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Introduction

In 1962, E. Lorenz found the first example of a strange attractor
by investigating a hydrodynamical system. Recently, another equation
has been proposed by Rossler, and by numerical solution, it was shown
that these equations indicate the existence of a two-dimensional attractor
which has a compact “ribbon-like” structure.

As the attractor can be treated as a ‘“single-sheeted” quasi-two-
dimensional object, we take a cut across the attractor and construct a
Poincaré mapping by means of which we can reduce a three-dimensional
continuous flow to a one-dimensional discrete mapping. Thus one-dimen-
sional models serve as the simplest example of models for some dynamical
systems and have become common. They appear in the original paper by
Lorenz [1], and also in more recent works of Guckenheimer [2], Rossler
[3], and others ([4], [5], [6]). But this procedure has not been justified
rigorously so far. Our purpose here is to give some justification for
reducing a three-dimensional flow which has a two-dimensional attractor
to a one-dimensional mapping. To be more precise with the problem,
let us consider a map H,: R*— R? defined by

Hyzx, y)=(f(2), 1)

where f is a map of piecewise C’-class such that f(I Yo I for an interval
I and 0<px<1. The map H, has trivial stable foliation {x = Constant},
and hence the behavior of H, near the invariant set Ix{0} is reduced
to the one-dimensional map f on I. Let H be a perturbation of H,
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H(z, y)=(f(x)+e.(x, ¥), ty+e(x, ¥))

where each ¢;: R - R is of C’-class. Then this map could have an invariant
set I' near Ix{0} under some conditions on ¢(x, y) and g. So, if we
could construct an invariant stable foliation on I, then we could say
that the study of the behavior of H near I' is reduced to the study of
the one-dimensional map on I". (For the precise definition of the invariant
stable foliation, see §3.)

In this paper, we deal with a perturbation H which leaves I x {0}
invariant and obtain conditions about H which imply the existence of
an invariant stable foliation almost everywhere with respect to Lebesgue
measure. Furthermore these conditions are expressed in terms of g
which measures the degree of contraction, perturbing terms ¢, and the
one-dimensional map f.

Recently, Ruelle [7] has proved that if g is a diffeomorphism of a
compact manifold, a stable foliation exists almost everywhere with respect
to g invariant measure, meanwhile Pessin [8] presented a stable manifold
theorem under the existence of a smooth invariant measure. Anyway,
since g does not always have a smooth invariant measure, we could not
apply their results to our problem directly. The proof of Ruelle’s stable
manifold theorem is based on the study of random matrix products and
perturbations of such products occurring in the multiplicative ergodic
theorem due to Oseledic ([9]). In contrast, since in our problem, the tan-
gent mapping on I'x {0} is an upper triangular matrix, it becomes possible
for us to form a stable foliation without using the multiplicative ergodic
theorem. We only need some assumptions on the ratio of eigenvalues
of the tangent mappings.

The constitution of this paper is as follows:

(§1) Perturbations of upper triangular matrix product.
(§2) The existence of stable foliations for two-dimensional mappings.
(§3) Applications.

In conclusion the author would like to thank Professors T. Niwa,
Y. Takahashi, S. Ito, and S. Ushiki for their encouragement and valu-
able advices.

S§1. Perturbations of upper triangular matrix product.
Let T'=(T,).>, be a sequence of upper triangular real 2 x 2 matrices.

We define a“n’ l§n’ 71: by Tn:*(é(f)n g’l), and a,, Bn’ Tn by T — T,,o eee 0 T1::
(%" 5") Denote by g,<\, the eigenvalues of V?T"T" and U,, V, the
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corresponding eigenspaces.

PROPOSITION 1. Suppose T=(T,),>, satisfies the conditions (A.1l) and
(A.2), below:
(A.1) limsup, (1/n)log || T,| <0,
(A.2), there i8 £>0 such that

B

an+1

Then lim, U,=U and lim,V,=V exist, and for any €>0 there exists
K(e)>0 such that, for all we U,

(1.1) I T*ul|=|wul-K(&) N, exp (—n(g—¢)) (n>0).
PrROOF. By (A.1l) there exists C,(¢)>1 such that for all >0

<Lexp(—mn&) n>0).

| T, || =C.(e) exp (ne) .

For a unit vector we U,, we write u=a,; U 11 +b,110,4.. Here u,., € U,y
and v,,, € V,,, are unit vectors. Then, since U, is the orthogonal com-
plement of V,, we have
| T (s | = T 0|
S| Tand 1 T ue |
=Cy(e) exp (n+1)e)- 2, .

As |1 |S N,y and (1, =|B.], We obtain

|b,+11=Ci(e) exp (€) exp (fne);\{i

n+1l
=Ci(e) exp (¢) exp (n(—&+e¢))
by (A.2),. Therefore
(1.2) dis (U,, U,.,)=C\(e) exp (¢) exp (n(—&+¢)) .
Here dis (W, W,) is defined by |det (w,, w,)| where w,e W,, w,€ W, are
unit vectors and (w,, w,) denotes the matrix whose jth column is w;.
The inequality (1.2) implies that (U,).., constitutes a Cauchy sequence

and thus lim, U,=U exists. Hence also lim, V,=V exists. Moreover,
for any &>0, there is K,(¢)>0 such that

dis (U,, )= 3 dis (U, Uss)
< K,(e) exp (n(—§+e) (n>0).
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For we U, we write u=a,u,+b,v,, here u,e U, and v,e V, are unit
vectors. Then we have

| T u || < |am |t + 10, N,
<|lu|/(¢.+dis (U,, U),)
= |lull(¢.+ Ki(e) exp (—n(g—e)N,) .
Therefore, for any >0, there is K(¢)>0 such that
| T u||<||u|| K(e) exp (—n(f—e)N, (=>0).

Here we used the inequality

Ho < | B
Ay

a,

= exp (—ng)|| Lo || -

This gives the conclusion of Proposition 1.

A sequence T'=(T,),,, of 2X2 matrices is called a v-perturbation of
T, for a positive integer v, if T,=T, for all n>y. Denote by g,<\.
the eigenvalues of V*(T*)(T""), and by U,, V. the corresponding eigen-
spaces. For >0, define || T"—T||, by

| T~ T|l,=sup || T2~ T, || exp (3n7) .

Let T be a sequence of upper triangular matrices which satisfies the
conditions (A.1l), (A.2), and also (A.3), (A.4), (A.5) below:
(A.3) det T,#0 for all n>0,
(A.4) lim,(1/n)log |det T,|=0,
(A.5); lim sup, (1/n)log |a./B.|=8>¢.
Then, by Proposition 1 lim U,=U and lim V,=V exist and also we have
the following

THEOREM 2. For any T above and constants p>Z—¢ and >0, there
are constants 6>0 and F'(e, 7)>1 such that the following holds:

If T is a v-perturbation of T such that | T'—T|,<9d, then lim U,=U"
and lim V,=V"' exist and for all ue U’

| T"™w||=||u||F(e, D, exp (n(E—¢+2¢)) (n>0).

For the proof of Theorem 2, we prepare some lemmas. Let T, U, V
and » be as in Theorem 2.

LEMMA 1. For any >0 there exists E(e, £)>1 such that
Ay

n

< E(, &) exp (n(&E+¢)) for all n>0.
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PrROOF. Indeed, as v,= D220 @&, X+ + X Oppa X Vg1 X B (Bo=1), we have

| Vs |

[ a, ak+1

<3 exp (—k9)| Tuss |+ | 2
k=1 a,

=Cle) ,go exp (—k(g—e)) ,
so that
|7,/<D(e, ®la,| where D(e, =C 3 exp(—h(—¢)) .

Hence for all >0, we obtain

A {(@a+B+72)+V (a2 + B+ ) —4a i)

2 4023,
< @+ B+7n)
aiBl
s an /1+ Bn + )2
,8'n a'n a'n

< gf 2+ D, &)
=exp (2(n(§+¢)))(2+ D, &))" -
Thus we can take Efg, &)=2+ D, £)>1.

LEMMA 2. Let 0 be a constant with 0<d<1l and suppose that a
yv-perturbation T’ of T satisfies || T' T|,<é. Then for any €>0 there
18 Cy(e)>1 so that '

dis (U2, U.,,)<2C,(¢) exp (ns)_!i_ (n>0) .

11+1
PROOF. As ||T,—T,||<dexp(—3nn) for all n>0, we have
|| T2 || <8 exp (—3n7)+ || T || - |
Hence by (A.1) we obtain C,(¢)>1 for any &>0 so that

|| Ta || <& exp (—8n%)+Cye) exp (ne)
<0 +C,(e) exp (ne)
<2C,(e) exp (ne) (n>0).
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Since dis (U,, U, ,.)<|| Tuii|[(tta/Mesy), the conclusion is obtained.
LEMMA 3. limsup,(1/n)log || T.;!||=0.

ProoF. Since || T;*||=| T.||/|det T,|, Lemma 3 is obtained from (A.1)
and (A.4) immediately.

LEMMA 4. Let ue U and ve V be unit vectors. Then for all n>0
we have
LS| Tru || < K(e)h, exp (—n(¢—e)) and
dr = T || SN, ,

where the constant d does mot depend on n.

ProOF. We write v=c,u,+d,v,. Here ¢, and d, are components
along u,€ U, and v,€ V, which are unit vectors respectively. As (V,)..,
is a Cauchy sequence, ¥n; |d,|<|c,|} is finite. Put N=max {n;|d,|<]|c.|}-
If |d,|=|c.|, then from Lemma 1

| T || =V A + diNE

> e, | ¢

=le.|(£2 ).

> 1 : £,

— V2 El(e, ¢) exp (n(€ +e))
1 A

>_ - n____ .
V' 2 El(g, &) exp (NE+¢))

If [d,|>]e.|, then we have || T*v||=|d,[\,>(1/V"2)\,. Hence we can take
d=1/(V"2 E(g, &) exp (N(+¢)))>0. Since pz=inf,,_, *T"T"z, ), by Prop-
osition 1 we have

.= T"u|| = K(e)h, exp (—n(g—¢))

immediately.
We define positive numbers ¢,, s, and t* by
| T || — T . z
=il g,=—L=—1_ and tr=expé-t,
| T u | | T || ’

where we U and ve V are unit vectors.

LEMMA 5. Let n>E—¢. Then there is C(9)>1 such that
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] = i 101 1
9 s—a“'—,_<c( )exP(n ) (n>0)~
it Timss (22 ' 2 5 ) 7

PrROOF. Note that
1_ 7T _ | T T u

1_ [T _ [T T]
and —= = .
t, || T ul| | T u|| 8, T || T ||

From Proposition 1, Lemmas 1, 3 and 4, we have the conclusion easily.

PROOF OF THEOREM 2. Let ue€ U and ve V be unit vectors, and write
np=—L % and n )

R T

For w+#0 in R* we write T""w=a,"u+b,"v where a, and b, are compeo-
nents along "u and "v respectively. As T"w=TxXT"'w) and T, ‘u=
t,"u, we have

T"w=(Ta—T,) " 'u+b,_," W)+a,_.t,"u+b,_8, v .
Hence we have

| Ta— T, ||

A\t~ :
@] |det ("u, "v)|

(l@ns]+10,1)

<0< @y [t + AL T2 To

et (o, nv)l(lan_ll-l-lbn_ll)

| T T, ||

Aot asraal 1o,

l bn—l Isn -

| Ta=T,]|
|det ("u, "v)|

As |det (*u, "v)|=|det T"|/|| T"u| || T™v|, it follows from Lemma 4 that for
n>E&—¢ we have:

é'bnlélbn—llsn_i- (Ian—1|+|bn-—1l) .

1
D, =
=5 Tdet w, 7o)

We suppose || T"—T|,=d. Then we have

exp (—nn)< + oo,

la,|=|an_i[t,+0D exp (—2n9)(|@py|+|bas])
=la,[t3+0D exp (—2n7)(| @, | +]b._, )

and
10, (=18, 8, +0D exp (—2n9)(| @y |+ b, ])
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where t*=t, exp (§).
If there is m=0 snch that |a,|<|b,|, then by Lemma 5 we obtain,
for n>m,

n n

|a.Ilbal IT & T1 (1+25CO)D, exp (— k)
(2.1) =m+1 m+1

n

|6 (<16a] IT & II (1+25C(x)D, exp (— k) -
We choose 0=(1/(2C(n)D,)) ITv-1 (1 —exp(—kn))®. In this way 2CDé<1
and C’'=(II¢-, (1+2CDé exp (—kn)))/(IIs-, (1 —exp (—kn)))<1/2CDs. There-
fore (2.1) gives

n

Ianl§C'Ibmlk=I§+ltZkH (1—exp (—k7))

=m+1

(2.2),

n

lb.I<Cbal II 8 II (1—exp(—kp) (n>m).

=m+1

Using Lemma 5 and (2.2),, we have for n>m

n

(2.2), [ba1Z16al IT 8 T (1—exp(—kn) .

=m+1
Set W={a,u+bv: |a,|<|b,|}. Then if we W, we obtain
|a.|<[8] [T (1—exp (—k)C" IT ¢

(2.2). . " n .
16| I1 (1 —exp (—k7)) IL s:=[b.[=1bo] IL (1—exp (—km)C" 11 s -

From (2.2).,, we have
| T w || 2 e(n)|b.|
Ze(n)|bo| [T (1—exp (—kn) I &

where the constant e(n) only depends on 7. As [Ti-, 8.=|T"v||, by Lemma
4 we have

17" w|>e(p)dlB,| IT (1—exp (—k)., -
Write L,(n)=T1I-. (1—exp (—kn))de(n). Then we obtain
(2.3) A>L(ph, (n>0) .
Let T" be a v-perturbation of T and write for k<y
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T"‘=( )
L B

a,la *
Tr"=T,0-++0T, 1T’"=< me >T'”
¥ 0 BB

Then we have

- ((B,./B»L (B,,/B,m:)

and hence

Tl;z tTln p— * * .
(e <* ((Bn/Bu)X,)2+((B,./By)ﬂi)2>

As ||T"™||=||*T""||, we obtain for n>v

< T 1

Therefore it follows from (2.3) that

th o VB @IB.Y
Nows L

As vy is fixed, by Lemma 2 we see that

B

a'n+1

(n>v).

dis (U,, U,.,)=2C,(¢e) exp (ne) V(%] ﬁ“)z(';)('e [B.)" exp (—né) .

This implies that {U, '};M is a Cauchy sequence and lim U, '=U' and
lim V,=V' exist.
Moreover if |a,|=|b.| for all =0, then by using Lemma 5 we have

| Ta—T.||
|det (“u, "v)]|
=t.|a,_,|(1+2CDé exp (—n7)) .

|anl_s-tnla’n—ll+ (]a’n—l‘_{-lbn—II)

Hence by induction, we have the following:
(2.4), bl la,)=C" 1T & T (1—exp (—kn)la,| (n>0).
Similarly we have

(2.4), I1 & Il (1—exp (—kn)laolsla,| (n>0).
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Because of (2.2),, it follows that we U’ implies |a,|=|b,| for all n=0.
Hence for w e U’ we have
N T"u||=]a.|+]b,]
=2[a,|C']| T™u ||
=2||u||C'(n)K(e)N, exp (—n(¢—e)) (n>0).

Thus by Lemma 1 there is F'(¢, 7)>1 such that for all ue U’,
(2.5) | T u || < || ull . exp (n(E—&)+2e)F(e, ) (n>0).

The proof of Theorem 2 shows that U’ can not intersect with W.
Moreover we have the following

THEOREM 3. Let T, T and 6 be as im Theorem 2 and suppose that
| T'—T|,=<0-a where 0<a=1l. Then W,NU' =@, where W,={a,(u/a)+
bw: |a,|<|b,}. Furthermore there is A(6)=A>0 so that

| PXT)—PXD) S| '~ T|,A and
| PAT")— PAT) | < || '~ T4

where P*(T') and P*T') denote the orthogonal projections to U’ and V'
respectively.

COROLLARY 4. If || T”—T|,<0, then there i3 A(8)=A>0 so that
| P(T")—PYT")||=s|T"—T"|,A and
| PHT")—PHT) ||| T~ T"|,A .

PROOF OF THEOREM 3. By estimating the components |a,|, |b,| of
T™w along "u/a, "v for w+#0 in R?, we have W,N U’'=Q similarly to the
case a=1. Therefore, for u' e U’, | P(T)u'||<a||u’|| holds. Indeed if
w=ay,u/a)+ by ¢ W,, then we have

| PAT)w || =bo| = @]
<

a L+ b |l
a
=alw]| . “
Thus for ve V we have
| PHT" w|=alv] ,

and then it is easy to see that
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|A=P(T)HP(D)||=[|A-P(T)r|=a,
where v is a unit vector in the range of P*(T). Hence it follows that
| PA(T)—PXT")||=||(1—PXT"))PXT)— PT")1—P(T)|
= || 1= P(TH)PHD) || +||1—PAT"NPHT)||
=2a.
If |T'"—T|,=0, then we can take a=||T'—T|,/6<1. Put

_2
(3.1) =5 -

Thus we have
| PA(T)—P(T)||=A|lT'—T|, .

PrROOF OF COROLLARY 4. We obtain Corollary 4 from Theorem 3 by
replacing T by T’ if the constant A does not depend on 7”. In view
of (8.1) this is achieved if we can replace T by T” in Theorem 2 and
get bounds on 1/6” uniform in T”. In view of the choice of 0 in the
proof of Theorem 2, ¢” is given by

=l 7]
2C"(m)D,

Therefore it suffices to find upper bounds of C"(%») and D,’, which do not
depend on T”. In fact, in view of (2.2) and (2.4), by using Lemma 5,
the conclusion is obtained easily.

II 1—exp(~ k) .

§2. The existence of stable foliations for two-dimensional mappings.

Denote by B(z, ) the open ball of radius a centered at z in R2 and
by B(z, a) its closure.

Let H: R*—>R? be a dxﬂ’erentlable map of C*-class.

We write, for zeR?,

F.(uw=HH""(2)+uw)—H"(z), F*=F,0---oF,
T.=DF,(0) (=DH(H""(2))) , T"=T,0---oT,.
Now, we can state our main result.

MAIN THEOREM. Let H:R*—R? be a differentiable map ‘of Ct-class.
Assume that there is a compact set I' CR* such that H(I'cI' and that
the tangent map DH(z) is »ea:pressed by an upper triangular matrix for
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all zeI'. We write for zel,

<&,. Vn

..> and T"=<a" 7").
0 8.

0 B.

Suppose the following:

(B), There exists £>0 such that |RB./a...|<exp (—ng) for all n>0,

(B), &=lim sup, (1/n)log |a./8.|>¢,

(B); det T,#0 for all n>0,

(B), lim,(1/n)log |det T,|=0, _

(B), B=limsup, (1/n)log|B.|<0 and 5(&—&)<—5.
Let 6 be a constant such that —4(F—2)>0>B+(E—¢&). Under these con-
ditions, there are constants a,>0, 7,>0 and 7w, >0 with the following
properties:

(I) S(m,)={ue B(z, a,): || H*(z+u)—H"(z) || =, exp (n8) for all n=0}
18 a ome-dimensional C'-submanifold of B(z, a,), tangent at z to U,.

(1) If u, ve S(x,), then | H*(z+u)—H(2+)|| 7| u—v| exp (n8) for
all n=0. .

PROOF OF MAIN THEOREM. Let 7>0 such that f—g<n<—6/4. We
may then write

(1) G=81k1p M, exp (—kn) exp (47) ,

where M, denotes the Lipschitz constant of DF}, in B(H*™%(z),1). Given
r with 0<7=<1, we put

S'(w)={ue R%: || F*u||<7 exp (n8) for 0=<n=<y}
S(#)={ueR: || F*u| =7 exp (nf) for n=0}.

There are 6, A>0 such that Theorems 2 and 3 hold for the above 7 and
for T,. We can make o smaller so that

(2)

1
(3) A3<—17?-

and then choose 7 satisfying
 o<n<l,  Gr<d.

Take £>1 such that s7x<1, Glr)<o.

AS'SERTION. .There i8 a>0 such that, for all v>0,
(4)  B@)NnSmnF)T"U)> Bla)n S<km)n (F)T°U) ,
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where U=lim U,.
PROOF. For ueS'(er)N(F*)(T*U), the 2x2 matrices:

W)

- {S DF,(tFwydt if n<v
T, if n>v,
satisfy T u=F"u if n<v, and thus by using (1), (2) we obtain
| Ti~ TS|, | DF.¢F™u)~ DF(0) | d¢
gSIM,,HtF"“qut
0

=M, exp (n—1)6)==
Soexp(—3ny) (n>0).

Therefore Theorems 2, 3 can be applied. Moreover, since

GT*u=Typo o+ o T Fw)=T(T) " F*u) ,

it follows from (1.1) and (2.3) that we (F*)"'T*U implies wec U’ for all
v>0.
Let so=(0-—(§+§——e))/2>0. Then (2.5) gives
I BT"u || < u|| Fe, 7)tt. eXp (n((é—eA) +2¢,))
=|u||F(e, 7) exp (& —&+5+2¢,))
=||u||F(e, 7) exp (nd) (n>0).

It holds uniformly in v and in we S”(m'c)n(F")“(T” U). If a=n/F(s, n)
(<), (4) is obtained.

LEMMA. Bla)NS*z)N(F*)"(T*U)= D) is open and closed in Bla)N
(F*)NT*U). Indeed, the boundary of S*(kx) s disjoint with S*(%), and
hence with D*(x).

Let now u, v D*a) (or u, v S(w)N Bl@). The 2x2 matrices

o {SIDFn(tF""‘u+(1—t)F"‘1v)dt if nsy
’(u) n= 0 .
T, . if n>y

satisfy |
waAT'(y—v)=F'u—Fw if nsy
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and using (1) and (2), we obtain

<o ex;:(——3my) (">0).

(We choose 7 satisfying 2Gr<d). Hence Theorems 2, 3 can be applied.
Since

o T (u—v)=T""*(T)"(F*u— F*v)
and F*u, F*»v e T*U, it follows that
u—ve U for all 1>0.
Therefore by (2.5) we have for all n<y

| *“ST™(u—v)||=|| Fru—F"v]|
=|lu—v|Fle, 1) exp (nb) .

Writting v,=F(e,, )>1, we obtain, for all n<y,
(5) | Fru—F v || <7,/ u—v| exp (nd) .
This proves part (II) of the Main Theorem.

By Theorem 3 we obtain

| A =PHT))(u—v) || = || (PAT")— P T))u—v)||
SAIT —T|hllu—v]l
SAdlu—v]| .

Since ||u—v|*=| P T)Yu—v)|*+|| P{T)(u—v)|]>, we have
| PATYu—v) |2 u—wv|*1— A%

and hence
# - Ao ” —_
(6) | (1—P«T))(w v)lléwlw (TYu—wv)|| holds.

We write u=u,+u, and v=v,+v, where u,, v,€ U and u,, v,€ V. Since
ue YU’ and ve 3U’, by Theorem 83 we have
(7) e || =] % —u, ||

=|| P T Yu—P*T)u||

SA|T'—T5)|ull

SAda .
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Similarly we have

(8) l|v, || < Adex .
Moreover it follows from (6) that
— l=11(1— _ Ao Y
(9) | %= || =[| 1= PHT))u—v)|| < T (o) [| PHTYu—w)l|
=—A ||
V1—(45y " T

This situation will be considered in (UN B(@)) x (V N B(a)).
Define 9: (UN B(a)) x (V N Bla)) — B(a) by putting

u —
¢(uly u2)=<"a—ll/a2_ H U, “2’ Uy ) .

Let &(u,, u,), ®(v,, v;) €e D) or € B(@)NS(x). Then it follows from (7),
(8) and (9) that

I 1'1—(Ad)°

|| u—, A5

| v @ =T -2 & =To
o 141

< ”’Zx” WV aE—T][u,[F —v o —[[v,|]F |

+l =0, | LE=T

A || e [P — [l e |I*
a War—|w|®+1Vat—|| |
<l [l {Clva [+ [ e DU e || — [ %o
T« 2011 —(Ad)*
Ao
= V'1—(A49)

+ || w—w, ||

D1 41y og, —

H'v?"‘uzn +Hu1"'01” .

Thus we have

s 0| Aoy T=CABY
o lw—o, | =" 1-2(a0y -

In view of (8)

A5V 1— (AS)
1-—-2(Ad)

>0.

As D*(a) is open and closed in B(a)N (F*)'T*U by Lemma, we conclude
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from (10) that D*(a) is the connected component of 0 in B(a)N (F*)'T"U.
Furthermore 9~'(D*()) is the graph of Lipschitz-continuous function
#,: UNBla)-»VNB(a) with the Lipschitz constant bounded uniformly
with respect to ».

Let @ be a limit of a uniformly convergent subsequence of {®,}. As
o(graph @,)=D*(a)c Bla)N S*(7), we obtain

o&(graph ¢)c B(a)N S(x) .

Since D=(a)>8(7)N B(a), it follows that &(graph ¢)=B(a)NS(x) and by
the uniqueness of @, lim,@,=¢ uniformly. Therefore it follows from
(10) that B(a)N S(x) is Lipschitz-continuous (since (10) holds for v=co,
similarly).

Finally, we show that @~'(D*(a)) is the graph of a C'-function ¢, and
thus lim ¢,=¢ is of C'-class.

Let u, v e D*(ax) and define 2x2 matrices;

T.=DF . (F*~u), T, =DF, (F~) if n=gvy,
T.=T.)=T, if n>v.

Then it is easy to see that |T'—T||,, |T"—T|,<6. Using (5), we also
have

| Tn—T. | =M%, ]|l u—v| exp (n—1)8)
=GV, J|lu—v| exp(—3ny) (n=y).
Therefore | T'—T"|,=G7,/ju—w»||. By Corollary 4, we have
| P(T")—PT")|=A|T'—T" |},
éAG7:IIu_vl[ ’

where the ranges of P#(T’) and P#(T") are the tangent spaces to D*(«a)
at v and v. Thus {@]} is a family of Lipschitz-continuous functions with
the Lipschitz constant bounded uniformly with respect to v and thus
lim ¢,=@ is of C'-class.

§3. Applications.

In this section, we apply Main Theorem to our problem. We recall
the two-dimensional mapping H: R*— R? defined by

H(z, y)=(f(x)+ez, ¥), py+elx, ¥)) ,

where gz, ¥) (i=1, 2) is of C’-class, and f:R—R is a one-dimensional
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mapping of piecewise C*-class such that f(I)cI. Hence I=[0,1]. We
assume further the following conditions on &z, ¥) (i=1, 2) and on p:

&, 0)=0, ,‘g_‘;&(m, 0)l<éi (i=1,2) for (z,0)e Ix{0}

and .
1>é, , p+HE+E <L .
Namely, H is supposed to leave the set Ix{0}cR? invariant, and the

tangent mapping DH(x, 0) at (x, 0)e Ix{0} is expressed by an upper
triangular matrix

’ o€,
f'(@) ay (=, 0)

0 pu+98(s 0)
oy
Hereafter, we use the notation f’(x) also to denote the right or left
differential coefficient at a discontinuity point x, instead of fi(x).

DEFINITION. We say that H has an invariant stable foliation on
Jx{0} for f-invariant set JcI, if there exists a family of curves {C,:
x e J}, called leaves, such that

(1) C, are Lipschitz-continuous curves,

(2) (xz,0eC,
(3) H(C,,)CC[(,,) and
(4) there are <0 and 7,>0 such that for 2z, 2.€C,
| H"(2,)— H"(2.) || <7, exp (n\)]| 2,—2,]| (n=0) .
In this situation, we have the following results.
THEOREM 4. Let f be of piecewise Ci-class and let inf,.;|f’'(x)|>0.
Let p, &, (1=1, 2) be sufficiently small. (Mo're precisely, we choose n, &, as

inf,.; | /@) | > u+E, and ﬁ?f);;;"((gll}kgﬁ:ng

Then the map H has an invariant stable foliation om Ix{0}.

THEOREM 5. Let f(x)=Ax(1—zx), where 0<A=<4. Suppose that f has
a stable periodic point x,€ I\A, where A denotes the set {x e I. f*(x)=1/2
Jor some k=0}, and p, & are sufficiently small. Then there exists f-
invariant set I such that the Lebesgue measure of T i3 equal to 1 and
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the map H has an invariant stable foliation on Ix{0} whose leaves are

of C'-class.

We remark that the conditions on f can be considerably weakened
regardless of the simplicity of their expression. For the proof of Theo-
rems 4 and 5, it is useful to prepare the following theorem which gives
sufficient conditions for the existence of an invariant stable foliation.

THEOREM 6. Suppose the following properties hold for xze€ I
(C), There exists

6. (x)=lim inf % log [(f*) ()| and 6,(x)> log (©+é,),

©), f1(f'@)#0 for all n=1,

(C)s lim (1/n) log |f'(f"(x))|=0,
(C);, there exists

6,(z)=lim sup % log |(f*)(z)| and
~ \b
5(6,(x)—6,(x))< lo gﬁ_—f’)-
(6:(@)—6,()<log (£
Then, an invariant stable foliation exists on the orbit of (x, 0).
PROOF OF THEOREM 6. Let

T=T. ...°T1=<a,. 'Yn) ’
0 4.

where

@) %e—‘-(f""(x), 0)
T,=DH(H" Xz, 0))= ge
0 prZR(f@, 0

It is easy to see that

_{ pnt __"_1 362 &
a=(f@ and  a=TI(s+22"@), 0).

We can verify easily that (C), and (C); imply (B), and (B), respectively.
Note that )

<T@

- (ﬂ_éz)n

B

an+1

< ((H&) 40q | %
() (@) Ba
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We replace in Main Theorem the constants & and & by (6,(x)—log (£ +§&,))
and (6,(x)—log (£—&,)) respectively. Then Theorem 6 is an immediate
consequence of Main Theorem.

LEMMA. As f is of piecewise C'-class, we can take log {inf,.; |f'(®)[},
log {sup,c; | f'(®)|} as 6,(x), O, (x).

PROOF OF THEOREM 4. Immediate by Theorem 6 and the above lemma.

PrROOF OF THEOREM 5. At first, we assume that f has a stable fixed
point @, (i.e., 1<A<8). In the case that «, is a periodic point with period
k>1, a similar argument would be valid. Since the Lebesgue measure
of those points not converging to the stable “periodic orbit” is zero,
we have

lim - log | f/(f*(#))|=0,, and
lim -7-1%-log [(™)(x)|=log | f'(x,)| almost everywhere .

Choosing p, é, satisfying

£@l= |7 (FF5)| =la-2i>pre and ESEs,

we complete the proof of Theorem 5.

EXAMPLE. Let us consider the one-dimensional mapping f:[0, 1]—
[0, 1], defined by

[ e [od]
. 1_2,/§x+ zu/“i'—ly_% on [L,1],

and take p, & with

1/?5 ()“ 52) .
v's) (B+8&)

In this case H satisfies the assumption of Theorem 4.
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