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Introduction

Let $R$ be a ring. Then the Grothendieck group $G_{0}(R)$ is the abelian
group given by generators $[M]$ where $M$ is a finitely generated R-module,
with relations $[M]=[M’]+[M’]$ whenever $0\rightarrow M^{\prime}\rightarrow M\rightarrow M’\rightarrow 0$ is an exact
sequence of finitely generated R-modules. Let $\pi$ be a finite group, and
$p$ be a maximal order in $ Q\pi$ containing $ Z\pi$ . Then Swan [4] showed
that there is a natural epimorphism from $G_{0}(\theta)$ onto $G_{0}(Z\pi)$ . He also
gave an example of cyclic group such that $G_{0}(Z\pi)\not\cong G_{0}(\beta)$ . In connection
with these results of Swan, it is an interesting problem to investigate
the relation between $G_{0}(Z\pi)$ and $G_{0}(\theta)$ . For an abelian group $\pi$ , Lenstra
[1] gives the description of $G_{0}(Z\pi)$ which answers the above question.
Recently, Miyamoto [2] generalizes Lenstra’s result into nilpotent groups.

In this paper, we treat a finite group with a normal nilpotent
subgroup which has a complement. For such a group $\pi$ , we obtain an
analogous decomposition of $G_{0}(Z\pi)$ .

THEOREM. Let $\pi$ be a finite group with a normal nilpotent subgroup
$U$ which has a complement. Then we have

$G_{0}(Z\pi)\cong\bigoplus_{e\in Y}G_{0}(Z\pi e^{*[\frac{1}{d(e)}])}$ ,

where $Y$ is a set of the representatives of the $\pi$-conjugacy classes of
centrally primitive idempotents of $QU,$ $e^{*}$ denotes the class sum of the
class containing $e$ and $d(e)=|U|/|Ker(U\rightarrow QUe)|$ .

REMARK 1. The idempotent $e$ of the ring $R$ is called centrally
primitive, if $e$ is a primitive idempotent of the center of the ring $R$ .
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REMARK 2. $d(e)$ does not depend on the choice of a representative,
because Ker $(U\rightarrow QUe)$ and Ker $(U\rightarrow QUf)$ are conjugate if $e$ and $f$ are
conjugate.

REMARK 3. If $U$ is cyclic, each $e$ is also central in $ Q\pi$ and $e^{*}=e$ ,
but not centrally primitive in general.

REMARK 4. If $\pi$ is nilpotent, applying Theorem with $\pi=U$, we get
the same decomposition as in [2].

Applying the above theorem to dihedral groups, we have

COROLLARY 1. Let $\pi=\langle\sigma, \tau|\tau^{2}=\sigma^{t}=1, \tau\sigma\tau^{-1}=\sigma^{-1}\rangle$ be the dihedral
group of order $2t$ and $R_{d}$ be the integer ring of the maximal real sub.field
of $Q(\zeta_{d})$ , where $\zeta_{d}$ is a primitive d-th root of unity. Then we have

$G_{0}(Z\pi)\cong\left\{\begin{array}{ll}G_{0}(Z)\oplus G_{0}(Z)\bigoplus_{1\neq d}\bigoplus_{It}G_{0}(R_{d}[\frac{1}{d}]) & if t is odd\\G_{0}(Z)\oplus G_{0}(Z)\oplus G_{0}(Z)\oplus G_{0}(Z)\bigoplus_{1,2\neq}\bigoplus_{d|t}G_{0}(R_{d}[\frac{1}{d}]) & if t is even.\end{array}\right.$

Another corollary is the following one.

COROLLARY 2. Let $\pi=C_{n}\triangleleft C_{n}$ be a meta-cyclic group such that
$(m, n)=1$ and $C_{n}$ acts faithfully on each Sylow subgroup of $C_{*}$ . Then
we have

$G_{0}(Z\pi)\cong\bigoplus_{k|n}G_{0}(z[\zeta_{k},$ $\frac{1}{k}])\bigoplus_{1\neq d}\bigoplus_{|m}G_{0}(R_{d}[\frac{1}{d}])$ ,

where $\zeta_{l}$ is a primitive l-th root of unity and $R_{d}=Z[\zeta_{d}]^{C_{n}}$ is the $C_{n^{-}}fixed$

subring of $Z[\zeta_{d}]$ when we regard $C_{n}$ as an automorphism group of $Q(\zeta_{d})$ .

\S 1. Proof of Theorem.

In this section, we prove the theorem. Let $\pi$ be a finite group
with a normal nilpotent subgroup $U$ which has a complement $H$. For a
$ Z\pi$-module $M$ and a set $S$ of prime divisors of $|U|$ , we define $N_{s}M$ to be
a $ Z\pi$-module which is equal to $M$ as a Z-module, and the actions of $U_{s}H$

on $N_{s}M$ and $M$ coincide, but $U_{\pi(U)-S}$ acts trivially, where $U_{s}$ is the S-part
of $U$ and $\pi(U)$ is the set of all prime divisors of $|U|$ . Since $U_{T}$ is normal
in $\pi$ and has a complement for any $T\subseteqq\pi(U)$ , this is well-defined. In
other words, $N_{s}$ is the exact functor from the category of $ Z\pi$-modules
to itself induced from composite of the canonical group homomorphisms
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$\pi\rightarrow\pi/U_{\pi(U)-S}^{\sim}\rightarrow U_{s}H\subset\pi$ . For a centrally primitive idempotent $e$ of
$QU$ and $S\subseteqq\pi(U),$ $e_{s}$ denotes the S-part of $e$ , so $e_{s}$ is a centrally
primitive idempotent of $QU_{s}$ . On the other hand, $e^{s}$ denotes a central-
ly primitive idempotent of $QU$ such that the S-part of $e^{s}$ is $e_{s}$ and
the $\pi(U)-S$ part of $e^{s}$ corresponds to the trivial representation. Then
it is easily seen that $N_{s}M$ is a $Z\pi(e^{s})^{*}$-module if $M$ is a $Z\pi e^{*}$ -module.
To prove the theorem, we construct the group homomorphisms which
are inverse to each other as given in [1], [2]. So we need some lemmas
analogous to those given in [1], [2].

LEMMA 1. Let $M$ be a $Z\pi e^{*}$ -module with $d(e)M=0$ . Then there exists
a filtration $0\subseteqq M_{1}\subseteqq M_{2}\subseteqq\cdots\subseteqq M_{t}=M$ such that each $M_{j}/M_{j-1}$ is annihilated
by a prime number $q_{j}$ dividing $d(e)$ and $U_{\{qj\}}$ acts trivially on $M_{j}/M_{i-1}$ .

PROOF. We can assume that $qM=0$ for some prime number $q$

dividing $d(e)$ . Then $M$ is an $ F_{q}\pi$-module annihilated by Ker $(Z\pi\rightarrow Z\pi e^{*})$ .
Since $U_{\{q\}}$ is a q-group, $M^{U_{\{q\}}}\neq 0$ . So we define $M_{j}(1\leqq j\leqq t)$ inductively

by $M_{j}/M_{J-1}=(M/M_{j-1})^{U_{\{q\}}}$ where $M_{1}=M^{U_{\{q\}}}$ and $M_{t}=M$ if $(M/M_{t-1})^{U_{\{q\}}}=$

$M/M_{t-1}$ . Since $U_{\{q\}}$ is normal in $\pi,$
$0\subseteqq M_{1}\subseteqq M_{2}\underline{\subseteq}\cdots\subseteqq M_{t}=M$ is a filtration

of $ Z\pi$-modules. And $U_{\{q\}}$ acts trivially on each $M_{j}/M_{J-1}$ , so this is the
desired filtration.

LEMMA 2. Let $M$ be a $ Z\pi$-module. Suppose that $M$ is both a $Z\pi e^{*}-$

module and a $Z\pi e^{\prime*}$ -module with $e^{*}\neq e^{*}$ . Then there exists a natural
number $t$ such that $(d(e)d(e^{\prime}))^{t}M=0$ .

PROOF. Put $\mathscr{L}=\{\emptyset\neq S\subseteqq\pi(U)|e_{s}\not\simeq_{\pi}\prime e_{S}^{\prime}\}$ , where $e_{1}\sim_{\pi}e_{2}$
means that $e_{1}$ and

$e_{2}$ are $\pi$-conjugate. Since $e\not\simeq\prime e,$
$\mathscr{L}\neq\emptyset$ . Let $S$ be a minimal element of

$\mathscr{L}$ with respect to the $inclusion\pi$ Then it is easily seen that any $p$ in
$S$ divides $d(e)d(e^{\prime})$ . On the other hand, $M$ is both a $ZU_{s}e_{s}^{*}$-module and
a $ZU_{s}e_{s^{*}}^{\prime}$ -module. Since $e_{s}^{*}$ and $e_{s^{*}}^{\prime}$ are central idempotents of $QU_{s}$ such
that $e_{s}^{*}e_{s^{*}}^{\prime}=0,$ $M[1/p_{1}p_{2}\cdots p_{r}]=0$ where $\{p_{1}, p_{2}, \cdots, p_{r}\}=S$ . Thus we are
done.

For a $Z\pi e^{*}$ -module $M,$ $[M, \langle e^{*}\rangle]$ means that $[M]$ is considered as an
element in $G_{0}(Z\pi e^{*}[1/d(e)])$ .

LEMMA 3. For a $ Z\pi$-module $M$ which is both a $Z\pi e^{*}$ -module and a
$Z\pi e^{\prime*}$ -module, we have

$\sum_{s\subseteq\pi(e)}[N_{s}M, \langle(e^{s})^{*}\rangle]=\sum_{S^{\prime}\subset\pi(e^{\prime})}[N_{S^{\prime}}M, \langle(e^{\prime s^{\prime}})^{*}\rangle]$

$in\oplus_{e}G_{0}(Z\pi e^{*}[1/d(e)])$ , where $\pi(e)$ is the set of all prime divisors of $d(e)$ .
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PROOF. Suppose that $[N_{s}M, \langle(e^{s})^{*}\rangle]\neq 0$ . If $S\not\leqq\pi(e^{\prime})$ , we can find a
prime number $p$ in $S$ which is not contained in $\pi(e)$ . Then by the
definition of $d(e^{\prime}),$ $e\}_{p\}}$ corresponds to the trivial representation of $QU_{\{p\}}$ .
On the other hand, $e_{\{p\}}$ does not correspond to the trivial representation
since $peS$ . Thus $M$ is both $a$ $ZU_{\{p\}}e_{\{p\}}^{*}$-module and a $ZU_{\{p\}}e|_{p\}}^{*}$-module
with $e_{\{p\}}^{*}e_{\{p1}^{\prime}*=0$ , and we have $p^{t}M=0$ for some natural number $t$ . But
since $p$ divides $d(e^{s})$ , this contradicts the hypothesis. Hence $S\subseteqq\pi(e^{\prime})$ ,
and $S$ appears in the right hand side. Assume that $(e^{s})^{*}\neq(e^{s})^{*}$ . Then
$N_{s}M$ is both a $Z\pi(e^{s})^{*}$-module and a $Z\pi(e^{s})^{*}$-module with $(e^{s})^{*}\neq(e^{s})^{*}$ .
So by Lemma 2, $(d(e^{s})d(e^{s}))^{t}N_{s}M=0$ for some natural number $t$ . Noting
that $\pi(e^{s})=\pi(e^{\prime s})=S$, this implies that $(d(e^{s}))^{t^{\prime}}N_{s}M=0$ with some natural
number $t^{\prime}$ . But this contradicts the assumption. Hence we have $(e^{s})^{*}=$

$(e^{\prime s})^{*}$ . By the symmetric argument, the lemma is proved.

Now, we are ready to prove the theorem.
Define $\Phi(e):G_{0}(Z\pi e^{*}[1/d(e)])\rightarrow G_{0}(Z\pi)$ by $\Phi(e)([M])=\sum_{s\subset\pi()}(-1)^{\iota t\pi(\cdot)-S\}}$

$[N_{s}M]$ , where $M$ is $Z\pi e^{*}$-module. Applying Lemma 1, in the same way
as Lenstra’s proof, we find that $\Phi(e)$ is compatible with the defining
relation of $G_{0}(Z\pi e^{*}[1/d(e)])$ and is a well-defined group homomorphism.
Put $\Phi=\sum_{\iota}\Phi(e)$ . Then $\Phi$ is the desired homomorphism.

Next, we define a map in the other direction. For a $ Z\pi$-module $M$

which is also a $Z\pi e^{*}$-module, we put $\Psi([M])=\sum_{s\subseteq\pi(\iota)}[N_{s}M, \langle(e^{s})^{*}\rangle]$ . Then
by Lemma 3, $\Psi$ is a well-defined additive map. Since any $ Z\pi$-module
has a filtration such that each factor module is a $Z\pi e^{*}$ -module for some
$e^{*}$ , by the same argument as in [1], $\Psi$ is extended to a group homo-
morphism $\Psi:G_{0}(Z\pi)\rightarrow\oplus_{e}G_{0}(Z\pi e^{*}[1/d(e)])$ .

Finally, by the same calculation as in [1], it is checked that $\Phi$ and
$\Psi$ are inverse to each other. This completes the proof of the theorem.

\S 2. Proofs of corollaries.

PROOF OF COROLLARY 1. Let $\pi=\langle\sigma, \tau|\tau^{2}=\sigma^{t}=1, \tau\sigma\tau^{-1}=\sigma^{-1}\rangle$ be the
dihedral group of order $2t$ and $e_{d}$ be a centrally primitive idempotent
of $ Q\langle\sigma\rangle$ corresponding to the irreducible representation given by $\sigma\mapsto$

$\zeta_{d}(d|t)$ . Then $|\langle\sigma\rangle|/|Ker(\langle\sigma\rangle\rightarrow Q\langle\sigma\rangle e_{d})|=d$ . Applying Theorem with
$ U=\langle\sigma\rangle$ , we get

$G_{0}(z\pi)\cong\bigoplus_{d|t}G_{0}(z_{\pi e_{d}}[\frac{1}{d}])\cong G_{0}(Z)\oplus G_{0}(Z)\bigoplus_{1\neq}\bigoplus_{d|t}G_{0}(z_{\pi e_{d}}[\frac{1}{d}])$ .

Assume that $t$ is odd. Then each $e_{d}(d\neq 1)$ is also a centrally
primitive idempotent of $ Q\pi$ and $Z\pi e_{d}$ is a twisted group ring over $Z[\zeta_{d}]$
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with the center $R_{d}$ . Since $Z[\zeta_{d}, 1/d]$ is unramified over $R_{d}[1/d],$ $Z\pi e_{d}[1/d]$

is a maximal order (cf. [3], Theorem (40.14)), and $Z\pi e_{d}[1/d]\cong M_{2}(R_{d}[1/d])$ .
Next, suppose that $t$ is even. Then $e_{2}=1/t(1-\sigma+\sigma^{2}-\cdots-\sigma^{t-1})$ and

$e_{2}=e_{2}(1+\tau)/2+e_{2}(1-\tau)/2$ is a decomposition of $e_{2}$ into centrally primitive
idempotents of $ Q\pi$ . But since $d_{2}=2$ , $ Z\pi e_{2}[1/d_{2}]=Z\pi e_{2}(1+\tau)/2[1/2]\oplus$

$Z\pi e_{2}(1-\tau)/2[1/2]$ as rings. So, noting that $Z\pi e_{2}(1+\tau)/2\cong Z\pi e_{2}(1-\tau)/2\cong Z$,
we have

$G_{0}(Z\pi e_{2}[\frac{1}{d_{2}}])=G_{0}(z[\frac{1}{2}])\oplus G_{0}(z[\frac{1}{2}])\cong G_{0}(Z)\oplus G_{0}(Z)$ .

Because $e_{d}(d\neq 1,2)$ is a centrally primitive idempotent of $ Q\pi$ , by the
same argument as in the odd case, we complete the proof of Corollary 1.

PROOF OF COBOLLARY 2. For any $d|m$ , let $e_{d}$ be a centrally primitive
idempotent of $QC_{m}$ which corresponds to the irreducible representation
given by $\sigma-\succ\zeta_{d}$ , where $\langle\sigma\rangle=C_{m}$ . Then we have $C_{m}|/|Ker(C_{m}\rightarrow QC_{m}e_{d})|=d$ .
Applying Theorem with $U=C_{m}$ , we have

$G_{0}(Z\pi)\cong G_{0}(Z\pi e_{1})\bigoplus_{1\neq d}\bigoplus_{|m}G_{0}(Z\pi e_{d}[\frac{1}{d}])$

$\cong G_{0}(ZC_{n})\bigoplus_{1\neq d}\bigoplus_{|m}G_{0}(Z\pi e_{d}[\frac{1}{d}])$ .

By the assumption, each $e_{d}(d\neq 1)$ is also a centrally primitive
idempotent of $ Q\pi$ , and $Z\pi e_{d}$ is a twisted group ring over $Z[\zeta_{d}]$ with the
center $R_{d}$ . Since $Z[\zeta_{d}, 1/d]$ is unramified over $R_{d}[1/d]$ , in the same way
as in the proof of Corollary 1, we have $G_{0}(Z\pi e_{d}[1/d])\cong G_{0}(R_{d}[1/d])$ if $d\neq 1$ .

On the other hand, $G_{0}(ZC_{n})$ is calculated in [1]. This completes the
proof of Corollary 2.
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