Asymptotic Behavior of Nonexpansive Mappings and Some Geometric Properties in Banach Spaces

Tomoyuki FUJIHIRA

Keio University
(Communicated by T. Saito)

Introduction

Throughout this paper, X denotes a real Banach space with the dual space X^* and the bidual space X^{**} and C is a closed convex subset of X. For $0 \le \gamma \le 1$ we consider a mapping $T: C \to C$ such that $||Tx - Ty|| \le \gamma ||x - y||$ for all $x, y \in C$. A mapping T is called nonexpansive (resp. contraction) if $\gamma = 1$ (resp. $\gamma < 1$). Let $A \subset X \times X$ be an accretive operator satisfying the range condition $R(I + \lambda A) \supset \overline{D(A)}$ (the closure of the domain of A) for all $\lambda > 0$, where I is the identity, $J_{\lambda} = (I + \lambda A)^{-1}$ be the resolvent, and let $A_{\lambda} = (I - J_{\lambda})/\lambda$ be the Yosida approximation. A one-parameter family $\{T(t); t \ge 0\}$ denotes the nonexpansive semigroup on $\overline{D(A)}$ generated by -A, i.e., $T(t)x = \lim_{\lambda \to 0+} J_{\lambda}^{[t/\lambda]}x$ for $x \in \overline{D(A)}$ and $t \ge 0$ (see [1]). We use lim and w-lim for convergence in the strong and weak topology, respectively. We define $S(X) = \{x \in X; ||x|| = 1\}$ and $d(0, R(A)) = \inf\{||x||; x \in R(A)\}$, where R(A) denotes the range of A.

Our main purpose is to show the following results.

THEOREM 1. Let the sequence $\{x_n\}_{n\geq 0}$ be defined by $x_{n+1}=c_nTx_n+(1-c_n)x_n$, where $x_0\in C$ and $\{c_n\}_{n\geq 0}$ is a real sequence such that $0< c_n\leq 1$ and $a_n=\sum_{i=0}^n c_i\to\infty$ as $n\to\infty$. Then there exists an $f\in S(X^*)$ such that for any $x,x_0\in C$,

(1)
$$\lim_{n\to\infty} f(T^n x)/n = \lim_{n\to\infty} ||T^n x||/n = \inf_{y\in C} ||Ty - y|| \\ = \lim_{n\to\infty} f(x_{n+1})/a_n = \lim_{n\to\infty} ||x_{n+1}||/a_n|.$$

COROLLARY 2. (i) In Theorem 1, if X is reflexive and strictly convex, then $\operatorname{w-lim}_{n\to\infty} T^n x/n = \operatorname{w-lim}_{n\to\infty} x_{n+1}/a_n = -v$ for all $x, x_0 \in C$, where $||v|| = \inf_{v \in C} ||Ty - v||$.

(ii) In Theorem 1, if X* has Fréchet differentiable norm, then Received February 15, 1983

 $\lim_{n\to\infty} x_{n+1}/a_n = -v$ for all $x_0 \in C$, where v is the unique point of least norm in $\overline{R(I-T)}$.

THEOREM 3. Let the sequence $\{x_n\}_{n\geq 0}$ be defined by $x_{n+1}=J_{c_n}x_n$, where $x_0\in \overline{D(A)}$ and $\{c_n\}_{n\geq 0}$ is a positive sequence such that $a_n=\sum_{i=0}^n c_i\to\infty$ as $n\to\infty$. Then there exists an $f\in S(X^*)$ such that for any $x, x_0\in \overline{D(A)}$,

$$\begin{array}{ll} (2) & \lim_{n\to\infty} f(J_1^n x)/n = \lim_{n\to\infty} \|J_1^n x\|/n = d(0, R(A)) \\ & = \lim_{n\to\infty} f(x_{n+1})/a_n = \lim_{n\to\infty} \|x_{n+1}\|/a_n \ . \end{array}$$

COROLLARY 4. (i) In Theorem 3, if X is reflexive and strictly convex, then $\operatorname{w-lim}_{n\to\infty} J_1^n x/n = \operatorname{w-lim}_{n\to\infty} x_{n+1}/a_n = -v$ for all $x, x_0 \in \overline{D(A)}$, where ||v|| = d(0, R(A)).

(ii) In Theorem 3, if X^* has Fréchet differentiable norm, then $\lim_{n\to\infty} x_{n+1}/a_n = -v$ for all $x_0 \in \overline{D(A)}$, where v is the unique point of least norm in $\overline{R(A)}$.

Theorems 1 and 3 imply that the asymptotic behavior of x_{n+1}/a_n is reduced to the asymptotic behavior of T^nx/n and J_1^nx/n , respectively, in both strong and weak topology. Furthermore, Theorem 1 is valid even if X is a real normed linear space and C is a convex subset of X. Thus it generalizes Kohlberg and Neyman's result [8, Theorem 1.1]. Corollaries 2 and 4 were investigated by [8], [9], [10], [11], [12]. The idea of the proof of Theorem 3 is due to [11], and Kobayashi [5] showed that Theorem 1 follows from [6, Theorem 2.1] by using a different method.

It is known that the following conditions are equivalent (see [2], [3]):

- (P) X* has Fréchet differentiable norm.
- (Q) X is reflexive and strictly convex. Furthermore, if w- $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} ||x_n|| = ||x||$, then $\lim_{n\to\infty} x_n = x$.
- (R) Every sequence $\{x_n\}$ in X satisfying $\lim_{n\to\infty} ||x_n|| = \lim_{n\to\infty} f(x_n)$ for some $f \in S(X^*)$ converges strongly to an element of X.
- (S) If a sequence $\{x_n\}$ in S(X) and a sequence $\{f_n\}$ in X^* are such that $\lim_{n\to\infty} \|f_n\| = \overline{\lim}_{n\to\infty} \underline{\lim}_{m\to\infty} f_n(x_m) = 1$, then $\{x_n\}$ converges strongly to an element of X.

In Section 2, we state several properties which are equivalent to the property (A), i.e., X is reflexive and strictly convex. They are slight modifications of geometric properties listed in [2], [3].

§ 1. Proofs.

PROOF OF THEOREM 1. Let $d = \inf_{y \in C} ||Ty - y||$. We follow the argument in Kohlberg and Neyman [8]. For another initial point $y_0 \in C$, we

write the associated sequence by $\{y_n\}$. Then for any $x_0, y_0 \in C$, we get

(3)
$$||x_{n+1} - y_{n+1}|| \le ||x_0 - y_0|| \text{ and } \\ ||x_{n+1} - x_0|| \le 2||x_0 - y_0|| + a_n||Ty_0 - y_0||.$$

Therefore, if $f \in S(X^*)$, then for any $x, x_0 \in C$,

$$\overline{\lim}_{n\to\infty} f(x_{n+1})/a_n \leq \overline{\lim}_{n\to\infty} ||x_{n+1}||/a_n \leq d$$

and letting $c_n \equiv 1$ and replacing x_0 with x, we have

$$\overline{\lim}_{n\to\infty} f(T^n x)/n \leq \overline{\lim}_{n\to\infty} || T^n x ||/n \leq d.$$

We may assume that C contains 0 and by (3), in order to comlete the proof it is sufficient to show that there exists an $f \in S(X^*)$ such that for $x_0 = 0 \in C$,

(6)
$$f(x_{n+1})/a_n \ge d$$
 and $f(T^{n+1}0)/(n+1) \ge d$ for $n \ge 0$.

Since for each r>0, T/(1+r): $C\to C$ is a contraction mapping, there exists a unique fixed point x(r). We note that Tx(r)=(1+r)x(r) and $r||x(r)||=||Tx(r)-x(r)||\geq d$ for all r>0. By (4) and (5) we may assume that d>0. Since T is a nonexpansive mapping, we have

$$\begin{split} \|x_{n+1} - x(r)\| &= (1+r) \|x_{n+1} - x(r)\| - r \|x_{n+1} - x(r)\| \\ &= (1+r) \|c_n(Tx_n - x(r)) + (1-c_n)(x_n - x(r))\| - r \|x_{n+1} - x(r)\| \\ &\leq c_n(1+r) \|Tx_n - x(r)\| + (1+r)(1-c_n) \|x_n - x(r)\| - r \|x_{n+1} - x(r)\| \\ &\leq c_n \|Tx_n - (1+r)x(r)\| + c_n r \|Tx_n\| + (1+r)(1-c_n) \|x_n - x(r)\| \\ &- r \|x_{n+1} - x(r)\| \\ &\leq c_n \|x_n - x(r)\| + c_n r \|Tx_n\| + (1+r)(1-c_n) \|x_n - x(r)\| \\ &- r \|x(r)\| + r \|x_{n+1}\| \\ &= \{1+r(1-c_n)\} \|x_n - x(r)\| - r \|x(r)\| + r(c_n \|Tx_n\| + \|x_{n+1}\|) \end{split}$$

for $n \ge 0$. Then by induction we have

$$||x_{n+1}-x(r)|| \le ||x(r)|| - a_n r ||x(r)|| + O(r)$$
,

where $O(r) = r \sum_{m=0}^{n} \{(c_m || Tx_m || + || x_{m+1} ||) \prod_{k=m+1}^{n} [1 + r(1-c_k)] \}$ for $n \ge 0$. Moreover, letting $c_n = 1$, we have

$$||T^n0-x(r)|| \le ||x(r)|| - nr||x(r)|| + O(r)$$
 for $n \ge 1$.

Let f_x be an element of $S(X^*)$ such that $f_x(x) = ||x||$ for $x \neq 0$. Since $||x-y|| \leq ||x|| - \beta$ implies $f_x(y) \geq \beta$, we see that

$$f_{x(r)}(x_{n+1})/a_n \ge d + O(r)$$
 and $f_{x(r)}(T^n 0)/n \ge d + O(r)$.

By the Banach-Alaoglu theorem, there exists an accumulation point $f \in X^*$ of $\{f_{x(r)}\}$ as $r \to 0+$ in the w*-topology such that $||f|| \le 1$. Then f satisfies (6) and hence f/||f|| also satisfies (6). Q.E.D.

REMARK 1. The weak-star accumulation point f of $\{f_{x(r)}\}$ belongs to $S(X^*)$. In fact, since $\|x_{n+1}\|/a_n \to d$ as $n \to \infty$, $\|f\| \ge f(x_{n+1})/\|x_{n+1}\| \ge a_n d/\|x_{n+1}\| \to 1$ as $n \to \infty$.

PROOF OF COROLLARY 2. (i) Let $d=\inf_{y\in C}\|Ty-y\|$. It is known that X is reflexive and strictly convex if and only if X has the property (D.2) (see Section 2). Consequently, it follows from Theorem 1 that there exist $u, v \in X$ such that w- $\lim_{n\to\infty} T^n x/n = u$ and w- $\lim_{n\to\infty} x_{n+1}/a_n = v$ for all $x, x_0 \in C$. Since $f(u) = \|u\| = f(v) = \|v\| = d$, we see that $\|u+v\| = \|u\| + \|v\| = 2d$. By strict convexity of X, we have u = v.

(ii) We note that (P), (Q) and (R) are equivalent. Therefore, it follows from (R) and Theorem 1 that there exist $u, v \in X$ such that $\lim_{n\to\infty} T^n x/n = u$ and $\lim_{n\to\infty} x_{n+1}/a_n = v$ for all $x, x_0 \in C$. Using strict convexity of X, we have u=v in the same way as in (i). Moreover, it is known that $\{T^n x/n\}$ is convergent to the unique point of least norm in $\overline{R(T-I)}$ (see [9, Corollary]).

PROOF OF THEOREM 3. Let d = d(0, R(A)). For any $[u, v] \in A$, we put $w = u + c_n v$. Then we have $||x_{n+1} - u|| = ||J_{c_n} x_n - J_{c_n} w|| \le ||x_n - w|| = ||x_n - u - c_n v|| \le ||x_n - u|| + c_n ||v||$. So we get $||x_{n+1} - u|| \le ||x_0 - u|| + a_n ||v||$. Therefore, if $f \in S(X^*)$, then for any $x, x_0 \in \overline{D(A)}$,

$$\overline{\lim}_{n\to\infty} f(x_{n+1})/a_n \leq \overline{\lim}_{n\to\infty} ||x_{n+1}||/a_n \leq d$$

and letting $c_n \equiv 1$ and replacing x_0 with x, we have

(8)
$$\overline{\lim}_{n\to\infty} f(J_1^n x)/n \leq \overline{\lim}_{n\to\infty} \|J_1^n x\|/n \leq d.$$

Since J_{λ} is a nonexpansive mapping, to complete the proof it is sufficient to show that there exists an $f \in S(X^*)$ such that for some $x = x_0 \in \overline{D(A)}$,

(9)
$$f(x_{n+1}-x)/a_n \ge d$$
 and $f(J_1^{n+1}x-x)/(n+1) \ge d$ for $n \ge 0$.

If d=0, the result follows from (7) and (8), and hence we assume that d>0. Let $x=x_0\in\overline{D(A)}$, and let n be fixed. We set $\alpha=\alpha_n=\max\{1,\,c_0,\,\cdots,\,c_n\}$ and $y_\lambda=y_\lambda^n=(1/(1+\lambda))x+(\lambda/(1+\lambda))J_{(1+\lambda)\alpha_n}x$ for $\lambda>0$. Then we have $J_{(1+\lambda)\alpha}x=J_\alpha y_\lambda$ by the resolvent identity, and $\lambda(y_\lambda-J_\alpha y_\lambda)=x-y_\lambda$. We note that $\|x-y_\lambda\|=\lambda\alpha\|A_\alpha y_\lambda\|\geq\lambda\alpha d$ for all $\lambda>0$, because $A_\alpha y_\lambda\in AJ_\alpha y_\lambda$. Using the

resolvent identity and $(1+\lambda)y_{\lambda}=x+\lambda J_{\alpha}y_{\lambda}$, we have

$$\begin{split} \|x_{i+1} - y_{\lambda}\| &= (1 + 1/\lambda) \|x_{i+1} - y_{\lambda}\| - (1/\lambda) \|x_{i+1} - y_{\lambda}\| \\ &= (1/\lambda) \|(1 + \lambda)x_{i+1} - x - \lambda J_{\alpha}y_{\lambda}\| - (1/\lambda) \|x_{i+1} - y_{\lambda}\| \\ &\leq \|x_{i+1} - J_{\alpha}y_{\lambda}\| + (2/\lambda) \|x_{i+1} - x\| - (1/\lambda) \|x - y_{\lambda}\| \\ &\leq \|x_{i} - y_{\lambda}\| + (1 - c_{i}/\alpha)(1/\lambda) \|x - y_{\lambda}\| - (1/\lambda) \|x - y_{\lambda}\| + (2/\lambda) \|x_{i+1} - x\| \\ &= \|x_{i} - y_{\lambda}\| - c_{i}(1/\lambda\alpha) \|x - y_{\lambda}\| + (2/\lambda) \|x_{i+1} - x\| \end{split}$$

Therefore, we obtain

(10)
$$||x_{i+1} - y_{\lambda}|| \le ||x - y_{\lambda}|| - a_i (1/\lambda \alpha) ||x - y_{\lambda}|| + (2/\lambda) \sum_{k=0}^{i} ||x_{k+1} - x||$$

and letting $c_i \equiv 1$, we have

(11)
$$||J_1^{i+1}x - y_{\lambda}|| \leq ||x - y_{\lambda}|| - (i+1)(1/\lambda\alpha)||x - y_{\lambda}|| + (2/\lambda) \sum_{k=0}^{i} ||J_1^{k+1}x - x|| ,$$

for $i=0, 1, \dots, n$. Let f_{λ} be an element of $S(X^*)$ such that $f_{\lambda}(y_{\lambda}-x)=\|y_{\lambda}-x\|$. Then by (10) and (11) we have

$$f_{\lambda}(x_{i+1}-x)/a_{i} \ge d + O(1/\lambda)$$
 and $f_{\lambda}(J_{i}^{i+1}x-x)/(i+1) \ge d + O(1/\lambda)$

for $i=0, 1, \dots, n$. By the Banach-Alaoglu theorem, there exists an accumulation point $f \in X^*$ of $\{f_{\lambda}\}$ as $\lambda \to \infty$ in the w*-topology such that $||f|| \le 1$. Then f satisfies

(12)
$$f(x_{i+1}-x)/a_i \ge d$$
 and $f(J_1^{i+1}x-x)/(i+1) \ge d$ for $i=0, 1, \dots, n$

and hence $f_n = f/||f||$ also satisfies (12). Furthermore, an accumulation point $g \in X^*$ of $\{f_n\}$ in the w*-topology satisfies (9) and so g/||g|| is the desired element of $S(X^*)$.

REMARK 2. The weak-star accumulation point g of $\{f_n\}$ belongs to $S(X^*)$. In fact, since $||x_{n+1}-x||/a_n \to d$ as $n \to \infty$, $||f|| \ge f(x_{n+1}-x)/||x_{n+1}-x|| \ge a_n d/||x_{n+1}-x|| \to 1$ as $n \to \infty$.

PROOF OF COROLLARY 4. The proof is similar to that of Corollary 2. That v is the unique point of least norm in $\overline{R(A)}$ follows from [9, Theorem 2] and the estimate $||T(n)x-J_1^nx|| \le 2||x-u||+|\sqrt{|n|}||Au|||$, where $u \in D(A)$ and $|||Au|||=\inf\{||v||; v \in Au\}$. Here $\{T(t); t \ge 0\}$ is the non-expansive semigroup generated by -A and this estimate is obtained from [7, Lemma 2.1].

§ 2. Geometric properties.

In this section, we list some conditions which are equivalent in a real Banach space X. Among others (B.3) and (D.2) are useful to study the asymptotic behavior of an integral solution of

$$(d/dt)u(t)+Au(t)+g(t)u(t)\ni g(t)x \text{ , } u(0)=x_{\scriptscriptstyle 0}\in \overline{D(A)} \text{ , }$$

at the origin and at infinity, respectively (see [6]). Here $g: [0, \infty) \to [0, \infty)$ is a nonincreasing function such that $\lim_{t\to\infty} g(t) = 0$ and $x \in X$.

We denote the closed convex hull of a subset M of X by clco M. A mapping $x \to f_x$ of $X \setminus \{0\}$ to $X^* \setminus \{0\}$ is called a support mapping if (i) ||x|| = 1 implies $||f_x|| = 1 = f_x(x)$ and (ii) $\lambda \ge 0$ implies $f_{\lambda x} = \lambda f_x$.

We consider the following properties:

- (A) X is reflexive and strictly convex.
- (B.1) Every sequence $\{x_n\}$ in X satisfying $\lim_{n\to\infty} ||x_n|| = \lim_{n\to\infty} \inf \{||x||; x \in \operatorname{clco}\{x_m; m \geq n\}\}$ converges weakly to an element of X.
- (B.2) For any decreasing sequence of convex sets $\{K_n\}$ in X, every sequence $\{y_n\}$ of elements satisfying $y_n \in K_n$ $(n \ge 1)$ and $\lim_{n \to \infty} ||y_n|| = \lim_{n \to \infty} \inf \{||x||; x \in K_n\}$ converges weakly to an element of X.
- (B.3) If a sequence $\{x_n\}$ in S(X) and a sequence $\{f_n\}$ in X^* are such that $\lim_{n\to\infty} \|f_n\| = \overline{\lim}_{n\to\infty} \underline{\lim}_{m\to\infty} f_n(x_m) = 1$, then $\{x_n\}$ converges weakly to an element of X.
- (C) If a sequence $\{x_n\}$ in X with $\lim_{n\to\infty} ||x_n|| = 1$ satisfies $||1/n\sum_{i=1}^n x_{k_i}|| \ge 1$ for any finite set of distinct indices $k_1 < k_2 < \cdots < k_n$, then $\{x_n\}$ converges weakly to an element of X.
- (D.1) If a sequence $\{x_n\}$ in X and a sequence $\{f_n\}$ in $S(X^*)$ are such that $\lim_{n\to\infty} \|x_n\| = \underline{\lim}_{m\to\infty} \underline{\lim}_{n\to\infty} f_n(x_m)$, then $\{x_n\}$ converges weakly to an element of X.
- (D.2) Every sequence $\{x_n\}$ in X satisfying $\lim_{n\to\infty} ||x_n|| = \lim_{n\to\infty} f(x_n)$ for some $f \in S(X^*)$ converges weakly to an element of X.
- (D.3) For any convex set K in X, every sequence $\{x_n\}$ in K satisfying $\lim_{n\to\infty} ||x_n|| = \inf\{||x||; x \in K\}$ converges weakly to an element of X.
- (D.4) For any closed hyperplane (or closed half-space) H in X, every sequence $\{x_n\}$ in H satisfying $\lim_{n\to\infty} ||x_n|| = \inf\{||x||; x \in H\}$ converges weakly to an element of X.
- (E) X is reflexive and every support mapping $x' \to f_{x'}$ of $X^* \setminus \{0\}$ to $X^{**} \setminus \{0\}$ is norm to weak-star continuous from $S(X^*)$ to $S(X^{**})$.
 - (F) X is reflexive and X^* is smooth.

We study the relationship between the properties (A)-(F). Our results and proofs are parallel to [3].

THEOREM 5. The following equivalence relations hold:

$$(B.1) \longleftrightarrow (B.2) \longleftrightarrow (B.3)$$
,
 $(D.1) \longleftrightarrow (D.2) \longleftrightarrow (D.3) \longleftrightarrow (D.4)$.

THEOREM 6. The following implications hold:

$$(A) {\:\longrightarrow\:} (B.1) {\:\longrightarrow\:} (C) {\:\longrightarrow\:} (D.2) {\:\longrightarrow\:} (E) \ .$$

Since $(E) \leftrightarrow (F) \leftrightarrow (A)$ (see [2]), (A)-(F) are equivalent.

REMARK 3. The value of the property (S) was pointed out by Kobayasi [5]. On the other hand, the property (B.3) is useful to investigate the asymptotic behavior of the nonexpansive semigroup generated by -A, or more generally, an integral solution of (13) at the origin in the weak topology.

PROOF OF THEOREM 5. $(B.1) \rightarrow (B.2)$. If $y_n \in K_n$ $(n \ge 1)$ satisfy the hypothesis of (B.2), then they satisfy the hypothesis of (B.1) (see [3, $(C.1) \leftarrow (C.2)$]).

- $(B.2) \rightarrow (B.1)$. It is sufficient to set $K_n = \operatorname{clco}\{x_m; m \ge n\}$.
- $(B.1) \rightarrow (B.3)$. If $\{x_n\}$ and $\{f_n\}$ satisfy the hypothesis of (B.3), then $\{x_n\}$ satisfies the hypothesis of (B.1) (see $[3, (C.1) \rightarrow (C.3)]$).
- (B.3) o (B.1). Let $\{x_n\}$ be a sequence in X such that $\lim_{n\to\infty} \|x_n\| = \lim_{n\to\infty} \alpha_n = 1$, where $\alpha_n = \inf\{\|x\|; x \in \operatorname{clco}\{x_m; m \ge n\}\}$. For each n, the convex set $\operatorname{clco}\{x_m; m \ge n\}$ and the open convex set $\{x \in X; \|x\| < \alpha_n\}$ are disjoint. So there exists an $f_n \in X^*$ such that $f_n(x) \le 1$ for all x with $\|x\| < \alpha_n$ and $f_n(x_m) \ge 1$ for all $m \ge n$. Then we note that $1/\|x_n\| \le f_n(x_n)/\|x_n\| \le \|f_n\| \le 1/\alpha_n$, and hence $\lim_{n\to\infty} \|f_n\| = 1$. Since $\lim_{m\to\infty} f_n(x_m) \ge 1$ for every n, $\lim_{m\to\infty} \lim_{n\to\infty} \lim_{n\to\infty} f_n(x_m) \ge 1$. On the other hand, we have $\lim_{n\to\infty} \lim_{m\to\infty} f_n(x_m) \le \lim_{n\to\infty} \|f_n\| = 1$. Hence $\lim_{n\to\infty} \lim_{m\to\infty} f_n(x_m) = 1$. (The property (B.3) is not changed if we replace " $\{x_n\}$ in S(X)" in that condition by " $\{x_n\}$ in X with $\lim_{n\to\infty} \|x_n\| = 1$ ".)
 - $(D.1) \rightarrow (D.2)$ is trivial.
- (D.2) o (D.1). Let $\{x_n\}$ and $\{f_n\}$ be such that $f_n \in S(X^*)$ and $\lim_{n \to \infty} \|x_n\| = \underline{\lim}_{m \to \infty} \underline{\lim}_{n \to \infty} f_n(x_m) = 1$. We first note that for any subsequence $\{y_n\}$ of $\{x_n\}$, $\underline{\lim}_{m \to \infty} \underline{\lim}_{n \to \infty} f_n(y_m) \ge 1$. We now consider subsequences $\{y_n\}$ and $\{z_n\}$ of $\{x_n\}$ such that $\underline{\lim}_{n \to \infty} f_n(y_m) \ge 1 2^{-m}$ and $\underline{\lim}_{n \to \infty} f_n(z_m) \ge 1 2^{-m}$ ($m \ge 1$). We define the sequence $\{w_n\}$ by $w_{2n-1} = y_n/(1-2^{-n})$ and $w_{2n} = z_n/(1-2^{-n})$. Then we have $\lim_{n \to \infty} \|w_n\| = 1$ and $\underline{\lim}_{n \to \infty} f_n(w_m) \ge 1$ for every m. For each $u \in \operatorname{clco}\{w_n\}$, we have $\|u\| \ge f_n(u)$ for every n, $\underline{\lim}_{n \to \infty} f_n(u) \ge 1$ and hence $\|u\| \ge 1$. Therefore, there exists a $g \in X^*$ such that $g(x) \le 1$ for all x with $\|x\| < 1$ and $g(u) \ge 1$ for all $u \in \operatorname{clco}\{w_n\}$. Then

from $1 \ge ||g|| \ge g(w_n)/||w_n|| \ge 1/||w_n||$, we obtain ||g|| = 1 and $\lim_{n \to \infty} g(w_n) = 1 = \lim_{n \to \infty} ||w_n||$. By (D.2) there exists a $v \in X$ such that w- $\lim_{n \to \infty} w_n = v$. Consequently, we easily see that w- $\lim_{n \to \infty} y_n = w$ - $\lim_{n \to \infty} z_n = v$.

- $(D.2) \rightarrow (D.3)$. If $x_n \in K$ $(n \ge 1)$ satisfy the hypothesis of (D.3), then $\{x_n\}$ satisfies the hypothesis of (D.2) (see [3, $(E.2) \rightarrow (E.3)$]).
 - $(D.3) \rightarrow (D.4)$ is trivial.
- (D.4) \rightarrow (D.2). Let $||f|| = \lim_{n\to\infty} ||x_n|| = \lim_{n\to\infty} f(x_n) = 1$. Then $y_n = x_n/f(x_n)$ and the closed hyperplane $H = \{z \in H; f(z) = 1\}$ (or the closed half-space $H = \{z \in X; f(z) \ge 1\}$) satisfy the hypothesis of (D.4) (see [3, (E.4) \rightarrow (E.2)]). Therefore, it is clear that (D.2) holds. Q.E.D.

PROOF OF THEOREM 6. $(A) \rightarrow (B.1)$. We first observe that we can use the facts obtained in the proof of $(B.3) \rightarrow (B.1)$. Now, since X is reflexive, there exist $y, z \in X$ and subsequences $\{n_k\}$, $\{m_k\}$ of $\{n\}$ such that w- $\lim_{k\to\infty} x_{n_k} = y$ and w- $\lim_{k\to\infty} x_{m_k} = z$. Then we can conclude that $\|y\| \ge 1$, $\|z\| \ge 1$, because $\alpha_n \to 1$ as $n \to \infty$, where α_n is defined as in the proof of $(B.3) \to (B.1)$. Therefore, we have $\|y\| = \|z\| = 1$. Noting that $2 \le f_n(x_{n_k} + x_{m_k})$ for $n_k, m_k \ge n$, we have $2 \le f_n(y + z) \le \|f_n\| \|y + z\| \le 2 \|f_n\|$. Letting $n \to \infty$, we get $\|y + z\| = 2$ and hence, by strict convexity of X, y = z.

- (B.1) \rightarrow (C). Let $\{x_n\}$ be a sequence in X such that $\lim_{n\to\infty}\|x_n\|=1$ and $||1/n\sum_{i=1}^n x_{k_i}|| \ge 1$ for any finite set of distinct indices $k_1 < k_2 < \cdots < k_n$. Then $\|\sum_{i=1}^n \lambda_i x_{k_i}\| \ge n+1-\sum_{i=1}^n \|x_{k_i}\|$ holds for any finite set of distinct indices $k_1 < k_2 < \cdots < k_n$ and for any $\lambda_i \ge 0$ with $\sum_{i=1}^n \lambda_i = 1$. In fact, since $||x_n|| \ge 1$ $(n \ge 1)$, we have $n \le ||\sum_{i=1}^n x_{k_i}|| \le ||\sum_{i=1}^n \lambda_i x_{k_i}|| + \sum_{i=1}^n (1 - 1)^n ||x_i|| \le ||x_i||$ $\|\lambda_i\|\|x_{k_i}\| \le \|\sum_{i=1}^n \lambda_i x_{k_i}\| + \sum_{i=1}^n \|x_{k_i}\| - 1$. We next show that every subsequence $\{y_n\}$ of $\{x_n\}$ satisfying $\|y_n\| \le 1 + 2^{-n}$ $(n \ge 1)$ converges weakly to an element of X. For such a subsequence $\{y_n\}$ of $\{x_n\}$ and for $k_n>$ $k_{n-1} > \cdots > k_1 > m$, we have $\|\sum_{i=1}^n \lambda_i y_{k_i}\| \ge n+1 - \sum_{i=1}^n \|y_{k_i}\| \ge n+1 - \sum_{i=1}^n (1+i)$ 2^{-k_i})>1-2^{-m} for any $\lambda_i \ge 0$ with $\sum_{i=1}^n \lambda_i = 1$. Therefore, $\lim_{m \to \infty} \inf \{ ||y|| \}$; $y \in \operatorname{clco} \{y_n; n \ge m\}\} = 1 = \lim_{n \to \infty} ||y_n||$ and hence, by (B.1), $\{y_n\}$ converges weakly to an element of X. Now, since $\lim_{n\to\infty} ||x_n|| = 1$, we can choose a subsequence $\{u_n\}$ of $\{x_n\}$ satisfying $||u_n|| \le 1 + 2^{-(2n-1)}$ $(n \ge 1)$. Therefore, there exists a $u \in X$ such that w- $\lim_{n\to\infty} u_n = u$. Let $\{v_n\}$ be a subsequence of $\{x_n\}$ satisfying $||v_n|| \le 1 + 2^{-2n}$ $(n \ge 1)$. We consider the sequence $\{w_n\}$ defined by $w_{2n-1}=u_n$ and $w_{2n}=v_n$. Then clearly $||w_n|| \le 1+2^{-n}$ $(n \ge 1)$ and so $\{w_n\}$ converges weakly to some $v \in X$. Since w- $\lim_{n\to\infty} u_n = u$, we must have u=v. Consequently, we have w- $\lim_{n\to\infty} x_n=u$.
- $(C) \rightarrow (D.2)$. Let a sequence $\{x_n\}$ in X and $f \in X^*$ be such that ||f|| = 1 and $\lim_{n \to \infty} ||x_n|| = \lim_{n \to \infty} f(x_n)$. We may assume that this common limit is not 0. Let $y_n = x_n/f(x_n)$. Then $\lim_{n \to \infty} ||y_n|| = 1$ and $1 = x_n = x_n$

 $f(1/n \sum_{i=1}^n y_{k_i}) \le ||1/n \sum_{i=1}^n y_{k_i}||$ for any indices $k_1 \le k_2 \le \cdots \le k_n$. By (C), $\{y_n\}$ converges weakly to an element of X, and hence so is $\{x_n\}$.

(D.2) o (E). That X is reflexive follows from a slight modification of [3, (E) o (R)]. In fact, let L be a closed linear subspace of X and $g \in X^*$ such that $\sup \{g(x); x \in L \cap S(X)\} = 1$. Then we can take a sequence $\{x_n\}$ in $L \cap S(X)$ such that $\lim_{n \to \infty} g(x_n) = 1$. By Hahn-Banach's extension theorem for linear functionals, there exists an $f \in X^*$ such that $\|f\| = 1$ and f(x) = g(x) for $x \in L$. Then we have $\lim_{n \to \infty} \|x_n\| = \lim_{n \to \infty} f(x_n) = 1$ and $\|f\| = 1$. By (D.2) there exists an $x_0 \in X$ such that w- $\lim_{n \to \infty} x_n = x_0$. Since $x_0 \in L$, we obtain $1 = \lim_{n \to \infty} f(x_n) = f(x_0) = g(x_0)$. Moreover, we have $\|x_0\| = 1$, because $1 = f(x_0) \le \|x_0\| \le \lim_{n \to \infty} \|x_n\| = 1$. Consequently, we see that g attains its supremum on the unit sphere of L. It follows from James [4, Theorem 2] that X is reflexive.

Now, let $x' \to f_{x'}$ be a support mapping of $X^*\setminus\{0\}$ to $X^{**}\setminus\{0\}$, and let $\{x'_n\}$ and z' be such that x'_n , $z' \in S(X^*)$ $(n \ge 1)$ and $\lim_{n\to\infty} x'_n = z'$. We consider the sequence $\{y'_n\}$ defined by $y'_{2n-1} = x'_n$ and $y'_{2n} = z'$ $(n \ge 1)$. Since we have $|f_{y'_n}(z') - 1| = |f_{y'_n}(z') - f_{y'_n}(y'_n)| \le ||z' - y'_n||$, we obtain $\lim_{n\to\infty} f_{y'_n}(z') = 1$. Noting that $||f_{y'_n}|| = 1$ and viewing $f_{y'_n}(n \ge 1)$ as members of X, it follows from (D.2) that $\{f_{y'_n}\}$ converges weakly to some $f_0 \in X = X^{**}$. By the definition of $\{y'_n\}$, we must have $f_0 = f_{z'}$. Consequently, $\{f_{x'_n}\}$ converges weak-star to $f_{z'}$ in X^{**} .

ACKNOWLEDGEMENT. I am grateful to Prof. I. Miyadera who provided me with preprint [6]. Remarks 1 and 2 are due to [6].

References

- [1] M. CRANDALL and T. LIGGETT, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-293.
- [2] J. DIESTEL, Geometry of Banach Spaces—Selected Topics, Lecture Notes in Math., 485, Springer, 1975.
- [3] K. FAN and I. GLICKSBERG, Some geometric properties of the spheres in a normed linear space, Duke Math. J., 25 (1958), 553-568.
- [4] R. James, Reflexivity and the supremum of linear functionals, Ann. of Math., 66 (1957), 159-169.
- [5] K. KOBAYASI, Some remarks on the asymptotic behavior of nonlinear semigroups, The 7th Seminar on Evolution Equations held at Hachioji, December 14-16, 1981.
- [6] K. KOBAYASI, On the asymptotic behavior for a certain nonlinear evolution equation, to appear in J. Math. Anal. Appl..
- [7] Y. KOBAYASHI, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan, 27 (1975), 640-665.
- [8] E. Kohlberg and A. Neyman, Asymptotic behavior of nonexpansive mappings in normed linear spaces, Israel J. Math., 38 (1981), 269-275.
- [9] I. MIYADERA, On the infinitesimal generators and the asymptotic behavior of nonlinear

- contraction semi-groups, Proc. Japan Acad., 58 (1982), 1-4.
- [10) S. Reich, On the asymptotic behavior of nonlinear semigroups and the range of accretive operators, J. Math. Anal. Appl., 79 (1981), 113-126.
- [11] T. Sugimoto, The asymptotic behavior of the resolvent of a dissipative operator in Banach spaces, The proceedings of the 7th Seminar on Evolution Equations held at Hachioji, December 14-16, 1981 (in Japanese).
- [12] M. TANIGUTI, The asymptotic behavior of nonexpansive mappings in Banach spaces, ibid.

Present Address:
DEPARTMENT OF MATHEMATICS
KEIO UNIVERSITY
HIYOSHI, KOHOKU-KU, YOKOHAMA 223