oo U_{j})-\nabla_{Y}^{O}\perp\mathring{\nabla}_{X}^{\perp}B_{j-1}(U_{2}, \cdots, U_{j})-\nabla_{[X,Y]}^{\perp}B_{j-1}(U_{2}o U_{j})$

$=f^{-1}\hat{R}^{\perp}(X, Y)fB_{j-1}(U_{2}, \cdots, U_{j})$

and

$\nabla_{X}^{\perp}\nabla_{Y}^{\perp}B_{j-1}(U_{2}, \cdots, U_{j})-\nabla_{Y}^{\perp}\nabla_{X}^{\perp}B_{i-1}(U_{2}, \cdots, U_{j})-\nabla_{[X,Y]}^{\perp}B_{j-1}(U_{2}, \cdots, U_{j})$

$=R^{\perp}(X, Y)B_{j-1}(U_{2}, \cdots, U_{j})$ .
Noticing that $\nabla_{X}^{\perp}D_{j}(Y\circ, U_{2}, \cdots, U_{j})=\nabla_{X}^{\perp}D_{j}(Y, U_{2}, \cdots, U_{j})$ , we have

$\langle\dot{\nabla}_{X}^{\perp}B_{j}(Y, U_{2}, \cdots, U_{j})-\nabla_{Y}^{\perp}B_{j}(X\circ, U_{2}, \cdots, U_{j}), B_{\dot{f}}(V_{1}, \cdots, V_{\dot{f}})\rangle$

$=\langle\nabla_{X}^{\perp}B_{j}(Y, U_{2}, \cdots, U_{j})-\nabla_{Y}^{\perp}B_{j}(X, U_{2}, \cdots, U_{j}), B_{j}(V_{1}, \cdots, V_{\dot{f}})\rangle$ ,

that is,

(1.5) $\langle(\nabla_{X}^{\perp}-\nabla_{X}^{\perp})B_{j}(Y, U_{2}, \cdots, U_{j}), B_{j}(V_{1}, \cdots, V_{j})\rangle$

$=\langle(\nabla_{Y}^{\perp}-\nabla_{Y}^{\perp})B_{j}(XQU_{2}, \cdots, U_{j}), B_{j}(V_{1}, \cdots, V_{j})\rangle$ .
By the same calculations as (1.2), we have

(1.6) \langle V $x\perp B_{j}(U_{1},$
$\cdots,$ $U_{j}),$ $B_{j}(V_{1},$ $\cdots,$ $ V_{j})\rangle$

$=\langle\nabla_{X}^{\perp}B_{j}(U_{1}, \cdots, U_{j}), B_{j}(V_{1}, \cdots, V_{j})\rangle$ .
Again we remark that (1.4), (1.5) and (1.6) are obtained by using

only the fact that there exists a bundle isomorphism $f$ of $O^{2}+\cdots+O^{j}$

onto $\hat{O}^{2}+\cdots+\hat{O}^{j}$ which preserves bundle metrics and fundamental forms.
So for a section $\xi$ of $O^{2}+\cdots+O^{j},$ $f$ maps the $O^{2}+\cdots+O^{j}$-component of
$\nabla_{X}^{\perp}\xi$ to the $\hat{O}^{2}+\cdots+\hat{O}^{j}$-component of $\hat{\nabla}_{X}^{\perp}f\xi$ .

By the same reason as (1.3), we have

(1.7) $[Vx\perp B_{j}(U_{1}, \cdots, U_{j})]^{N_{j}}=B_{j+1}(X, U_{1}, \ldots U_{j})$ .
This, together with (1.4) and (1.6), implies that $\dot{\nabla}_{X}^{\perp}B_{j}(U_{1}, \cdots, U_{j})=$

$\nabla_{X}^{\perp}B_{j}(U_{1}, \ldots, U_{j})$ and hence Assertion 3 is proved.
By Assertion 2 and Assertion 3, $\nabla_{X}^{\perp}\xi=\nabla_{X}^{\perp}\xi 0$ holds for any section $\xi$

of $N_{\varphi}$ and any vector field $X$ on $M$. Therefore Lemma 1.1 is proved.
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\S 2. Rigidity of helical geodesic minimal immersions of strongly
harmonic manifolds.

As an application of Lemma 1.1, we show the following.

THEOREM 2.1. Let $\varphi$ and $\hat{\varphi}$ be two isometric immersions of a con-
nected Riemannian manifold $M$ into a space form $\tilde{M}$. Assume that $\varphi$ is
a full immersion into $\tilde{M}$ and every point of $M$ is completely regular
with respect to $\varphi$ . If, for any point $peM$ and any unit vector $x\in T_{p}M$,
there exists $\epsilon>0$ such that for the geodesic $\gamma(t)$ of $M$ which is defined
on $-\epsilon<t<\epsilon$ and satisfies $\gamma(0)=p,\dot{\gamma}(0)=x$ , the curve $\varphi\circ\gamma$ in $\tilde{M}$ is equiv-
alent to the curve $\hat{\varphi}\circ\gamma$ in $\tilde{M},$ $i.e.$ , there exists an isometry $\rho$ of $\tilde{M}$ such
that $\hat{\varphi}\circ\gamma=\rho(\varphi\circ\gamma)$ , then $\varphi$ is equivalent to $\hat{\varphi}$ .

REMARK. We can not remove the condition that every point of $M$

is completely regular with respect to $\varphi$ . As for a counter example, we
refer to Fig 10.1 (p. 366) in [14].

For the geodesic $\gamma$ of $M$ in the assumptions of the above Theorem, we
set $\sigma(t)=\varphi\circ\gamma(t)$ and $\tau(t)=\hat{\varphi}\circ\gamma(t)$ . Then evidently the following holds.

LEMMA 2.2. $\langle\tilde{\nabla}_{\sigma}^{(k)}\dot{\sigma},\tilde{\nabla}_{\sigma}^{(l)}\dot{\sigma}\rangle=\langle\tilde{\nabla}_{\tau}^{(k)}\dot{\tau},\tilde{\nabla}^{(l)}i\dot{\tau}\rangle$ , where $\tilde{\nabla}$ denotes the Rie-
mannian connection of $\tilde{M}$.

We denote the normal bundles for $\varphi$ and $\hat{\varphi}$ by $N_{\varphi}$ and $N_{\hat{\varphi}}$ respec-
tively and the normal connections of $N_{\varphi}$ and $ N_{\varphi}\wedge$ by $\nabla^{\perp}$ and $\hat{\nabla}^{\perp}$ respec-
tively. We write the covariant differentiations on $TM+N_{\varphi}$ and $TM+$
$N_{\hat{\varphi}}$ by V and $\hat{\nabla}$ respectively. The assumption of the Theorem, together
with Erbacher’s Theorem, implies that the normal bundle $N_{\varphi}$ is decom-
posed as $N_{\varphi}=O^{2}+\cdots+O^{d}$ , where $d$ is the degree of $\varphi$ . Moreover, for
$2\leqq j\leqq d$ , the j-th fundamental form $B_{j}$ of $\varphi$ is defined on $M$. We shall
prove the Theorem by calculating the higher fundamental forms $\hat{B}_{j}$ of
$\hat{\varphi}$ and simultaneously constructing the bundle isomorphism $f$ of $N_{\varphi}$ onto
$N_{\hat{\varphi}}$ .

For an arbitrary unit tangent vector $x$ at $p$ , we take the geodesic
$\gamma$ of $M$ which satisfies the assumption of the Theorem. Noticing that
$(\tilde{\nabla}_{\sigma}\dot{\sigma})(0)=B_{2}(x, x)$ and $(\tilde{\nabla}_{\tau}\dot{\tau})(0)=\hat{B}_{2}(x, x)$ , we have, by Lemma 2.2, $\langle B_{2}(x, x)$ ,
$ B_{2}(x, x)\rangle=\langle\hat{B}_{2}(x, x),\hat{B}_{2}(x, x)\rangle$ for any unit tangent vector $x$ at $p$ . This
equation is equivalent to

$\langle B_{2}(u_{1}, u_{2}), R(u_{8}, u)\rangle+\langle B_{2}(u_{1}, u_{3}), B_{2}(u_{4}, u_{2})\rangle+\langle B_{2}(u_{1}, u_{4}), B_{2}(u_{2}, u_{3})\rangle$

$=\langle\hat{B}_{2}(u_{1}, u_{2}),\hat{B}_{2}(u_{3}, u_{4})\rangle+\langle\hat{B}_{2}(u_{1}, u_{3}),\hat{B}_{2}(u_{4}, u_{2})\rangle+\langle\hat{B}_{2}(u_{1}, u_{4}),\hat{B}_{2}(u_{2}, u_{8})\rangle$
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for $u_{1},$ $u_{2},$ $u_{3},$ $u\in T_{p}M$.
By Gauss equation, we have

$ 3\langle B_{2}(u_{1}, u_{2}), B_{2}(u_{3}, u_{4})\rangle+\langle R(u_{1}, u_{4})u_{2}, u_{s}\rangle$

$+c\{\langle u_{1}, u_{2}\rangle\langle u_{4}, u_{3}\rangle-\langle u_{1}, u_{3}\rangle\langle u_{4}, u_{2}\rangle\}+\langle R(u_{1}, u,)u_{2}, u_{4}\rangle$

$+c\{\langle u_{1}, u_{2}\rangle\langle u_{S}, u_{4}\rangle-\langle u_{1}, u_{4}\rangle\langle u_{8}, u_{2}\rangle\}$

$=3\langle\hat{B}_{2}(u_{1}, u_{2}),\hat{B}_{2}(u_{3}, u_{4})\rangle+\langle R(u_{1}, u_{4})u_{2}, u_{3}\rangle$

$+c\{\langle u_{1}, u_{2}\rangle\langle u_{4}, u_{s}\rangle-\langle u_{1}, u_{3}\rangle\langle u_{4}, u_{2}\rangle\}+\langle R(u_{1}, u_{S})u_{2}, u_{4}\rangle$

$+c\{\langle u_{1}, u_{2}\rangle\langle u_{3}, u_{4}\rangle-\langle u_{1}, u_{4}\rangle\langle u_{3}, u_{2}\rangle\}$ ,

where $c$ is the sectional curvature of $\tilde{M}$ and $R$ denotes the curvature
tensor of $M$. Thus we have

(2.1) $\langle\hat{B}_{2}(u_{1}, u_{2}),\hat{B}_{2}(v_{1}, v_{2})\rangle=\langle B_{2}(u_{1}, u_{2}), B_{2}(v_{1}, v_{2})\rangle$

for $u_{1},$ $u_{2},$ $v_{1},$ $v_{2}eT_{p}M$ .

We define a linear map $f$ of $O_{p}^{2}$ onto $\hat{O}_{p}^{2}$ by $f(B_{2}(x, y))=\hat{B}_{2}(x, y),$
$x,$ $ y\in$

$T_{p}M$. (2.1) shows that $f$ is well-defined and is an isometry of $O_{p}^{2}$ onto
$\hat{O}_{p}^{2}$ . Especially we have dim $O_{p}^{2}=\dim\hat{O}_{p}^{2}$ . By the assumption, every point
of $M$ is degree 2 regular for $\hat{\varphi}$ . Consequently $f$ is a bundle isomorphism
of $O^{2}$ onto $\hat{O}^{2}$ which preserves the bundle metrics and the second funda-
mental forms. For convenience we denote by $D_{3}(x, y, z)(resp.\hat{D}_{\epsilon}(x, y, z))$

the $O_{p}^{2}$-component (resp. $\hat{O}_{p}^{2}$-component) of $\overline{\nabla}B_{2}(x, y, z)(resp.\hat{\nabla}\hat{B}_{2}(x, y, z))$ .
Then, by the remark in the proof of Lemma 1.1, $f(D_{3}(x, y, z))=\hat{D}_{3}(x, y, z)$

holds for any $x,$ $y,$ $z$ .
For the geodesic $\gamma$ of $M$ such that $\dot{\gamma}(0)=x$ , we have

$\tilde{\nabla}_{\sigma}^{!^{2)}}\dot{\sigma}(0)=\tilde{\nabla}_{x}(B_{2}(\dot{\sigma},\dot{\sigma}))=\overline{\nabla}B_{2}(x, x, x)-A_{B_{2}tx,x)}x$

$=B_{s}(x, x, x)+D_{3}(x, x, x)-A_{B_{2}(gg)}x$ ,

where $A_{\epsilon}$ denotes the second fundamental tensor corresponding to the
normal vector $\xi$ . Then we have

$\langle\tilde{\nabla}_{\sigma}^{!^{2)}} ’, \tilde{\nabla}_{\sigma}^{!^{2)}}\dot{\sigma}\rangle=||B_{3}(x, x, x)||^{2}+||D_{3}(x, x, x)||^{2}+||A_{B_{2}(x.x)}x||^{2}$

Similarly we have

$\langle\tilde{\nabla}_{\tau}^{!^{2)}}\dot{\tau},\tilde{\nabla}_{\tau}^{!^{2)}}\dot{\tau}\rangle=\Vert\hat{B}_{s}(x, x, x)\Vert^{2}+\Vert\hat{D}_{3}(x, x, x)\Vert^{2}+\Vert\hat{A}_{B_{2^{(x,x)}}}x\Vert^{2}$

By (2.1), we easily see that $A_{B_{2}(x,y)}z=\hat{A}B_{z^{(x,y)}}z$ . Since $f(D_{s}(x, x, x))=$

$\hat{D}_{s}(x, x, x)$ , Lemma 2.2 implies that
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(2.2) $\langle\hat{B}_{3}(x, x, x),\hat{B}_{s}(x, x, x)\rangle=\langle B_{3}(x, x, x), B_{3}(x, x, x)\rangle$

for any unit tangent vector $x$ .

Let $u,$ $v,$ $x_{1},$ $x_{2},$ $y_{1}$ and $y_{2}$ be tangent vectors at $p$ of $M$. We write
by $\gamma$ the curve which is tangent to $u$ . Let $V,$ $X_{1},$ $X_{2},$ $Y_{1}$ and $Y_{2}$ be
parallel vector fields along $\gamma$ which coincide with $v,$ $x_{1},$ $x_{2},$ $y_{1}$ and $y_{2}$ at
$p$ respectively. Then

$\langle\overline{\nabla}B_{2}(V, X_{1}, X_{2}), B_{2}(Y_{1}, Y_{2})\rangle=\langle\hat{\nabla}\hat{B}_{2}(V, X_{1}, X_{2}),\hat{B}_{2}(Y_{1}, Y_{2})\rangle$

holds along $\gamma$ . Differentiating this equation with respect to $u$ , we have

$ u\langle\overline{\nabla}B_{2}(V, X_{1}, X_{2}), B_{2}(Y_{1}, Y_{2})\rangle$

$=\langle\nabla_{u}^{\perp}(\overline{\nabla}B_{2}(V, X_{1}, X_{2})), B_{2}(Y_{1}, Y_{2})\rangle+\langle\overline{\nabla}B_{2}(V, X_{1}, X_{2}), \nabla_{u}^{\perp}(B_{2}(Y_{1}, Y_{l}))\rangle$

$=\langle\overline{\nabla}^{2}B_{2}(u, v, x_{1}, x_{2}), B_{2}(y_{1}, y_{2})\rangle+\langle\overline{\nabla}B_{2}(v, x_{1}, x_{2}),\overline{\nabla}B_{2}(u, y_{1}, y_{2})\rangle$

$=\langle\overline{\nabla}^{2}B_{2}(u, v, x_{1}, x_{2}), B_{2}(y_{1}, y_{2})\rangle+\langle B_{S}(v, x_{1}, x_{2}), B_{3}(u, y_{1}, y_{2})\rangle$

$+\langle D_{3}(v, x_{1}, x_{2}), D_{3}(u, y_{1}, y_{2})\rangle$ .
Similarly we get

$ u\langle\hat{\nabla}\hat{B}_{2}(V, X_{1}, X_{2}),\hat{B}_{2}(Y_{1}, Y_{2})\rangle$

$=\langle\hat{\nabla}^{2}\hat{B}_{2}(u, v, x_{1}, x_{2}),\hat{B}_{2}(y_{1}, y_{2})\rangle+\langle\hat{B}_{3}(v, x_{1}, x_{2}),\hat{B}_{3}(u, y_{1}, y_{2})\rangle$

$+\langle\hat{D}_{3}(v, x_{\perp}, x_{2}),\hat{D}_{3}(u, y_{1}, y_{2})\rangle$ .
Therefore

$\langle\overline{\nabla}^{2}B_{2}(u, v, x_{1}, x_{2}), B_{2}(y_{1}, y_{2})\rangle+\langle B_{3}(v, x_{1}, x_{2}), B_{3}(u, y_{1}, y_{2})\rangle$

$=\langle\hat{\nabla}^{2}\hat{B}_{2}(u, v, x_{1}, x_{2}),\hat{B}_{2}(y_{1}, y_{2})\rangle+\langle\hat{B}_{s}(v, x_{1}, x_{2}),\hat{B}_{3}(u, y_{1}, y_{2})\rangle$

holds. On the other hand, Ricci formula implies that

$\langle\overline{\nabla}^{2}B_{2}(u, v, x_{1}, x_{2})-\overline{\nabla}^{2}B_{2}(v, u, x_{1}, x_{2}), B_{2}(y_{1}, y_{2})\rangle$

$=\langle R^{\perp}(u, v)B_{2}(x_{1}, x_{2})-B_{2}(R(u, v)x_{1}, x_{2})-B_{2}(x_{1}, R(u, v)x_{2}), B_{2}(y_{1}, y_{2})\rangle$

and

$\langle\hat{\nabla}^{2}\hat{B}_{2}(u, v, x_{1}, x_{2})-\hat{\nabla}^{2}\hat{B}_{2}(v, u, x_{1}, x_{2}),\hat{B}_{2}(y_{1}, y_{2})\rangle$

$=\langle\hat{R}^{\perp}(u, v)\hat{B}_{2}(x_{1}, x_{2})-\hat{B}_{2}(R(u, v)x_{1}, x_{2})-\hat{B}_{2}(x_{1}, R(u, v)x_{2}),\hat{B}_{2}(y_{1}, y_{2})\rangle$ ,

where $R^{\perp}$ and $\hat{R}^{\perp}$ denote the curvature tensors of $N_{\varphi}$ and $N_{\hat{\varphi}}$ respec-
tively.

By (2.1) and Ricci equation, we get
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$\langle\overline{\nabla}^{2}B_{2}(u, v, x_{1}, x_{2})-\overline{\nabla}^{2}B_{2}(v, u, x_{1}, x_{2}), B_{2}(y_{1}, y_{2})\rangle$

$=\langle\hat{\nabla}^{2}\hat{B}_{2}(u, v, x_{1}, x_{2})-\hat{\nabla}^{2}\hat{B}_{2}(v, u, x_{1}, x_{2}),\hat{B}_{2}(y_{1}, y_{2})\rangle$ .
Thus we have

(2.3) $\langle\hat{B}_{3}(u, x_{1}, x_{2}),\hat{B}_{3}(v, y_{1}, y_{2})\rangle-\langle\hat{B}_{3}(v, x_{1}, x_{2}),\hat{B}_{3}(u, y_{1}, y_{2})\rangle$

$=\langle B_{3}(u, x_{1}, x_{2}), B_{\theta}(v, y_{1}, y_{2})\rangle-\langle B_{3}(v, x_{1}, x_{2}\rangle,$ $ B_{3}(u, y_{1}, y_{2})\rangle$

for $u,$ $v,$ $x_{1},$ $x_{2},$ $y_{1},$ $y_{2}\in T_{p}M$ .
Symmetrizing (2.2), we have

$\mathscr{L}_{6}\langle\hat{B}_{3}(u_{1}, u_{2}, u_{3}),\hat{B}_{3}(u_{4}, u_{6}, u_{6})\rangle=\mathscr{G}_{6}\langle B_{s}(u_{1}, u_{2}, u_{3}\rangle,$
$ B_{3}(u_{4}, u_{b}, u_{6})\rangle$

$,$

where $\mathscr{G}_{6}$ denotes the symmetrizer of order 6. This, together with (2.3),
gives

(2.4) $\langle\hat{B}_{3}(u_{1}, u_{2}, u_{s}),\hat{B}_{8}(v_{1}, v_{2}, v_{3})\rangle=\langle B_{S}(u_{1}, u_{2}, u_{3}), B_{3}(v_{1}, v_{2}, v_{3})\rangle$

for $u_{1},$ $u_{2},$ $u_{3},$ $v_{1},$ $v_{2},$ $v_{3}\in T_{p}M$ .
By (2.4), we can define an isometric linear map $f$ of $O_{p}^{3}$ onto $\hat{O}_{l}^{s}$

which satisfies $f(B_{3}(x, y, z))=\hat{B}_{3}(x, y, z)$ . Especially we have dim $O_{p}^{3}=$

dim $\hat{O}_{p}^{3}$ , which implies that every point of $M$ is degree 3 regular for $\hat{\varphi}$ .
Consequently $f$ is a bundle isomorphism of $O^{2}+O^{3}$ onto $\hat{O}^{2}+\hat{O}^{3}$ which
preserves the bundle metrics and the second and third fundamental
forms.

Calculating inductively, we see that every point of $M$ is completely
regular for $\hat{\varphi}$ and the degree of $\hat{\varphi}$ is equal to that of $\varphi$ . Moreover we
can construct the bundle isomorphism $f$ of $N_{\varphi}$ onto $N_{\hat{\varphi}}$ which preserves
the bundle metrics and the higher fundamental forms. Therefore Lemma
1.1 gives Theorem 2.1.

COROLLARY 2.3. Let $(M, g)$ be an n-dimensional real analytic strongly
harmonic manifold. If $\varphi$ is a full helical geodesic minimal immersion of
$(M, c_{k}\cdot g)$ into a unit sphere $S_{1}^{l}$ , then $\varphi$ is equivalent to the standard
minimal immersion $\psi_{k}$ In particular $l$ is equal to $m(k)$ . (For notations
we refer to Introduction.)

We prepare some lemmas before the proof of Corollary 2.3. Let
$XeT_{x_{0}}M-\{0\}$ and $\gamma;s\rightarrow\exp_{x_{0}}(s/||X||)X$ be the geodesic. Let $\{Y\}i=$
$2,$

$\cdots,$ $n$ be Jacobi field8 along $\gamma$ such that $Y_{i}(0)=0$ for every $i$ and
$\{Y’(0)\}_{i=2},\cdots.$. forms an orthonormal basis of the orthogonal complement
of $X$ in $T_{x_{0}}M$. Then we define $\theta:TM\rightarrow R$ by
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$\left\{\begin{array}{l}\theta(0)=1\\\theta(X)=\Vert X\Vert^{-n+1}\det(Y_{2}(\Vert X||), \cdots, Y_{n}(||X||))\end{array}\right.$

where the determinant should be understood with respect to the parallel
frame field of $\{Y_{i}^{\prime}(0)\}$ . It is known that a strongly harmonic manifold
is a globally harmonic manifold, i.e., there exists a $C^{\infty}$-function $\Theta:R_{+}\rightarrow$

$R$ such that $\theta(X)=\Theta(\Vert X\Vert)$ for every $xeM$ and every $X\in T_{x}M$.

LEMMA 2.4 (Berger-Gauduchon-Mazet [1] p. 134). Let $f$ be a $C^{\infty}-$

function on $M$ of the form $f(x)=F(\delta(x, x_{0}))$ (i.e., whie $h$ depends only on
the distance to $x_{0}$), where $\delta$ denotes the distance function. Then we have

$\Delta f=-\frac{d^{2}F}{ds^{2}}-(\frac{\theta_{x_{0}}^{\prime}}{\theta_{x_{0}}}+\frac{n-1}{s})\frac{dF}{ds}$ ,

where $\Delta$ denotes the Laplacian and $\theta_{x_{0}}^{\prime}$ is the radial derivative of $\theta_{x_{0}}$ in
$T_{x_{0}}M$.

LEMMA 2.5 (Sakamoto [12]). Let $\varphi:M\rightarrow S_{1}^{l}$ be a helical geodesic im-
mersion. Then there $ex\dot{r}sts$ a $C^{\infty}$-function $F:R_{+}\rightarrow R$ such that the
Euclidean inner product of position vectors $\varphi(x)$ and $\varphi(y)$ is given by
$\langle\varphi(x), \varphi(y)\rangle=F(\delta(x, y))$ .

LEMMA 2.6 (Besse [2] p. 177, p. 178). Let $\varphi:M\rightarrow S_{1}^{l}$ be a helical
geodesic immersion and let $\gamma:I\rightarrow M$ be a geodesic parametrized by the
arc-length. Then the curvatures of the curve $\sigma=\varphi\circ\gamma$ in $S_{1}^{l}$ are completely
determined by $F^{(k)}(0),$ $k=1,2,$ $\cdots$ , where $F$ is the function introduced
in Lemma 2.5.

LEMMA 2.7 (Do Carmo and Wallach [4]). Let $\varphi:(M, c_{k}\cdot g)\rightarrow S_{1}^{l}$ be a
minimal immersion. Then there exists a symmetric positive semi-definite
linear map $A$ of $R^{n(k)+1}$ such that $\varphi$ is equivalent to $Ao\psi_{k}$ Futhermore
$\varphi$ is equivalent to $\psi_{k}$ if and only if the associated symmetric linear
mapping $A$ of $\varphi$ is equal to the identity map.

PROOF OF COROLLARY 2.3. Since $l$ is not greater than $m(k)$ , we may
regard $\varphi$ as a helical geodesic minimal immersion into $S_{1}^{n*(k)}$ . We denote
by $F$ and $\hat{F}$ the functions introduced in Lemma 2.5 associated with
helical geodesic immersions $\psi_{k}$ and $\varphi$ respectively. For a fixed point
$x_{0}\in M$, we define the functions $f$ and $\hat{f}$ on $M$ by

$f(x)=\langle\psi_{k}(x), \psi_{k}(x_{0})\rangle=F(\delta(x, x_{0}))$

$\hat{f}(x)=\langle\varphi(x), \varphi(x_{0})\rangle=\hat{F}(\delta(x, x_{0}))$ ,
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where $\langle, \rangle$ denotes the Euclidean inner product of $R^{*(k)+1}$ . By a Theorem
of Takahashi [15], $f(x)$ and $\hat{f}(x)$ are eigenfuctions of the Laplacian on
$(M, c_{k}\cdot g)$ with eigenvalue $n$ . By Lemma 2.4, we have

$-\frac{d^{2}F}{ds^{2}}-\frac{dF}{ds}(\frac{\theta_{x_{0}}^{\prime}}{\theta_{x_{0}}}+\frac{n-1}{s})=nF$

and

$-\frac{d^{2}\hat{F}}{ds^{2}}-\frac{d\hat{F}}{ds}(\frac{\theta_{x_{0}}^{\prime}}{\theta_{x_{0}}}+\frac{n-1}{s})=n\hat{F}$ .
Since $F(O)=\hat{F}(0)=1$ and $F^{\prime}(O)=\hat{F}^{\prime}(0)=0$ , we obtain $F\equiv\hat{F}$. Then Lemma
2.6 implies that, for any geodesic $\gamma$ of $M,$ $\varphi\circ\gamma$ is equivalent to $\psi_{k}\circ\gamma$ in
$S_{1}^{n\cdot(k)}$ . Let $A$ be a symmetric positive semi-definite linear map of $R^{m(k)+1}$

such that $A\circ\psi_{k}$ is equivalent to $\varphi$ . Let $M$’ be a connected open sub-
manifold of $M$ whose points are all completely regular for $\psi_{k}$ . Since
$\psi_{k}$ is analytic and is a full immersion into $S_{1}^{f\hslash(k)},$ $\psi_{k}$ is a full immersion
into $S_{1}^{ntk)}$ on $M^{\prime}$ , too. We apply Theorem 2.1 to the immersions $\psi_{k}$ and
$\varphi$ of $M^{\prime}$ into $S_{1}^{n*(k)}$ . By Lemma 2.7, $A$ is the identity map. Therefore
Corollary 2.3 holds.

Since a compact symmetric space of rank one is a real analytic strongly
harmonic manifold, we immediately get

COROLLARY 2.8. A helical geodesic minimal immersion of a compact
symmetric space of rank one into a unit sphere is equivalent to a
standard minimal immersion.

This result in the case of a sphere has already been shown in [16].

\S 3. Helical geodesic immersions of a compact rank one symmetric
space.

First we prepare two notions.

DEFINITION 3.1 (O’Neill [10]). Let $B$ be an $R^{k}$-valued symmetric
multilinear form on $R^{n}$ . We say that $B$ is isotropic if $||B(u, \cdots, u)||=$

constant for any unit vector $u$ in $R^{n}$ .
DEFINITION 3.2. Let $\varphi:M\rightarrow\tilde{M}$ be an isometric immersion of a Rie-

mannian homogeneous space $M=G/K$ into a space form $\tilde{M}$. We say that
$\varphi$ is equivariant if there exists a continous homomorphism $\rho$ of $G$ into
the isometry group $I(\tilde{M})$ of $\tilde{M}$ such that $\varphi(g\cdot p)=\rho(g)\varphi(p)p\in M,$ $g\in G$ .
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It is easily seen that the standard minimal immersion of a compact
rank one symmetric space into a sphere is naturally equivariant. For
the higher fundamental forms of an equivariant immersion, the following
properties hold.

LEMMA 3.3 (cf. Mashimo [7]). Let $\varphi:M\rightarrow\tilde{M}$ be an equivariant
isometric immersion of a Riemannian homogeneous space $M=G/K$ into
a space form $\tilde{M}$. Then every point of $M$ is completely regular. More-
over the j-th fundamental form $B_{j}$ is G-invariant, i.e.,

$B_{j1gp}(g\cdot u_{1}, \cdots, g\cdot u_{j})=\rho(g)B_{j1p}(u_{1}, \cdots, u_{j})$

$\rho(g)O_{p}^{j}=O_{gp}^{j}$

$N_{j^{\circ}}\rho(g)=\rho(g)\cdot N_{j}$ , $g\in G$ .
THEOREM 3.4. Let $M$ be a compact symmetric space of rank one and

$(G, K)$ be its symmetric pair. Let $\varphi:M\rightarrow S_{1}^{l}$ be an isometric immersion.
Then the following three statements are mutually equivalent.

(1) $\varphi$ is a G-equivariant immersion.
(2) For $2\leqq j\leqq the$ degree of $\varphi$ , the j-th fundamental form $B_{j}$ is

constant isotropic at every degree $j-1$ regular point $peR_{j-1},$ $i.e.$ , there
exists a positive constant $\lambda_{j}>0$ such that $\Vert B_{j}(u, \cdots, u)\Vert=\lambda_{j}$ for any unit
tangent vector $u$ at $p\in R_{j-1}$ .

(3) $\varphi$ is a helical geodesic immersion.

PROOF. (1) $\Rightarrow(2)$ By Lemma 3.3, we have at $eK,$ $\Vert B_{j}(k\cdot u, \cdots, k\cdot u)||=$

$\Vert\rho(k)B_{j}(u, \cdots, u)\Vert=\Vert B_{j}(u, \cdots, u)\Vert$ for $k\in K$. Since $K$ acts transitively
on the unit sphere of $T_{\epsilon K}M,$ $B_{j}$ is isotropic at $eK$. Again by Lemma 3.3,
we see that $B_{j}$ is constant isotropic.

(1) $\Rightarrow(3)$ For an arbitrary unit tangent vector $x$ at the origin
$0=eK$ of $M$, we denote by $\gamma$ the geodesic of $M$ such that $\gamma(0)=0\dot{\gamma}(0)=$

$x$ . Let $\mathfrak{g}=f+m$ be the canonical decomposition of the symmetric pair
$(G, K)$ . Then the geodesic $\gamma$ is described as $\gamma(t)=(\exp tX)\cdot 0$ , where
exp $tX$ denotes a one-parameter subgroup of $G$ and $X$ is a vector in $\mathfrak{m}$

corresponding to $x$ . Since $(\varphi\circ\gamma)(t)=\rho(\exp tX)\cdot\varphi(0)$ , the curve $\varphi\circ\gamma$ in $S_{1}^{l}$

has constant curvatures. Any geodesic $\gamma$ parametrized by arc-length
is described as $\gamma(t)=$ ( $g$ exp $tX$ ) $\cdot 0$ for some $geG$ . Therefore we have
$(\varphi\circ\gamma)(t)=\rho(g)\rho(\exp tX)\cdot\varphi(0)$ , which gives the statement of (3).

(2) $\Rightarrow(1)$ We assume without loss of generality that $\varphi$ is full.
We shall prove the following.

Assertion. Under the condition of (2), we see that every point of
$M$ is completely regular. That is, for $2\leqq j\leqq the$ degree of $\varphi$ , the j-th
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fundamental form $B_{j}$ is defined on $M$. Moreover, for any $g\in G$ , we have
$\langle B_{j1gp}(g\cdot u_{1}, \cdots, g\cdot u_{j}), B_{j1gp}(g\cdot v_{1}, \cdots, g\cdot v_{j})\rangle$

$=\langle B_{j1p}(u_{1}, \cdots, u_{j}), B_{j1p}(v_{1}, \cdots, v_{j})\rangle$ , $u_{1},$ $\cdots,$ $u_{j},$ $v_{1},$ $\cdots,$ $v_{j}\in T_{p}M$ .
This Assertion is proved essentially by the same method as Theorem

2.1. For an arbitrary $g\in G$ , we define another isometric immersion $\hat{\varphi}$

by $\hat{\varphi}=\varphi\circ g$ . Then we have

$\hat{B}_{j1p}(u_{1}, \cdots, u_{j})=B_{j1gp}(g\cdot u_{1}, \cdots, g\cdot u_{j})$

at a degree $j-1$ regular point $gp$ for $\varphi$ , where $\hat{B}_{j}$ denotes the j-th
fundamental form of $\hat{\varphi}$ . By the assumption,

$\langle B_{2}(u, u), B_{2}(u, u)\rangle=\langle B_{2}(g\cdot u, g\cdot u), B_{2}(g\cdot u, g\cdot u)\rangle=\langle\hat{B}_{2}(u, u),\hat{B}_{2}(u, u)\rangle$

holds for any unit tangent vector $u$ . By the same argument as in the
proof of Theorem 2.1, we obtain

$\langle\hat{B}_{2}(u_{1}, u_{2}),\hat{B}_{2}(v_{1}, v_{2})\rangle=\langle B_{2}(u_{1}, u_{2}), B_{2}(v_{1}, v_{2})\rangle$ .
Therefore we have

$\langle B_{21p}(u_{1}, u_{2}), B_{21p}(v_{1}, v_{2})\rangle=\langle B_{21gp}(g\cdot u_{1}, g\cdot u_{2}), B_{21gp}(g\cdot v_{\iota}, g\cdot v_{2})\rangle$ ,

which implies dim $O_{p}^{2}=\dim O_{gp}^{2}$ . Since $G$ acts transitively on $M$, the set
of all degree 2 regular points for $\varphi$ coincides with $M$. Following the
same way as the proof of Theorem 2.1, we obtain Assertion.

In the process of the proof we can construct the bundle isomorphism
$f(g)$ of the normal bundle $N_{\varphi}$ for any $g\in G$ which preserves the bundle
metrics and satisfies $B_{j1gp}(g\cdot u_{1}, \cdots, g\cdot u_{j})=f(g)B_{j1p}(u_{1}, \cdots, u_{j})$ . By Lemma
1.1, there exists an isometry $\rho(g)$ of $S_{1}^{\iota}$ such that $\rho(g)\circ\varphi=\varphi\circ g$ . We
immediately see that the map $\rho:G\rightarrow I(S_{1}^{l})$ is a continuous homomorphism.
Therefore the statement of (1) is proved.

(3) $\Rightarrow(2)$ By the assumption, for any geodesic $\gamma$ of $M$ and any
$g\in G$ , the curve $\varphi(g\circ\gamma)$ is equivalent to the curve $\varphi(\gamma)$ in $S_{1}^{l}$ . We
apply the methods of Theorem 2.1 to isometric immersions $\varphi$ and $\varphi\circ g$ .
Moreover noticing that for two unit tangent vectors $ueT,M$ and
$v\in T_{q}M$ there exists an element $g\in G$ such that $g\cdot u=v$ , we obtain our
result.

We construct a G-equivariant immersion of a compact rank one
symmetric space $M$ into a unit sphere. Let $\psi_{k}$ be the k-th standard
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minimal immersion of $M$ into a unit sphere. We define

$\psi:M\rightarrow R^{m(k_{1})+\cdots+m(k_{r})+}$ ’ by
$\psi(p)=(c_{1}\psi_{k_{1}}(p), \cdots, c_{r}\psi_{k_{r}}(p))$ $p\in M$ ,

where each $c_{i}$ is a positive number and $c_{1}^{2}+\cdots+c_{r}^{2}=1$ . By a suitable
homothetic change of the metric of $M,$ $\psi$ becomes an isometric immersion
into a unit sphere $S_{1}^{m(k_{1})+\cdots+m(k_{r})+r-1}$ . $\psi$ is evidently a G-equivariant im-
mersion. For a compact rank one symmetric space $G$ acts irreducibly
on each eigenspace of the Laplacian. Therefore any G-equivariant iso-
metric immersion of $M$ into a unit sphere is described as above. For
convenience, we denote by $\psi_{k_{1},\cdots,k_{r}}$ the map which is obtained as above.
Here we remark that $\psi_{k_{1},\cdots,k_{r}}$ is full in a sphere only if $k_{1},$

$\cdots,$
$h_{r}$ are

distinct.
By Theorem 3.4, we have

COROLLARY 3.5. Let $\varphi:M\rightarrow S_{1}^{l}$ be a helical geodesic isometrie im-
mersion of a compact rank one symmetric space into a unit sphere.
Assume that $\varphi$ is full. Then there exist non-negative integers $k_{1},$

$\cdots,$
$k_{r}$

such that $\varphi$ is equivalent to $\psi_{k_{l},\cdots,k}.$ , where $k_{1},$
$\cdots,$

$k_{r}$ are distinct and
may contain zero.

\S 4. Osculating order of a helical geodesic immersion $\psi_{k_{1},\ldots,k_{r}}$.
In this section we calculate the osculating order of a helical geodesic

immersion $\psi_{k_{1},\cdots,k_{f}}$ of $M=a$ sphere $S^{n}$ , a complex projective space $P_{n}(C)$ ,
or a quaternion projective space $P_{n}(H)$ into a unit sphere. We assume
that $n\geqq 2$ in all case.

THEOREM 4.1. When $M=S^{n}$ , the order of $\psi_{k_{1},\cdots,k_{r}}$

$\iota s$
$s\left\{\begin{array}{l}k_{1},\cdots,k_{r}k_{1},\cdots,k\\1+theh_{1},\cdots,k,+the\\k_{1},\cdots,k_{r}k_{1},\cdots,k_{r}\\\end{array}\right.$

When $M=P_{n}(C)$ or $P_{n}(H)$ , the order of $\psi_{k_{1},\cdots,k_{r}}$ is $2\times(the$ maximum of
$k_{1},$

$\cdots,$
$k_{r}$).

EXAMPLES. We describe the degrees and the orders of some examples

of $\psi_{k_{1},\cdots,k_{r}}$ in the case of $S^{n}$ .
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degree order
$\psi_{0,1}$ 2 2
$\psi_{0.2}$ 2 2
$\psi_{0},$ ’ 3 4
$\psi_{1.2}$ 3 4
$\psi_{1,8}$ 3 3
$\psi_{2.t}$ 4 6
$\psi_{1.2,\theta}$ 5 6

REMARK. It is known that the degree is not greater than the
order for a helical geodesic immersion (Sakamoto [12]). In the above
examples there exists a helical geodesic immersion whose degree is less
than the order. On the other hand, when $\psi$ is a helical geodesic
minimal immersion of $M=S^{n},$ $P_{n}(C)$ or $P_{n}(H)$ , the order is equal to the
degree.

Before the proof of Theorem 4.1, we describe the eigenfunctions of
the Laplacian on $S^{n},$ $P_{n}(C)$ and $P.(H)$ . Let $R^{n+1}$ be an $(n+1)$-dimensional
Euclidean space $(n\geqq 1)$ with coordinates $(x_{0}, x_{1}, \cdots, x_{n})$ . Let $S^{k}(R^{n+1})$ be
the space of homogeneous polynomials of degree $k$ on $R^{+1}$ and $H^{k}(R^{n+1})$

be the space of harmonic homogeneous polynomials of degree $k$ on $R^{n+1}$ .
LEMMA 4.2 (Berger-Gauduchon-Mazet [1] p. 160). For any $k\geqq 0$ ,

$S^{k}(R^{n+1})$ has the following direct decomposition:

$S^{2k}(R^{n+1})=H^{2k}(R^{+1})+r^{2}H^{2(k-1)}(R^{n+1})+\cdots+r^{2k}H^{0}(R^{n+1})$ ,

and

$S^{2k+1}(R^{n+1})=H^{2k+1}(R^{n+1})+r^{2}H^{2k-1}(R^{n+1})+\cdots+r^{2k}H^{1}(R^{n+1})$ ,

where $r^{2}=x_{0}^{l}+x_{1}^{2}+\cdots+x_{n}^{2}$ .
LEMMA 4.3 (Berger-Gauduchon-Mazet [1] p. 160). The k-th eigenspace

of the Laplacian on $S_{1}^{n}$ is given by the restriction of $H^{k}(R^{n+1})$ on $S_{1}^{n}$ .
Let $C^{n+1}$ be an $(n+1)$-dimensional complex Euclidean space with

coordinates $(z_{0}, z_{1}, \cdots, z_{n})$ and $H^{k,k}$ be the space of harmonic homogeneous
polynomials of type $(k, k)$ . Let $\pi:S^{2n+1}\rightarrow P_{n}(C)$ be the Hopf fibration. It
is known that the space given by the restriction of $H^{k.k}$ on $S^{2n+1}$ is $\pi-$

invariant ([1] p. 172). Then it is regarded as the space of functions on
$P_{n}(C)$ , which is denoted by $\hat{H}^{k.k}$ . Let $H^{n+1}$ be an $(n+1)$-dimensional
quaternion Euclidean space and $H^{n+1}$ be naturally regarded as $2(n+1)-$
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dimensional complex Euclidean space $C^{2(n+1)}$ . This identification gives the
Riemannian submersion $\pi:P_{2n+1}(C)\rightarrow P_{n}(H)$ with totally geodesic fibres
$P_{1}(C)=S^{2}$ .

LEMMA 4.4 ([1] p. 173, Smith [13]). The k-th eigenspace of the
Laplacian on $P_{n}(C)$ is given by $\hat{H}^{k.k}$ . There exists the subspace of $\hat{H}^{k,k}$

which is invariant by the fibration $\pi:P_{2n+1}(C)\rightarrow P_{n}(H)$ and it gives the
k-th eigenspace of the Laplacian on $P_{n}(H)$ .

REMARK. Let $H_{R}^{k,k}$ be the subspace of $H^{k.k}$ which consists of real-
valued functions. Then we have $H_{R}^{k,k}\otimes_{R}C=H^{k,k}$ , and $\hat{H}_{R}^{k,k}$ coincides with
the space of real-valued eigenfunctions with the k-th eigenvalue of the
Laplacian on $P_{n}(C)$ .

First we shall prove Theorem 4.1 in the case of $S^{n}$ . Let $\psi_{k}$ be the
k-th standard minimal immersion of $S^{n}$ . We fix the geodesic $\gamma$ of $S^{n}$ .
It is easily seen that $1+the$ order of $\psi_{k}$ is equal to the dimension of
the minimum subspace of $R^{n(k)+1}$ which contains the curve $\psi_{k}(\gamma)$ . Let
$\{f_{0^{\circ}}\gamma f_{n(k)}\circ\gamma\}_{R}$ be the subspace of functions on $\gamma$ which is generated
by the functions given by the restriction of the coordinate functions
$f_{0},$

$\cdots,$ $f_{m(k\}}$ of $S^{n}$ on $\gamma$ . Evidently the dimension of $\{f_{0}\circ\gamma\cdots, f_{n(k)}\circ\gamma\}_{R}$ is
equal to the dimension of the minimum subspace of $R^{n(k)+1}$ which con-
tains $\psi_{k}\circ\gamma$ . For simplicity, we take the geodesic $\gamma=S^{1}$ as follows: $S^{1}=$

$\{x\in S^{n}\subset R^{n+1};x_{2}=x_{3}=\cdots=x_{n}=0\}$ . Here we recall that the k-th eigenspace
of the Laplacian on $S^{n}$ is given by the restriction of $H^{k}(R^{n+1})$ on $S^{n}$

(Lemma 4.3). Putting $x_{2}=x_{3}=\cdots=x_{n}=0$ , we get the linear homomorphism
$\pi:H^{k}(R^{n+1})\rightarrow S^{k}(R^{2})$ . It is easily checked that $\pi$ is surjective. It is well-
known that dim $S^{k}(R^{2})=k+1$ and hence dim $\{f_{0}\circ\gamma\cdots, f_{n(k)}\circ\gamma\}_{R}=k+1$ .
Therefore the order of the k-th standard minimal immersion of $S^{n}$ into
a unit sphere $Si^{n(k)}$ is $k$ .

When $k_{1},$
$\cdots,$

$k_{r}$ are all even or all odd, we assume that $k_{r}$ is the
maximum of $k_{1},$

$\cdots,$
$k_{r}$ . We write the coordinate functions of $c_{\dot{f}}\psi_{k_{j}}$ of

$\psi_{k_{1},\cdots,k,}$ by $f_{0}^{\dot{f}},$

$\cdots,$
$f_{m(k_{j)}}^{\dot{f}}$ . By Lemmas 4.2 and 4.3, $\{f_{0}^{\dot{f}}\circ\gamma\cdots, f_{m(k_{j)}}^{\dot{f}}\circ\gamma\}_{R}$ is

contained in $\{f_{0}^{r_{\circ}}\gamma\cdots, f_{n(k_{r})}^{r}\circ\gamma\}_{R}$ for any $j=1,$ $\cdots,$
$r$ . Thus we get

$\dim\{f_{0}^{1}\circ\gamma\cdots, f_{m(k_{1})}^{1}\circ\gamma\cdots, f_{0}^{r}\circ\gamma\cdots, f_{n(k_{r})}^{r}\circ\gamma\}_{R}\leqq k_{r}+1$ .
If its dimension is less than $k_{r}+1,$ $c_{r}\psi_{k,}$ , which is given by composing
$\psi_{k_{1},\cdots,k,}$ and the projection $R^{fntk_{1})+\cdots+m(k_{r})+r}\rightarrow R^{\prime n(k_{r})+1}$ has the order less
than $k_{r}$ . It is a contradiction. Therefore the order of $\psi_{k_{1},\cdots,k_{f}}$ is $k_{r}$ .
When $\{k_{1}, \cdots, k,\}$ contains both even numbers and odd numbers, similarly
we get dim $\{f_{0}^{1_{\circ}}\gamma\cdots, f_{m(k_{r})}^{r}\circ\gamma\}_{R}=the$ maximum of even $numbers+the$
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maximum of odd $numbers+2$. Thus we obtain Theorem 4.1 in the case
of $S^{n}$ .

It is well-known that $P_{n}(C)$ and $P_{n}(H)$ contain an n-dimensional real
projective space $P_{n}(R)$ as a totally geodesic submanifold. We shall briefly
recall it. Let $R^{n+1}$ be included in $C^{n+1}$ and $H^{n+1}$ as a real part respectively.
Let $\pi:S^{2n+1}\subset C^{n+1}\rightarrow P_{n}(C)$ and $\pi:S^{n+8}\subset H^{n+1}\rightarrow P_{n}(H)$ be the Hopf fibrations.
$S^{n}=R^{n+1}\cap S^{2n+1}$ is a totally geodesic submanifold of $S^{2n+1}$ . Similarly $S=$
$R^{n+1}\cap S^{4n+3}$ is a totally geodesic submanifold of $S^{4n+3}$ . Restricting Hopf
fibrations $\pi$ on $S^{n}$ , we get totally geodesic immersions $\pi:S^{n}\rightarrow P_{n}(C)$ and
$\pi:S^{n}\rightarrow P_{n}(H)$ , and its image $\pi(S^{n})$ is $P_{n}(R)$ . Let $\psi_{k}$ be the k-th standard
minimal immersion of $P_{n}(C)$ or $P_{n}(H)$ . $\psi_{k}$ is a helical geodesic minimal
immersion into a unit sphere. Trivially $\psi_{k^{\circ}}\pi$ is also a helical geodesic
immersion of $S^{n}$ . Moreover the order of $\psi_{k}$ is equal to the order of
$\psi_{k^{\circ}}\pi$ . So we shall calculate the order of the helical geodesic immersion
$\psi_{k^{\circ}}\pi$ of $S^{n}$ . Restricting $H_{R}^{k,k}(C^{n+1})$ on a real part $R^{n+1}$ , we get a linear
homomorphism $P:H_{R}^{k,k}(C^{n+1})\rightarrow S^{2k}(R^{n+1})$ . We remark that the homomorphism
is not always surjective. But, for any $f\in H^{2k}(R^{n+1})$ , there exists $\tilde{\beta}$ in
$H_{R}^{k.k}(C^{n+1})$ such that $P\tilde{f}=f$. When $\psi_{k}$ is the k-th standard minimal im-
mersion of $P_{n}(C)$ , by the same arguments as $S^{n}$ , we see that the order
of $\psi_{k^{\circ}}\pi$ is $2k$ , and hence the order of $\psi_{k}$ is $2k$ . In the case of $P_{n}(H)$ ,
by the above argument we see that the order of the k-th standard
minimal immersion $\psi_{k}$ is not greater than $2k$ . But it is known that the
degree of $\psi_{k}$ is $2k$ (Mashimo [7]). Since the order of $\psi_{k}$ is not less than
the degree of $\psi_{k}$ , we see that the order of $\psi_{k}$ is $2k$ . We can obtain
the order of $\psi_{k_{1},\cdots,k,}$ by the same argument as the case of $S^{n}$ .

References
[11 M. BERGER, P. GAUDUCHON et E. MAZET, Le Spectre d’une Vari\’et\’e Riemannienne, Lec-

ture Notes in Math., 194, Springer-Verlag, 1971.
[21 A. BESSE, Manifolds All of Whose Geodesics are Closed, Ergebnisse der Math., 93,

Springer, 1978.
[31 B. Y. CHEN, Geometry of Submanifolds, Marcel Dekker Inc., New York, 1973.
[41 M. DO CARMO and N. WALLACH, Minimal immersions of spheres into spheres, Ann. of Math.,

93 (1971), 43-62.
[51 J. ERBACHER, Reduction of the codimension of an isometric immersion, J. Differential

Geometry, 5 (1971), 333-340.
[61 O. KOWALSKI, Immersions of Riemannian manifolds with a given normal bundle structure

I, Czechoslovak Math. J., 19 (94) (1969), 676-695.
[71 K. MASHIMO, Degree of the standard isometric minimal immersions of the symmetric

spaees of rank one into spheres, Tsukuba J. Math., 5 (1981), $\mathfrak{B}1-297$ .
[81 H. NAKAGAWA, On a certain minimal immersion of a Riemannian manifold into a sphere,

Kodai Math. J., 3 (1980), 321-340.



HELICAL GEODESIC IMMERSIONS 285

[9] K. NOMIZU, Uniquene8s of the normal connections and congruenoe of isometric immer-
sions, T6hoku Math. J., 28 (1976), 613-617.

[10] B. O’NEILL, Isotropic and Kaehler immersions, Canad. J. Math., 17 (1965), 907-915.
[11] K. SAKAMOTO, Planar geodesic immersions, T6hoku Math. J., 29 (1977), 25-56.
[12] K. SAKAMOTO, Helical immersions into a unit sphere, Math. Ann., 261 (1982), 63-80.
[131 R. T. SMITH, The spherical representations of groups transitive on $S^{n}$ , Indiana Univ.

Math. J., 24 (1974), 307-325.
[141 J. J. STOKER, Differential Geometry, Wiley Interscience, 1969.
[15] T. TAKAHASHI, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18

(1968), 203-215.
[161 K. TSUKADA, Isotropic minimal immersions of spheres into spheres, J. Math. Soc. Japan,

35 (1983), 355-379.
[171 N. WALLACH, Minimal immersions of symmetric spaces into spheres, Symmetric Spaces,

edited by W. M. Boothby and G. L. Weiss, New York, Marcel Dekker, 1972, 1-40.

Present Address:
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCES
NIIGATA UNIVERSITY
NIIGATA 950-21


