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Introduction

Let R be a ring. Then the Grothendieck group G,(R) is the abelian
group given by generators [M] where M is a finitely generated R-module,
with relations [M]=[M']+[M"] whenever 0 —>M'—M—M" —0 is an exact
sequence of finitely generated R-modules. Let z be a finite group, and
© be a maximal order in Qn containing Zzm. Then Swan [4] showed
that there is a natural epimorphism from G,(¢”) onto G,(Zr). He also
gave an example of cyclic group such that G,(Z7)%G,(2”). In connection
with these results of Swan, it is an interesting problem to investigate
the relation between G,(Zx) and G,(<?). For an abelian group w, Lenstra
[1] gives the description of G,Zx) which answers the above question.
Recently, Miyamoto [2] generalizes Lenstra’s result into nilpotent groups.

In this paper, we treat a finite group with a normal nilpotent
subgroup which has a complement. For such a group w, we obtain an
analogous decomposition of G.,(Zx).

THEOREM. Let 7 be a finite group with a normal nilpotent subgroup
U which has a complement. Then we have

dze) :D ’

where Y 18 a set of the representatives of the m-conjugacy classes of
~centrally primitive idempotents of QU, e* denotes the class sum of the
class containing e and d(e)=|U|/|Ker (U—QUe)|.

G Zm)= @ G0<Zne*[

REMARK 1. The idempotent e of the ring R is called centrally
primitive, if e is a primitive idempotent of the center of the ring R.
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REMARK 2. d(e) does not depend on the choice of a representative,
because Ker (U—QUe) and Ker (U—QUYf) are conjugate if e and f are
conjugate.

REMARK 3. If U is cyclic, each ¢ is also central in Qr and e*=e,
but not centrally primitive in general.

REMARK 4. If z is nilpotent, applying Theorem with 7#=U, we get
the same decomposition as in [2].

Applying the above theorem to dihedral groups, we have

COROLLARY 1. Let m={0, t|t*=0'=1, t0t7'=0"") be the dihedral
group of order 2t and R; be the integer ring of the maximal real subfield
of Q:), where {; is a primitive d-th root of unity. Then we have

G 2)DC(2) © © GO(R,,[%]) if t is odd
lam= Gl DD ZIDCADIDGA2Z) D D GO(R{_‘}I_]) if t is even .

Another corollary is the following one.

COROLLARY 2. Let #=C,{C, be a meta-cyclic group such that
(m, n)=1 and C, acts faithfully on each Sylow subgroup of C,. Then
we have

~ 1 1
Gu(Zm)= @ (2| G+ |) @ B 6B =) »
where C; 18 a primitive l-th root of unity and R;=Z[{;]°* is the C,-fixed
subring of Z[L;] when we regard C, as an automorphism group of Q(,).

§1. Proof of Theorem.

In this section, we prove the theorem. Let # be a finite group
with a normal nilpotent subgroup U which has a complement H. For a
Zr-module M and a set S of prime divisors of |U|, we define N,M to be
a Zr-module which is equal to M as a Z-module, and the actions of U H
on N;M and M coincide, but U,y _s acts trivially, where U, is the S-part
of U and w(U) is the set of all prime divisors of |U|. Since U, is normal
in # and has a complement for any TCSxn(U), this is well-defined. In
other words, N, is the exact functor from the category of Zz-modules
to itself induced from composite of the canonical group homomorphisms
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ﬂ—*ﬂ/Uz(U)_s—: UH<=>7. For a centrally primitive idempotent e of
QU and SC#(U), e, denotes the S-part of e, so es is a centrally
primitive idempotent of QU,. On the other hand, ¢° denotes a central-
ly primitive idempotent of QU such that the S-part of ¢° is e and
the n(U)—S part of ¢ corresponds to the trivial representation. Then
it is easily seen that N.M is a Zm(e)*-module if M is a Zrme*-module.
To prove the theorem, we construct the group homomorphisms which
are inverse to each other as given in [1], [2]. So we need some lemmas
analogous to those given in [1], [2].

LEMMA 1. Let M be a Zre*-module with d(e)M=0. Then there ewxists
a filtration 0CM,SM,Z - -- S M,=M such that each M;/M;_, 18 anfnihilated
by a prime number q; dividing d(e) and Uy, acts trivially on M;/M;_,.

PROOF. We can assume that gM=0 for some prime number ¢
dividing d(e). Then M is an F,m-module annihilated by Ker (Zr— Zwe™).
Since U, is a g-group, M7i#=0. So we define M; (1< j<t) inductively
by M;/M;_,=(M/M;_)"¢ where M,=M"« and M,=M if M/M,_)?=
M/M,_,. Since U, is normal in 7, 0= M,EM,< - - .CM,=M is a filtration
of Zr-modules. And U, acts trivially on each M;/M;_,, so this is the
desired filtration.

LEMMA 2. Let M be a Zn-module. Suppose that M is both a Zme*-
module and o Zme'*-module with e*+e'*. Then there exists a natural
number t such that (d(e)d(e)))M=0.

PROOF. Put & ={@ =SCn(U)|es+es}, Where e,~e, means that e, and
e, are mw-conjugate. Since exe’, ¥ #@. Let S be a minimal element of

S with respect to the inch;sion. Then it is easily seen that any p in
S divides d(e)d(¢’). On the other hand, M is both a ZUe%-module and
a ZUs'*-module. Since e* and eg* are central idempotents of QU such
that eXe'*=0, M[1/p,p, - -»,]=0 where {p,, D, -+, »,}=S. Thus we are
done.

For a Zrme*-module M, [M, (¢*>] means that [M] is considered as an
element in G(Zre*[1/d(e)]).

LEMMA 3. For a Zm-module M which is both a Zme*-module and a
Zre' *-module, we have

S, INM, (@D1= 5, [N, <))

Sam(e

in @, G(Zre*[1/d(e)]), where m(e) is the set of all prime divisors of d(e).
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PROOF. Suppose that [NM, ((¢5)*>]#0. If SZx(e’), we can find a
prime number p in S which is not contained in #(¢’). Then by the
definition of d(¢’), e, corresponds to the trivial representation of QU,,,.
On the other hand, ¢, does not correspond to the trivial representation
since peS. Thus M is both a ZU,e}-module and a ZU,, e }-module
with ef,e7,=0, and we have p’M=0 for some natural number ¢. But
since p divides d(e®), this contradicts the hypothesis. Hence SZz(e),
and S appears in the right hand side. Assume that (e5)*s(¢’S)*. Then
NsM is both a Zzn(eS)*-module and a Zn(e'S)*-module with (e5)* =(e'5)*.
So by Lemma 2, (d(e®)d(¢’%))!NsM=0 for some natural number . Noting
that 7(e%)=m(e'S)=S, this implies that (d(e%))* N.M=0 with some natural
number ¢'. But this contradicts the assumption. Hence we have (¢5)* =
(¢’%)*. By the symmetric argument, the lemma is proved.

Now, we are ready to prove the theorem.

Define @(e): G((Zre*[1/d(e)]) = Go(Zr) by O(e)[M])=isgew (—1)H=@ =5
[NsM], where M is Zme*-module. Applying Lemma 1, in the same way
as Lenstra’s proof, we find that &(e¢) is compatible with the defining
relation of G,(Zzme*[1/d(e)]) and is a well-defined group homomorphism.
Put #=3,&(¢). Then @ is the desired homomorphism.

Next, we define a map in the other direction. For a Zz-module M
which is also a Zze*-module, we put T(M]) =Sscro) [NsM, {(¢5)*>]. Then
by Lemma 3, ¥ is a well-defined additive map. Since any Zr-module
has a filtration such that each factor module is a Zre*-module for some
e*, by the same argument as in [1], ¥ is extended to a group homo-
morphism ¥: G(Zr) — D, G(Zre*[1/d(e)]).

Finally, by the same calculation as in [1], it is checked that & and
¥ are inverse to each other. This completes the proof of the theorem.

§2. Proofs of corollaries.

PROOF OF COROLLARY 1. Let n=(o, z|t*=0'=1, ro7'=0"") be the
dihedral group of order 2t and e, be a centrally primitive idempotent
of Q{o) corresponding to the irreducible representation given by o
Ca (dlt). Then [{(o)|/|Ker ({o) —>Q(0o)e;)|=d. Applying Theorem with
U={o), we get

Gu(2Zm) =D GO(Zrce,,[%D O(Z)@GO(Z)@GBG Zned[—]

1#d|t

Assume that ¢ is odd. Then each ¢, (d=1) is also a centrally
primitive idempotent of @z and Zrwe, is a twisted group ring over Z[Z,]
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with the center R;. Since Z[;, 1/d] is unramified over R;[1/d], Zme;[1/d]
is a maximal order (cf. [8], Theorem (40.14)), and Zre,[1l/d]= M,(R;[1/d]).

Next, suppose that ¢ is even. Then e,=1/t(l—0+0*—---—0'") and
e.=e(1+7)/2+e,(1—7)/2 is a decomposition of e, into centrally primitive
idempotents of Qrx. But since d,=2, Zre[l/d,l=Zre,(1+7)/2[1/2]D
Zre,(1—17)/2[1/2] as rings. So, noting that Zre,(1+7)/2=Zre,(1—7)/2=2Z,
we have

Go(zyze{é_j)=G(,(z[%])@ao(z[_;-]);GO<Z)@GO(Z) :

Because ¢; (d=41, 2) is a centrally primitive idempotent of Qr, by the
same argument as in the odd case, we complete the proof of Corollary 1.

PrROOF OF COROLLARY 2. For any d|m, let e¢; be a centrally primitive
idempotent of QC, which corresponds to the irreducible representation
given by o+¢,;, where {(¢)=C,. Then we have |C,|/|Ker (C,—QC,e,;)|=d.
Applying Theorem with U=C,,, we have

G(Zm)=G(Zre) BB G0<ched[-3'l—]>

=G,(2C,) OO GO(Zned[%]) .

‘ By the assumption, each e; (d+1) is also a centrally primitive
idempotent of Qrx, and Zze, is a twisted group ring over Z[Z,;] with the
center R,;. Since Z[{,, 1/d] is unramified over Ry[1/d], in the same way
as in the proof of Corollary 1, we have Gy(Zme,[1/d])=Go(Ry[1/d]) if d+#1.

On the other hand, G,(ZC,) is calculated in [1]. This completes the
proof of Corollary 2.
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