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Introduction

Throughout this paper, X denotes a real Banach space with the dual
space X* and the bidual space X** and C is a closed convex subset of
X. For 0<7=<1 we consider a mapping T: C—C such that |Te—Ty||=
Y||x—y|| for all z, ye C. A mapping T is called nonexpansive (resp. con-
traction) if v=1 (resp. ¥<1). Let AcX XX be an accretive operator
satisfying the range condition R(I+M\A)>D(A) (the closure of the domain
of A) for all A>0, where I is the identity, J,=(I+AA)™" be the resolvent,
and let A,={U—J;)/» be the Yosida approximation. A one-parameter
family {T(¢); t=0} denotes the nonexpansive semigroup on D(A) generated
by —A, i.e., T®)x=lim, ., Ji¥x for xc D(A) and t=0 (see [1]). We use
lim and w-lim for convergence in the strong and weak topology, respec-
tively. We define S(X)={x¢ X; ||z ||=1}and d(0, R(A))=inf {||z||; x € R(A)},
where R(A) denotes the range of A.

Our main purpose is to show the following results.

THEOREM 1. Let the sequence {x,},z,bedefined by x,,,=c,Tx,+(1—c,)x,,
where x,€ C and {¢,}.20 18 a 7eal sequence such that 0<c,<1 and a,=
St oci— < as n—. Then there exists an fe S(X*) such that for any
x, %€ C,

(1) lim, ... f(T"2)/n=lim, ... || T"z|/n=inf,cc || Ty—y||
=lim, e [(@ns41)/Cn=1iM, e || Znss ||/ @ -
COROLLARY 2. (i) In Theorem 1, if X is reflexive and strictly con-
vex, then w-lim,_.., T"x/n=w-lim,_.2,../a,=—v for all z, x,€ C, where

lvl|=inf,cc || Ty—yll-
(i) In Theorem 1, if X* has Fréchet differentiable nmorm, then
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lim, .. %,,/a,=—v for all x,€C, where v 18 the unique point of least
norm in R(I—T).

THEOREM 3. Let the sequence {%,}.z0 be defined by x,..,=J, x,, where
x,€ D(A) and {c.}.z0 18 a positive sequence such that a,=>,',c,— >~ as
n—oo. Then there exists an fe S(X™*) such that for any z, x,€ D(A),

(2) lim, ... f(J7@)/n=lim, . ||Jrz||/n=d(0, R(A))
= lim'nﬂw f(xn+1)/a'n = limn—‘°° Il Lnt1 ”/a’n .

COROLLARY 4. (i) In Theorem 3, if X 138 reflexive and strictly
convex, them w-lim,.. Jrx/n=w-lim, ., /a,=—v for all x, x,c D(A),
where ||v||=d(0, R(A)).

(ii) In Theorem 3, if X* has Fréchet differentiable morm, then
lim, .. %,../a,=—v for all x,€ D(A), where v is the unique point of least
norm in R(A).

Theorems 1 and 3 imply that the asymptotic behavior of z,.,/a, is
reduced to the asymptotic behavior of T"x/n and Jx/n, respectively, in
both strong and weak topology. Furthermore, Theorem 1 is valid even
if X is a real normed linear space and C is a convex subset of X. Thus
it generalizes Kohlberg and Neyman’s result [8, Theorem 1.1]. Corollaries
2 and 4 were investigated by [8], [9], [10], [11], [12]. The idea of the
proof of Theorem 3 is due to [11], and Kobayashi [5] showed that Theo-
rem 1 follows from [6, Theorem 2.1] by using a different method.

It is known that the following conditions are equivalent (see [2], [3]):

(P) X* has Fréchet differentiable norm.

(Q) Xisreflexive and strictly convex. Furthermore, if w-lim, .., z,=2
and lim,_. ||z,| =] «]|, then lim,_. 2,=x.

(R) Every sequence {x,} in X satisfying lim,_.. ||z,||=lim,.. f(x,) for
some fe S(X*) converges strongly to an element of X.

(S) If a sequence {z,} in S(X) and a sequence {f,} in X* are such
that lim,_. || £, ||=Iim, . lim,. f.(x.)=1, then {z,} converges strongly to
an element of X.

In Section 2, we state several properties which are equivalent to
the property (A), i.e., X is reflexive and strictly convex. They are
slight modifications of geometric properties listed in [2], [3].

§1. Proofs.

PROOF OF THEOREM 1. Let d=inf,.;||Ty—y]|. We follow the argu-
ment in Kohlberg and Neyman [8]. For another initial point y,e C, we
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write the associated sequence by {y,}. Then for any =z, ¥,€ C, we get

Hxn+1—yn+1“.§”wo—‘yon and

3
(3) 1 2en— | < 20| Zo— 10 | + ]| Tvo— 2] -

Therefore, if fe S(X*), then for any =z, x,€ C,

(4) M, f@n1)/ @ SHM, e || @ [[/0 =
and letting ¢, =1 an(i replacing z, with x, we have
(5) im, ... f(T"0)/n<lim, .. || T 2||/n<d .

We may assume that C contains 0 and by (8), in order to comlete the
proof it is sufficient to show that there exists an fe S(X*) such that
for x,=0¢C,

(6) f@.Dla.=d and f(T"H0)/(n+1)=d for n=0.

Since for each >0, T/(1+7): C—C is a contraction mapping, there exists
a unique fixed point x(»). We note that Tx(r)=1+r)x(») and 7| z()| =
|| Tx(r)—x(r)||=d for all »>0. By (4) and (5) we may assume that d>0.
Since T is a nonexpansive mapping, we have

[@nri—2() | = A+ Cprs—2() || =7 || Bpis — () ||
=1+ )| e T, — (1)) + A —c,) (@ —a(1)) || — 7| F0rr —2(7) ||
=c¢,A+1)|| Te,—ax(@) ||+ A+r)A—c)l|x,— () || = 7| Zprs—2(r) |
=c,|| Tw,— QA +r)ar) || +e.rl| T, ||+ 1+ 7)1 —c,)|| 2, —2() ||
—7|| @ — () ||
=c.l|w,—x(r) || +e.r|| T, [+ A +r)(A—e,)|| 2. —2(r) ||
—rl|2(®) || +7|| %0 | '
={1+rA—c)H @, —2(r) | =r|lz@) || +ric.| T2, || + || Znss[))

for n=0. Then by induction we have
| @0 —2(r) || = || () || —anr|| () || +O() ,

where O)=7 3o {(Cnll TCu ||+ || Zmss [|) Hicmss [1+7rA—c)]} for n=0.
Moreover, letting ¢,=1, we have

| T0—a(r) || || 2(r) || —nr|]|2(r)||+O0@) for m=1.

Let f, be an element of S(X*) such that f,(x)=| =] for x+#0. Since
le—y||=llx||—p8 implies f.(¥)=B, we see that
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fen@ni)/a,=d+0(r) and f,,(T"0)/n=d+O(7) .

By the Banach-Alaoglu theorem, there exists an accumulation point fe X*
of {f.n} as r—0+ in the w*-topology such that || f||<1. Then f satis-
fies (6) and hence f/|| f|| also satisfies (6). Q.E.D.

REMARK 1. The weak-star accumulation point f of {f,.} belongs to
S(-X*)' In faCt’ Since I|wn+1”/an—)d as Mm— oo, |Jf”;f(xn+l)/||xn+1”g
a,d/|| %41 ]|—1 a8 n— 0.

PROOF OF COROLLARY 2. (i) Let d=inf,.;||Ty—y]|. It is known
that X is reflexive and strictly convex if and only if X has the property
(D.2) (see Section 2). Consequently, it follows from Theorem 1 that there
exist u, ve X such that w-lim,.. T*z/n=u and w-lim,_. z,,,/a,=v for all
z, x,€C. Since f(u)=|ull=f@w)=|v||=d, we see that ||u+v|=|u|+
lv||=2d. By strict convexity of X, we have u=wv.

(il) We note that (P), (Q) and (R) are equivalent. Therefore, it
follows from (R) and Theorem 1 that there exist u, ve X such that
lim, .. T"x/n=u and lim, .z, /a,=v for all z, x,€ C. Using strict con-
vexity of X, we have w=v in the same way as in (i). Moreover, it is
known that {T"z/n} is convergent to the unique point of least norm in

R(T—1I) (see [9, Corollary]). Q.E.D.

PROOF OF THEOREM 3. Let d=d(0, R(A)). For any [u, v]€ A, we put
w=u+c,v. Then we have ||z,,,—u| =/, 2.—J, w|=|z,—w|=|z,—u—
cvl|=llw.—ullt+ellv|l. So we get ||@,..—ul|=|@—u||+a,||v]. There-

fore, if fe S(X*), then for any =z, z,c€ D(4),

(7) lim, .. f@.+)/@.<Tim, . |2, ]/a.<d
and letting ¢.=1 and replacing x, with z, we have
(8) - lim, .., f(Jr2)/n<lim, .. |Jrz|/n<d .

Since J, is a nonexpansive mapping, to complete the proof it is sufficient
to show that there exists an fe S(X*) such that for some x=2x,c D(4),

(9) S i—x)/a,=d and f(JrM'z—x)/(n+1)=d for »n=0.

If d=0, the result follows from (7) and (8), and hence we assume that
d>0. Letz=x,e€ D(A), and let n be fixed. We set a=a,=max {1, ¢,,- - -, ¢,}
and ¥,=y7=1Q/A+N)x+/(1+ M) i na,® for A >0. Then we have J,,;.2=
J.Y¥: by the resolvent identity, and A(y,—J.¥)=2—vy,. We note that
le—y:||=nra|| Ay || = ad for all A>0, because A,y;€ AJ,y;. Using the
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resolvent identity and (14+\)y,=x-+\J,¥;, we have

| — 1| =QA+1/N)|[ @i —Yal| — A/ M) @err — Y2 |
=1/ A +N)z —2 =N | — A/ 2o — 2 ||
S — |l +@N)|| 2o —2 [ —A/N)[[2 =y |
S|z —ull+A—e/a)A/N)||2—3: || — A/ || — v || +@/N)|| 200 —2 ||
=|z;— | —cL/Aa)||x—y: || + /M| @y — ] -

Therefore, we obtain

10 lres—wml=lz—v: ] —edn@z—wl+E@MN) X 12— ]

and letting ¢;=1, we have
’ i
an e —umlisle—unll -G+ DAAD| e~ + @™ X [ /i —z],

for ¢=0,1, ---, n. Let f; 'be an element of S(X*) such that fi(y,—x)=
|ly;—x||. Then by (10) and (11) we have

Ji®@ip—2)/a,=d+0(1/x) and L e —a)/(i+1)=d +0(1/N)

for ©=0,1, ---, n. By the Banach-Alaoglu theorem, there exists an ac-
cumulation point fe€ X* of {f;} as A— ~ in the w*-topology such that
|fII=1. Then f satisfies

(12) f@y,—2)/a,=d and f(Jit'e—2x)/(i+1)=d for +=0,1, ---, n

and hence f,=f/||f| also satisfies (12). Furthermore, an accumulation
point ge X* of {f,} in the w*-topology satisfies (9) and so g/||g| is the
desired element of S(X*). Q.E.D.

REMARK 2. The weak-star accumulation point g of {f,} belongs to
S(X™). In fact, since ||z,.,—z||/a,—d as n— o, || fI| = f(@ps1—2)/|| Cpi1i—
z||=a,d/||€,—2|| —1 as n— co.

PROOF OF COROLLARY 4. The proof is similar to that of Corollary
2. That v is the unique point of least norm in R(A) follows from [9,
Theorem 2] and the estimate || T(n)r—Jrz||<2||lx—u|+1 7 ||| Au|||, where
w€ D(A) and |[||Aw|||=inf {||v]||;ve Au}. Here {T'(t); t=0} is the non-
expansive semigroup generated by —A and this estimate is obtained
from [7, Lemma 2.1]. Q.E.D.
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§2. Geometric properties.

In this section, we list some conditions which are equivalent in a
real Banach space X. Among others (B.3) and (D.2) are useful to study
the asymptotic behavior of an integral solution of

(13) (@/dtyu(t) + Au(t)+gt)ut) 2 g(t)x , u(0)=ax,€ D(4),

at the origin and at infinity, respectively (see [6]). Here g:[0, «)—
[0, ) is a nonincreasing function such that lim,.. g(f)=0 and z¢ X.

We denote the closed convex hull of a subset M of X by clco M.
A mapping z—f, of X\{0} to X*\{0} is called a support mapping if (i)
lz||=1 implies | f,||=1=f.(x) and (ii) A=0 implies f;,=\f,.

We consider the following properties:

(A) X is reflexive and strictly convex.

(B.1) Every sequence {z,} in X satisfying lim,_.. ||z, | =lim,_.. inf {||z];
x € cleo {x,,; m=n}} converges weakly to an element of X.

(B.2) For any decreasing sequence of convex sets {K,} in X, every
sequence {y,} of elements satisfying y,€ K, (n=1) and lim,_. ||¥.| =
lim, . inf {||z||; x € K,} converges weakly to an element of X.

(B.3) If a sequence {z,} in S(X) and a sequence {f,} in X* are such
that lim,_.. || £, || =lim,-. lim,_.. f,(x.)=1, then {x,} converges weakly to
an element of X.

(C) 1If a sequence {z,} in X with lim,_., ||z,||=1 satisfies ||1/n 37,2, || =1
for any finite set of distinct indices k,<k,<---<k,, then {x,} converges
weakly to an element of X.

(D.1) If a sequence {x,} in X and a sequence {f,} in S(X*) are such
that lim,.. ||z, ||=lim, . lim,_.. f.(€.), then {x,} converges weakly to an
element of X.

(D.2) Every sequence {x,} in X satisfying lim,.. ||z,|=1lim,_.f(x,)
for some fe S(X*) converges weakly to an element of X.

(D.3) For any convex set K in X, every sequence {x,} in K satis-
fying lim,_. ||z, ||=inf {||z||; x € K} converges weakly to an element of X.

(D.4) For any closed hyperplane (or closed half-space) H in X, every
sequence {x,} in H satisfying lim, .. | z,||=inf{||z||; e H} converges
weakly to an element of X.

(E) X is reflexive and every support mapping z’—f,, of X*\{0} to
X**\{0} is norm to weak-star continuous from S(X*) to S(X**).

(F) X is reflexive and X* is smooth.

We study the relationship between the properties (A)-(F). Our
results and proofs are parallel to [3].
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THEOREM 5. The following equivalence relations hold:

(B.1)—(B.2)——(B.3),
(D.1)«—(D.2)«——(D.3)——(D.4) .

THEOREM 6. The following implications hold:
~ (A)—(B.1)—(C)— (D.2) —> (E) .
Since (E)«— (F)—(A) (see [2]), (A)-(F) are equivalent.

REMARK 8. The value of the property (S) was pointed out by
Kobayasi [5]. On the other hand, the property (B.3) is useful to investi-
gate the asymptotic behavior of the nonexpansive semigroup generated
by — A, or more generally, an integral solution of (13) at the origin in
the weak topology.

PROOF OF THEOREM 5. (B.1)—(B.2). If y,€ K, (n=1) satisfy the
hypothesis of (B.2), then they satisfy the hypothesis of (B.1) (see [3,
(C.1) > (C.2)]).

(B.2) —(B.1). It is sufficient to set K,=cleo {,.; m=n}.

(B.1)—(B.3). If {x,} and {f,} satisfy the hypothesis of (B.3), then
{x,} satisfies the hypothesis of (B.1) (see [3, (C.1)—(C.3)]).

(B.8)—>(B.1). Let {x,} be a sequence in X such that lim, .. |z,|=
lim,., a,=1, where «,=inf {||z]||; x€clco {x,; m=n}}. For each =, the
convex set ¢leo {x,; m=n} and the open convex set {xc X; ||| <a,} are
disjoint. So there exists an f,e X* such that f,(x)<1 for all » with
lz||<a, and f,(x,)=1 for all m=n. Then we note that 1/||x,|=
fo@)ll 2. ||| ful| =1/, and hence lim,.. || f.||=1. Since lim, .. f.(x.)=1
for every =, lim,..lim, .. f.(x,)=1. On the other hand, we have
lim,.. lim, ... f,(z,)<lim,... || f.||=1. Hence lim,_. lim, .. f,(x.)=1. (The
property (B.3) is not changed if we replace “{zx,} in S(X)” in that con-
dition by “{z,} in X with lim, . ||z,||=1".)

(D.1)—(D.2) is trivial. »

(D.2)—»(D.1). Let {x,}) and {f.} be such that f,eS(X*) and
lim,_. ||, || =lim,.. lim, .. f,(x,)=1. We first note that for any subse-
quence {y,} of {%,}, lim,,... lim, ... f,(¥.)=1. We now consider subsequences
{y.} and {2,} of {x,} such that lim,..f.(yn)=1—2"" and lim, .. f.(Z.)=
1—2-™ (m=1). We define the sequence {w,} by w.,,_,=¥%,/1—2") and
w,,=2,/1—2"). Then we have lim,.. ||w,||=1 and lim, .. f,(w.)=1 for
every m. For each wuecleo{w,}, we have |u|=f.(u) for every =,
lim,. f.(¥)=1 and hence ||u|/=1. Therefore, there exists a ge X* such
that g(x)<1 for all  with ||x|/<1 and g(u)=1 for all wecleco{w,}. Then
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from 1z| g||=g(w,)/||w,||=Z1/||w.|l, we obtain | g||=1 and lim,_. g(w,)=
1=lim,_. [|lw,|. By (D.2) there exists a ve X such that w-lim,_. w,=v.
Consequently, we easily see that w-lim, . Y.=w-lim, . 2, =v.

(D.2)—>(D.3). If x,€ K (n=1) satisfy the hypothesis of (D.3), then
{x,} satisfies the hypothesis of (D.2) (see [3, (E.2)— (E.3))).

(D.3)—(D.4) is trivial.

(D.4)—(D.2). Let | fl=lim,..|z,|=lim,..f(x,)=1. Then y,=
*./f(x,) and the closed hyperplane H={ze€ H; f(z)=1} (or the closed half-
space H={ze¢ X; f(2)=1}) satisfy the hypothesis of (D.4) (see [3, (E.4)—
(E.2)]). Therefore, it is clear that (D.2) holds. Q.E.D.

PROOF OF THEOREM 6. (A)—(B.1). We first observe that we can
use the facts obtained in the proof of (B.3)—(B.1). Now, since X is
reflexive, there exist y, z€ X and subsequences {n,}, {m,} of {n} such
that w-lim,..x,,=y and w-lim,... Z.,=2%. Then we can conclude that
lyll=1, ||z]|=1, because a,—1 as n— oo, where a, is defined as in the
proof of (B.3)—(B.1). Therefore, we have |y| =] z|=1. Noting that
2= 1@, + %) for m,, m,=n, we have 2<f.(y+2)<|f.| ly+2z| =2 f.ll-
Letting n— o, we get ||y+2z||=2 and hence, by strict convexity of X,
y==z.

(B.1)—(C). Let {x,} be a sequence in X such that lim, . ||z.]|=1
and ||1/n 37, %, ||=1 for any finite set of distinct indices kL<k,<---<k,.
Then || 3%, My, |=n+1—37, ||z, || holds for any finite set of distinct
indices k,<k,<---<k, and for any \,=0 with St =1, In fact,
since |2, (|21 (n21), we have n=| i, < || S it [+ ooy (L—
Ml @e, IS I o M, ||+, || 22, ]| —1. We next show that every subse-
quence {y,} of {x,} satisfying |[y.||<1+2" (n=1) converges weakly to
an element of X. For such a subsequence {y,} of {z,} and for k,>
kos>:-->k>m, we have |35, My ll2n+1-3, |y, l|=n+1-32, 1+
27%)>1—2" for any A\,=0 with 37, A,=1. Therefore, lim, .. inf {lloll;
yecleo {y,; n=m}}=1=lim,_.. ||y,.|| and hence, by (B.1), {y.} converges
weakly to an element of X. Now, since lim,_, ||2.||=1, we can choose
a subsequence {u,} of {z,} satisfying ||u,|[|<14+2-@ (n=1). Therefore,
there exists a w € X such that w-lim,_.. u,=u. Let {v,} be a subsequence
of {x,} satisfying ||v.]|<1+2 (n=1). We consider the sequence {w,)
defined by w,,_,=u, and w,,=v,. Then clearly lw.||=14+2™ (n=1) and
so {w,} converges weakly to some ve X. Since w-lim,.., u,=u, we must
have u=v. Consequently, we have w-lim, . z,=u.

(C)—(D.2). Let a sequence {z,} in X and fe X* be such that
IfllI=1 and lim,.. ||z,||=lim,.. f(x,). We may assume that this com-
mon limit is not 0. Let y,==z./f(x,). Then lim,..|y.||=1 and 1=
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F@/n 33 v )= | 1/n 35, Y, || for any indices k=k,<---=<k,. By (C),
{y.} converges weakly to an element of X, and hence so is {x,}.

(D.2) > (E). That X is reflexive follows from a slight modification
of [3, (E)—(R)]. In fact, let L be a closed linear subspace of X and
g€ X* such that sup {g(x); xe LNS(X)}=1. Then we can take a sequence
{x,} in LNS(X) such that lim,.. g(x,)=1. By Hahn-Banach’s extension
theorem for linear functionals, there exists an fe X* such that || f| =1
and f(x)=g(x) for xe L. Then we have lim,_. ||z,|=lim,_. f(x,)=1 and
Il £ll=1. By (D.2) there exists an 2,¢ X such that w-lim,_.. x,=2,. Since
x,€ L, we obtain 1=1lim,_... f(x,) = f(x,) =g(,). Moreover, we have ||z,||=1,
because 1= f(x))<| «,||=<lim,.. ||z.]|=1. Consequently, we see that g¢
attains its supremum on the unit sphere of L. It follows from James
[4, Theorem 2] that X is reflexive.

Now, let o’ —f,, be a support mapping of X*\{0} to X**\{0}, and let
{x.} and 2’ be such that z,, 2’ S(X*) (n=1) and lim, . x,=2'. We con-
sider the sequence {y.} defined by ¥;...=x. and ¥;,=2’ (n=1). Since we
have |f,,(2")—1|=|£,,&)—f,,(¥m)|S]|2"—9.], we obtain lim,.. f, (2)=L1.
Noting that || f,; ||=1 and viewing f,, (n=1) as members of X, it follows
from (D.2) that {f,.} converges weakly to some f,e X=X**. By the
definition of {y,}, we must have f,=f,.. Consequently, { S} converges
weak-star to f,, in X**. Q.E.D.

ACKNOWLEDGEMENT. I am grateful to Prof. I. Miyadera who provided
me with preprint [6]. Remarks 1 and 2 are due to [6].

References

[1] M. CrANDALL and T. LIGGETT, Generation of semi-groups of nonlinear transformations
on general Banach spaces, Amer. J. Math., 93 (1971), 265-293.
[2] J. DiESTEL, Geometry of Banach Spaces—Selected Topics, Lecture Notes in Math., 485,
Springer, 1975.
[8] K. FAN and I. GLICKSBERG, Some geometric properties of the spheres in a normed linear
space, Duke Math. J., 25 (1958), 553-568.
[4] R. Jam=ms, Reflexivity and the supremum of linear functionals, Ann. of Math., 66 (1957),
159-169.
. KoBAYASI, Some remarks on the asymptotic behavior of nonlinear semigroups, The
7th Seminar on Evolution Equations held at Hachioji, December 14-16, 1981.
. KoBAYASsI, On the asymptotic behavior for a certain nonlinear evolution equation,
to appear in J. Math. Anal. Appl..
. KoBayasHI, Difference approximation of Cauchy problems for quasi-dissipative opera-
tors and generation of nonlinear semigroups, J. Math. Soc. Japan, 27 (1975), 640-665.
KoHLBERG and A. NEYMAN, Asymptotic behavior of nonexpansive mappings in normed
linear spaces, Israel J. Math., 38 (1981), 269-275.
[9] I. MiYADERA, On the infinitesimal generators and the asymptotic behavior of nonlinear

[5]
[6]
[71

B < R R

[8]



128 TOMOYUKI FUJIHIRA

contraction semi-groups, Proc. Japan Acad., 58 (1982), 1-4.

[10) S. REicH, On the asymptotic behavior of nonlinear semigroups and the range of accretive
operators, J. Math. Anal. Appl., 79 (1981), 113-126.

[11] T. SuciMoro, The asymptotic behavior of the resolvent of a dissipative operator in Banach
spaces, The proceedings of the 7th Seminar on Evolution Equations held at Hachioji,
December 14-16, 1981 (in Japanese).

(12] M. Tanicuri, The asymptotic behavior of nonexpansive mappings in Banach spaces, ibid.

Present Address:

DEPARTMENT OF MATHEMATICS

KE10 UNIVERSITY

HivosHl, KOHOKU-KU, YOKOHAMA 223



