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Classification of Periodic Maps on Compact Surfaces: II

Kazuo YOKOYAMA

Sophia Univerrsity

Introduction

In [7], we have classification of orientation preserving periodic maps
on compact orientable surfaces. In this paper, we will obtain classifi-
cation of orientation reversing periodic maps on compact orientable sur-
faces and classification of periodic maps on compact non-orientable surfaces.
We use the definitions and notations in [7]. We will assume that all
surfaces are connected.

Let P, be the set of elements (f, M)e P, where M is an orientable
surface and f is an orientation reversing periodic map. Let P, be the
set of elements (f, M)e P, where M is a non-orientable surface. Then
we will obtain classifications of P; and P!. So, we will complete the
classification of the set P, of elements (f, M) such that $”(f) consists of
finite points in M (may be empty). Complete classification of periodic
maps on compact surfaces will be given in the forthcoming paper [8].

For an element (f, M) of P,, we will consider its orbit space X=
M/f and the canonical map p: M—X. Then, by [4], X is a compact
surface and p is an n-fold cyclic branched cover of X with branched set
S=p(A(f)). We denote by P,(X, S) the set of elements (f, M) of P, such
that X=M/f and p: M— X is an n-fold ecyclic branched cover of X with
branched set S. For the classification of P,, we will determine a complete
set of the equivalence classes of P,(X, S) in §§2, 8 and 4 (see Theorems
2.1, 2.2, 3.1, 3.2. 4.1 and 4.2), which is of importance in the sequel.

Let Pxg, 1, m, §, m) be the set of elements (f, M) of P:, (where e=
— or 0), satisfying the following conditions;

(1) M is a compact surface of genus § with the boundary com-
ponents D, D,, ---, D;,

(2) fis a pf,riodic map on M such that $2(f) consists # points
S, S, -+, S; in M, B 5

(3) i=(f,,)u,,, is a vector of non-negative integers [,, where [, is
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the number of elements of the set {D;; f%(D;)=D; and f¥D,)+D, for
1<b<a} for each divisor a of =,
(4) m= (m,,)m is a vector of non-negative integers 7i,, where i,

is the number of elements of the set A (f)={S:; £*(S,)=S, and f”(S,,)¢S,,
for 1=<b<a} for eace divisor a of n except n. Denote by Z(g, T, m, %, )
the set of equivalence classes of P:(g, I, @, I, ®).

Using the orbit space M/f and the branched cover p: M— M/f, we
will obtain the following;

PROPOSITION 5.1. If P, 1, #, 1, M)+ @, then we have

(1) T:Zaln T a"nd m_ZaLn ma’

(2) 7,=0 (mod a) for each divisor a of n and Mi,=0 (moda) for
each divisor a of m except m,

(8) §—2+ . A—n/a)(l,+Mm.)+2n is a positive integer and a
multiple of n.

Then, let I,=1,/a, m,=mi./a, and g=1/n){§ —2+ S, L —n/a)( T, +%,) +
2n}. We will prove the following;

THEOREM A.l. Under the conditions (1), (2) and (3) in Proposition
5.1, in order that PXg, I, w, I, wm) be non-empty, it 18 mecessary and
sufficient that =, ¥ and m satisfy the following conditions;

(a) Im case that g=38,

(I) =n is odd, or
(II) Z:!:dd (.+m,) is even, if m is even,
(b) In case that g=1,
(I) g.c.d.{a;1,#0 or m,#0}=1, if n is odd, or
(IT) Z’:.'Z,‘da (la+m,) is even and g.c.d.{a;l,#0 or m,#0}=1, if
n 18 even,
(e¢) In case that g=2,
(I) m 48 odd,
(IT) Z:-‘é‘dd (la+m,) is even, if n is even and d i3 odd,
AII) %/2 is odd, if n is even and d is even, or
V) d/2 is odd and Z‘:'L‘ven (lo+m,) 18 odd, if m 18 even, d 1is
even and n/2 s e":)lé";,d:
where d=g.c.d. {a; l,#0 or m,+#0}.

THEOREM A.2. Suppose that n, §, I, #, § and W satisfy the condi-
tions in Theorem A.1. Then the number of elements of PG, I, m, I, m)
18 given as follows;
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(a) In case that g+2,
{C’(n %, m), if A) n is odd or (II) n is even and l,,+m,,#0;
2xC(n; ¥, m), if » is even and l,,=m,,=0.
(b) In case that g=2,
{p(d)/2} x C(n; }, m), if n i8 odd;
2 x {p(d)/2} x C(n; ¥, m), if n is even, d is odd and l,,=m,,=0;
{@(d)/2} x C(n; 3, m), if n i8 evem, d is odd and l,,+m,;,#0;
*{¢(d/2)/2}><C(n; %, m), if n 18 even, d is even and n/2 is odd;
2x{®p(d/2)/2} x C(n; ¥, m), if n is even, d 1is even, N/2 18 even
and l,,=m,,=0;
{@(d/2)/2} x C(n; 8, m), if n is evem, d is even, n/2 is even and

ln/2+mn/2#’-0
where {x} 18 the smallest integer =z, P(x) is the Euler fumnc-
tion and
<-—‘P('”/“) +l,,——1) PWja) |y 1
C(n; 3, m)= 11 2 2
L. m,

In the case of P (g, I, m, §, m), we will obtain the following;

PROPOSITION 6.1. If P (g, I, m, §, m)# @, then we have
(0) m 18 even,

(1) T=..10, and #i= Zm Mhoas

(2) 1,=0 (moda) for each "divisor a of m and #i,=0 (moda) for
each divisor a of m except m,

(8) 2§—2+4+..(1—n/a)l,+#.)+2n is a positive integer and a
multiple of 2n,

(4) Ta=mu=0 Jor each odd divisor a of n.

_ Then’ let la.: Ta/a” my,= ma/a’ and g= (1/2’"'){25_2 + Zaln (1 —’n—/a’)(z’a—l_
fit,) +2n}. We will prove the following;

THEOREM B.1. Under the conditions (0), (1), (2), 3) and (4) in
Proposition 6.1, in order that P;(g, T, i, §, m) be non-empty, it 18 neces-
sary and sufficient that n, 3 and m satisfy the following conditions;

(a) In case that g is odd and g=3,

(I) n/2 i3 odd, or
A > (.+m,) is-odd, if n/2 18 even,

a:even
a/2:0dd

(b) In case that g=1,
(I) (1/2)xg.c.d.{a;l,#0 or m,+#0}=1, @f n/2 is odd, or
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II) E“l" (la+m,) is odd and (1/2) X g.c.d. {a; l,#0 or m,+#0}=1,
vf G'I);:/oid 18 even,

(¢) Im case that g is even,
(I) =»/2 is odd, or
an E,,-,,. (s+m,) 18 even, if n/2 is even.

a/2:0dd

THEOREM B.2. Suppose that n, §, L, @, 3 and % satisfy the con-
ditions in Theorem B.l. Then, the number of elements of P (g, I, i,
I, m) is given as Jollows;

(a) Im case that g+2,

{C('n; i, m), if (I) »/2 is odd or (II) »/2 is even and l,,,+m,,#0;
2xC(n; 8, m), if n/2 is even and l,,=m,,,=0.

(b) In case that g=2,

{p(d)/2} xC(n; ¥, m), if n/2 18 odd;

{(P(d)+P(d/2))/2} X C(n; §, m), if n/2 i3 even and n/d 18 odd;

2x{p(d)/2} x C(n; 3, m), if n/2 i8 even, d/2 is odd and l,,=m,,=0;

{p(d)/2} x C(n; 3, m), if n/2 is even, d/2 is odd and l,,+,,#0;

2x{p(d)/2} x C(n; ¥, m), if n/2 is even, d/2 i3 even; m/d is even,
Za,,. (l.+m,) i8 even and 1, ,=m,,,=0;

4{;D(d)/2}><C(n,l m), if n/2 i3 even, d/2 is even, n/d i3 even,

Zi‘.!z-odd (la+m,) 18 even and l,,+m,,#0;

2x{p(d/2)/2} x C(n; }, m), if n/2 is even, d/2 i3 even, n/d is even,
Z“,‘;}. o (et me) i8 odd and 1,,=m.,,=0;

{P(d/2)/2} x C(n; ¥, m), if n/2 is even, d/2 is even, m/d is even,
Z%' “ (l.+my,) is odd and 1,,+m,,+0;

where {x}, P(x) and C(n;3¥, m) i3 the same notations in Theorem A.2,
and d=g.c.d. {a; l,#0 or m,+#0}.

In the case of »=2 and m=0, Theorems A and B is given by Asoh
[1].

In §1, we will give a model of (X, S) and reduce the equivalence
relation on P,(X, S) in a similar way as in [7]. In §§2, 3 and 4, we
will determine the equivalence classes of P,(X, S) using the homeotopy
group of (X, S), and prove Theorems 2.1, 2.2, 3.1, 3.2, 4.1 and 4.2. In
§ 5 we will prove Theorems A.1 and A.2 and in §6 we will prove Theo-
rems B.1 and B.2. Not only we can determine the number of elements
of FXg,1, M, 3, ) or Fr(g, ], m,i ), but also construct an element
of g, L, m, §, m) or F (g, | }, m) in practice. Moreover, we can
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determine whether two elements of P! (resp. P,) are equivalent or
not.

The author would like to express his sincere gratitude to Prof.
Tatsuo Homma and Prof. Shin’ichi Suzuki for helpful conversations.

§1. A model for X and reductions of equivalence relation on

P,(X, S).

Let X,,., (resp. X,,,,) be a compact connected non-orientable surface
of genus 2g+1 (resp. 29+2) and let the boundary 0X,,,, (resp. 0.X,,.,)
consist of ! components d,, d,, - -+, d;,. For the sake of convenience, we
first take a model for X,,,, (resp. X,,,.) as shown in Fig. 1 (resp. Fig. 2),
and simple oriented loops a,, a,, ---, a, b, by, -+, b, ¢, (resp. ¢, ¢.), dj,
dy, -+, d; on ng,,+1 (resp. X,,.,). Let S be finite points §, 8, ---, §, in
‘ )E;,+1 (resp. X,,..) and take simple oriented loops s, s, -+, 8, on X,,,,
(resp. X,,,,) as shown in Fig. 1 (resp. Fig. 2).

FIGURE 2

To avoid the multiplicity of brackets, we refer to loops rather than
to homology classes. Then the first integral homology group of X,,.,—S
is given by;
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@y by gy by -, Qg bg ’

c, 2c+d,+d,+ - - +d,
1.1 H (X, —8)= ’ .
( ) ( 2g+1 ) dl’ dz, s, dl ’ +81+32+"°+3m=0
81y 83y °*°y 8y

The first integral homology group of X,,,,—S is given by;

a, b, a, b, ---, ag b, ,

Ciy C2 2¢,+2c,+d,+d,+ - - - +d;
1.2 H(X,,,—S)= ; .
(1.2) (Xogte ) dydsy -0, d;, +8,+8+---+8,=0

815829 *° "y 8,

By the same way as in [7], we define [H,(X—S); Z,]* and .«-equiva-
lence relation on [H,(X~—S); Z,]* (see Definition 1 in [7]), where X=X, ,,
or X,,... To avoid a multiplicity of , we also use h as a homomorphism .
hy, induced by a homeomorphism #k|;_g, if there is no confusion. We
have the same result as Proposition 2 in [7].

PROPOSITION 1.1. There i8 a one-to-one correspondence between the
set of equivalence classes of P,(X, S) and the set of Y -equivalence classes
of [H(X—8); Z,]*.

Let Z;(2g+1;1, m) be a set of systems of integers (a, 8, 7, 8, )=
(A1, Biy Qzy By **y Ayy Bgy ¥y 01y 03y ==+, 0y, 0, 0,, -+ -, 0,) satifying the follow-
ing conditions;

(0) 475 Bi; fYy 3,1’7 0ke Zn and 010:#0 (":=1’ 2’ 0, j=1) 2’ Tt %y l; k=
17 2’ R m)’

(1) 2v+4+6,+0,+---+0;+6,+6,+---+6,=0 (mod n),

(2) g'c’d- {au Bh s, Bz; sty Oy, Bm 7, 31’ 32’ . '81’ 019 02! Tty 011" n}=17
where g.c.d. means the greatest common divisor.

Let Z,(29+2;1, m) be a set of systems of integers (a, 8, 7., 7,, 8, 6)=
(alr Bu ., :82’ Tty Oy, :80’ RETRLLY 51) 32) Sty 81, 01) 02’ ) 0m) satisfying the
following conditions; )‘-\_\

(0) Ay Biy Y1y Yoy 3,1’9 0.€ Zn and 0, #0 (7:“‘—"1"]'2’ e 9, j=1, 2,---, l; k=
1: 2: Sty m)’ . .

(1) 27,4+27%,+0,+0,+---+0;+6,+6,+---+6,=0 (mod n),

(2) g-c'd- {aly ,81» s, Bz; coy &y, 6:1’ 719 Yoy 31, 32; Y 317 01; 02’ C %y 011"
n}=1.

By the same way as in [7] (see pp. 78 and 79 in [7]), the map ~
gives a one-to-one correspondence between [H,(X,,,,—S); Z,]* and Z, (29 +
1; I, m) (resp. [H\(X,,..—8S); Z,]* and Z;(29+2; 1, m)).
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The equivalence relation on Z;(2¢g+1; [, m) (resp. Z,;(29+2; [, m)) is
defined by the same way as Definition 2 in [7]. Hence X is a one-to-one
correspondence between the set of .w-equivalence classes of [H,(X,,.,—S);
Z,J* (resp. [H(X,,.,—S); Z,]*) and the set of equivalence classes of
Z7(29+1; 1, m) (resp. Z,(29+2; 1, m)).

§ 2. Determination of the equivalence classes of P,(X,,,;, S).

In this section, we merely denote X,,,, by X. To determine the
equivalence classes of P,(X, S), we use the following result of Lickorish
[3] and Chillingworth [2].

PROPOSITION 2.1. There exists a Y-homeomorphism 7/, of (X, S) onto
itself such that the automorphism of H,(X—S) induced by it is given

by;
Z(a)=a,, Zz,(b,)=—b,+2c, Zz,(c)=c ,
where the remaining generators of (1.1) are unchanged, see Fig. 3.

We use some typical homeomorphisms of surfaces in addition to [7].

DEFINITION 2.1. Let A, A,, B, + be the same sets and map as
Definition 8 in [7]. ‘ :

FIGURE 3
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(1) 0 We take a 2-cell 4 and identify 94 with a component d,
of 0X. We obtain the surface XU 4 of genus 2g+1 with {—1 boundary
components. Let ¢ be a simple loop on X U 4 passing through the center
of 4 such that en{a, b, ---,a,b,¢,d,d,, ---d;, 8, 8, -+, 8.} =eN{e, d,}
and that e intersects transversally one point with c¢; see Fig. 4. Let h
be an embedding of A—A, in XU4—S satisfying the following condi-
tions; (1) h(€)=e, (2) h(A—A,) is a regular neighborhood of e, (3) A(4A—
A)N {a'ly bl; Tty Qg ba’ ¢, d,, dz; ) dl}=h(A_A1) N {09 dl} and (4) h(B,)=4,
where &={(r, 0); r=38}. Then we have a homeomorphism 3, of (X, S)
onto itself defined as follows; 0,=h+h™" on h(A—A,) and o, is the identity
on X—h(A—A,); see Fig. 4.

(2) 0: We take a 2-cell 4 in X such that 4>s,, 4N{ay,b, ---,

é

=

FIGURE 4

(5 5

0)-—Fc

FIGURE 5
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ag b, ¢, 8,8, -+, 8,}={s;} and 4NS={3,}). Let ¢ be a simple loop on X
passing through &, such that enf{a, b, ---, a,, b,, ¢, d;, ds, -+, di, 81, 83, + - -,
s.}=eN{c, 8,} and that e intersects transversally one point with ¢, see
Fig. 5. Let h be an embedding of A— A4, in X satisfying the following
conditions; (1) h(€)=e, (2) R(A—A,) is a regular neighborhood of e, (3)
h(A - Al) N {aly blr Tty Ay, bm Cy 81y 8y sm} = h(A - Al) N {C, 31} and (4)
h(B,)=4. Then we have a homeomorphism o, of (X, S) onto itself
defined as follows; o;,=h+h™ on h(A—A,) and o, is the identity on
X—h(A—A,); see Fig. 5.

Then, by Suzuki [5] and Chillingworth [2] and in an elementary way,
we have the following;

PROPOSITION 2.2. The homeotopy group of (X, S) is generated by
O, 0 2=1=9), Ty Wy 01, 74, 0; Q=J=), 0, 2=k=m), 0,, 0,, 0; and o;.

LEMMA 2.1. (1) The automorphisms of H(X—S) induced by them
are given by; :
o{e)=c+d,, o(d,)=—d,,

o,(c)=c+s,, 0,(8;)=—38,,

where the remaining generators of (1.1) are unchanged.
(2) For an element X(w)=(a, B, 7, 8, 8) of Z;7(29+1; 1, m), we have;

J(woy)=(a, B, Y +6,, —0,, 6, -+, 0,0),
Z(GJUT):((X, B, 7+019 81 _01, 029 Sty 0m) ’
E(w?J:(an —B1+27y &, Bzy Ty Oy, Bnr 7y 8’ 0) .

Among these automorphisms, we have easily the following equations;

ProrposiTION 2.3. (1) 0,9=90, 0.,9=g0,, where g 18 an automor-
phism induced by a homeomorphism in {0=, P, M, T, 05, 27},

(2) 0;07,=03,0;, 0;01;,=07,0;, 0,0;,;=03 ;04 00 ;=0 ;Oy,

(8) 0,07;=0z;0, (1#7), 0:0;,;=0;,;0; (1#7),

(4) aiajaf,jzaf,iazaj (7:7'-'.7.); aiajar,j=a7’,iaiaj (’i¢.7.)’

(5) 0,05,=0f0, (1#k), 0,01,=0:,0; (1%#k),

(6) o0,0,07,=0;5,00, (i1#k), 0,0,0,,=0,,0.0, (1+k),
where 0,,;=0;0,0;, 0r;=0;0,0;, 041 =0,0,0; And Oy ,=0,0,0.

Then, we have the following;

LEMMA 2.2. (I) If n is even and d is even, any element (a,, B,
Oy By ** %y Oyy Bgy ¥y 01y Oy * 2, 04y Oy, Oyy <+, 0,) 0f Z7(g; 1, m) 8 equivalent
to (2, O’ 0: 09 * '09 0’ 7, 519 829 Tty Bl, 01: 027 STy 0m)’ where dzg'c-d' {ali Blr
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a,, 32; cr ity O, Ba! 31’ 62’ R} 31) 01; 02’ * %y 01») n}°

(II) Ifd is odd, any element (a, B, @, B, -+, a, Bas Yy 01y 0y <+, Oy
0, 0z -+, 0,) of Z;(g; I, m) i3 equivalent to (1,0,0,0, ---,0,0,7, 5, 6,, ---,
5;, 019 02: %y 0m)°

PrROOF. By the same way as Lemmas 2 and 4 in [7], we have
(au By Oy Bay =, g By 7, 619 52, ) 31’ 0y 05, -+ s 0m)~(dv 0, 09 O’ ) 01 0,
Yy 01y 0+, 04y 0y, 6, -+, 0,). Since g.c.d.{d,v}=1 (modn), there are
natural numbers z and 2z’ such that zd+2z'v=1 (mod=n). Let h,=
T TV 20Ty U then wyoh,.  3(wh)=(2, —d, 0,0, .-+, 0,0, 7, 8,
Oy **+, 01, 0, 0, -+, 0,) is equivalent to J(w)=(d,0, 0,0, -- -, 0,0,7,4,
Oy ©+ 301y 0y 0y -+, 0,). If d is odd, we take a homeomorphism h,=
woi*prciyn,. Then X(wh,h,)=(1,0,0,0, ---,0,0,7, 8, 6) is equivalent
to J(w). If d is even, we take a homeomorphism hy=p,7i?pu*. Then
2(whh)=(2,0,0,0, ---,0,0,7, 8, 0), is equivalent to ().

LEmMMA 2.3. Any element («,0,---,0,7,0,0, +--,08; 61y 0z -+, 0,)
with a=1 or 2, is equivalent to (a, 0, ---, 0,7, 8}, 83, -+, 8}, 6. 04, -+, O),
where 0=0,<0;<---=0;=<n/2 and 1<6,<6;<---Z6,.<n/2.

PROOF. 1If 6,>n/2, we apply o,;. Then ¥(wd;;)=(a, 0, ---, 0, Y+4,,
0y *+*, M—0y, -+, 04, 6) is equivalent to X(w)=(a, 0, -+, 0,7, 8,0, +--, 6,
6y 0, -+, 0n), Where n—0d;<n/2. Hence we have §;=n/2 (1=<j<l). By
the same way, we have 6,<n/2 (1<k<m). Applying d; and o, in a
suitable way, we have 0<4,<4,<---<¢;, and 1<64,<6,<---<6,,.

LEMMA 2.4. If 2(0)):(“1, By * Ay, Bas 7y 81’ 62’ "%y 31; 01y Oy ~ -, Om)
and 2(0)')=(ai, ,8;9 ) a;, B;y 'Y'r 3;’ 35; ) ;, 0;9 0;1 Tty 0;1) are equivalent
elements of Z;(29+1; 1, m) satisfying the following conditions; (1) 0=
51§62§ ¢t éalén/zy (2) 1§01§02§ ce éomén/zy (3) O§6;§3;§ et ga;én/z
and (4) 10/<6;<---<0.=<n/2, then we have §;=06; 1=<j<l) and 6,=6,
AZk=m).

PROOF. Since Y(w)~2X(w’), by Proposition 2.2, there exists a homeo-
morphism h of (X, S) onto itself which is a composition of elements in
{pir pm z.it, #ih; 01:&2’ ajy Oy, af) o'ai’ aT; oy, ?1} SUCh that (D’=G)h*, Where h’* iS
the automorphism of H,(X—S) induced by k|;_s. By Lemma 2.1 and
Lemmas 1 and 3 in [7], we note that for any j (1<j=l) there exists
an integer ¢ (1=<i=l) such that §;=0; or §;=n—4;. Since 0=4;, §'<n/2,
0=0,0,=---=0;=n/2 and 0=9|<6;=<-- -<0;=<n/2, we have §;=0; (0=
J=!). By the same way, we have 6,=0; (1=k=<m).

THEOREM 2.1. (n; odd) A complete set of the equivalence classes of



PERIODIC MAPS 259

Z7(29+1; 1, m) is given by;
(1)
(1: 0’ STy 0! 0, 7, 51’ 329 Y 519 01: 02’ Tty 01») ’ )

0<6,<8,<--- §6,<1’2- ;
27(29+1; 1, m)=- "
1<6,<6,<--- §0m<% ,

2Y+0,+0,+++++0,+6,+60,+ - +6,=0 (modn)/
if g1,

(2)
(7, 61’ 52’ Ty 317 01’ 02; ] 0m) ’
n

0§81§52§ tt _S_51<? )

Z7 (11, m)=+ 1<0,<6,<--- §0m<% ,
2’Y+81+52+"'+51+01+02+"'+0m50 (mOdn)
g°c'd' {’Y’ 61; 52: Sty 617 01: 029 ] 0m’ ’)’b}=1

if g=0.

PrROOF. By Lemmas 2.2 and 2.3, any element J(w)=(a, 8, 7, §, 6) of
Z;7(29+1; 1, m) is equivalent to an element of 2, (29+1;1, m). Hence
it is sufficient to prove that two distinet elements of 2, (2¢+1;1, m)
are not equivalent.

Let ¥(w)=(1,0,0,---,0,0,7,08, 6, *++,06;, 6,0, +-+,0, and Z(w)=
a,o0,0,:--,0,0,7,016,, ---, 0,06 6, -+, 6,) be equivalent elements of
Z.(2g+1;1, m) where g=1. Then, by Lemma 2.4, we have §,=0; (1=
J=l) and 6,=6, A1<k<m). Hence we have 27'=—(0;+0;+---+0;+8:+
Gt +60n)=—(00,+0,+-+-+08,+60,+60,++--+6,)=27 (modn). Since n is
odd, we have Y=7’ (mod n).

Let Z(w)=(7,8,0) and X (w)=(7, &, 6') be equivalent elements of
2.1;1, m). By the same way, we have (7, 8, 6)=(7', &, 6).

Now, we assume that » is even. Suppose that an element (e, 0,
0,.--,00,729,0, ---,0, 6,6, ---,06,) satisfies the conditions of Lemma

2.3. If n/2=7<m and §,=n/2 (or §,=n/2), then we apply 9, (or oy,).
Then, we have the following;

LEMMA 2.5. (n; even) If n/2=7<n and 6,=n/2 (or 0,=n/2), then
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we have (a’ 000---,00,7, 61, 52’ Ty 61, 01y Oy -+ -, 0m)~(a7 0, o, -- - 0, 0,
7—7&/2’ 31’ 62; o 'alr 6., 6, -+ ) 0m)'

LEMMA 2.6. Suppose that Z(w)=(a,, By, ***, Ay, By Yy 01y 0y -+, 0y, 64,
O« 0n) and Z(CD')=((X;, B;’ R a:u B:n 7” 3;, 5;’ Tty ;, 0;, 0;9 Sty 0:,.,) are
equivalent elements of Z;(2g+1;1, m). If all numbers a,, B, 6;, 6, are
even, then all numbers ai, 3i, 6;, 0; also are even.

PROOF. Since Z(w)~2(w’), by Proposition 2.2, there exists a homeo-
morphism k& of (X, S) onto itself which is a composition of elements in
{0%, ou, TE, UE, 0%, 0;, 04, 0%, 0%, 05, 0, 7,} such that o’ =wh,. If all numbers
a, By 0j, 0, are even, then all numbers ai, g8, 9}, 6; are even by Lemmas
1 and 3 in [7] and Lemma 2.1.

THEOREM 2.2. (n; even) A complete set of the equivalence classes of
Z.;(29+1;1, m) is given by the disjoint umion 2, (29+1;1, m) of the
Sollowing sets;

(1)
(1, 07 °t %y O’ 0’ 7, 31’ 329 Sty 81: 01’ 02’ "t 0m) ’
0§31§82§~-§a,<12*-,
2 (2g+1; 1, m)}=+ -

1§01§02§---§0,.<% ,

2Y+0,+0;+ - +0,+6,+6,+---+6,=0 (modn)
(1’ 09 Ty 0’ O’ 77 517 329 Tty 31; 019 02, Ty om) ’

6 ZE 0m=1"’— 14 OS'Y —Ir-b— ’
1 2 or B =T )

27 (2g+1; 1, m)F =+ Ogalga‘émga,g%, |
1<6,<6,< g_omg-’g- ,

2’7+31+32+"'+31+01+02+"'+0m50 (mOdn)
(2’ 0’ Y 0’ Or 7 51! 627 ) 31; 0., 0,, - - ) 0,,,) ’
Y 28 odd , 0; t8 even, 6, i3 even ,

0<4,<5,<---<8,<,
2 2g+1; 1, mi={ — == = <3 .

1§01§02§' ¢ §0m<% ’
\ 2Y+4+0,+0,+---+0,+6,+60,+---+60,=0 (modn)




Z.7(29+1; 1, m)¥

if g=1,
(2)
(7y 31, 52’ Tty 51; 01; 02, ) 0m) '
0§61§32§ cc §51<% ’
27151, m)= 1§01§02§"'§0m<‘g— ’
27+51+52+ A +3¢+01+02+ b +6mEO (mOd n) ’
g.cd.{v,0,0, ---,0,0,0, -, 0, nt=1
/(7,819 827 "';611015 629 "‘,0,,,); \
6, =2 6,=2, osv<l,
=g g+ =T<y
0=<9,=4,<---=4=2,
2715 1, m)* =( 2
- 1§01§02§---§0m§1”2—,

\

PERIODIC MAPS
((2’ 0, tt Y 0’ 09 7 31) 52, ) 519 01: 027 Y ﬂm) >
=" or 6,=2, osv<2,
‘T2 2 =72

Y i8 odd , 0; i8 even , 6, is even ,

1§01§02§ ¢ éemé% ?

2Y+0,+0,+---+0,+6,+60,+---+6,=0 (modn),
g.cd.{V,0,0, +++,0,04,80, -, 0, n}=1

tf g=0.

PrOOF OF THEOREM 2.2 (1).

261

\ 27+31+32+"'+3l+01+02+"'+0m50 (mOdn)J

)

\

By Lemmas 2.2, 2.3 and 2.5, any element

d(w)=(a, B, 7,86 of Z;(29+1;1, m) is equivalent to an element of
2. (2g+1;1,m). Hence it is sufficient to prove that two distinct elements
of 2,7 (2g9+1;1, m) are not equivalent. We will prove it in respective cases.

( i ) Let Z((I))=(C¥, Or Tty Oy 09 e 81' 529 Tty 517 0, 6, - -, 01») be an ele-

ment of 2,7 (29+1; 1, m)¥ and Y(®)=(, 0, ---, 0, 0, 7', 01, 05,

' ot ot
ctcy Oy 01, 02’

.-+, 6,) be an element of 2,7 (2g+1;1, m),, where a=1 or 2 and a’'=1
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or 2. By Lemma 2.4, it is impossible that 3(w) and XY(w') are equivalent.

(ii) Let2(w)=(,0,---,0,0,7,4d, 0, -- s 6” Oy 62y - -+, 0) and 2(0)’)=
,o0,---,0,0,7,0; 0, -+, 01, 01, 05, - - -, 0) be equivalent. Since all num-
bers 4;, 6, are even, it is impossible by Lemma 2.6.

(lll) Let Z'(a))=(a, 09 -+, 0,0,7, 61’ 52’ Ty 51; 0, 0z -, Om) andZ’(w')=
(a,0,---,0,0,7,0,,86,5, ---, 0,01 6 -+, 0,) be equivalent elements of
2.7 (29g+1;1, m)z, where a=1 or 2. By Lemma 2.4, we have §;=0;
(1<j<l) and 6,=60; (1<k=m). Hence we have 27 = —(0;+0;+---+0,+
0:4+6;+---+60n)=—(0,+0,+--+-4+0,+60,+6,+---+0,)=2Y (modn). There-
fore we have ¥—7'=0 (mod n/2). Since 07, Y'<n/2, we have 7¥=7".

(IV) Let 2((0):(“, 09 Ty O’ O’ 7, 31’ 627 ) 31} 01 0y -, 01») and Z(w'):
(a0, --+,0,0,7, 01,0, ---,01, 06,0, ---, 6n) be equivalent elements of
2.7 (2g+1; 1, m),, where a=1 or 2. Then, there exists a homeomorphism
h of (X, S) onto itself which is a composition of elements in {o*, po,, f,
vt 0%, 0,, 0, 0%, 05, 0y, 0;, 7;} such that w' =wh,. By Lemma 2.4, we
have §,=6; 1=<5<!) and 6,=6, (1=k=m). Now, it is sufficient to prove
the following lemma;

LEMMA 2.7. 7Y=7'.

PrROOF. By Proposition 2.3, we may assume h=g-g’ where ¢’ is an
automorphism induced by a composition of homeomorphisms in {9;, g,}
and g is an automorphism induced by a composition of homeomorphisms
in {o0%*, o, T&, Ui, 05, 0%, 0r 5y 0%y, Oray 2). We note that only an auto-
morphism 0, ; (resp. o;,) can change 7. Let g=g¢,9;,9:9:9:9;,9:99: - "
Gy 95915 IrTsn, *** Gi5y_o95,94,_,9%,91,,» Where g, is an automorphism 4, ;,
or the identity (1<t=<s), g:, is an automorphism o,,, or the identity
(1=t=<s) and g,, is an automorphism induced by a composition of homeo-
morphisms in {o*, p,;, i, pt, 0%, 0%;, 0., 2/} or the identity (0=t=<2s).

We denote by G(t) the number of elements of the set {u; g; =0 ;,
(1=u=t)} and by G.(f) the number of elements of the set {u; g, =0,
(1=u=t)}. Then for any ¢t (1=t<s), we have the following;

©0:,95,9:,0k, *** Giy,_,95,(6) =7 €10, +€0, + - - - &5 405, + o0, ,+E5_.0;,
and
©0:,95.94,9k, * * * ip,_,95,(d;,) =E2_10;, »
where
en=+1 and e, ,=—1 if g;=0,; and G(?) is odd,
ena=—1 and e, ,=+1 if g;=0,; and G(¢) is even,
&n_1=0 and ¢, ,=—1 if g, is the identity and G(¢) is odd,
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€x1=0 and ¢, ,=+1 if g;, is the identity and G(¢) is even.
Moreover, for any ¢ (1<t<s), we have the following;

®09:9;9:,9k, " gizt_zgitgizt_lgkt(c) =7+5;5j1+$;0k1+ c +5;t—15jt+5;t0kt and
@9:95,9:,9%, * ** iy, 194,90, 9,(8k,) =200, »

where

&:=+1 and e,=-—1 if 9., =01, and G.(¢) is odd,

&=—1 and e,=+1 if 9:,,=0r,, and G,(t) is even,

&:=0 and e,=—1 if g, is the identity and G, is odd,
&:=0 and e,=+1 if g, is the identity and G.(t) is even .

If 0=6,=0,="--- =0;,<01y41=0; .=+ - - =0,<n/2 then the number G, of
elements of the set {¢; 9;,=0r,; (0=t=s)} is even for any j ([,+1=j5=<l).
Because if there is an integer j, (l,+1=<7,<l) such that G, is odd,
@919, 90 ky *** Gigy—o95,94, 92,94,,(d;)=—0;. Hence we have wh,(d;)=n—0;
which is impossible. By the same way, the number G of elements of
the set {¢; g,,=0,, (0=t=<s)} is even for any k¥ (1=k=<m). Hence we
have €0; +&6, +--- +&5,-10;,+€,0,,=0 (modn). Therefore we have v =
wh*(c)=7+s;3,-1+e;0,,1+---+e;,_1558+e;,0k857 (mod »). This completes the
proof of Lemma 2.7.

PROOF OF THEOREM 2.2 (2). It is sufficient to prove that two distinet
elements of 277(1;1, m) are not equivalent. Let S(w)=(7, §, 6) and
3(w")=(7, &, 0') be equivalent elements of 277(1;1, m). By the same way,
we have (7,8, 6)=(7", ¥, 6').

Using the homology group of a covering space of X or by a geo-
metric consideration, we have the following;

PROPOSITION 2.4. (1) An element (f, M) of P, corresponding to
an element of 2,7 (2g9+1; 1, m) belongs to P2, if n is odd.

(2) An element (f, M) of P, corresponding to an element of
Z.(29+1; 1, m)} or 2,7 (29+1; 1, m)¥ belongs to P?, if n is even and g=1.

(3) An element (f, M) of P, corresponding to an element of
2. (2g+1; 1, m); or 2,7 (29+1; 1, m)¥ belongs to P,;, if n is even and g=1.

(4) An element (f, M) of P, corresponding to an element of
Z7 (L 1, m)® or 27(1; 1, m)* belongs to P, if n is even and d is odd.

(86) An element (f, M) of P, corresponding to an element of
Z. (L, m)’ or 2,7(1; 1, m)* belongs to P, if n is even and d is even.
Here d=g.c.d.{0,,0,, -+, 0, 6, 6, +-+, 0., n}.
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§ 3. Determination of the equivalence classes of P,(X,,,, S), g#0.

In this section, we merely denote X,,,, by X. To dentermine the
equivalence classes of P,(X, S), we use the following result of Lickorish
[3] and Chillingworth [2].

FIGURE 6
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PROPOSITION 3.1. There exist a Y-homeomorphism %,, Dehn twists
2, and 2, of (X, S) onto itself such that the automorphisms of H(X—-S)
induced by them are given by,

Z(a)=a,—2¢, , Z,(b,)=b, , Z(¢,)=c,+2¢, , Z(c)=—c¢;,
2(a,)=a,—b,+ec,+c. , 2(b)=b,, Z(c)=b,—c,,
Z(e,)=—b,+c¢,+2¢, ,

Z(c)=—¢C: Z(e,)=¢,+2¢, ,

where the remaining generators of (1.2) are unchanged, see Fig. 6.

REMARK. These homeomorphisms <2, and <7, are the same maps as
twists about the curves 7y and By,, in Chillingworth [2].

By the same way as in §2, we define some typical homeomorphisms
of surfaces.

DEFINITION 3.1. (1) 4y, d;,: In parallel to definition of 9; in Def-
inition 2.1, we define homeomorphisms 3,, and 9;, corresponding to the
two Mobius bands in Fig. 2.

(2) o0y7,0r: In parallel to definition of o, in Definition 2.1, we
define homeomorphism o, and o;, corresponding to the two Mobius bands
in Fig. 2.

Then, by Suzuki [5] and Chillingworth [2] and in an elementary way,
we have the following;

PROPOSITION 8.2. The homeotopy group of (X, S) is generated by
0, 0, R=1=9), Tyt Ony T iy D5, 0; 2=J=1), 0, (2sk=m), 04y O, 07y,
Or,y Oy, and Oy,

LEMMA 8.1. (1) The automorphisms of H(X—S) induced by them
are given by,
or(c)=c,+d,, or(d,)=—d, ;
612(02) =c,+d,, arz(d1) =—d,;
g, (c)=¢,+8,, 0r(8)=—8;;
or,(c)=c,+8, , 01,(8)=—8:;

where the remaining generators of (1.2) are unchanged.
(2) Foran element Y(w)=(a, B, V1, Vs, 8, ) of Z;(29+2; l, m), we have

2(‘”871):(“’ B, 71+519 2 _81, 52’ ) Bl’ 6) ’
Z(wafg)=(a’ ﬁr Y1 72+519 "'51’ 52: Tty 3!; 0) ’
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2(woy)=(a, B, V,+06,, 7, 8, —06,, 0, -+, 0,) ,

3(wo,)=(a, B, 7, V:+6,, 8, —0, 6, -+, 0,),

2(WZ,)=(a,—27, By Qs Bay ==y Ayy By Y1+27,, —7,, 8, 6) ,
S(@D)=(,—Bi+71+Ys By Qs Bay = *y Oy Byy Bi—Yey —Bi+7,+27,, 8, 0),
J(w2)=(a, B, —7,, 7,+27,, 8, 6) .

Among these automorphisms, we have easily the following equations;

ProposiTION 3.3. (1) 0,9=90,, 0.9=9g0, where g is an automor-
Phism induced by a homeomorphism in {0*, o, pf, ti, 05, 2., D*, 2.},

(2) 00%,=03%,0, 0:0,,, =0, 0, 00, =050, 0,07 ;=03 ;0, 0.0,,;=0,,;0,,
ataz,j = az,jou

( 3 ) aiaij=af,jat (7';&.7)’ aial,j=al,jai (7'7&.7): ataz,j=az,jat (%¢j)y

(4) 0.0;07;=07:0.0; (1+#]), 0,0;0,,;=0,,:0,0; (L#J), 0:0;0,;="0,,,0.:0; (1 #3),

( 5 ) ataikzaikat (7‘ ik)’ 0,0,,=0,,0; (iik)’ 0,0,,;=0,,0; (7' ¢k)’

( 6 ) atakaf,k = acjz:,to'io'k (7' :#k)’ 0,0,0,,=0,,0,0 (7/ ik); 0.,0,.0,,=0,,0,0,
(e #k),
where 0,,;=0;0,0;, 0,;=0;0r0;5 05;=0;01,0j, 04 =0,0,0, 0,,=0:0:0, and
052,k =0407,0.

By the these results, we have the following;

LEMMA 3.2. (I) If n is even, d is even and Y i3 even, them any
element (au Bl, a,, 629 tecy Oy, Bgy Vi Yoy 8’ 0) Of Z,,_(29+2; l: m) 18 equi'va’lent
to (2,0,0,0,---,0,0,1,7—1, 3, 6), whered=g.c.d. {a,, B, @, Bs, - -, a,, B,
31; 62; Tty 3!7 01y Oz -+, Onm, n} and T=74+7, (mOd n)-

(II) Otherwise, any element (@, B, Gy Boy ** ) Ayy Byy Ty V2, 8, 8) of
Z,;(29+2;1, m) is equivalent to (1,0,0,0, ---,0,0,0, 7, &, 6).

PrROOF. By the same way as Lemmas 2 and 4 in [7], we have
(ay, By, oy Boy *++, Ay Bgs Y19 Vo S, 6)~(d, 0, o0:---,00,7, 7. 8, 6). Since
g.cd.{d, 7, 7.}=1 (mod n), there are natural numbers z,, z, and z, such
that 2z, d+2,7,+2,7.,=1 (modn). Let

h =D YT T D (DT D T

Then X(wh,)=2, —-d,0,0, ---,0,0, —22,d+7,, 2z,d+7,, 8, 6) is equivalent
to ¥(w)=,0,0,0, ---,0,0,7,,7,8,08). If dis odd, we take a homeo-
morphism h,=p,7{*tV 2 ur (2,7 )it end-niin-Ny . Then 3 (wh,h,)=
(1,0,0,0, ---,0,0,0,7, 8 6) is equivalent to 3(w).

If n is even and d is even, we take a homeomorphism h;=p,72p;2.
Then X(wh,h;)=(0,2,0,0, ---,0,0, —22.d+7,, 22,d+7,, 8, 6) is equivalent
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to Z(w). Furthermore if 7 is odd, we take a homeomorphism h;=
D, D7 T (D D, et ety - Then 3(wh,h:hs)=(1,0,0,0,- - -,
0,0,0,7,38,80) is equivalent to X(w).

Lastly we may consider the case where n is even, d is even and ¥
is even. If 7, and 7, are even, g.c.d{d, 7,, 7.} is even which is contra-
diction. Therefore 7, and 7, are odd. Let

' g1 -1 (229d —y1+1)/2-d/2+ (229d —7  +1)/2- (r—1) /2
hy= (D D) T g G gy

Then 3X(wh,hhy)=(2,0,0,0,---,0,0,1,v—1,8,6) is equivalent to J(w).
This completes the proof.

By the same way as Lemmas 2.3 and 2.4 in §2, we have;

LEMMA 3.3. Any element (a, 0,---,0,0, ¢, ¥—¢, 0,y 03y -+, 0y, O, 65y -+ -,
0,) with a=1 and ¢=0 or a=2 ¢=1, is equivalent to («, 0, ---,0,0, ¢,
7'_5’ B;’ 5;9 Tty 3;9 6;’ 0;, Tty 0:»), where 0§5'§3;§ e §5;§n/2 and léeié
0;=- - =0n=n/2.

LEMMA 3.4. If S(w)=(ay, B, ***) Ay Byy V1s Vay Oy Osy * ==y 04y Oyy gy + -+,
Om) and Z’(a)’):(a{, B;’ ) a;, 18;, 7;; 7;, 3;, 5;, ) ;’ H;r 0;, ) 0;) are
equivalent elements of Z, (29 +2; I, m) satisfying the following conditions;

(2) 1=60,=60.=---=0.,=1/2,

(8) 0=0150,<---=0,=n/2 and

(4) 1=Z0.26;<---=60,=n/2,
them we have 0;=0; 1=j=l) and 6,=60, 1=k=m).

By the same way as Theorem 2.1 in §2, we have the following;

THEOREM 3.1. (n; odd) A complete set of the equivalence classes of
Z7(29+2; 1, m), g=1, is given by

(1’ 0, 0; 07 Tty O’ 09 0, 7, 61; 32, ""al’ 0, 0y + -, Bm);

ogalgazg---gax—’g—,
Z.(29+1; 1, m)= ' &
1§algazg---§am<—’-’2— ,

2Y+8,+08,+ - +8,+6,+6,+ -+ +6,=0 (mod n)

Now, we assume that n is even. Suppose that an element («, 0,0, ---,
0,0,e 7Y—¢, 0, 0y +++, 0y 61y 0y -+, 6,,) satisfies the conditions of Lemma
38.3. Then, by the same way as Lemmas 2.5 and 2.6, we have the
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following;

LEMMA 3.5. (n;even) (1) If n/2=7Y<n and 0,=n/2 (or 6,=n/2),
then we have

(lr O’ ] O; 09 Or v, 61: 62’ "'317 01, 02; “t %y 0m)
~(1’ 09 °t %y 0’ 0’ 0)7_%! a19 32; Tty 51: 01) 02’ ct Y 0m) .

(2) If n/2=7—1<m and 6,=n/2 (or 6,=n/2), then we have

(2; O’ ""O’ O’ 177—1’ 61’ 62’ °t %y 617 017 02’ STty 01»)
~(2r 09 Tt 0’ 0’ 11 7—1_%9 619 32) Tty ab 017 021 Tty 0m) .

LEMMA 3.6. Suppose that Z(@)=(a,, By ***» Ay By V1s Yy Oy Oy =+, 01
0, 0 -+ -, 0m) and Z((D’)':(a;, B;! Tty a:n B:’n 7;9 '7':’; 5;, 3;, c Ty 5;, 0;; 0;, Tty 0;‘)
are equivalent elements of Z;(29+2; 1, m). If all numbers a,, B, 0;, 0,
are even, then all numbers a;, Bi, 0;, 6% also are even.

THEOREM 3.2. (n; even) A complete set of the equivalence classes of
Z;(29+2; 1, m), g=1, i3 given by disjoint union 2;7(29+2;1, m) of the
Jollowing sets;

(1, O’ 07 09 Tty 0’ 0’ 0’ 7, 61) 32’ Tt 319 0., 029 Tty 01»)’

ogalgazg---ga,<-’21 ,
27(2g+2; 1, my= (

1golgezg---§om<% ,

2Y+4+0,+0,++-+0,;+6,+6,+ - +60,=0 (modn)

(19 0’ O’ 09 "',09 0’ 0, 7, 81; 329 "'761; 01, 029 ct %y 0m);

=2 or 6,=2, 0<v<®,
i r 2 __<2

2-29+2; 1, m)*=< 0=<6,<,<---<5,<, ,

27+61+32+"'+61+01+02+"‘+0m50 (mOdn)
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(2’ 0, 09 O, 7ty Oy 0, 1; v, 31, 32; St %y 51; 01; 02; Tty 07») s
v; odd , 0 0:; even ,

0<6,<8,<---=<8<2,
27(29+2; I, m)= BSOS R0<y .

1§01§02g---§0,,,<% ,

242740, 4+0,+ - +8,+6,+6,+-+6,=0 (modn)
((2’ 0’ O: 0’ ) 0’ 07 1: 7, 319 327 ) 3;, 01, 02, %y 0m) ’ \

3:.1&.. 0m=£? 0y -@—,
=g 2 =7<3

} v; odd , 0 6:; even , (
Za(2g+2; 1, m)f=

0<6,<8,<--- gaé% ,

1<6,<0,<-- 0.2,

N 2427 48,40y - +0,+0,+0,+ -+ - +0,=0 (mod n))

ProOF. By Lemmas 3.2, 3.3 and 3.5, any element of Z,(29+2; [, m)
is equivalent to an element of 2,7 (29+2; [, m). Hence it is sufficient to
prove that two distinct elements of 2,7 (29+2; [, m) are not equivalent.

We have this theorem in a similar way to Theorem 2.2 except for
the case of (iv) which will be obtained by a little modification. So we
will prove it in the case of (iv).

(iV)’ ~ Let Z(w):(a, 0,00---,00,¢7, 01y 0, * 51’ 01y O -+, Om) and
J(w)=(e, 0,0,0,---,0,0,¢, 7, 61,0, -, 0, 61, 0, -+, 0,) be equivalent
elements of 2, (29+2;1, m),, where a=1 and ¢=0 or a=2 and e=1.
Then, there exists a homeomorphism h of (X, S) onto itself which is a
composition of elements in {o*, p,, ¥, &, 0%, 0;, 04, 03, 0%, 01, 01,y 22 DT,
¢} such that @' =wh,. By Lemma 3.4, we have §;=0; (1=j=l) and

=0, 1=<k<m). Now, it is sufficient to prove the following Lemma;

LEMMA 8.7. v=7'.

PrROOF. By Proposition 3.3, we may assume h=gg’ where ¢’ is an
automorphism induced by a composition of homeomorphisms in {9;, 0.}
and g is an automorphism induced by a composition of homeomorphisms
in {(ot’ pli: Tit, f’tliy 014—5-2, af,j’ al,j9 az,ir O-f,k’ al,kv az,k, ?29 gli; 9’21}' Since al,jz
D 0,720, ; and 0,,=D;'2,0,,2,7,0,,, We may assume that g
is an automorphism induced by a composition of homeomorphisms in
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{pi, O1i, Tit, #itr 01129 az:,ir az,jy 0'3:,]‘, O ky ?2; 9’1:!:’ 2:!:}. We note that Only an
automorphism o, ; (resp. o,,) can change ¥. By the same way as Lemma
2.7, we complete the proof.

Using the homology group of a covering space of X or by a geo-
metric consideration, we have the following;

PROPOSITION 3.4. (1) An element (f, M) of P, corresponding to an
element of 2,7(29+2; 1, m) belongs to P?, if n is odd.

(2) An element (f, M) of P, corresponding to an element of
Za(2g+2; 1, m)} or 27 (29+2; 1, m)f belongs to P2, if m is even.

(3) An element (f, M) of P, corresponding to an element of
Za(29+2; 1, m); or 2,7(29+2; 1, m)F belongs to P;, if n is even.

§ 4. Determination of the equivalence classes of P,(X, S).

In this section, we will determine the equivalence classes of P,(X,, S)
which have been excluded in § 3.
We have the following;

PROPOSITION 4.1. The homeotopy group of (X, S) is generated by
92, 22, aj, Oy, 371, 672, 0'71 and Ty where X:Xz.

Among the automorphisms induced by them, we have easily the
following equations;

- PROPOSITION 4.2. (1) 0;2,=2,0;, 0;2&=2;%0;, 0.%,= %04, 0, D=

Zitay,

(2) 0,0,=0,0;, 0;0,,=0,,0;, 0;0,,=0,,0;, 0101, =01,i0y Oi0,,;=0,,;0%,

(3) aial,j:al,jai’ ataz,jzaz,jau (’&?5_7),

(4) aiajal,jzal,iaiai’ aiajaz,j=a2,iaiaj! ('Li.')),

(5) 0.0,,=0,,0, 00,,=0,,0, (1#k),

(8) 0,0.0,,=0,,00 0,0,0,,=0,,00, (i#k),

(7) Z,0, ¥ =0 ,1?2’ 9262,, 81,432,56 ,1?2, @31,1—31,:'82,1'31,:'@2: .@262,,:
a1 392’ = la1 ,—az j Y gz_laz,j’_—'az.,‘al,jaz,j@z_l,

( 8 ) ?20'1,1:— al,k?Z, ?20'9*: 01,1:0'2,1.:0'1,1:?2’ 9201,k=ax,k02,k01,kg2: 9?02,k=
01,07y D5 '0,,,=0,, Dy, Dy'0,,=03,01,0::5",

(9) 31,131,3‘:61,1'81,1; 31,132,:':32,;‘61,5; ('Lifl)’ (62,:’81,1’):(61,3'62,:')—19 0,,i0,,,=
al,kal i 0'1 to'z k—02 kal 19 ('Lik); 02,k01,k=(01,k02,k)_1,

(10) =2:'2,=2,2, (2,'=2%),
where 0,,;=0,0:0;, 0.,;=0;01,0;, 0,,=0,07,0, NG 0, ;,=0,07,0,.

PropoSITION 4.3. If ('71; Y2y 31; 32: ) 31; sy Oy -+, 0a) and ('7;, 'Y;; 01y
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02y + =+, 01, 01, 03y =~ -, 6,.) are equivalent elements of Z;(2;1, m), then we
have d=d' and a=a', where d=g.c.d.{6,, 0, ---,0, 0, 0 -+, Oy 1},
a=g.cd.{7,+7,d}, d'=g.cd.{6,0, ---,0,6,60,- -, 0un}, and o=
g.c.d. {v;+7,, d'}.

LEMMA 4.1. Any element (V,, Y, 6, 8y <+, 0y, 6, 65, -+ -, 0,) 18 equiva-
lent to an element (Vi Vs, 03, 03, ++ -, 01, 03, O3, -+, On), Where 0SS0 ---
=0i1=n/2 and 150,560,< - SO0.=<n/2.

For any element X(w)=(7,, 7, 8, 8) of Z,(2; 1, m), applying h=2;'%,,
we have X(wh)=(7,, 7, 8, 8). Hence we have;

LEMMA 4.2. (7, 7,, 8, 6)~(7,, 74, 8, 6).

LEMMA 4.3. If 7,+7.,>n, then we have (7,, 7, 8, 0)~ (71, 73, 8, ) where
n>71+7,>0.

ProOOF. There exists a positive integer x such that x(v,+v,—n)=7,.
We take a positive integer x,=min{xe N; (v —n)="7,}, where v=7,+7,.
Let vi=,7,+ (@, —1)Y,—2m and v;=(x,—1)n — (w,— 1), — (£, —2)7,. Because
of the choice of x,, we have the following;

(i) »>7=0 and vi=x,7,+ (2, —1)7, (mod n),

(ii) »>7;=0 and 7;=—(x,—1)7,— (@, —2)7, (mod n).

Hence we take a homeomorphism h==}"%. Then 3(wh)= (7, 7, 8, 6) is
equivalent to XY(w), which completes the proof.

LEMMA 4.4. If an element (v, 7, 8,8) of Z;7(2;1, m) satisfies the
conditions 07,7, <n and 0Z7,+7.<n, then there exists an element
(V1 V2 &, 0") which is equivalent to (7, 7, 8, 6) such that Vi and 7, satisfy
the conditions; 0=V =7,<m, 07 +7.=n and 0=7i<[a/2], where [x] is
the largest integer <x and « is an integer in Proposition 4.3.

PrROOF. Since a=g.c.d.{v,+7,, 0,05 -+, 0, 0y, 0 -+, 0., n}, there
exist  integers =z, x,®, ---, %, Yy, Y, *-*, Yn Such that 2z(v,+7,)+x.0,+
X0+« + 2,0, +Y,0,+ Y0+ - - - + Y= (modn). We take a non-negative
integer 4, such that 0=7,—ia<a. If 0=7,—ia=[a/2], we take a
homeomorphism hz@’{z(ahﬁz,lyl <a1,2az,2)zz Tt (61,162,1)” (0'1,10'2,1)1/1 (0-1,20-2,2)112 °
(01,m02,m)'™. Then Z(wh )=(7,—1., 7.+, 8, ) is equivalent to I(w),
and we have 0=<7,—,a<7,+i,a<m, which is satisfied the conditions of
Lemma.

If [a/2] <7, — i@ < a, then S(wh* 222,k ") =(7:, 73, 8, ) is equivalent
to 3(w), where 7i=a—7,+1,c and V;=27,+7,—i,x—a. 7, and 7, satisfy
the conditions 0=7;<[a/2], 07 S7i<n and 07 +7i<m.



272 KAZUO YOKOYAMA

By the same way as Lemma 2.4, we have;

LEMMA 4.5. If Z(a))=(’71, Y2y 31, 32) T 519 0y Oy -y 01:;) and 2(0)’)=
(71, Y2y 03, 02y ==+, 01, 63, O3, -+, Om) are equivalent elements of Z.(2;1, m)
satisfying the following conditions; (1) 0=<0,<0,<:--=0,=n/2, (2) 1=
0,<0,<---=0,=n/2, B) 0S01S0:=---=0:1=n/2 and (4) 1=56,<6;<---=
On=n/2, then we have 6,=0; (1=j=<l) and 6,=6, A1=k=m).

THEOREM 4.1. (m; odd) A complete set of the equivalence classes of
Z;7(2; 1, m) 18 given by;

((717 Yoy 51’ 52: Ty 51, 01’ 02, Sty 0,,,) ’ \
0=8,<0,<- --§B,<% ,

156,<6,<-- S0.<2,
2725 1, m)=¢ 2 r

27,4+27,+0,+0,+---+0,+6,+6,+ - +6,=0 (modn),

0=7, =% <n , ogvlg[—‘;—] v +v,=n,

\ g°c-d' {71’ Yoy 31, 62’ * %y 8;, 01, 02: Tty 01»9 ’)’b}=1
where a=g.c.d.{v,+7,, 6,, 65, -++, 0y, 01, 05y -+, Op, }.

ProoOF. By Lemmas 4.1, 4.2, 4.3 and 4.4, any element (7, 7,, 8, 6)
of Z7(2;1, m) is equivalent to an element of 2,7(2; [, m). Hence it is
sufficient to prove that two distinet elements of 2,7(2;1, m) are not
equivalent.

Let 2((0)2(71, T2y 31: 32’ T 3‘, 0y Oy -, 0m) and Z((O’) = (717 7;) 3;9
Oz ** <, 0y, 01, 03, + -+, Om) be equivalent elements of 2,7(2;1, m). Then there
exists a homeomorphism % of (X, S) onto itself which is a composition
of elements in {2, =, 9,, 04, 0y, 01, Or, 07,}. By Lemma 4.5, we have
0;=0; 1=j=<l) and 6,=6, A1=k=m). Now, it is sufficient to prove the
following lemma;

LEMMA 4.6. v,=7: and 7,=7,.

ProOOF. By Proposition 4.2, we may assume that h,=~hh,h;h, where
h, is an automorphism induced by a composition of homeomorphisms in
{0..is 02,4y O1 1y 02k}, hy=% (2 is an integer), h;=2/ (¢=1 or 0), and h, is
an automorphism induced by a composition of homeomorphisms in {3;, 7,}.
Moreover we may assume that k,=¢,9, --- 9,919; - - - gm Where g;=(0, ;0 ;)%
or 0, ;(0,,;0.,;)% (x; is an integer) and g,=(0,,0,.)" or 0,,(0,.0,.)" (¥, is
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an integer). (If ,=0, then g, is the identity.)

Since h, can not change §; and 6,, we may assume that 9;=1(0,,;0,,;)%
and g,=(0,,0,,:)"*. We note that only h, can change 7, or 7,. So we
have;

(i) {’7;=71+(a7151+x252+ s L0+ YO Yoot - YmOm) — (V1Y)
Vo="2— (@0, + 80,4+ + 2,0+ Y0, + Yoo+ -+ F YnOn) F2(V, 4+ ,
if e=0, or |
(if) {7;=72—(x181+w282+ <o+ 30, + Y0, + Y0+ - - +YmOm)+(@+1)(V,+7,)
Vo= (@0, + 20,4+ « - - + 20+ Y0, + Yoby+ - - +Ynbw) — 2+ 1V, +7,) ,
if e=1.

We will prove Lemma 4.6 in the case of (i) or (ii) respectively.

In the case of (i), we have 7;=7, (mod a) and 7;=7, (mod a). Hence
we have 7;=7, and 7;=7, since 0=<7,=<[a/2]=(a—1)/2, 0=7.<[a/2]=
(a—1)/2 and 7i+7.=7,+",.

In the case of (ii), we have 7;=7, (mod @) and 7;=7, (mod @). Hence
we have 7,+7=7,+7,=0 (mod @). Then, by elementary algebra, we
have 7,=7;=0 and 7,="..

Now, we assume that n is even. Suppose that an element (v,, 7,,
Oy Oz ==, Oy O,y Oy - -+, 0,) satisfying the following conditions; (1) 0<4,<
azé ¢t §31§’n/2, (2) 1§01§02§ e éamén/zy (3) O§’71§72<n, (4) O_S_'Yl-i-
7.=n and (5) 0=7,=<[a/2]. Then, we have the following;

LEMMA 4.7. (n; even) If n/2Z7, or n/2<7,+7.Zn, and 0,=n/2 (or
On=mn/2), then (Y, Vs 01, Oz + <+, 0y 0, 6, + -+, 0,,) 18 equivalent to (7, 7., 6,
Oz *++, 04y 01y Oy -+, 0.,) satisfying the following conditions; 0=7.+7.<
n/2, 0=Z7:=7:<n/2 and 0=7:=<[a/2].

ProOF. If n/2=7,, we apply 4., (or 0,,). Then we have (71, V3, 0y,
32’ Ty 61’ 01 Oz -+, 0m)~(71’ Y2y 01y Opy * * s 519 s 6y - - -, 6,) Where 7;.=’71 and
Y:=7,—n/2. Applying Lemma 4.2 if necessary, we may assume that
0=7;=<7:;. Hence we have 0=<7,+7,<n/2, 0<7.<7.<n/2 and OS'YIS[a/2]

If 0=7,<n/2 and n/2<7,+7,, we apply 0., (or o,,). Then we have
(Vi Yz 8, 6)~(7,, 75, 8, 6), where 7i=7, and V,=7,+n/2. Since i+ >0,
by the same way as Lemma 4.3, (v{, 7/, 8, 6)~(7, 7., 8, 6), where 7 and
7. satisfy the condition v{+7)=7!4+v,—n. Hence we have o<y +7) <
n/2. Applying Lemmas 4.2 and 4.4 if necessary, we may assume that
0=7'=7, and 7/ <[a/2]. Hence we have 0<7/+7Y< n/2, 07 =7 <n/2
and 0=7/=[a/2].
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THEOREM 4.2. (n; even) A complete set of the equivalence classes of
Z;7(2;1, m) is given by the disjoint union 2,°(2;1, m) of the following sets;

((71, '72, 51; 82; Sty 51; 01, 02; MY 01») 9 \
0<7,27,<n, NtTNs=n, 0§71§[%] ,

0§31§32§ ctc §81<ZL— ’

#0251, m)P={ 2 >
1§01§02§---§0m<% ,

27, +27,+0,+0,4+---+0,+60,+6,+--+60,=0 (modn),
\ g.c.d. {7, 7, d}=1

/(71, Vay 01y gy * =y Opy Oy sy <y ) ; \
5,=" or 9,,,:% , angvx% , 71+72§% ,
0sv.s| 2],
L@ lLmr=0 <5 <5<... §51§12". , |
156,260,5- S0.57,

27, +27,+6,+0,+---+06,+6,+6,+---+6,=0 (modn),
\ g.ed {7, 7, d=1 /
where d=g.c.d.{0,, 0, -+, 0;, 0, 0, -+, O, n} and a=g.c.d.{d, 7,+7,}.

PrROOF. By Lemmas 4.1, 4.2, 4.3, 4.4 and 4.7, any element of
Z7(2; 1, m) is equivalent to an element of 277(2; [, m). Hence it is suffi-
cient to prove that two distinct elements of 277(2; I, m) is not equivalent.
We will prove it in respective cases.

(i) Let X(w) be an element of 2,7(2; 1, m)° and X(®’) be an ele-
ment of 2,7(2; 1, m)*. By Lemma 4.5, it is impossible that Z(w) and
J(@') is equivalent.

(li) Let 2((0):(’71, Yoy 617 62’ Tty 61, 0 0 -+, 07») and Z(CO’)=('7;, '7;7
o, 05 ++-, 01,061, 0, ---, 6n) be equivalent elements of 27,7(2; 1, m)’. By a
similar way as Theorem 4.1 and Lemma 4.6, we have 3(w)=3(w').

(iii) Let E(CO)-:(’YI, Ve 31; 32, Sty 61: ., 02, ) 0m) and Z(w')=(ry;9 7;’
o8, 04y +++, 0, 05 6 -+, 0 be equivalent elements of 2,7(2; [, m)*. Then
there exists a homeomorphism % of (X, S) onto itself which is a com-
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position of elements on {?2, 2§, 8, O,y 01y O,y 01,y 01,}. By Lemma 4.5, we
have ;=07 1=<j=<l) and 6,=6, (1=<k=m). Now, it is sufficient to prove

the following lemma;
LEMMA 4.8. 7v,=7; and Y,="..

By Proposition 4.2, we may assume that h,=h,h,hh, Where h,, h,, hy, b,
is the same automorphism as A, h,, ks, h, in Lemma 4.7 respectively. More-
over we may assume that h,=g,9,---9,0:0,--- 9 Where g,=(0,,;0, ;)%
or 0, ;(0,,;0,,;)% (x; is an integer) and g,=(0,,0,,)"* or 0,,(0,.0,:)"* (¥, is
an integer) (If 6,=0 then g, is the identity.). Since h, can not change
0; and 6,, we may assume that g,=(3, ;0, ;)% if 3;<nm/2 and g;,=(0,,:0,,)"
if g, <n/2.

Let Y(wh)=(!, 7., 8, 6). Then we have;

(a) {7;’571’*’(“71514’%252"' s+ 20+ Y0, Yol YmOm)
Yy =, — (2,0, + 2,0, + ¢+ - - + 2.0, + Y0, + Yo+ + YmOm) or
(b) {7{’571+(x161+m252+ cor 20+ Y0+ Yl Ymbm)
V=7 — (2.0, + 2.0, + - - - + 20, + Y0+ Yo+ - -+ Ynbm)F1[2 .

Moreover, we have;
) V= 2+

(1) {7;5')’;’—2(7;'+7;') if =0, or

. Ni=7 + 2V + 7))

(u) {755’)’1’—z(’71’+’7;’) if e=1.

First, we will prove 7,=7; in the case of (i) or (ii), respectively. Next,

we will prove 7v,="..

In the case of (i), we have 7;=7/+2(7,+7.)="7 (mod @). Moreover
in the case of (a) or (b), we have 7’=7, (mod a). Hence we have 7;="7,,
since 0=7,=[/2] and 0=7;=<[a/2].

In the case of (ii), we have 7,=7/=7, (mod @), 7,=7.'=7; (mod a)
and 7,+71=7,+7,=0 (moda). Hence we have 7,=7=0 or 7,=7=a/2
since 0=7,=[a/2] and 0=7:=<[«/2].

In the case of (a), we have V,+7,=7/+7'=71+7: (modn). Since
0=7,+7.=n/2 and 0=7;+7.=<n/2, we have 7,+7,=7;+7,. Hence we
have v,="7,.

In the case of (b), we have V.+7.=7"+7'=7,+7,+n/2 (mod ). By
an elementary algebra, we have that v,=%/2 or 7;=n/2 which is a con-
tradiction.
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Using the homology group of a covering space of X or by a geo-
metric consideration, we have the following;

PROPOSITION 4.4. (1) An element (f, M) of P, corresponding to
an element of 2Z,7(2; 1, m) belongs to P}, +f n is odd.

(2) An element (f, M) of P, corresponding to an element of Z,7(2;
l, m) or 2,7(2; I, m)* belongs to P;, if either n is even and d is odd, or
n 18 even, d 18 even and Y=7Y,+7, is odd, where d=g.c.d. {0, d;, - -, d;,
0, 0y -+, 0n, n}.

(3) An element of (f, M) of P, corresponding to an element of
2721, m) or 2,7(2;1, m)* belongs to P;, if n is even, d 18 even and
Y=+, 18 even.

§ 5. Proof of Theorem A.

In this section, we will give classification of periodic maps on com-
pact non-orientable surfaces. That is, we will obtain the necessary and
sufficient conditions that P, I, #, I, m)= @ and determine the number
of elements of 2§, I, i, I, ).

For a compact non-orientable surface M and a periodic map f on M,

using the orbit space M/f and the branched cover p: M— M/f, we have
the following;

PROPOSITION 5.1. If P, I, #, ¥, m)#Q, then we have
(1) l=2aln la and m=2¢zln mar

(2) 1,=0 (moda) for eac;:ndivisor a of n and M,=0 (moda) for
each divisor a of n except n.

(3) -2+, A—n/a)l,+,)+2n is a positive integer and a
multiple of n.

Under the conditions (1), (2) and (8) in Proposition 5.1, we will
prove Theorem A. We take vectors 1=(l,),, of nor;:negative integers
and m=(m,),, of non-negative integers, where l,=1,/a and m,=1./a.

For =, 1 andua;o, satisfying [,,=m,.=0, we take a set
(319 62; °t %y 519 01’ 02’ Tty 0m) ’

(i) 0§31§32§~-§5¢<%, 1£60,<6,<---<6,.<2,

2
D ; t; 0= .o . o
(3, M) =1 (ii) 1, is the number of elements of the set

{0; g.c.d. {d;, n}=a} and m, is the number
of elements of the set {4,; g.c.d. {6, n}=a}
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where =3 l. and m=>,. M.
a¥n
For n, ¥ and m satisfying that [,,.+m,.#0, we take a set

(31y 329 "'931’ 01’ 0., A 0,,.);
(*) =% or fu=7,

(i) 0§31§32§---é5;§%, 150,$0,< -+ S0,=

(ii) 1, is the number of elements of the set
{0;; g.c.d.{d;, n}=a} and m, is the number
of elements of the set {4,; g.c.d. {6,, n}=a}

(YRS
R

D(n; 3, m)="1

where [=3,.l. and m=3,, m,.

aFEn

Then we have clearly;

LEMMA 5.1. For an element of the set D(n; 1, m)° or the set D(n; 1, m)*,
we have; 0,+0,+--+-+06,+0,+6,+---+86, is even (resp. odd) iff n, 1 and
m satisfy the comdition (5,) (resp. (5),), where the condition (5), 18 that
Z.,,n (l +m,) 18 even, and the condition (5), 18 that Z,,,,,, (l +m,) 18 odd.

Mo'reo'vev the number of elements of D(n;i, m)" or D(n t m)* 18 equal to

Cln; 3, m)= II (f%—/—‘ﬁﬂ—la—l)(?%/“—)-—i—mu—l)

aln
aFEn
la

a*En(2

m,

We denote by D,n; ¥ m) (resp. D,(n;1, m)*) the set D(n; i, m)°
(resp. D(n; %, m)*) when %, ¥ and m satisfy the condition (5),, and by
D,(n; 8, m)°® (resp. D,(n; ¥, m)*) the set D(n; ¥, m)° (resp. D(n; 1, m)*) when
n, ¥ and m satisfy the condition (5),.

Let g=1/n)}{§—2+ i, 1 —n/a)([,+,)+2n}. We will prove Theo-
rem A in respective cases.

PROOF IN CASE THAT g IS ODD AND ¢g=8. (I) Suppose that = is
odd. Then there is a bijection of &g, I, , %, @) onto the subset
Z7(g; 1, m, 3, m) of 2.7(g;1, m) satisfying the condition (ii), where the
condition (ii) is that [, is the number of elements of the set {9,; g.c.d.
{0;, n}=a} and m, is the number of elements of the set {6,; g.c.d. {6:, n}=a}.
For any element (6, d,, - - -, 0, 6, 6, -+ -, 0,,) of D(n; i, m)°, there is exactly
one non-negative integer ¥ such that (1,0, ---,0,0, 7,0, 0, -+, 05, 6y, 0,,

0.) € Z2.(g; 1, m, §, m). Hence there is a bijection of 277(g; [, m, I, m)
onto D(n; ¥, m)’. By Lemma 5.1, we have the proof.
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(II) Suppose that » is even. If l,,=m,,=0, there is a bijection of
Fg, T, #, I, ®) onto the subset 237(g; 1, m, 3, m)} of 2,7(g; I, m); satis-
fying the condition (ii). If l,,+m,,#0, there is a bijection of g, I,
M, 1, W) onto the subset 2 (g; 1, m, I, m)* of 2, (g; 1, m)* satisfying the
condition (ii). For any element (4,, 0,, -+, 0;, 8,, 0, - -+, 6,) of D,(n; ¥, m)°,
there are exactly two non-negative integers 7 satisfying that (1,0, ---,
O: 0, 7, 61’ 32, % Bl’ 0 Oz -+ -, 0,,,) € /%/n—(g; ly m, t: m)(1’° For any element (51’
Oy *+, 04 0y 0, -++,0,) of D,(n; ¥, m)*, there is exactly one non-negative
integer 7 satisfying that 1, 0,---,0, 0,7, 6,, 65, -+, 0, 01, 05, - -+, 0,) € Z.7(g;
I, m, % m). For any element (d,,0,, ---, 6y, 0y, 62 -+, 0,) of D,(n; 3, m)°
(resp. D,(n; 3, m)*), there are no non-negative integers v satisfying that
(17 O; ) 07 0’ 7, 51’ 529 ) 5;, 0 Oy -+, 0m) € %n_(g; l’ m, $9 m)g (I'eSp. /%,'n—.(g;
I, m, ¥, m)¥). Hence, by Lemma 5.1, we have the proof.

PROOF IN CASE THAT g=1. By Proposition 2.4, we may consider only
when 7, § and m satisfy the condition that d=g.c.d. {a; I,#0 or m,=0}
is odd. If n is odd, then there is a bijection of g, I, 7, §, ) onto
the subset 2,7(1;1, m, ¥, m) of 2,7(1; [, m) satisfying the condition (ii).
Since 2Y+0,4+0,+---+08,+6,+6,+---+60,=0 (mod n), we have 2vy=0 (mod
d). Hence we have Y=0 (mod d), that is, 7 is a multiple of d. Therefore
g.cd.{7,0,, 0, +++,01, 60,6, -+, 0, n}=1iff d=g.c.d.{a;,#0 or m,#0}=
g.cd.{9,,0,, -+, 0,0, 0, -+, 0, n}=1. Adding the condition that g.c.d.
{a; I,#0 or m,#0}=1, we complete the proof by the same way as in
case that ¢ is odd and ¢g=3.

PROOF IN CASE THAT g IS EVEN AND g=>4.
By the same way as the proof in case that g is odd and ¢g=3, we
complete the proof.

PROOF IN CASE THAT g=2. Let (0,6, +-+,0,6, 60, -+-,8,) be an
element of D(n; ¥, m)° or D(n; ¥, m)*. Let d=g.c.d. {6, 0,, ---, 0, 6,, 0,,
cety Om n}=g.cd.{a; [,#0 or m,#0}. Let 7 be a non-negative integer
such that 2v+0,4+0,+---+0,+6,+6,+---+6,=0 (mod n).

Let 2,(2; 1, m, 1, m)° (resp. 2.,(2;1, m, 3, m)*) be the subset of
2.(2; 1, m)° (resp. 2,7(2;1, m)*) satisfying the condition (ii). If d is
odd, we have Y=0 (mod d). That is, there exists a non-negative integer
1 such that Y¥=1id. For a non-negative integer 7¥=1d, there are exactly
{#(d)/2} non-negative integers 7, satisfying that v=7v,+7, and (7, 7,, 6,
82; Tty 51: 01; 02’ ) 0,,.,) € 2,7:—(2; l9 m, ir m)o (resp' /%’n_(z; l’ m, t; m)*)r since
g.cd. {7, 7, d}=g.cd. {7, d}=1 and 0=7,<[a/2]=[d/2]=(d—1)/2.

Let 2.7(2;1, m, 1, m):, (resp. 2.,(2;1, m, ¥ m):) be the subset of
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2725 1, m)® (resp. 2,7(2; 1, m)*) satisfying the condition (ii) and that ¥
is odd. If d is even and 7 is odd, we have Y=0 (modd/2). We note
that if n/2 is‘even, then 7 is not odd. If n/2 is odd, then there exists
a non-negative integer ¢ such that Y=id+d/2. For an odd positive
integer Y=1id+d/2, there are exactly {®(d/2)/2} non-negative integers 7,
satisfying that v=v,+7, and (v, 7V, 8, 8 =+, 04 0y O, =+, Om) € Z7(2; 1,
m, §, m)}, (resp. 2.7(2; I, m, §, m)}), since g.c.d. {7, 7y, d}=g.c.d. {7,, d/2}=1
and 07, Z[a/2]=][d/4].

(I) Suppose that n is odd. Then, there is a bijection of F@, T
m, 3, m) onto 2.7(2; 1, m, ¥, m)°. For any element (3, 0, - -+, 01, 01, 65, -+,
6,) of D(n; 1, m)°, there is exactly one non-negative integer in the set
{v=1id; 0=<i=<m/d} which satisfies 27+40,+0,+ - +5,—|—0l+02+ ++0,=0
(mod n), since d is odd. Hence we have Pp(g, 7, m, %, m)+@ and the
number of elements of %G, I, i, §, @) is equal to {P(d)/2}x C(n; 1, m).

(II) Suppose that n is even and d is odd. If I,,=m,,=0, there is
a bijection of (g, T, M, §, ®) onto 2,7(2; 1, m, ¥, m)°. For any element

(8,, 85y + 050y 0ay -+ -, 0,) of Dy(m; 3, m)°, there are exactly two non-negative
integers in the set {Yy=1id; 0=<i<n/d} which satisfy 2v+0,+0,+---+0,+
6,+6,+-+++6,=0 (modn). For any element (d,,0,, -+, 01, 0, 0oy - -+, Om)

of Do(n, t, m)’, there are no non-negative integers 7 satisfying that
2Y+06,+68,+---+8,+60,+6,++--+60,=0 (modn). If I,.+m,,#0, there is
a bijection of g, 1, m, I, m) onto 277(2; 1, m, §, m)*. For any element
6, 6, +++, 08,0, 6, ++, 0, of D,(n; 1, m)*, there is exactly one non-nega-
tive integer in the set {Y=1id; 0<i<n/2d} which satisfies 2v+6,+0,+---+
8,+6,+6,+---+6,=0 (mod ). Forany element (3,, 0, * -, 0y, 61, 0, =+, Om)
of D,(n; 3%, m)*, there are no non-negative integers 7 satisfying that
27 +8,+0,++-+6,+6,+6,++--+6,=0 (modn). Hence we have P,(J, T
i, I, m)=@ iff », § and m satisfy the condition (5), in Lemma 5.1. Then
the number of elements of g, 1, M, §, &) is equal to

zx{(/’(zd)}xcm Lom) if la=m..=0,
{Wl) }xC(n 3,m)  if Luptma#0 .

(III) Suppose that = is even and d is even. If n/2 is odd, there is
a leectlon of Z(d, T, m, 1, m) onto 2,7(2; 1, m, §, m)). For any element
(8, 05y =+, 01 Oy Osy - -+, 0,) of D(m; 3, m)°, there is exactly one odd positive
integer in the set {7~zd+d/2 0=i<m/d} which satisfies 2v+6,+06,+---+
6,+0,+60,++--+6,=0 (modn). Hence we have P.(g, T, m, 1, m)+2, and
the number of elements of (g, I, @, 3, ) is equal to {@(d/2)/2} %
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C(n; 8, m).

(IV) Suppose that n is even, d is even and %/2 is even. If [,,=
m,,=0, there is a bijection of %@, 7, i, §, ®) onto 2-(2; I, m, 3, m)%,.
If l,,+m.,,#0, there is a bijection of g, I, #, I, ®) onto 2-(2; I, m,
l, m)s. If d/2 is even, there are no odd positive integers satisfying
that ~27+81+‘62+ coe40;+60,+60,+:--+60,=0 (modn). Hence we have
PXg, I, , %, m)=0. We assume that n, ¥ and m satisfy the condition
(d), where the condition (d) is that there is an even divisor a of # such
that d/2 is odd and [,+#0 or m,#0 (i.e. d/2 is odd). For any element
(04 gy =+ 01y 6y, 0y -+, 0,) of D(n; 3, m) (resp. D(n; 3%, m)*) such that
(1/d)(0,+ 0.+« + - +0,+0,+0,+ - - - +8,,) is odd, there are exactly two (resp.
one) odd positive integers in the set {vy=1id+d/2; 0=<i<n/d} which satisfy
27+6,+0,+-+++0,+6,+6,+---+6,=0 (modn). For any element (3,
Oz ***y 04y 01, 6y -+, 0,) of D(n; 3%, m)°UD(n; 3, m)* such that 1/d)o,+
0;+--++0,46,+6,+---+06,) is even, there are no odd positive integers
7 satisfying that 2v+0,+0,+::-+6,+6,+6,+---+6,=0.(modn). We
note (1/d)(8,+8,+ -+ +8+6,+6,+---+6,) is odd iff (1/2)(5,+0,+ - - - +6,+
+6,+6,+---+0,) is odd. Hence we have PYg, I, @, }, m)*Q iff n, ¥
m_ satisfy the conditions (d) and (6),, where the condition (6), is that
Satn (la+m,) is odd. Then the number of elements of 2§, I, i, I, m)

a:even
a/2:0dd

is equal to

2 {ﬁg/_z)-} X C(’n; %, m) if ln/z—‘:mn/2=0 ’

{¢(2/2) } X C(n; X’ m) if ln/2+m'n./2¢0 .

§6. Proof of Theorem B.

In this section, we will give classification of orientation reversing
periodic maps on compact orientable surfaces. That is, we will obtain the
necessary and sufficient conditions that P (g, 7, @, §, ®)> @, and determine
the number of elements of <#; (g, I, 7, §, ).

Using the orbit space M/f and the branched cover p: M— M/f and
by Propositions 2.4, 3.4 and 4.4, we have the following;

PROPOSITION 6.1. If P;(§, I, m, 3, m)* D, then we have
(0) n 18 even,
(1) l=2|aln la a"nd m=zmln ma’

(2) 7,=0 (moda) for eaci*éivisor a of n and M,=0 (mod a) for each
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divisor a of m except m,

(8)Y 2§—2+, A—nja) T, +Ai)+2n is a positive integer and a
multiple of 2n.

(4) T,=m,=0 for each odd divisor a of n.

Under the conditions (0), (1), (2), (8) and (4) in Proposition 6.1, we
will prove Theorem B by the similar way as in §5. We take vectors
$=(l,).;. of non-negative integers and m=(m,),,, of non-negative integers,

where I,=1,/a and m,=,/a. Let D(n;}, 71;3: and D(n; I, m)* be the
same sets as in §5. We denote by D~(n; §, m)° (resp. D~ (n; 3, m)*) the
set D(n; 3, m)® (resp. D(n; ¥, m)*) when n, ¥ and m satisfy the condition
4).

Then we have clearly;

LEMMA 6.1. (n; even) For an element of the set D™ (n; ¥, m)’ or the
set D~ (n; ¥, m)*, we have; (1/2)(8,+6,+ -+ +06,+6,+0,+---+0,) is even
(resp. odd) iff n, ¥ and m satisfy the conditon (6), (resp. (6),), where the
condition (6), is that .. (l.+m,) is even, and the condition (6), is

a:even
a/2:0dd

that >.. (,+m,) 18 odd.

a:even
a/2:0dd

Moreover the number of elements of D(n;1l, m) or D(m; 1, m)* is
equal to C(n; 1, m).

We denote by D;(n; %, m)° (resp. D;y(n; 1, m)*) the set D~ (n; I, m)°
(resp. D~(n; ¥, m)*) when =, ¥ and m satisfy the condition (6),; and by
D;(n; 3, m)® (resp. Dy(n; %, m)*) the set D~ (n; ¥, m)" (resp. D~ (n; ¥, m)*)
when %, ¥ and m satisfy the condition (6),.

Let g=(1/2n){2§ + 1. (1 —2n/a)(}, +m,) +2n—2}. We will prove Theo-
rem B in respective cases.

PROOF IN CASE THAT ¢ IS ODD AND ¢g=3. (I) Suppose that =n/2 is
odd. Then there is a bijection of < (§, I, i, §, ®) onto the subset
2.:(g; 1, m, ¥, m) of 2.7(g; 1, m)} satisfying the condition (ii), where the
condition (ii) is that I, is the number of elements of the set {J;; g.c.d.
{6;, n}=a} and m, is the number of elements of the set {4,; g.c.d. {f:, n}=
a}. By the same argument as the proof in §5, there is a bijection
of 2. (g;1, m, 1, m) onto D (n; %, m)°. By Lemma 6.1, we have the
proof.

(II) Suppose that n/2 is even. If I,,=m,,=0, then there is a bi-
jection of 7 (g, I, m, §, m) onto 2,7(g; 1, m, 3, m):. If L,.+m,,+0, then
there is a bijection of &#7 (g, 1, #, I, %) onto the subset 2.7 (g; I, m, 3, m)¥
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of 27.7(g; 1, m)} satisfying the condition (ii).

For any element (4,0, -+-,6,, 6, 6,, --+,6,) of D;(n;3, m) (resp.
D;(n; 3, m)*) there are exactly two (resp. one) non-negative integers v
such that @,0,-- % 0’ 0, 7, 31) 62’ ) 81; 015 05y <<+, 0n) € %—(g; l’ m, t: m)g
(reSp- %—(g; l: m, t: M);) For any element (31, 629 M) Bly 0y Oy - - -, em)
of D;(n; 3, m)° (resp. (D;(m;3, m)*), there are no non-negative integers
7 such that (2, 0., 0; 0,7, 317 32, ) 51; 0y 0 <+, 0n) € /%,n_(g; l’ m, Z, m)g
(resp. (27°(g; 1, m, ¥, m)¥). By Lemma 6.1, we have the proof.

PROOF IN CASE THAT g=1. By Proposition 2.4, we may consider only
when 7, I and m satisfy that d=g.c.d.{a; [,#0 or m,=0} is even. Let
d'=(1/2)g.c.d.{0,, 0, -+, 8, 0, Ozy -+ +, O, n}=(1/2) g.c.d. {a; 1,50 or m,0}.
Since 27+6,+0,+ -+ +06;+8,+80,+ -+ +0,=0 (modn), we have v+6,/2+
0,/2+« -+ 4+0,/246,/2+6,/2+ - - - +0,,/2=0 (mod n/2). Hence d’ is a divisor of
Y. Therefore g.c.d.{7,0,,0, -+, 0,0, 0s ++-, 0., n}=1 iff d'=1. Adding
the condition that (1/2) g.c.d. {a; [,#0 or m,#0}=1, we complete the proof
by the same way as in case that g is odd and ¢g=>3.

PROOF IN CASE THAT g IS EVEN AND g=>4. By the same way as the
proof in case that g is odd and g=8, we complete the proof.

PROOF IN CASE THAT g=2. Let (0,0, -++,0,, 0,6, -+, 0,) be an
element of D~(n; 1, m)* or D~(n; ¥, m)*. Let d=g.c.d.{8,4,, ---, &, 6,, 6.,
e+, 0 n}=g.c.d.{a; l,#0 or m,+#0}. Let 7 be a non-negative integer such
that 2v+0,+0,+ -+ - +6,+6,+6,+ - - - +0,,=0 (mod n). Let 2,7(2;1, m, 3, m)
(resp. 277°(2; 1, m, ¥, m)?) be the subset of 2,7(2; I, m)° (resp. 2,7(2;1, m)*)
satisfying the condition (ii) and satisfying that v is even. If d is even,
we have Y=0 (mod d/2). Hence there exists a non-negative integer 7 such
that v=1id or Y=1id+d/2. For an even non-negative integer v =1d, there
are exactly {®(d)/2} non-negative integers 7, such that v=v,+7v, and
(71: Yas 51, 327 Tty 319 01, Oz - -+ ’ 01») € %’,,—(2; l: m, l! m>g (reSP- 2’17(2; l’ m, ly M);),
since g.c.d. {7, 7., d}=g.c.d. {7, d}=1, and 0=7,=<[a/2]=d/2. For an even
positive integer Y=1id1d/2, there are exactly {®(d/2)/2} non-negative in-
tegers 7, such that v=v,4+7, and (v,, 7., 6,, 085, ++-, 0, 8,, 0,, -+ -0.) € Z.7(2;
l, m, ¥, m); (resp. 2,7(2; I, m, ¥, m)¥), since g.c.d. {7,, 7,, d}=g.c.d. {7,, d/2}=
1, and 0=7,=[a/2]=[d/4].

(I) Suppose that /2 is odd. Then there is a bijection of (g, 7,
M, ¥, W) onto 2,7(2; I, m, ¥, m)}. For any element (3, 5,, --+, 8, 6, €, - - -,
6.) of D~(n; §, m)’, there is exactly one even non-negative integer in the
set {v=1id; 0=i=n/d} which satisfies 2v+06,+0,+ -+ +08,+60,4+60,+---+
6,=0 (modn). Hence we have P (7, I, i, }, m)#®. Then the number
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of elements of (7, I, #, I, ) is equal to {®(d)/2}xC(n; ¥, m).

(II-a) Suppose that 7/2 is even and n/d is odd. Then, there is a
bijection of P (g, I, @, I, m) onto 2 (2;1, m,¥, m).. For any element
(01 8y =+, 0y 61y 0y -+, 0,) of D(m; ¥, m), there are exactly one even non-
negative integer in the set {v=1d; 0=<i=<n/d} which satifies 27v+4,+
Oyt ++-+4+06,+6,+6,+---+6,=0 (modn), and exactly one even positive
integer in the set {v=1id+d/2; 0=i<n/d} which satisfies 2v+0,+0,+ -+
¢z,+01+02+ «+++6,=0 (modn). Then the number of elements of &, (g,
I, #, {, m) is equal to {(@(d)+P(d/2))/2} x C(n; 1, m).

(II-b) Suppose that »/2 is even and d/2 is odd. If [,,=m,,=0,
there is a bijection of - (§, I, m, I, m) onto 2,7(2; 1, m, ¥, m)3. If 1L, .+
m,,#0, there is a bijection of (7, I, i, §, m) onto 2.7(2; I, m, 3, m)¥.
For any element (9,,0,, ---, 0y, 6,, 605, --+, 6,) of D™ (n; ¥, m)° (resp. D (n;
1, m)*) such that (1/d)(0,+0,+---+0,+6,+86,+---+06,) is even, there are
exactly two (resp. one) even non-negative integers in the set {v=1d; 0=
1=n/d} which satisfy 2v+0,+6,+:--+06,+6,+6,+:--+6,=0 (mod n).
For any element (6,,0,, -+-, 0y, 65, 0, +-+, 0,,) of D (n; 1, m)°UD (n; i, m)*
such that (1/d)(6,+6,+---+6,+6,+6,4+---+86,) is odd, there are no even
non-negative integers < satisfying that 2v+4d,+0,+ -+ 0,+ 60,4+ 6.+
ce+4+0,=0 (modn). We note (1/d)(6,+ 0.+ -+ 0, +6,+ 6.+---4+0,) is
even iff (1/2)(6,+6,+ - +08,+6,+6,+---+6,) is even. We have P; (g, [,
i, §, m)=@ iff n, § and m satisfy the condition (6), in Lemma 6.1. Then
the number of elements of <7, (g, I, @, I, @) is equal to

{2 X {SD(d)/Z} X C(n; i, m> if ln/2 =M, = 0 ’
{p(d)/2} x C(n; ¥, m) if 1.,+m,,#0 .

(II-¢) Suppose that /2 is even, n/d is even and d/2 is even. If
l.,.=m,,=0, there is a bijection of < (g, I, M, §, ®) onto 2,7(2; [, m, ¥,
m). If 1,,+m,.,+0, there is a bijection of Z# (g, I, i, §, m) onto
2’1»—(2; l; m, t: M);. For any eleme,nt (519 529 Ct 611 6. 6z -+, 0m) of D_(n;
3, m)° (resp. D~ (n; ¥, m)*) such that (1/d)(6,+0,+ -+ +0,4+6,+0,+ - +6n)
is even, there are exactly two (resp. one) even positive integers in the
set {y=1d; 1=<i=<mn/d} which satisfy 2v+0,+0,+ - +0,+6,+6.+---+0,=0
(mod ). For any element (8,6, ---, 6, 6, 6 -+, 6,) of D7 (n; 3, m)’
(resp. D~(n; ¥, m)*) such that (1/d)(0,+08,+ -+ +0,+6,+6,+ - +80,) is odd,
there are exactly two (resp. one) even positive integers in the set {v=
id+d/2; 0Si<n/d} which satisfy 2v+0,+0,+ - +0,+6,+6,+ - +6,=0
(mod n). Hence we have P, (g, I, #, ¥, m)#©@. Then the number of
elements of <7 (g, I, m, §, @) is equal to;
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2><{ cp(zd) }><C(n; Lm) if 3 (l+m,) is even and l,,=m,.=0,
ald:odd
{ @o(d) }XC(%; 3, m) if S, (le+m,) is even and l,.}2+m,./z¢0 ’
. 2 alglgdd
2x {285 0m; b, m) it X (+my) is 0dd and Ly=m,,=0,
ald:gdd
ald:0ad

Correction to ‘‘Classification of Periodic Maps on Compact Surfaces

I’ (Tokyo J. Math., 6 (1983), 75-94).

We will correct the formula of @,(n; !, m) in page 87 as follows;
nlym G\ [n L]

((5)5-\[5)3

m [L]

2 2

m.—

1 n [l—l
-1\ /R
+ 2

if m is even;

{ In
272 2
m—1 [
2
\0 otherwise ;

if = is even, m is odd and I=>1;

l—1
2

Other miscellaneous errata are as follows:

p. 78, 1 l 1: (2) g.c.d. {au By Ozy By =, gy By 519 32, Tt 51, 0, 0y - - -
6.}=1 (mod n) should be read (2) g.c.d.{a,, B, @, B ** -, @,y B,y 0y, &y, * + -
81; b1y Oz * <y Om, n}=1'

p. 82, 114: o;=hyh™" should be read o,=hph™.

p. 8,17 ged.{0,0, ---,0,80,86, --,0,J=1 (modn) should be
read g.c.d.{6,,0,, *++, 0, 6y, 05 +-+, On, n}=1.

p. 89, 172: ¢g(X)={29—2—(n—1)+2n}/2n should be read g(X)=
{20—2—(n—1)(1,+m)+2n}/2n.

[3] in References should be read;

[8] S. Suzuki, On homeomorphisms of a 3-dimensional handlebody, Canad.
J. Math., 29, (1977), 111-124. '
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