Tokyo J. Math. Vol. 7, No. 1, 1984

On Peak Sets for the Real Part of a Function Space

Shinya YAMAGUCHI and Junzo WADA

Waseda University

Introduction.

Let A be a function space on a compact Hausdorff space X. In this paper, we give conditions for certain families of closed subsets in X under which A is characterized. In particular, in §2 we show that if any peak set for the real part of A is a BEP-set for A, then A=C(X)(Theorem 2.2). A theorem in the case of function algebras corresponding to it has obtained by Briem [4].

Throughout this paper, X will denote a compact Hausdorff space. A is said to be a function space (resp. function algebra) on X if A is a closed subspace (resp. subalgebra) in C(X) containing constant functions and separating points in X. Let A be a function space and F be a closed subset in X. We say that A|F has the norm preserving extension property if for any $f \in A$ there is a $g \in A$ such that g=f on F and $||g||=||f||_F$, where $||g||=\sup_{x\in X} |g(x)|$ and $||f||_F=\sup_{x\in F} |f(x)|$. Such a closed subset F is called an NPEP-set for A. For a closed subset F in X, we put $\widehat{F}=\{x\in X: |f(x)|\leq ||f||_F\}$ for any $f\in A$.

Let A be a function space on X. A^{\perp} denotes the measures μ on X such that $\int f d\mu = 0$ for any $f \in A$, and E denotes the closure of $\bigcup_{\mu \in A^{\perp}} \operatorname{supp} \mu$. E is the smallest one in the family of closed subsets F in X which satisfy the following property: $f \in A$ whenever $f \in C(X)$ and f(x)=0 for any $x \in F$. We call E the essential set for A (see [8] for essential sets in the case of function algebras).

Let A be a function algebra on X. The following is due to Glicksberg [7]: If A | F is closed in C(F) for any closed subset F in X, then A = C(X). In the case of function spaces A, Briem [3] has shown that A = C(X) if any closed subset F in X is any NPEP-set for A.

On the other hand, when A is a function algebra on X, Briem [4] has given conditions for peak sets for the real part Re A of A under which A coincides with C(X).

Received March 30, 1983

In this paper, we give, in §1, a slight extension of the theorem of Briem for NPEP-sets stated above. In §2, we give a result on peak sets for Re A in the case of function spaces in association with the theorem of Briem for peak sets for Re A in the case where A is a function algebras.

§1. NPEP-sets.

The following lemma is obtained by a similar way as in the proof of Briem ([3], Theorem 2).

LEMMA 1.1. Let A be a function space and F_0 be a closed subset in X. If any closed subset F containing F_0 is an NPEP-set for A, then $\hat{F}_0 \supset \bigcup_{\mu \in A^{\perp}} \operatorname{supp} \mu$, and hence $\hat{F}_0 \supset E$.

PROOF. We first have that for any $x, y \in X \setminus \hat{F}_0, x \neq y$, there is an $a \in A$ such that $a \mid (\hat{F}_0 \cup \{y\}) = 0$ and a(x) = 1. For otherwise, $a_1(x) = a_2(x)$, whenever $a_1 = a_2$ on $\hat{F}_0 \cup \{y\}$, $a_1, a_2 \in A$. Hence the mapping $\varphi: a \mid \hat{F}_0 \cup \{y\} \rightarrow a(x)$ is a well-defined linear functional on $A \mid (\hat{F}_0 \cup \{y\})$. Since $\hat{F}_0 \cup \{y\}$ is an NPEP-set for A, the norm of φ is 1. Hence $a(x) = \int_{\hat{F}_0 \cup \{y\}} ad\mu$ $(a \in A)$ for a measure μ on $\hat{F}_0 \cup \{y\}$ with $\|\mu\| = 1$. We easily see that $|\mu|(\hat{F}_0) > 0$. Since $x \notin \hat{F}_0, 1 = a_0(x) > \|a_0\|_{\hat{F}_0}$ for an $a_0 \in A$. We can assume that $|a_0(y)| \leq 1$ since $\hat{F}_0 \cup \{x\}$ is an NPEP-set for A.

$$1 = a_0(x) = \int_{\hat{F}_0 \cup \{y\}} a_0 d\mu \leq ||a_0||_{\hat{F}_0} |\mu|(\hat{F}_0) + |\mu|(\{y\}) < |\mu|(\hat{F}_0) + |\mu|(\{y\}) = ||\mu|| = 1.$$

From this contradiction it follows that $a | (\hat{F}_0 \cup \{y\}) = 0$, a(x) = 1 for an $a \in A$.

Similarly, we can show that for any closed subset $F \supset \hat{F}_0$ and for any $x \in X \setminus F$, there is an $a \in A$ with $a \mid F = 0$ and a(x) = 1. From this, we have that for any closed subset $F \supset \hat{F}_0$ and any closed subset G with $F \cap G = \emptyset$, there is an $a \in A$ such that $a \mid F = 0$, Re $a \mid G \ge 0$ and $a(X) \subset D =$ $\{z \in C: \mid z - 1/2 \mid \le 1/2\}$. We put $L(F, G) = \sup \{r \in R: \operatorname{Re} a \mid G \ge r \text{ for an } a \in A$ with $a \mid F = 0$, $a(X) \subset D$. By a similar manner as in the proof of Briem ([3], Lemma 6), we have that $L(F, G) > 2^{-11}$ for any closed subset $F \supset \hat{F}_r$ and any closed subset G with $F \cap G = \emptyset$. This implies that $\sup \mu \subseteq \hat{F}_0$ for any $\mu \in A^{\perp}$. For, if $|\mu|(X \setminus \hat{F}_0) > 0$ for a $\mu \in A^{\perp}$, we can assume that $|\mu|(X \setminus \hat{F}_0) = 1$.

Here we can find finitely many mutually disjoint closed subsets $F_1, F_2, \dots, F_m \subset X \setminus \hat{F}_0$ and $z_i \in C$, $|z_i| = 1$ $(i = 1, 2, \dots, m)$ such that the measure $\lambda = z_1 |\mu|_{F_1} + \dots + z_m |\mu|_{F_m}$ satisfies that $||\lambda - \mu_{X \setminus \hat{F}_0}|| < 2^{-12}$. Put $\nu = \mu_{\hat{F}_0} + \lambda$. Then $||\nu - \mu|| < 2^{-12}$. From the fact above, there are $b_i \in A$ such

PEAK SETS

that $b_i|(\hat{F}_0\cup F_j)=0$ $(j\neq i)$, Re $b_i|F_i\geq 2^{-11}$ and $b_i(X)\subset D$ $(i=1, 2, \cdots, m, j=1, 2, \cdots, m)$. If we set $a=(\bar{z}_1b_1+\cdots+\bar{z}_mb_m)|(\hat{F}_0\cup F)$, $F=\cup_{i=1}^m F_i$, then $a\in A|(\hat{F}_0\cup F)$, $||a||_{\hat{F}_0\cup F}\leq 1$. Hence $c|\hat{F}_0\cup F=a$, $||c||\leq 1$ for a $c\in A$. An easy calculation shows that Re $\int cd\nu\geq 2^{-11}$ $(1-2^{-12})$. On the other hand, Re $\int cd\nu\leq \left|\int cd\nu\right|=\left|\int cd\nu-\int cd\mu\right|\leq ||\nu-\mu||<2^{-12}$ since $c\in A$ and $\mu\in A^{\perp}$. This contradiction proves the lemma.

From Lemma 1.1, we have

THEOREM 1.2. Let A be a function space on X and F_0 be a closed subset in X. If F is an NPEP-set for A for any closed subset F containing F_0 , then $F_0 \supset \partial_{A|E}$, where $\partial_{A|E}$ denotes the Shilov boundary for the function space A|E.

PROOF. We first show that $\hat{F}_0 = F_0 \cup E$. From Lemma 1.1, we have $\hat{F}_0 \supset F_0 \cup E$. If $x \notin F_0 \cup E$, there is an $a \in C(X)$ such that $a \mid (F_0 \cup E) = 0$, a(x) = 1, $0 \leq a \leq 1$ and $a \mid E = 0$. It implies that $a \in A$ and $a(x) > ||a||_{F_0}$. It shows that $x \notin \hat{F}_0$ and $\hat{F}_0 = F_0 \cup E$. Let $\{G_\alpha : \alpha \in I\}$ be the family of closed neighborhoods of E. Then $E = \bigcap_{\alpha \in I} G_\alpha$. Let $a \in A$. Suppose that $G_{\alpha_0} \cap \{x \in F_0 : |a(x)| \geq ||a||_E\} = \emptyset$ for an $\alpha_0 \in I$. Then there is an $h \in C(X)$ such that $0 \leq h \leq 1$, h(E) = 1 and $h(X \setminus G_{\alpha_0}) = 0$.

Now, since ha = a on E, we have that $ha \in A$, and

$$|ha(x)| \leq |a(x)| < ||a||_{E} = ||ha||_{E}$$
 if $x \in F_{0} \cap G_{\alpha_{0}}$,
 $ha(x) = 0$ if $x \in F_{0} \setminus G_{\alpha_{0}}$.

It follows that $||ha||_{E} > ||ha||_{F_{0}}$ and it is a contradiction since $\widehat{F}_{0} \supset E$. From this, for any $\alpha \in I$, $G_{\alpha} \cap \{x \in F_{0} : |a(x)| \ge ||a||_{E}\} \neq \emptyset$. That is, $\{G_{\alpha} \cap \{x \in F_{0} : |a(x)| \ge ||a||_{E}\}\}$ has the finite intersection property and hence $E \cap \{x \in F_{0} : |a(x)| \ge ||a||_{E}\} \neq \emptyset$. Thus $\partial_{A|E} \subset E \cap F_{0} \subset F_{0}$.

COROLLARY 1.3. Let A be a function space and F_1 , F_2 be two closed subsets in X with $F_0 \cap F_1 = \emptyset$. If any closed subset containing F_0 is an NPEP-set for A and any closed subset containing F_1 is an NPEP-set for A, then A = C(X).

COROLLARY 1.4 (Briem [3]). Let A be a function space. If any closed subset in X is an NPEP-set for A, then A = C(X).

REMARK. In the case of function algebras, the following fact corresponds to Theorem 1.2: Let A be a function algebra on X and F_0 be a closed subset in X. If A|F is closed in C(F) for any closed subset F

containing F_0 , then $F_0 \supset \partial_{A|E}$ (cf. [9]).

§ 2. Peak sets for $\operatorname{Re} A$.

We here give conditions for peak sets for $\operatorname{Re} A$ under which A coincides with C(X) in the case where A is a function space.

When A is a function space, the following properties on a closed set F in X are equivalent (cf. [6]): (1) $\mu \in A^{\perp}$ implies $\mu_F \in A^{\perp}$. (2) A has the bounded extension property with respect to F, i.e., for every $f \in A | F$ and each closed set G in X with $G \cap F = \emptyset$, and for each $\varepsilon > 0$, there exists a $g \in A$ such that g | F = f, $||g|| = ||f||_F$ and $||g||_G < \varepsilon$. Such a subset F is called a *BEP-set* for A.

LEMMA 2.1. Let A be a function space. If any peak set for Re A is a BEP-set for A, then A is self-adjoint, that is, if $f \in A$, then $\overline{f} \in A$.

PROOF. It is sufficient to show that if a peak set F for Re A is a BEP-set for A, then F is an M-hull (cf. [1], Theorem 9.1, p. 220). In order to prove that F is an M-hull, we need to show that $F = \mathscr{F} \cap X$ for some closed face \mathscr{F} in $S_A = \{L \in A^* : L(1) = 1 = ||L||\}$ (cf. [1], Proposition 2.7, p. 158). We can construct \mathscr{F} satisfying the above as follows: $\mathscr{F} = \{L \in A^* : L(f) = \int f d\mu \ (f \in A) \text{ for a measure } \mu \text{ such that } \mu \ge 0, ||\mu|| = 1$ and $\operatorname{supp} \mu \subset F \}$. If $\mathscr{F} \in L = (L_1 + L_2)/2$, $L_1, L_2 \in S_A$, then $L_i(f) = \int f d\mu_i$ $(f \in A)$ with some measure $\mu_i \ge 0 ||\mu_i|| = 1$ (i = 1, 2). Since $\mu - (\mu_1 + \mu_2)/2 \in A^{\perp}$ and F is a BEP-set for $A, \mu_F - \{(\mu_1)_F + (\mu_2)_F\}/2 \in A^{\perp}$. We here have $\mu = \mu_F$. It implies that $(\mu_1)_{X \setminus F} + (\mu_2)_{X \setminus F} \in A^{\perp}$ and hence $\int_{X \setminus F} d\mu_1 + \int_{X \setminus F} d\mu_2 = 0$. So $\mu_1(X \setminus F) = \mu_2(X \setminus F) = 0$ and $L_1, L_2 \in \mathscr{F}$. This shows that \mathscr{F} is a face of S_A . To show that $F = \mathscr{F} \cap X$, let $L_x \in \mathscr{F} \cap X$ $(L_x(f) = f(x), f \in A)$. Then $L_x \in \mathscr{F}$, and $x \in F$ since F is a peak set for Re A, and this proves the lemma.

In association with a theorem of Briem ([4], Theorem 3), we can obtain the following in the case of function spaces.

THEOREM 2.2. Let A be a function space. Then the following four properties are equivalent.

(i) Any closed subset in X containing a peak set for Re A is an NPEP-set for A.

- (ii) Any peak set F_0 for Re A is a BEP-set for A.
- (iii) A = C(X).
- (iv) Any closed subset in X is an NPEP-set for A.

144

PEAK SETS

REMARK. When A is a function algebra, the property (ii) above is equivalent to (ii) in Theorem 3 of Briem ([4]).

PROOF. (i) \rightarrow (ii). Let F_0 be a peak set for Re A. By (i) and Lemma 1.1, $\hat{F}_0 \supset \bigcup_{\mu \in A^{\perp}} \operatorname{supp} \mu$. On the other hand, $\hat{F}_0 = F_0$ since F_0 is a peak set for Re A. For, if $x_0 \in \hat{F}_0 \setminus F_0$, we put $L(a \mid F_0) = a(x_0)$ for $a \in A$. Then L is well-defined and it is a linear functional on $A \mid F_0$ with $\mid\mid L \mid\mid = L(1) = 1$. Hence $a(x_0) = \int a d\nu$ ($a \in A$) for a measure ν such that $\operatorname{supp} \nu \subset F_0$, $\nu \ge 0$ and $\mid\mid \nu \mid\mid = 1$. Since F_0 is a peak set for Re A, there is an $f_0 \in A$ such that $\operatorname{Re} f_0 = 1$ on F_0 and $\mid \operatorname{Re} f_0(x) \mid < 1$ ($x \in X \setminus F_0$). Hence $1 = \int \operatorname{Re} f_0 d\nu = \operatorname{Re} f_0(x_0) \mid < 1$. From this contradiction it follows that $\hat{F}_0 = F_0$. The facts above show that for any $\mu \in A^{\perp}$, $\operatorname{supp} \mu \subset F_0$ and $\mu_{F_0} = \mu \in A^{\perp}$. It implies (ii).

(ii) \rightarrow (iii). By Lemma 2.1, A is self-adjoint. It implies that $A = \operatorname{Re} A \bigoplus i \operatorname{Re} A$. From this, $\operatorname{Re} A = A \cap C_R(X)$ and $\operatorname{Re} A$ is closed in $C_R(X)$. Now, a set which is both a peak set and a BEP-set for a function space B is always a sharp peak set for B, that is, for each closed subset G in X disjoint from F and for each $\varepsilon > 0$ there is an $f \in B$ such that f=1 on F, |f| < 1 elsewhere and $|f| \leq \varepsilon$ on G (cf. [5]).

From the facts stated above, $B = \operatorname{Re} A(=A \cap C_{\mathbb{R}}(X))$ is a real function space on X and every peak set for B is a sharp peak set for B. Hence $\operatorname{Re} A = B = C_{\mathbb{R}}(X)$ ([2], Theorem 5). It follows that $A = C_{\mathbb{R}}(X) \bigoplus i C_{\mathbb{R}}(X) = C(X)$.

 $(iii) \rightarrow (iv)$ and $(iv) \rightarrow (i)$ are clear.

EXAMPLE. In connection with Theorem 2.2, we here give an example of function spaces $A \ (\neq C(X))$ which have the properties "F is an NPEPset for A for any peak set F for Re A" and "F is a peak set for A whenever F is a peak set for Re A".

Let $A = \left\{ f \in C([0, 1]): f(0) = \int_0^1 f(t) dt \right\}$. Then A is a function space on X = [0, 1]. We easily see that a real function g in C([0, 1]) belongs to Re A if and only if $g(0) = \int_0^1 g(t) dt$. From this, the following properties for a closed subset F_0 in X are equivalent:

(1) F_0 is a peak set for Re A, (2) F_0 is a peak set for A and (3) $F_0 = X$ or $F_0 \not\ni 0$.

From this, we see that any peak set F_0 for Re A is an NPEP-set for A. And if F_0 is a peak set for Re A, then F_0 is a peak set for A. But A does not coincide with C(X).

SHINYA YAMAGUCHI AND JUNZO WADA

References

- [1] L. ASIMOW and A. J. ELLIS, Convexity and Its Applications in Functional Analysis, London, Math. Soc. Monographs, No. 16, Academic Press, New York, 1980.
- [2] E. BRIEM, A characterization of simplexes by parallel faces, Bull. London Math. Soc., 12 (1980), 55-59.
- [3] E. BRIEM, Bounded extentions and characterization of C(X), Math. Z., 197 (1981), 421-427.
- [4] E. BRIEM, Peak sets for the real part of a function algebra, Proc. Amer. Math. Soc., 85 (1982), 77-78.
- [5] P. C. CURTIS, Topics in Banach Spaces of Continuous Functions, Lecture Notes Series, No. 25. Aarhus University, 1970.
- [6] T. W. GAMELIN, Restrictions of subspaces of C(X), Trans. Amer. Math. Soc., 113 (1964), 278-286.
- [7] I. GLICKSBERG, Function algebras with closed restrictions, Proc. Amer. Math. Soc., 14 (1963), 158-161.
- [8] G. M. LEIBOWITZ, Lectures on Complex Function Algebras, Scott Foresman and Company Glenview, Ill., 1970.
- [9] JUNZO WADA, On the Šilov boundaries of function algebras, Proc. Japan Acad., 39 (1963), 425-428.

Present Address: DEPARTMENT OF MATHEMATICS SCHOOL OF EDUCATION WASEDA UNIVERSITY NISHIWASEDA, SHINJUKU-KU, TOKYO, 160