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Introduction

Let f(x) be a polynomial, in » complex variables x=(x,, : -+, x,), With
an isolated critical point and let Fy(¢, ) be a deformation of f(x) with
parameters t=(¢,, ---, t.). Setting F=t,+F, with a distinguished pa-
rameter t,, we shall investigate the differential system to be satisfied
by the integral of type

(1) u=§5m(F)dx or SF‘de de=da, A -+ Adw,) ,

where A is a (generic) complex number. Roughly speaking, such a
Gauss-Manin system defines a meromorphic connection, on the space S
of parameters (f, t), at most with poles along its discriminant variety
D. Thus, our attension will be paid to the many-valued holomorphic
solutions on S\D of the Gauss-Manin system. In “simple” examples, one
can show that a fundamental system @(¢, t) of its many-valued holomor-
phic solutions can be expanded into a power series

(2) D(t,, 1) =3, O, (£)ty 4= +1
r=0

convergent near the point (&, t)=(ce, 0) at infinity, where —4 is the
matrix of exponents of f shifted by A. In the present article, we shall
determine such an expansion of @ in an explicit manner for typical ex-
amples of Gauss-Manin systems.

Our computational results will be given in §3. The polynomial f(x)
to be deformed is assumed there to belong to either of the types

(1) flw)y=ar+afr+---+a2» and
AD) f)=2n+zefr+af+ - +ai .
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First, we take a deformation F' of f defined by
(4) F(t, t, x)=t,+tx,+ - - - +x.+f ) (E=, -0, t)) .

In this case, the expansion of type (2) can be completely determined by
solving a system of difference equations (Theorem 3.5). By virtue of such
explicit computations, we know that, if f is of type (I), then the many-
valued holomorphic solutions of the Gauss-Manin system in question are
expressed by certain types of hypergeometric series (Theorem 38.7). (The
reader will find in 3.2 some examples of such hypergeometric representa-
tions of the solutions.) Next we consider the case where F is a versal
deformation of a canonical form f of simple sigularity. In this case,
the expansion of @ can be determined from the result for a deformation
of type (4) associated with F by applying an operator of “evolution”
(Theorem 3.10). Thanks to this explicit expansion of @, we are able to
determine the Alat coordinate system, introduced by K. Saito - T. Yano-J.
Sekiguchi [20], for the types A;, D, and E, (=6, 7, 8) from the viewpoint
of differential equations (Theorem 3.11).

Our computations will be delivered rather formally. In order to
Justify such formal computations, we need to formulate Gauss-Manin
systems associated with the integral (1) in the algebraic (=polynomial)
category. Thus §1 will be devoted to the reconstruction, in this category,
of certain known results concerning the structure of Gauss-Manin
systems. Two types of finite presentation are given there: one as a
differential system for a vector of unknown functions, due to K. Saito
[17] and F. Pham [14], the other as a differential system for a single
unknown function, proposed by S. Ishiura [7]. The former assures the
existence of such expansion of @ as explained above (cf. Theorem 2.2)
but does not fit easily for concrete computations, while the latter can be
computed immediately from F' itself but does not seem to provide so
many qualitative informations on its solutions. Thus, the very key
to our later arguments lies in making clear the connection between the
two presentations, or rather, it might be said that the construction of @
itself tells us something about it. These circumstances will be explained
in §2, as well as how we approach to determining the explicit form of
the expansion of ®. Throughout this article, we will freely use the
symbols representing the derivatives of the delta function in place of the
complex powers. A superficial reason for this is to avoid the exception
special values of A and to distinguish the constants depending on A from of
the others.

The author would like to express his sincere gratitude to Professor
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Kyoji Saito, Professor Kazuhiko Aomoto and Professor Mitsuo Morimoto
for their valuable suggestions and constant encouragement. He also
thanks Professor Michitake Kita and Mr. Shinzo Ishiura for the daily

discussion with them.

§1. Presentation of the Gauss-Manin system.

1.0. Notations.
Let T=C™ be the complex affine m-space Wlth canonical coordinates

t=(t, -+, tn). Then we denote by ZZ(T) the affine ring C[t]=C[t, - -, t.]
and by @(T) the <#(T)-algebra C[¢; D,]=Clt, -+, tw; Dy, - -, D,m] of
differential operators with polynomial coefficients, where D, =4/d,, for
1=k=<m. We use the notation

(1) 84,(f): =Dy, F1=Dof —fD,, for feB(T)

to distinguish the operation of a vector field on a function from the

composition as operators.
Let S=CxT be the affine (m+1)-space with coordinates (&, t)=

(toy ¢, + <+, t,) and = the canonical projection S— T. Then we define the
localization of =/(S) with respect to D, by
(2) 2O D:;1=2(8S) ® C[D,, D;']

with the commutation rule
_ = ([ —k —k—1
(3) Diif=3,( . |ouD;

for k€ Z and fe <#(S). Note that the right side of (3) is a finite sum
since f is a polynomial in ¢, We denote by =Z(S)[D;'](0) the sub-
algebra of = (S)[D;'] which consists of all operators of order at most
Zero.

1.1. Gauss-Manin systems.
To formulate Gauss-Manin systems, we follow the framework of

K. Saito [17]-[19], while our arguments will be carried within the

algebraic category.
Let X,=C" be the affine n-space with canonical coordinates ax=

(@, +++, 2,). With the notations in 1.0, we define X=Tx X, and denote
by ¢ the canonical projection X — T. Then setting Z=S8 X, X, we obtain
a cartesian diagram
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z- % x

(1) o |

P
of affine spaces, where p and # are canonical projections. Hereafter,
the space X, is identified with the fibre ¢~*(0) or »~*(0).

Fix a polynomial f=f(z) in “#(X,) and its deformation Fy=F({, x)
over the parameter space T; F,e Z(X), F,,-o=f. In view of the diagram
(1), we define two morphisms ¢: X—8 and ¢: X—Z by @(¢, x)=(—-F(t, ), t)
and ¢(t, x)=(—Fy(t, x), t, ) respectively, so that #or=idy, pec=¢ and
wo@=q. The critical variety of @, denoted by C, has the affine ring
R (C)=A(X)/(3,F,), where (3,F,)=(9,F, -+,0,,F,). The image 9(C),
denoted by D, is called the discriminant set of #. Note here that the
space X is isomorphic to the smooth hypersurface ¢(X) in Z defined by
the polynomial F:=t,+F, in £2(Z) with the distinguished parameter ¢,

Now, we propose to investigate the differential system of Gauss-
Manin associated with the deformation F. For this purpose we use the
symbols 6#'(A € C) which represent the derivatives D}, of the “delta
function” 0,=02. For each complex number A, we denote by M; the
free “2(X)-module with basis (0% )2

(2) }=,‘G9292’(X)3;5"" .
Here, we define the operation of D,, ¢, D,; 1=j=m) and D,, (1=i=n)
by
D, 0% =530
0
10 =—F0P —Nog™
Dtjag) =atj(Fo)3g+1) l=sj=m)
D, 0% =0, (Fo)o¢+" (lsi=n).
With these operations, each M? becomes a left <2(Z)[D:']-module
generated by 6% and has a finite presentation over 2(Z)[D;']
| (F-+AD398 =0
(4) | (Dy;Dit—0, (F))oP =0 1=j=m)
(D, Di;'—0,(F))of =0 Asisn).

Similarly we define

(3)

(5) MP =@ 2(X)og~"
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for ne C. Then each M’ has a natural structure of left =(Z)[D;'](0)-
module and has a finite presentation (4) as well. The modules M#E+¥
(ke Z) form a filtration of M} compatible with the order of operators and
one has Mi= U,., M@#*,

For each \e C, we define the Gauss-Manin system H} by

(6) . Hi=M}[3. D, M}

=1

and denote by de the canonical surjection M} — Hf: e.g., \ 0¥dx=the

modulo class of 6%. H} has a natural structure of left =(S)[D;']-
module induced by the 2(Z)[D;']-module structure of M}. Similarly,
for each M e C, we define the =(S)[D;;'](0)-module H;” by

(7) HP=MP f_\i DZ‘M}'I——D .
Indeed, the injection M# 2 — M} induces a natural homomorphism H#? —
#, but it is no longer injective in general.

A more systematic way to introduce the Gauss-Manin system H} is
to use the the De Rham complex of M? relative to the projection Z— S.
We denote by £2%,s the <2(Z)-module of differential p-forms relative to
Z— S with coefficients in 2(Z); 2%s=Dr, P (Z)dx, and 2%s= A? 2% ;.
The relative De Rham complex of M} is defined by

. dZ d
(8) Qz/s(szv)ZO-——)Qoz/Sg%) M}v__/_‘s; IZ/S ® M3 zis.

#(Z)

d

F(Z)

with the differentiation
(9) dz,s(w®u)=dz,sw®u+g de, A@@Dzu

where we 2;,s and ue M?. In terms of this complex, we have an
isomorphism

(10) H} "S5 HYR,,(M2)) for neC.

As to MP, we define the relative De Rham complex by

D) QoMY 0—— 03 @ ME™ 50y, @ M=+ 225, ...

#(Z) #(Z

dZ/S

P
3s Q MP—0.
#(Z)
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Then we have

(12) HP "S5 HY (2, (M#)) for rneC.

Note that the complexes 2,,,(M#*%) (ke Z) define an exhaustive filtra-
tion of 2,,(M3%).

REMARK. Assume that A is not an integer and consider the many-
valued holomorphic function F~*'! on Z\¢((X). Then the £2(Z)-module
2 (Z)F~** has an expression

(13) D(Z)F ' =RD\FF 7~ = @ BX)F 77+
In this case, as the correspondence

@ I'v+1) o gry-2a
defines a <= (Z)-isomorphism M: S 2(Z)F-*', we have an 2(S)-
isomorphism

(15) Hi—=> 9(Z)F-+ ; D, Z(Z)F* .
=1

Thus the Gauss-Manin system H? provides the differential system that
should be verified by the integral of the complex power F—*

(16) wlt,, t)=§ Flt, t, o) e de=dm A Ada)

T(tg,t
where the integral is presupposed to allow the integration by parts and
the differentiation under the sign of integral with respect to the para-
meters (¢, t). In this sense, our formulation is the same as that of K.
Aomoto [1] and M. Kita-M. Noumi [11], where a larger class of complexes
than ours are studied under the name of ‘“twisted rational De Rham
complexes”.

1.2. Structure of the Gauss-Manin system H3.

This paragraph contains an algebraic analogue to a result of K. Saito
[17] or F. Pham [14]. Ideas of proof are borrowed from M. Kita-M.
Noumi [11]. Here we impose two types of condition on f and F.

First, we assume

(A.1) f(0)=0 and f:X,=C"——C has an only
180lated critical point at the origin .
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On this assumption, the quotient ring C[«]/(6.f), Where (3,f)=
0,.f, ++*y 0,,f), is a finite dimensional vector space over C, whose
dimension will be called the Milnor number of f and denoted by p=pu(f).
Let

df

(1) (@ df): 0— 2 L0 0 A B o
be the Koszul complex of df, where 2% =@, Clz]dx, and Q% = N\? 2%,
Recall that the partial derivatives o,,f, ---, 4,,f form a regular sequence

in the regular local ring C[«x].. Hence, one obtains
H?*(2%,; df)=0 for p=#n
H"(2x,; df) —Cla)/@.f) -

The n-th cohomology H"(2%,; df) will also be denoted by 2, so that 2;
is a pu(f)-dimensional vector space over C.

The second assumption is concerned with the homogeneity of f. Fix
an n-vector p=(p,, -+, 0,) of positive rational numbers, called the weight
of x=(x,, -++, ,). For a multi-index v=(v, ---, »,)€ N", define <p, v)=
>, 0>, Then, for a rational number ¢, a polynomial g in C[x] is called
weighted homogeneous of p-degree ¢ if it has an expression

(3) 9@)= 3 e’ (a,e0),

o,v)=¢

(2)

where ¢ =i --- x;». In terms of the Euler vector field 6,:=3>71, ox.D,,,
it is equivalent to the condition 6,9=¢g. A polynomial g in x is called
of po-degree<e, if it can be written as a sum of weighted homogeneous
polynomials in = of p-degree<e. With this terminology, the second

assumption is stated as

(A.2) (i) flx) 18 a weighted homogeneous polynomial of p-degree 1.
(ii) The p-degree of F(t,, t, x)—f(x) 18 strictly less than 1.

By an effect of the assumption (A.2.i), the Koszul complex (Q%,; df)
has a direct decomposition into the eigenspaces of the Lie derivative L,,.
For ec @, we define the space of weighted homogeneous p-forms of p-
degree ¢ by

(4) 2%,..={we 2%; Ly, w=cw} (Y =Y

Then we have 2% =@..o 2%,.. (Note that 2% .=0 if ¢<0.) Moreover,
for each ¢ @, we define a complex
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: d d
(5) (@ ,(€); 4F): 0— Doy I 2y D L
dfn

° _—’Q}o,s_)o ’

so that (2%; df) =@D..q (2%,(6); df). Thus we obtain a direct decomposition
of cohomology groups

(6) H*(Qz,; df)= @ H*@x(e); df)  (0=p=n).

As to the n-th cohomology group, set Q,(c) =H"(2%,(€); df). Then we have
a direct decomposition R2,=@D..o 2,(e) by the p-degree. Noting that
.Qf:—C[x]/(a, f), one sees that the quotient ring C[x]/(d,f) has a C-basis
consisting of the residue classes of polynomials all weighted homogeneous
with respect to the weight p. A rational number ¢ is called an exponent
of f if Qs(e)+#0. Since 1¢(3,f), the rational number ¢,:=>", 0, is
necessarily an exponent of f and that minimal. In fact, we have L, dx=
edx (de=dx, A\ --- Ndzx,).
The assumption (A.2.ii) requires that F' should have the form

(7) F@, t, ov)=to+<p'§y>3<1 a,(t)x” +f(x) (a,(t)e C[t) .

Consider the Koszul complex of dF,

. dFoA dFyA dFon
(8) (Q%/r; AF,): 0 > Q%7 = %/ = .. O’Q}/r »0

and define 2,:=H"(2%,;dF,). Then we have

PROPOSITION 1.1. Assume that (A.1) and (A.2) hold. Then
a) H?*(Q%,7; dF)=0 for »#n,

b) The C[t]-module 2,=H"(R%,; dF,) i3 free of rank p=p(f). More-
over,let @, -, W, be weigted homogeneous n-forms in 2%, whose residue
calsses form a C-basis of 2;. If we consider w, :--, W, as n-forms in
Q2% ,r, then their residue classes form a free C[t]-basis of 2.

PrOOF. Choose a positive integer h such that pheZ for 1<i=<n.
For each integer 7», set

F Qi =@ Cle] @ (L) < Qe

Then it is easy to check that (F,Q%,),.z define an increasing filtration
of 2%, such that
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Q:I’/T: UZFP‘Q..Y/T and FrQ:X’/T=0 if ')‘<0 .

Moreover, this filtration is compatible with the exterior product dF,A,
so we have a convergent spectral sequence
Ermm+e=H*(gr](Q%/r; AF,)) == H?*(Q%/r; dF) .

(See Cartan-Eilenberg [5], XV, 4.) The assumption (A.2.ii) then implies
an isomorphism of complexes

0r1(Qxyr; AF) = (CI81 @ Qx(2); df ) »

for r € Z. Since H?(C[t] Q¢ 2%,(r/h); df)=Clt] Qc H* (2% (r/h); df), by (A.1)
and (A.2.i) we have
0 if p#*mn
H*(gr{(Q2%/y; AdF)) —-{ r .
C[t] @ .Q;(-;b-) if p=n.

(See (2) and (6) above.) This means E;™"*?=0 for p+#mn, hence, by the
machinery of spectral sequences, we obtain

H?*(Q%r; dF)=0  for p=#mn,
which proves a), and
Hgr" (Qx/r; AFy) — grF(H (Qxr; dFY))

The last isomorphism says that, with respect to the natural filtration of
27 Wwe have an isomorphism

i1 .Q,(;'; )——»g'r, (2, for reZ.

Since 2,(r/h)=0 except for a finite number of 7, we may conclude that
Q7 is a free C[t]-module of rank g and that a weighted homogeneous
C-basis of 2, induces a free C[t]-basis of 2, as desired. Q.E.D.

Now we turn to the Gauss-Manin system H2. Recall that

(9) H}—> H"(22s(M})) and HP —— H"(2,,5(M))

for each e C. In view of 1.1.(5), we obtain an exact sequence

(10) 00— MG s MP 22, 92 PB(X)—0 ,
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where o, is defined by

() ai(F e, D08 ) =aitt, @)

Noting that 2,,(M*)Y?=02%; Qaux M¥ "+, we define the “symbol” homo-
morphism

12) o?f: QZ/S(MI(‘”)?_——’Q}/T

by d}(w@u)=wo;_,,,(u) for w € 2%,, and uw € M#"*?, Then we obtain an
exact sequence of complexes

(13) 00— Q/s(MEDY — 2, (MP) 2 03— 0,

where 2%, stands for the Koszul complex (2%,; dF,). So far as (A.l)
and (A.2) hold, the cohomology groups of this Koszul complex are known
by Proposition 1.1. Hence, passing to the long exact sequence of
cohomology groups, (13) induces natural isomorphisms

(14) H?(2,s(ME ™)) —— HY(2,s(M&)") for p+#n

and an exact sequence

(15) 0—— H*(22,s(M{))—— H"(22,s(M{)") — H(Q%,r; AF,)—0 .

Thus we have proved

PROPOSITION 1.2. On the assumptions (A.1) and (A.2),
a) There i3 an exact sequence

,’.(2)

0— H} "— HP — 2, —0

Jor each € C, where r*® is an Z(T)-homomorphism characterized by
r?P (@) =[w] for weQ%,.

b) For each neC, H" (ke Z) define an exhaustive increasing
filtration of H} such that D,: HFY — HE Y 43 an isomorphism for each
keZ. '

The assertion b) is clear.
The next theorem is compared to Proposition 6.2.2 of F. Pham [14],
2éme partie.

THEOREM 1.3. On the assumptions (A.l) and (A.2), let w,, -+, @, be
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wetighted homogeneous m-forms in Q%, whose residue classes form a C-basis
of 2;. For 1=i=p, we define

Wyt =S 0Pw, e HP ,

considering @,, -+, W, as n-forms in Q%,,. Then u, -+, u, form a free
basis of H" over the ring C[t][D;'], so that the Gauss-Manin system H®
(resp. H}) is a free C[t][D;']-module (resp. C[t][D,, D;'l-module) of rank
pr=p(f).

First, let us show that w,, ---, u, are independent over the ring
Cltl[D;;']. Let P, ---, P, be operators in C[t][D;'], not all zero, such that
Pu,+---+Pau,=0. Set k=—max {ord (P,); 1=<¢:=<pu} and denote by a,=
a,(t) the coefficient of D;* of P, for 1<i<pg. Then through the “symbol”
homomorphism »%-¥: HZ ¥ Q. one sees a,w,~+ -+ +a.w.=0, which con-
tradicts to the fact that w,, ---, @, form a free C[t]-basis of 2, (Proposi-
tion 1.1.b)). Next we will prove that each element we H® has an
expression

(16) u=Pu,+---+Pu, for some P,eC[t][D;'].

To do so, it is enough to consider the case where u=§ 0w with we 2%,
since S }‘""sz;;kS P w.

LEMMA 1.4. Let w be an n-form in Q% of p-degree €. Then there

exist polymomials a,, ---, a, in C[t] and an n-form { in 2%, of p-degree<
e—1 such that

|opw=3 o | 000+ D5 | oc .
i=1

PROOF. We use the notation in the proof of Proposition 1.1. Set
r:=ch so that we F,2%,,. Recall that

n FrO' . — L
HMgr!(Qr; dF9) =C[1] @ 2,(%) .
This implies that there exist a, -+, a.€C[t] and ne F, 2%} such that
c¢)=§i a0, +dF, A7) .

Here we have
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| opar, An= dog-> Ap=—{ a3-2ay
by the integration by parts. Hence

S =S g, S 6P w,— D;:! S 5¥dy .
i=1

By the definition of F,2%}, 7 is an (n—1)-form of p-degreex=(r/h)—1=

e—1. Since [L,, d]=0, one sees that d7 is an n-form of p-degree<e-—1.

This proves Lemma. Q.E.D.

By applying Lemma 1.4 repeatedly, we see that, for any integer
Nz=0, there exist afcC[t] 1=i=<y, 0sk<N) and a n-form {€ 2%, of
p-degree<e—(IN+1) such that

i=1 k=0

N
am S Pw=3 3 atDtu,+ N § oL .

Let ,=2'2, 0, be the minimal exponent of f and set N=[¢—¢,] so that
e—(N+1)<e,. Then we have {=0. Thus we have proved that u,, ---, u,
form a free C[t][D;;']-basis of H®. The “resp.” part follows easily from
this by Proposition 1.2.b), which completes the proof of Theorem 1.3.

COROLLARY. Let w be an n-form in 2%, of p-degreese. Then there
exist operators P,, ---, P, in C[t][D;'] of the form

N
P,=k2o atD;* (ateC[t]) with N=[e—¢,],
where €, stands for the minimal exponent, such that
S $Pw=3 Pu, .
i=1

We keep the assumption of Theorem 1.3, and denote by # tne column

vector *(u,, ---, wy). Recall that the Gauss-Manin system H2 is a left
module over the ring

(18) 2 S)[D;'1=Clty, t, D, D]D;;'] .

Theorem 1.3 tells us that, as to the operation of ¢, D,, 1<k=<m), there
exist ¢ xp matrices A and B® (1£k=m) with entries in C[¢][D;;'] such
that

19) {tou =A(t, D,)u

D, D:%=B®(¢ Dyi (sksm).
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The matrices 4 and B* (1<k<m) are uniquely determined since u,, : - u,
are independent over C[¢][D;']. Since the vector field D, operates on
H} as an isomorphism, one may replace (19), if one prefers, by

{D:gtoa=ngA(t, D,)u

20
(20) DY tk-dzptzwgB(k)(to, D, )u Ask=m)

with N large enough so that the operators should not involve Dg'.

PROPOSITION 1.5. The differential system (19) gives a finite presenta-
tion of the Gauss-Manin system H} (resp. HP) over the ring 2/ (S)[Dy']
(resp. 2 (S)[D;'1(0)).

PROOF. Let P be a row vector of size g with entries in Z(S)[Dg'].
Then one e¢an check that there exist a sequence of row vectors

Qo Q, -, Q, in Z(S)D;') and a row vector R in C[t][D,, D;'}* such
that

P=Q,(t;— A)+ 3, QuUD,Di—B*)+R.

Assume Py =0Q. Then we have Ru# =0, which implies =0 since u,, - - -, U
is free over C[t][D,, D;;']. Hence

P=Qut;—A)+ 3, QuD, Di—BY) .
This shows that (19) gives a finite presentation of H} as a =2(S)[D;']-

module. The “resp.” part can be shown similarly. Q.E.D.

Here we include a remark on the Gauss-Manin system HZ,., (on the
assumption (A.1)). Let ¢, ---, &, be the exponents of fand let w,, - - -, @,
be weighted homogeneous n-forms, with w, € 2%,(e,), whose residue classes
form a basis of 2,. Then we define

@1) w,;z-_S 00w, HY, for 1<i<p.

Then the Gauss-Manin system for the column vector @ ="(w,, -+, w,) can
be computed directly, so that we have

(22) toi = —ADZ'W

where A is the diagonal matrix diag (A —e¢,, -+, A—&p).
We remark that our formation of the Gauss-Manin system Hj is
compatible with the “restriction of parameters ¢”. Hence, as to the
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matrices of the presentation (19) for a general F, we have A|,.,=—4D;".
In this sense, the differential system (19) gives a “deformation” of the
system (22).

The matrices A and B%® (ISkSm) of the presentation (19) can be
written in the form

A(t, D,)=3 A,@&)D:r
(23) { r=0

B%(t, D,)=3 B¥®)Diy" ,
r=0
where A,(¢), B (t) are pXx ¢ matrices with entires in <2(T)=C[t]. To

end this paragraph, we explain how the matrices A, and B® are com-
puted. Lete,, ---, e. be polynomials in C[x] such that w,=edx (1=<i<p)

and set é=%(e, ---, es). Then, by chasing the proof of Lemma 1.4, one

can see that the matrices in question are determined by the relations
'—Fo—éEAo_é

24 | mod (3,(Fy) ,

(24) 3, (Fo)6 = B%s od (0,(FY))

in Z(C)=2(X)/(0,(F,)). Recall that the affine ring <2(C) of the critical
variety has a structure of module over 2(S)=C[t,, t] induced by ¢: X—8S.
Then, the first equation of (24) involves that the .<2(S)-module 2(C)
has a finite presentation

(25) 0—2(C) — 2 S 2= sy,
where I stands for the identity matrix of size p#. So the discriminant
set D=@(C) has a defining function

which will be called the discriminant of . (See K. Saito [19].)

1.3. Generating function for H}.
This paragraph is an algebraic version of S. Ishiura [7]. Here, we
review an explicit presentation of H? as a differential system involving

a single unknown function u=§ 0¥dx, on an assumption of “non-

degeneracy” of F.

Let I be a positive integer with I<n and I=<m. We use the
notation
(1)

{x=(x', z") ; =, 0,2, &' =Xy * 0y T)
t=(t" t") H t’=(t1’ R tl) » t"z(tl+1’ c Tty tlm) .
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Assume that
(B.1) F' is written in the form
F(t, t, x)=t,+t,x,+ -+ -+, +GE”, ') +at + - - +ad .
where G 18 a polynomial in C[t”, «'].

On this assumption, we try to compute directly the differential system
to be satisfied by the integral

(2) u:=S SPdz e HY |

By 1.1.(4), we have

(3) {D,‘D,;‘B‘F”=xi§‘p" for 1<i<l
D,,D7%% =20,09  for I+1=<j<n.

Hence, with the notation D, D;'=(D,D:}, ---, D, D;Y),

to 9

ttr D) |o9do= - | Fut, 0)o9ae

= —iz:.l' t; S 2 0P dx— S G@", 2')0Pdx— E”j Sx?,-&‘;?’da:

J=i+1

(4) ——3 t.D, Di;* S o¥dx—G(t", DD S 0P dx

i=1
> 5 Vo DDFopds

j=T+1
l

T=

J
= (10D +G(t", DD —"=!D5) | o9do .

-

Thus we have
l .
(5) (t+X tD.D7+G", D, D) +<>\.—nTl)D;;1)u=0

On the other hand, the presentation 1.1.(4) implies

D, Do =t +G, (", 2)0P

6
(6) =(t,+G, ", D,D;))8®  for 1=<is<l

where G,,:=4,,G. Hence, we obtain

(7) (t+G, ", DyD;)Yu=0 for 1=<isl.
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Similarly, we get
(8) (Dy;— G, (t", Dy Di!))u=0 for +1j7sm .

Summarizing, the integral (1) satisfies the system of differential equa-
tions

1
(to— 3, D, DFG.(t", D.Di)+G(¢", DD+ (x—ﬂ‘_l) D )u=0

9 2
9 Ne+G", DDPu=0  (AsisD
(D,,~G.t", D,DPu=0  (+1<j=m),

where the equation (5) is rewritten by wusing (7). Let (z,7')=
(toy T1y +++, T;) be the dual variables of (¢, ¢, - -+, t;). Then we find that
the system (9) has the generating function H(z, 7', t") in C[z,, 7', t")[z5"]
defined by

(10) H(z,, 7, ") = —7,G({", 7’75,
so that the system should have the form

(to - Hro(Dtoy -Dt'; t") + (X - ?%TH)D,BI)'&L =0

(t‘—Hft(Dtot Dt'y t"))u':o (1§'L§l)
(Dy;+H,(D,, D, t"u=0  (+1=j=m).

11)

Now we propose to prove that the differential system (11) gives a
finite presentation of H}, namely, the left =(S)[D;']-module H} is
isomorphic to the one defined to be the quotient module of =Z(S)[D;']
modulo the left ideal generated by the operators appearing in (11).

The first thing we do is to erase the term «},,+---+2% in F. Assume
that F is written in the form

(12) F(to’ t? x) =F'(t09 tr x')+x%+1+ s +x3,
with F'(t, t, «')=t,+ Fs(t, #'). Then, one might expect the “equality”

(13) S 0¥dx” =const. - &V

Let M}, be the 2(Z’)[D;;']-maodule which is defined analogously to M; on
the affine space Z’=C'x S with coordinates (%, ¢, x’).

PROPOSITION 1.6. With the above motation, we have a matural iso-
morphism
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M;T‘"—”/Z——N—)Mév/_ z”: ijMI/},

J=i+1

which sends 03"~V to the modulo class of 6.

PRrOOF. It is enough to consider the case where I=n—1. Note that

| #i0Pde,=— | 2,D,,D; 0P de, = ~~0; | o¢da, ,

where the symbol den stands for M} — M;/D, M}. It is easy to show
that S&}?’dwn satisfies the equations of 0%~"*’ corresponding to 1.1.(4).
This means that there is a =2(Z")[D;;']-homomorphism M} “* — M}/D, M}
which sends 0~ to 6{’dx,. To prove that this homomorphism is
bijective, it is enough to show that M;/D, M; is a free C[t, «’'l[D,, D:']-
module of rank one with basis | 6%dx,, which can be checked by a direct
computation. (Write each element of M} in the form 3\, a.(t, ', D, )xkos"
with a.(t, ', D,) € C[t, «'ID,, Di'].) Q.E.D.

PROPOSITION 1.7. On the assumption (B.1), the Gauss-Manin system
H} is a free module of rank one over the rimng C[t”, D, |[D,, D:'] with
basis Sﬁg’dw.

Proor. By Proposition 1.6, we may assume that [=n, so that a'=
r=(x,, -+, ®,). Set A=C[¢, x, D,, D;;']. Then M} is a free A-module of
rank one with basis 6%’. For each d € N, let us denote by A (resp. 4,)
the C[t", x][D,, D;']-submodule of A consisting of all elements of
degree<d (resp. homogeneous of degree d) in t'=(¢,, ---, t,), so that A=
A,=C[t", z][D,, D;;']. Setting K =Q,(M})’, we define an increasing
filtration (F,K'),.xn of K by

F.K'=025 Q Ar—rtig) (reN),

C[z]
so we have a convergent spectral sequence
Errrtr=HYgriK') — H?(K') .

On the other hand, setting w=37,¢D,dx;,, we consider the “graded”
Koszul complex L' =(2%, Qcr1 4; @) of @ endowed with the graduation

(L)ren 5 L;=(Q}0(<:EL_?] Arnr;@)  (reN).

Then it is easily checked that there is an natural isomorphism of
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complexes
gri(K)— L,

for each e N. Since ¢,D,, ---, t,D, form a regular sequence in A, one
has

{H”(L',)=O if p#n or »=0
H"(Ly)=C[t", ][ D,, D;}] .

This means

{E{""‘“’=0 except for (—7»,r+p)=(0, n)
Ey=C[t", z][ Dy, Di'],

hence we have an isomorphism
H"K")«—CI[t", z][D,, D7"] .
Thus we have proved that there is a natural isomorphism
C[t", x)[D,, D;16® — H .
Note here that
| 209dz=D, Dz S 0Pde  (1=isn),

and that the correspondence w,— D, D;'(1=i=<n) defines a ring isomor-
phism C[t", z][D,, D;'1=C[¢t", D,][D,, Di;']. Hence we know that

c[t’, D, D, D:;]S 3P dp = HA

and | 0#da is a free basis over C[¢", D,1(D,, D3, Q.E.D.

By using Proposition 1.7, we can prove
PROPOSITION 1.8. On the assumption (B.1), set
H(zy, ', t"):=—7,G({"”, T'75Y) .

Then the 2(S)[D:'l-module H} has a finite presentation
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(t-—H.(D,, D., )+ ( —i‘zﬂ)p,—;)u=o

(¢,— H. (Dyy, Dy, t"))u=0 1<i<))
(Dy;+H, (D, Dy, , "Nu=0  (I+1=<j=m)

with respect to the integral
u=§ oPdeec HYP .

PROOF. We have already seen that the u satifies the above equations

in H}. Note that each element Pe 2(S)D;;'] can be written in the
form

! m
P=Q(t-H,+(\-2ND0)+ 3 @t B+ 3 @D, +H )+,

with @, € Z2(S)[D;'] (0<k=<m) and R e C[t", D, |[D,, D;']. If Pu=0, then
Ru=0. Since u is a free basis of H? over C[¢”, D, | D,, D;'], this implies
R=0, which was to be proved. Q.E.D.

In the later arguments, we will be concerned with the case where
F=F(,t, x) is weighted homogeneous in (toy t, ). Here we contain a
remark on such cases. As in 1.2, let p=(o, ---, p,) be the weight of
=, *++,2,). Now let o=(a, ---,0,) be an m-vector of rational
numbers, which we do not assume to be positive. We make the
assumption

(B.2) F=(t, t, x) is a weighted homogeneous polynomial of degree 1
with respect to the weight (1, o, 0) of (t, t, ).

Hereafter we assume that F' satisfies the conditions (B.1) and (B.2). In
this case, one necessarily has

(14)  o,=1—p, for 1<i<l and p,-=-;— for I+1<j<m .

Moreover, one sees easily that the generating function H(z,, ¢/, t'")=
—7,G(t", T't7") is weighted homogeneous of degree zero with respect to
the weight (-1, —d’, 6”) of (z,, 7/, t"), where ¢'=(0,, ---, 0,) and ¢"=
(O144y --+, 0,). Hence we have an identity

l m
(15) — D, H,— 3, 0.D H. + 3 0;t;H,=0
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in C[t", D,][D,, D;']. By (15), we obtain from Proposition 1.8

l n
(16) (Dot 2, 0.D b+ 3 0st:Diyt (r=2E) Dzt Ju=0.

Ji=i+1 2

We define the Euler vector field 6 on the space S by
17 0:=t,Dyy+ 3, tuD,, -

Then the equation (16) is rewritten in the form

(18) (@+14+rn—e)u=0 with e*=§ 0,
where we computed

: n+l L z
143 ot n—"Ele 14 3 1 —p)4r— 3, p,—1
i=1 2 i=1 j=1+1

19)

using (14). Thus we have

PROPOSITION 1.9. On the assumptions (B.1) and (B.2), the Gauss-
Manin system H} has a finite presentation over 2 (S)[Dg']

@+N+1—e)u=0
(4G (¢", D.D:"))u=0 A==0)
(Dtth—ol—th(t"y Dt’Dt_ol))uz'o I+1=s5=m),

where 0 =t,D, + 3w, 0,t,.D,, is the Euler vector field on S and €,=>7; 0;-

It is easy to show that the left ideal of = (S)[D;;'] generated by the
operators appearing in Proposition 1.9 coincides with the one correspond-
ing to the presentation of Proposition 1.8. (In fact, the operators other
than #+4+A+1—¢, are the same as before.)

REMARK. Assume that F satisfies the condition (B.1). Then the
“characteristic variety” of H? is given by the equations

{ti—H,,(z'o, o, =0  (0=isl)

(20) ) X
T+ Hy(z, T, t)=0  (I+1=j=m)

on the open set {r,#0} of the cotangent bundle 7*S. In this sense, the
polynomial H(z,, 7, t"”) is the generating function of the Lagrangean
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variety. (See S. Ishiura [7].)

§2. A reduction of the Gauss-Manin system.

2.1. Reduction at a point of infinity.
In §1.2, we have proved, on the assumptions (A.1) and (A.2), that
the Gauss-Manin system H? has a finite presentation

(1 {to'ﬂ::A(t, D,
D, D7=B®(t, D)i  (1<k=m),
where ‘
At, D=3, A(t)D;"
(2) = (A4,, B}" € M(¢; C[t))
{B""(t, D=3, BY®)D;’

are u# Xy matrices with entries in C[¢][D,, D;']. In “simple” examples,
the integer N reduces to one, as we will see in §3, so that the system
(1) has the form

(3) { tott = (A () + A, () D) u
D, Di=(B¥®)+BP®ODE  (1<k=m) .

Moreover, as was remarked in 1.2, the system (1) or (3) gives a ‘“defor-
mation” of the Gauss-Manin system H}., presented by

(4) tip=—ADD With B=leo ,

where 4 is a diagonal matrix.

Apart from the Gauss-Manin system, let T be an open polydise in
C™ with center at the origin and denote by < (T) the ring of holomorphic
functions on 7. In this paragraph, we start with a differential system
on S=CXT in the form

D, tyii=(A,t) D+ AU
D, =B @)D, +B"@®Nu  (1=k=m).

Here #="'(u, -+, u,) is a column vector of x# unknown functions and
A,, B¥ are pxp matrices with entries in < (T). In the sequel, we use
the notations M(z; A) and GL(¢; A) to refer the ring of matrices and the
group of invertible matrices of size g with entries in a commutative
ring A, respectively. Assume that the following compatibility condition
is satisfied:

(H)
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(C.1) i) [Dtoto_AoDzo_Au Dtk—Bék)Dto—B{k)] =0 Al=sk=m)
i) [D,—B#D,—BP", D,—B{"D,—B"]=0 (1=k, l<m).

Note that the compatibility condition (C.1) is satisfied a priori if (H)
comes from a Gauss-Manin system. Moreover, assume

(C.2) Agli=p=0

and set 4=—A,|,-, so that (H) gives a deformation of the system
(5) Dt =—Aw with W=14,-

on C.

For the differential system (H), let us define its discriminant 4=
A(t,, t) to be det (¢,J—A,(t)), which is a monic polynomial in ¢, It is
immediately seen that the system (H) defines a meromorphic connection
on S at most with poles along the discriminant set D={4=0}. As being
a deformation of (5), (H) has a unique fundamental system 90=0(t, t) €

GL (#; 2(S\D)) of many-valued holomorphic solutions on S\D such that
(6) Dl,—o=1t74"

(putting 4 in the Jordan standard form, if necessary). Now we consider
the compactification S=P'x T of S=Cx T with respect to the direction
of ¢-axis. Since 4 is a monic polynomial in ¢, the discriminant set D
is closed in S and does not intersect with the plane {t,=oc} at infinity.
Furthermore, it can be directly checked that the system (H) has regular
singularities along {t,=o}. (In fact, if one uses the local coordinates,

say, (2, t)=(2, t,- - -, t,) With z,=1/t,, then the system (H) can be rewrit-
ten in the form

7 {zoD,oz'i=Z(zo, t)i
D, i=B%(z, t)ii A<ksm)
where A, B* are holomorphic on S\(DU{t,=0}) and A, ,.=I+4.) By

this remark, we are convinced that there exist a unique invertible matrix

T=¥U(t, t) e GL (#; &5,n) of holomorphic functions defined near (o, t)=
(oo, 0) such that

(8) O(to, ) =T (L, )t7* and ¥, =1

near (o, 0). In that sense, the fundamental system @ of many-valued
holomorphic solutions of (H) on S\D has a power series expansion near
the point (¢, t)=(cc, 0) at infinity. Thus we are led to find an explicit
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procedure to determine such an expansion of the fundamental system of
solutions.
For this purpose, we reformulate the above remarks from a different

point of view. First, we propose

LEMMA 2.1. On the compatibility condition (C.1), there is a unique
invertible matrixz Py,=P,(t) € GL (¢; & (T)) with the following properties:

a) Polt=o=I: A1=—P0AP0—1- .

b) By setting w=P, the system (H) i3 transformed into a system

{D,Otoii =(A(t)D,,— A)¥
D, 5=BY®)D,y (1=k=m)
of ¥, where A, B® e M(y; 2(T)).
Proor. It is directly checked that an invertible matrix P, e

GL (¢; (T)) has the property b) if and only if A,=—P4P;* and P,
satisfies the equations

(9) 3, U=B®U  (1sksm),
where U is a g x g matrix of unknown functions. The condition (C.1.ii)
implies

(10) é,,B*¥ —4, B" +[B¥*, B"]=0 A=k l=m),

hence the above system (9) has a unique solution in GL (¢; 22(T)) with
initial value I, which we take for P,. On the other hand, (C.1.i) involves

(11) 0, A +[4, B¥]=0  (1=<k=<m).

Hence the matrices A,P, and —P,4 both satisfy the above equations (9).
Since A,P, and — P,4 have the same initial value — 4, one has A,P,= — P4
everywhere on T. Q.E.D.

THEOREM 2.2. Assume that the differential system (H) on S=CXT
satisfies the conditions (C.1) and (C.2). Then, there exist a unique matrix

P(t, D) =20 P.)D;,; Pt e M(y; (1))

of f'o'rmal differential operators of infinite order with the properties
a) P,t=0=I! ?:.6., Po|¢=o=I and P,.]t=o=0 (1‘21),
b) By setting #u=Pv, the system (H) for # is transformed into the
8ystem
Dtotorv’z_A’-v’ ) Dtki;:O (1§k§m>
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for ¥». Namely, the matricz P=P(, t,) satisfies the equations
740, P+ PA+ (At +A)P=0, 0, P=(B#¥7,+ B*)P AZksm) .

Moreover, the operator P=3.7, P, D satisfies the estimate
¢) For every compact set KC T, there is a positive number Ry such
that

|P,|g=Rgk/r!  for rz=l,

where ||:||x stands for the supremum nmorm of a matrix of functions on
K.

ProOF. By Lemma 2.1, we may assume that B¥ =0 (1<k<m) and
A,=—4. In this case, the property b) required of P is equivalent to
the condition

i) rP,—[4, P,]+A,P,_,=0

>0; P_,=0) .
ii) 8,P,=B®P,_, (r= )

12) {

On the other hand, the compatibility condition (C.1) says

i) [4, B¥]=0, 04, Ay+B{¥ —[4, B{*1=0 A=sk=m)

13 .
(13) {ii) [B§, B{"]=0, 0, B* =09, BY Ak, I=m) .

Let us prove by the induction on » that one can find a unique sequence
(P)7=o in M(p: &(T)) satisfying (12.ii) with the condition a). For »=0,
(12.ii) requires that P, is constant, hence P,=1I. For r=1, it is enough
to show that the differential system (12.ii) for P, is integrable. In fact,
by the induction hypothesis, we have

0u(B” P,_)— 0, (B P, _,)
= (at; 5 — athé”)P,_l + Bék)anPrA - Bé”atl,Pr—l
=(at; % _atl, én)Pr—l'l'[BéMy én]Pr-z ’

which vanish for 1<k, I=<m by (13.ii). Next we will show the sequence
(P,)>-, determined as above satisfies the condition (12.i)) by means of the
induction on ». It is clear for »=0, since P,=I. For =1, one computes

at,,('rPr ~[4, P, ]+ AP, _,)
=rB®P,_,—[4, B P,_,]+ 08, AP, .+ ABP,_,
=B*(r—1)P,_,—[4, P,,]+ AP, _,)
+ (atkAo + Bék) - [/1, Bék)])-Pr-—l + [Ao, Bém]P,_2 ’
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which vanish for 1=<k<m by the induction hypothesis and (13.i). This
shows »P,—[4, P,]+A,P,_, is constant on 7. But, its initial value for
t=0 is zero by the condition (C.2) and the property a), so we have (12.i),
as desired. Lastly, we show the sequence (P,);-, satisfies the estimate
¢). Consider the linear mappings ».id—ad (4): M (¢; C) —M (g; C) for r=1,
where ad(4)=[4, -]. Since the sequence (id—(1/r)ad (4))7-, coverges to
the identity mapping as »— + o, there is a positive integer », and a
positive constant M such that i) ».id—ad (4) is invertible for »>», and
ii) ||(r.id—ad (4))7|=M/r for r>r,. By (12.i) we have

P,=(r.id—ad (4))'(4.P,_) for >,
hence, for every compact set Kc T,
| Pllx=M||Ao||x || Prsllx/r  for r>7,.
Putting Cx=7r,!. max {||P,||x; 0<s=7,} and Rx=max {M| A x, 1}, we have
|P,||g<CxRyx/r!  for r20,
which proves c). _ Q.E.D.

Note that the matrix P, of Theorem 2.2 coincides with P, of Lemma
2.1.

The estimate ¢) of Theorem 2.2 assures that the series

P(t, D )ts4 =3, P,(£) Dty 4"
(14) ’:0
=> P,@)(—A—1I):-- (— A—rI)tya-trinI
r=0 .

converges in a neighborhood of the point (¢, t)=(, 0). Moreover, the
series (14) is nothing but the expansion of the fundamental system & of
many-valued solutions of (H) near the point (co, 0) at infinity. It is in
this form that we are to construct an explicit expansion of the solutions
of the Gauss-Manin system H%. Thus, our problem is equivalent to finding
the unique matrix P(t, D,) of operators satisfying the conditions a) and
b) of Theorem 2.2. (See also Remark at the end of 2.2.)

2.2, Effect of the generating function for H}.

Now we return to the Gauss-Manin system H2. In §1, we showed
that the Gauss-Manin system H} has two types of finite presentation
under certain conditions. One, appeared in Proposition 1.5, has the form
2.1.(1). In this direction, we explained in the previous paragraph that
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the fundamental system of many-valued holomorphic solutions has a
power series expansion at a point of infinity so far as the presentation
reduces to the form 2.1(3). This presentation, however, does not fit for
the explicit computation of the solutions of an individual Gauss-Manin
system, for matrices A, B*® in 2.1(1) cannot be easily computed. On the
other hand, the presentation given in Proposition 1.8 has an advantage
in that one can know its explicit form directly from the polynomial F.
For this reason, we will make use of the latter presentation in concrete
computations and then reconstruct the expansion of the form 2.1.(14)
from the solutions computed in that manner. Let us explain this
procedure in more details.

In what follows, we will use freely the notation of §1. Let & be
a Z(S)[D;'}l-module, which we regard as a space of “functions”. Then,
by a “solution of H} in & ”, we mean a 2(S)[D;']-homomorphism ¢:
H;— #. If H} has a finite presentation of Proposition 1.5

tii=A(t, D,)i

1
(L) {Dt;,Dt?a:Bm(t; Dto)'ﬁ Asks=m),

then, by setting ¢,=¢(u,), a solution ¢: H: — & corresponds to a column
vector 5:‘(451, -++, 6x) of p elements of & satisfying the equations (1),
and vice versa. On the other hand, if H} has a finite presentation of
Proposition 1.8

” n +l —
(tr— He(Dey Dy )+ (M= T)D,ol)u =0
(2) (t—H.(D,, Dy, tYu=0  (1<i<l)
(Dy;+H,(Dy, D, t"Hu=0  (I+1=sj=m),

then a solution ¢: H — & corresponds to an element ¢(u) of & satisfy-
ing the equations (2), and wvice versa.

Now suppose that the conditions (A.l), (A.2) and (B.1) of §1 are
satisfied. In this case, the polynomial f=f(x) can be written in the form
f@)=g(@)+ai,+ - +a}, where g=g(') e C[z'], «'=(x, ---, ), so that
C[«')/(3,.9) = C[x)/(3,f). Hence we see that one can find a sequence
e, -+, e, of weighted homogeneous polynomials in C[z'] such that the
residue classes of w,=edx, ---, w.=e¢.dx form a C-basis of 2,. By using
such a basis, we define

(3) ui=Set3§3’dweH,‘v" A=i<p) .

As a convention, we always take 1 for ¢, so that w,=dx and
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(4) u:=u1=§3;”dx .

We denote by ¢, the exponent of f corresponding to w,=edx. (Then,
&, is nothing but the minimal exponent ¢, =372, p;,.) Recall that, on the
assumption (B.1), one has D, D; ;0% =x,0% for 1=<i=<l. Accordingly for
any polynomial a=a(2’) in C[z'], one has an equality in M

(5) a(2')8P =a(D, Di)o9

Hence we see that the above basis #="*(u,, ---, u,) is recovered from u
by the formulas

(6) u;=e,(DyD;)u A=sispy .

‘Moreover, if an element ¢ in & is a solution of (2), then the correspond-
ing solution g=%4,, ---, ¢,) of (1) is obtained by the formulas

(7) o, =e(Dy Di)o A== .

Having these in mind, we set to investigate the solutions of (2).
On our assumptions, the Gauss-Manin system H} is a deformation of the
system H},, given by

(8) ' ti=—AD;'W with W =1, ,

where A=diag (\—¢,, ---, A—¢,) is the diagonal matrix whose (¢, 7)-com-
ponent is A—e,. As we did in §1, we will use the symbols 65 (k£ €C)
representing the derivatives of the “delta function” d,, in describing the

solutions of H},, or H:. With these symbols, the fundamental system
of solutions of (8) can be given by

(9) oM =diag (8§20, ..., 8i3~) .
If N\—¢,¢ Z for 1<y, we may well take
(10) tr'T=diag (tg=31, .-, tpmY

for the fundamental system of solutions of (8) as the operation of D'
can be justified. As to H}, Theorem 2.2 implies that the fundamental
system of solutions of (1) can be expanded into a series

(11) S P()ou+rn

r=0

where P,(t) € M(g; C[[t]]) for » € N, on the condition that the presentation
(1) should reduce to the form 2.1.(8). By taking the first row of (11), we
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can see that the system (2) has g independent solutions in the form

(12) S @, (6o,

r=0

where k€ C and a,(t) € C[[t]] (reN), in that case. Here we used the
notation C[[t]] to refer the ring of formal power series in t=(t, -, tm)-

Taking general cases into account, we will try to find solutions of (2)
in a larger space of “functions” than that of all series in the form (12).
First, we denote by .« =C[[t]] [[D,, D:']] the C[[¢]]-module consisting of
all formal operators

(13) P(t, D)=, a.()D;,

where a,(t) € C[[t]] for r€ Z. Note that this module & does not have
a natural ring structure, while the module C[[t]](D,)): =CI[¢]I[D:]I[D:']
does. For each complex number £, we define a 2/(S)[D;;']-module, denoted

by 78", as follows. 702 is the space of all formal series

(14) Blto )= 5, a.()DIp =T, a, 035,

where a,(t) € C[[t]] for »€ Z, so that 3%3%’. Moreover, as in §1,
we define the operation of ¢, on d;y by

(15) tof = — kD0 =—rdE™  (£€C).

By this, one can specialize the 2/(S)[D;']-module structure of .o 0{. If
k is not an integer, the space 79" is identified with the space
CIltNil%., ta ' 1lts =~ of formal power series

(16) ¥ty =3, b, B, e CIIED
by the correspondence

a7 op—LEXL (—tg ke

Now assume that the conditions (B.1) and (B.2) in 1.8 are satisfied.
In this case, we may take the “weighted homogeneous operators” into
consideration. Let o=(o, ---, 0,) be a weight of t=(¢, ---, ¢,), fixed so
that (B.2) should be verified. Then, for a rational number ¢, an operator
P=3,.za,®)D; in & is called weighted homogeneous of degree ¢ if
each a,(t) is weighted homogeneous of o-degree ¢+ for »r€ Z. Symboli-
cally, it is equivalent to saying that {6, P]=¢P, where # is the Euler
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vector field ¢D, + >, ot D,,. For each e @, we set
(18) 7 (6):={Pe [0, Pl=¢P}.
Then, noting that
19) 0 = —(k+1)d;) ke(),
one can easily show by Proposition 1.9

LEMMA 2.3. On the assumptions (B.1) and (B.2), an element ¢ in
768 is a solution of (2) if and only if it can be written in the form

¢(t,, t)=P(t, D, )05
with a weighted homogeneous operator in 7 (e,+£—N) such that

{(ti+G”(t", 3, Di)P=0 (1<i<l)
8.,P=G,t", 3, Di)P (+1=j=m),

where 8,;=[D,;, 1.

Our problem is thus reduced to finding the weighted homogeneous
operators satisfying the equations of Lemma 2.3.

Let ¢ be a rational number. Then, each operator P in & (¢) has a
unique expression

(20) P(t, Dto)=<a @Z_r: a(a) Dto (a(a) e C) ,
where r € Z and a € N*. (For a multi-index a=(ay, - -+, a,)€ N™, t*/a! =

ta--temlo!---a,!, as usual.) In view of (20), we define
(21) N™e):={ae N™; {0, ay=e mod Z} .

(Note that N™(e)=Nn"(¢') if ¢=¢' mod Z.) Then, via the expression (20),
there is a one-to-one correspondence between the weighted homogeneous
operators in .7 (¢) and the functions a: N*—C with supp (a) CN™(e).
By this correspondence, one can naturally translate operations on P into
those on a. It is convenient for our purpose to introduce the operators
4,, T, 1<k<m) as follows: For a function a: N*—C, we define the
functions 4,a, T,a: N*—C by

(4ra)(a) =aa(a—1;)

@2) (Tha)(a)=ala+1y) for a=(a, -, a.)EN™,
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where 1,=(0, ---, i, «++,0). Then it is easy to check
LEMMA 2.4. Let P be the operator of (20). Then one has

wP=_ 3 (4a)e@)iiDie s (e+ay)

{0,ay—r=¢ttop

0y, Di'P= pY (Tka)(a) D,o € (+1l—o0,).

{o,a)~r=¢e+1—0p
By Lemma 2.4, it follows, for example, that

(23) @D P= 3 al@+) XDy,
{9,ay—r=s+(o’,v’) al

for each multi-index »'=(v,, - -+, v) e N*. Using Lemma 2.4, one can easily
translate the differential system for P of Lemma 2.3 into a difference
system for the corresponding a: N™*—C. But, before going furthur, we
propose in the next paragraph to reduce a general Gauss-Manin system
to the one associated with a special type of deformation by an operator
of exponential type.

REMARK. It is easy to show the following:
i) 0,20 for 1=sk=m= () C[[t]](D,)) for ccQ.
ii) 0,>0 for 1sk=m= () C[tl((D,,)) for c€Q.

REMARK. Let P=(P,;) be a matrix in M(/.c; Cl[:1[ D)) with P|,.,=1I
and let 4 be a diagonal matrix diag (A,, -+, \,) in M(g; C). Suppose that
the matrix @=P{? =(P,;0{}’) satisfies the dlﬁ'erentlal system

D tow = (A + A1)¢

(24) { D, 0= (B®D, +B*)d A=sk=m),

where A;, B{® are matrices satisfying the conditions (C.1) and (C.2).
Then, one can show easily

(25) {{[P, D‘ot] + PA+(A,D, +A1)P}3(’“ —

(9,,(P)— (B# D, + B#) P53 =0 <1§k§m>.

Note that A4 is assumed to be diagonal and each 6@ is free over
CI[:N[D;,]l. Hence, one necessarily has

26) {roa,op+ PA+(Ao+A)P=0

3,,P=(B{z,+B®)P .
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By this remark, we see that, if one can find a matrix P with P|,_,=1
satisfying (24), then it must coincide with the one constructed in Theorem
2.2. In view of this, a matrix @=P5{? will be called the fundamental
system of solutions if it satisfies (24) and @|,_,=d? in the case where 4
is diagonal.

2.8. A reduction of H? by an operator of exponential type.
Throughout this paragraph, we confine ourselves to the case where
the condition (B.1) is satisfied. Consider a polynomial

(1) f@=g@)+ > a3 (@ =@, -, )

J=l+1

in C[x], where g € C[z']. Then, the “smallest” deformation of f satisfying
(B.1) is given by

(2) F(t,, t, o): =to+g tx,+f(x)

which does not depend on the parameters t”"=(t,, *--, tn). As to the
Gauss-Manin system Hj, on S, let us denote its canonical generator by

(3) vi=|ogdee HY .

Then, with the generating function
(4) H(z,, t):= —7,9(z'zs") ,
H; is presented by the differential system

(to— Hei(Dey D)+ (1~ ’lzil)u,;l)v =0

(8) =B Dy, DYw=0  (ASis])
D,w=0 A+1=5=m)

(Proposition 1.8). Let
(6) Fto t, )=t,+ 3 ta+G(t", )+ 3, 5
=1 J=l+1

be a general deformation of f satisfying the condition (B.1), where
Glyreo=¢g. Recall that the generating function H for H} is defined as
(7) H(z,, 7/, t") = —7,G{", T'z5") ,

so that one has H|,..,=H. In this paragraph, we will show that, on
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the condition (B.1), the general Gauss-Manin system H? can be reduced
to the above Hj, by an operator of exponential type. To begin with,
we explain in a heuristic manner what it means. Define a polynomial
E=E{", «') to be G(t", 2')—g(x’). Then, one has

(8) F(t, t, x)=t,+E{", 2) -I-Z, tax;+f(x) .

Here we consider the “formal” Taylor expansion of 6%

(9) 9= 3 LB, )54 =exp (DB, #))-0f .
Nothing that D, D;'0{=x,0Y (1=i<l), we rewrite (9) in the form
(10) ¢ =3, - E(t", DoD;)3§" =exp (D, H(E", DoDi)-0§ .
Then, by integrating both sides, one might have

(11) | 89de=exp (DB, DD | 09dz .

This “equality” suggests that the Gauss-Manin system H? could be
regarded as an “evolution” of H} by the operator exp (D, E(t", D, D;").

In view of (11), we define a rational function K=K(z, 7/, t”) in
Clz,, 7', t"][z5"] by

K, ', t"):=—7,EE", T't5Y)

12 .
(12) =H(z,, ', t")—H(z,, T') .

It should be noted here that K|,..,=0 since H|,..,=H. Then, for the
operator K=K(D,, D,, t"), we define a ring automorphism Ad (¢*) of
2(S)[D;;'] by

(13) Ad (¢5)P= g‘, _Jl'_ ad (K)*P  for Pe2(S)[D7,

where ad (K)=[K, -].

LEMMA 2.5. For any operator K= K(D,, D,, t") in C[t", D.1[D,, D',
Ad (e¥) is a well-defined ring automorphism of 2 (S)[D;']. Moreover,
its imverse 18 given by Ad (e7%).

PRrROOF. Let us show that the right side of (13) is eventually a finite
sum. Then, the other part of Lemma can be proved by the Leibniz rule
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in a standard manner. First note that ad (K)=[K, -] is a derivation of
2(S)[D;;"] and that linear over the ring C[t”, D, ][D,, D;;']. On the other
hand, one computes '

(ad (K)t,= K. (Dyy Do, t"),  ad (K)it,=0 0=i<)
lad (K)D,,= — K., (Ds, Do, t"),  ad (K)'Dy=0  (I+1=jsm),

where K. =0, K and K,;=0,;K. Note that any operator P in 2/(S)[Dg}
has an expression

P._.

k+la’i+18'' SN

(14)

Qpwr, 85t DE” (kw50 € CY", Dyl[Dsyy Dii'D) s

where ke N, a'eN', B”eN~'. It can be shown inductively that
ad (K)!P=0 for d>N if P can be written as above. Q.E.D.

PROPOSITION 2.6. Let K=K(D,, D,,t") be the operator defined by
(12). Then the ring automorphism Ad (eX) of 2 (S)[D:'] transforms the
2(S)[Di;']-module Hji into H:.

Proor. By (14), one computes

Ad ()t~ H.)=(t+ K. )~ H,=t—H, (0<isD),
Ad (*)(D,,+H,)=(D;~ K.,)+H,;=D,; (+1=jsm).

Hence, one sees directly that the presentation of H} in Proposition 1.8
is transformed by Ad (¢X) into the presentation (5) of H:. Q.E.D.

Let us denote by e*H} the &2(S)[D;;']-module defined by “twisting”
the action of 2(S)[D;'] through Ad (¢¥). Then Proposition 2.6 says that
there is a unique 2(S)[D;']-isomorphism

(15) Hi——¢*H}  (resp. H i——e¢ %HY)

which sends v to e*u (resp. u to e *v).

Now we propose to apply Proposition 2.6 to solving the Gauss-Manin
system H} in the space of formal series .&9{" introduced in 2.2. For
this purpose, we will show the operator e¢* (or ¢ ¥) actually operates on
the space .o70{". We consider the operator ¢* to be the infinite sum

(16) e =3, T-K(D,, Dy, t"),

which is convergent in the ring C[D,, D,, D;;'l[[t"]] since K|, —,=0 as
remarked before.
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LEMMA 2.7. The space M&“’—C[[t]][[D,o, D; 11682 has a matural
structure of left module over the ring C[D,, D,, D,;‘][[t"]].

PRrROOF. Leaving the operation of ¢, out of consideration, we have
only to specialize the C[D,, D,, D;'|[[t"]l-module structure of &=
C[t]}[D,, D:'1]. Note that each element P of .o can be written
uniquely as

P= 3, t"P(, D)  (P.eCl[t'IN[D,, D' -

ae Nm—1

On the other hand, any operator L in C[D,, D,, D;'][[t"]] has a unique
expression

L= 2 t"'ng(Dy, Dgo) (Lp € C[Dt’, Dtoy Dt-ol]) .

geNm—1
So, the operation of L on P can be defined by
L-P= 3 t"Q,D,),

reN""'l

where
Q= ﬁ-§=r Lﬁ(at'y Dto)Pa(t'r Dto)

which has sense since the right side is a finite sum. The other part of
Lemma is easily proved. Q.E.D.

By Lemma 2.7, we know that ¢* and e¢* actually operate on the
space . 6#;’, so that one gives the inverse operator of the other since
e*-e"*=1 in C[D,, D,, D;'l[[¢"]]. The next step is to show

LEMMA 2.8. Let ¢ be an element of 762 and P an operator in
S D;i;']. Then, we have

amn _ e*Pe~%p=Ad (e¥)(P)¢
where Ad (e*)(P) 18 the operator defined by (13).

PROOF. Note first that either side of (17) is linear over
C(t", D,)[D,, D;'] and multiplicative with respect to P. So, it is enough
to show the equality (17) in the case where P=t¢, (0<i<l) or P=D,,
(I+1=j=m). Let P be either ¢, or D,;. Then P acts continuously on
S70;7 with respect to the adic topology defined by the ideal (t")=
rgqy = ,,.) Since the infinite sum



GAUSS-MANIN SYSTEM 35
1
= (—K)®
g (K%
_is convergent in this topology, one may compute

Pe%g= i_—« K)*P+d(—K)* K, Pl)¢

d=0

=o~5(P+[K, Plg=e""Ad (e O)(P)g ,

by using the property that ad (K)*P=0 for d>1. This gives the desired
equality. Q.E.D.

By Lemma 2.8 combined with Proposition 2.6, we have

PROPOSITION 2.9. An element ¢ of 0.2 (k€C) is a solution of the
equations 2.2.(2) of H} if and only if »=e%¢ satisfies the equations 2.3.(5)
of Hj}.

REMARK. In the case where both (B.1) and (B.2) are satisfied, the
operator K=K(D,, D,,t”) commutes with the operator # since K=
K(z,, o', t"") is Welghted homogeneous of degree zero with respect to the
weight (—1, —d’, ") of (z,, 7', t”). Hence one has Ad (e¥)§=6¢. This
shows that the operator e¢* defines an isomorphism .& (5)6""—»&/ (€052
for any rational number e.

2.4. How to determine the solutions of H} in .o76;?.

In this paragraph, we consider the case where (B. 1) and (B.2) are
satisfied. For simplicity, we assume that l=n, so that #’'=x=(x, ---, x,)
and t'=(, ---,t). (The term >7,,, 2% is not essential as Proposition 1.6
shows.)

Let f(x) be a weighted homogeneous polynomial of degree 1 with
respect to the weight o=(o,, - - -, 0,) of x=(x,, - -+, x,). First, we consider
the Gauss-Manin system H} associated with the deformation

(1) F(,, t, x)=to+iz=\41tiwt+f(x) .
(For the moment, we write t=(t, ---, t,).) In this case, the differential

system that the integral u=§ 0¥ da should verify is given simply by

=(e,—N—1
(2) {ﬂu (e Ju

C+ LoD DNu=0  (1=i=n),
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where 6=t,D,+>.1-, 0¢.D, (6,=1—p,) and ¢,=37,p,. We consider the
solutions of (2) in the form

(3) ot t)= ;z a.(t)D;o:y (a, € C[[t]D)
where k€ C. Then, we know by Lemma 2.3 combined with Lemma 2.4

LEMMA 2.10. ¢ satisfies the equations (2) if and only if it has an
expression

(4) Sty )= 3 c(a)L-Drow
¢ a!l

o,dy—r=s

where e=¢,+k—N\ and ¢: N*—C 18 a function satisfying

(5) (4i+So(T))e=0 (l=si=n).

(For the definition of 4, and T'=(T, ---, T,), see 2.2.(22).)
As to the difference system (5), we have a very helpful

PROPOSITION 2.11. Let 7 be an m-chain (possibly infinite) on the
universal covering of (C*)*(C*=C\{0}) and consider the integral

Cle)= ST o/ tdy |

where £=(&, -+, &) and x*dr=x- - -xi*de,\ - - Ndx,. Assume that the
integral C(&) i8 convergent in a domain of C" and allows the integration

by parts. Then the function C(&) satisfies the difference system (5) as
far as it makes sense.

PROOF. It suffices to note that
UO@=606—1)=\ erza-rdo=—\ 1. eratdz
(TC)&)=Cle+1)= Sr o = Sr velwtds .

for 1=<i<n. Q.E.D.

Any function C(¢) obtained as above can be taken for the coefficients
c(a) of (4), indeed. But, unfortunately, the author does not know how
one can obtain all the solutions of the difference system (5). In §3, we
will determine all the independent solutions of (5), in individual cases,
by the aid of the integral C(¢) as above.
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Now, let

(6) Fity, t, ®)=t+ 3, ta+G(t", 2)

be a general deformation of f with the condition G|,.-,=f. In 2.3, we
showed that the Gauss-Manin system H} can be reduced to H ; associated
with

(7) Et,, ¢, ®)=t+ 3 ta,+f(@)

by the operator X2 *"? of exponential type, where K(z,, 7/, t")=
—7(G(t", T't5")—f(z't5")). Suppose that the solutions of H“ in &7 3"" are
determined by any means. Then, we know by Propos1t1on 2.9 that the
solutions of H} in 70 are obtained from those of H; by applying the
operator e *. Let us elaborate on the operation of ¢ %, so that one can
apply this idea smoothly to concrete examples.

Here we assume that the polynomial F' is given in the form

(8) Flty t, @) =t+ 3. t:0"® +£(@) ,

where v(k)=W,(k), -+, v.(k)) A<k<m) are multi-indices in N™. As the
condition (B.1) requires, we assume that

(9) v(1)=1, for 1=si<n.

Moreover, the condition (B.2) is satisfied in this case with respect to the
weight 6=(o,, -+, 0,) of t=(, ---, t,) defined by

(10) g,=1—{p, u(k)>=1—g”1 ovk)  (A=k=m).

Let ¢ be a rational number and let

(11) i )= 3 (@) 4l Dzoﬁ“’ (BeN")

(U')ﬁ>-"r—

be a series in Mﬁég" such that fy=(e—x—1)y and D,qr=0 for n+l1=
j=m. Then, we have

PROPOSITION 2.12. On the above assumptions, the series p=e %y 1is
given by

é(to, t)=<a )Z c(l(a)) D,Ob“"’ (ae N™).

yay—r=e
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Here l(a)=1(), - -, l.(@)) 18 a multi-index in N" defined by
W)= v (1sisw)

Jor a=(ay, -+, a,) EN™.
PROOF. Write 4 and ¢ in the form =@Q0;? and ¢=P5> with @, Pe
57 (¢). In our case, the operator K=K(D,, D,,t"”) is defined by
Kz, T/, t")=—1E(", T'zsY) ;. B, x)=k§] teer ™ .
=n+1

Note here that we have an expansion of the exponential function

Etre _ o 1 < v\ '
e "’=Z———(Z 7% )= 2, =27,

d=o d! \k=n+1 7e NMm—n v!

where Y=(Y,41, -+, Ym) in N™ " are identified with (0’,v)=(, ---, 0,
Yoty *°°» Tw) in N™. Hence we have

er@=% L 0. D7) DyQ .
T .
By Lemma 2.4, one has

(0D Q= Py c(B+l(’)’));—TD{O .

(o', B)—r=e+{0,l())

Hence,

"

Q= 3 c(B+l(7))B—'i:-i—;D;,+'ﬂ

(o’ pr—r=e+(0, L))

= > c(/3+l(7))-g—: L,

€a’,B+irt—(e,lr)>—r=¢

Here we compute
M—Co, Uy = 3 (V=<p, v(DH1)=(a", 7).

Nothing that g+I(7)=I(8+7) and (d’, B> +<(d”, 7)={0o, B+7), We con-
clude

P=e"Q=_3. @)Dy, (reZ aeN"),

t
g, ax)—r==¢ (44

as desired. Q.E.D.
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REMARK. The linear mapping I: N*— N* is defined by the relation
(12) (E v ). . .(tme(fn))aM=tawl(a) .

Hence one sees that [a|=(o, a)+<p, l(@)). This implies |a|—{(o, ad=
ll(a@)|—<0o, l(a)), so that one has an equality I(N™(¢))=N"(¢) for any
rational number e. '

$3. Expansion of the solutions of a Gauss-Manin system HZ2

3.0. Conventions.

In the previous paragraph, we suggested how we try to determine
the solutions of a Gauss-Manin system. In this section, we consider the
following two types of weighted homogeneous polynomials with an
isolated critical point:

(I) fle)=an+afe4---4xn (p,=2 for 1=<i<n)

1
(1) (II) flx)=xr+xaf2+oxP5+ - - F 2P0 (p.=1; p, =2 for 1%£2) .

Let f be one of these polynomials. Then, one can choose a subset
N of N" so that the residue classes of monomials x=ah--.gi» (V=

(v ++, v,)€N) form a C-basis of the ring C[x]/(3,f). We take such an
N to be the set of multi-indices y=(y, ---, v,) € N* such that

(I) 0=y,=p,—2 for 1=<i=zwn,
II) a) 0=y,=p,—1; 0=yv,<p,—2 for 2=<i<n
or b) (v,v,)=(0, p,—1); 0=y,<p,—2 for 3=i=n,

(2)
according to the case (I) or (II). So, the Milnor number of f is given
by

(I) p=p(f)=4N=1I (p.—1)

D) p=p(f)=4N={p~D+1} I (p.—1) .

(3)

The polynomial f is weighted homogeneous of degree 1 with respect to
the weight o=(o, ---, 0,) of x=(x,, ---, x,) defined by

(1) p=L for 1<i<n,

y
4
(4) 1\1 1

(11 p2=< _'17)5? p=_-  for iz2.
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The exponent &, corresponding to the n-form w,=x"dx is computed to be
g,=>r, 0,(v,+1)=¢,+<p, v), where &=, 0, is the minimal exponent.

In the subsequent paragraphs, we will determine explicitly the
expansion of solutions of H? in the case where

i) F=t,+tx,++-+t,x,+f or

ii) F is a versal deformation of a simple singularity.

3.1. Case where F=t,+t2,+:--+t,x,+f.
Let f(x) be one of the polynomials in 3.0.(1). Here we consider the
Gauss-Manin system H? associated with the deformation

(1) F(to; t’ x)=t0+t1x1+°°°+tnxn+f(x) (t=(t11 ) t'n)) .

(The weight o=(o, ---,0,) of t={, ---,t,) is given by o,=1—p,
(1<i<n).) With the notation of 3.0, we define

(2) u,=§x“5§§’der}3’ weN),

so that w,(» € N) form a free basis of H; over C[t][D,, D:;']. (Theorem
1.8.) We denote by % the column vector *(u,),.x, and by 4 the diagonal
matrix of size ¢ whose (v, v)-component is A—eg,.

PROPOSITION 3.1. On the assumptions above, the Gauss-Manin system
H} has a finite presentation

(3) (T = (Ao(t) + A1(t)-Dt;1)a
i D, D;'u=(B*{t)+B»#t)D:;Yu  (1=k=mn),

where A,, B¥ e M (¢; C[t]) and A,|;—o=—A4. Moreover,
a) if f=xn+4xp2+ ... +x2n, then B¥=0 for 1<k<mn and A,=-—4,
b) if f=xP+xx2+---+2x2%, then B¥ =0 for k+1.

Proposition 3.1 can be proved by chasing explicity the proof of
Theorem 1.2. So we omit its proof. '

By Theorem 2.2, we know that there is a unique fundamental system
of solutions of (3) in the form

(4) (t,, t)=P(t, D,,)o:; (or P(t, D )t;*° 1),
where
(5) PeM (p: o(DID,)) and Pl,=I.

We propose to determine the explicit form of P.
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For this purpose, we construct g independent solutions of the
differential system

(6) {0u=(eo—7\.——1)u

¢+ f(DDNu=0  (1=i=n)

that the integral u=u0=s 0¥dx should verify (Proposition 1.9). We try |
to find the solutions in the form

(7) oty )= 3, c(a)%moasg’ (e=&+K—N) .

g,ay—-r=¢

Here, the coefficients c¢(a) are determined as a solution ¢ of the following
difference system: according as f belongs to (I) or (II),

8.I) ac(la—1,)+pela+(p,—1)1,)=0 1I=i=n)

ac(a—1,)+pela+(®,—11)+c(a+p.1,)=0
(811) oc(a— 12)+p20(a+ 1,+(»,—1)1,)=0
acla—1)+p.cla+(p,—1)1,)=0 B=i=n),

where a=(a,, -+, a,) € N*. (See Lemma 2.10.)

We propose here to determine the solutions of these difference
systems.

CAseE (I). We define a “lattice” L of C* by

]

(9) L=3Zpl.. (L=, -1, -+, 0).

If one regards (8.I) as a difference system for a meromorphic function
C(¢) on C*, then one sees that, for any couple of non-zero solutions C,,
C, of (8.1), the ratio C,/C, is periodic with respect to the lattice L. In
this sense, the lattice L is adapted to the difference system (8.I). First,
we compute an integral as indicated in Proposition 2.11. Let 7, be a
path in the x,-plane as figured in

(10) 0"
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for 1<i<m and set Y=7,X---X7,. Then we have

Cle= ST e’ atdx =f[ ST e aidw,
=1 i
(11) n

~1i Mr(l _fil)~l ,
=1 Y y 7

which gives a solution of (8.I). For each ve N, we set

L)=@w+L)NN"

(12) )
={a=(a;, -+, @) eN*; a,=y,mod p, (1<i<nm)}.

Then, we define a function ¢,: N*—C with support in L(v) by

Cla) _ 1 (—1)‘@s—>07pg vi+1  a,—y, for
- - ) (s &= L Y
13)  a@={C0) & (P 222) )
0 for a¢ L(v),
where (g; k):=I'(¢+k)/I'(&). One sees immediately
LemMMA 3.2.1. For each ve N, define the function ¢, N°—C with
support in L(v) as follows: for each a=(a,, ---, a,) € L)

e()=TI (—1)kt(”f—“; k,) where k=2
i=1 D: Dy

Then, c,(v € N) give the fundamental system of solutions of (8.1 normaliz-
ed by the condition

¢,(P)=0,;3 Jor »,veN,
where 0,7 18 the Kronecker delta.

Casg (II). In this case, we also have a lattice L adapted to (8.II):
(14) L=2Zp,1,+Z(p,1,+1,)+ gg Zpl, .
For each ve N, we set
(15) ‘ Lp)=@w+L)NN".
Note that each element a=(a,, -, a,) of L(v) has an expression

(16) {al =y, +kp,+k,
a,=y,+kp; 2=i=sn)
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where k., € Z, k,e N (25i<n) and kp,+ k.= —v,.

LEMMA 3.2.11. For each ve N, define the function c¢,: N°—C with
support in L) as follows: for each a=(ay, *:-, a,) € L(v),

o@y=(—1ys(2EL 2oL o) g (bl i)

1 D:1D; i

where

=08 &7V, L TV o<y,
D, YoV D,

and (& k)=I(e+k)/['(&). Then, c(v € N) give the fundamental system of
solutions of (8.I1) normalized by the condition

cy(g) =3v,3' fO’r Y, veN.

Note here that, though %, may take negative values, the definition
above makes sense since (v,+1)/p,—(,+1)/p,02.<1. Then, Lemma can be
checked directly. In this case, the integral of Proposition 2.11 may be
taken as follows. First, we take two continuous functions 7, 6: R—R
so that the path

amn Yoo R—C ; Yo (8) =1(8)e’ 10 (seR)
should correspond to the figure:

arg=mw
s e

arg=-—mx

Then, we define an n-chain v: R*—(C*)" by

%, =7(8,)e vYZ10(s1) /91
(19) L, = 1‘(82)6 vYZ10(8g)/po— V—=16(81)/py P2 (3 — (81, ceey 8,,) e Rn’)
X, =1r(8,)8" 10w/ i B=ZiZn) .

Then, by a direct computation, one obtains

Cl)= ST e’ Dxtda

(20) _ 2”‘/‘_1r(1—§1+1+52+1)"1f1 27:1/-’—“1'1,(1_5&1)—1.
i Y DD, t=2 y 2
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In fact, it was by means of this integral C(¢) that the author found the
solutions ¢,: N*—C (ve N) above. But, note here that, for any index
y=(y, -+, v,) €N such that (v, v,)=(0, p,—1), the value C(v) is equal to
zero. So one needs to multiply C(¢) by a periodic factor in obtaining
the function ¢, corresponding to such an index v by a formula analogous
to (13).

Now that we know all the independent solutions of the difference
system (8), we can determine the solutions of the differential system (6)
- or (3) as explained in §2.

PrOPOSITION 3.3. Assume that the polynomial f belongs to the type
@) or (A1) and let ¢,: N*—C (ve€ N) be the functions of Lemma 3.2. For
each v e N, define an operator P,=P[t, D,) in C[t][D,]] by

PDy=_ = ea)LDy, .

t
a,ay—r=—{p,v) (44
Then, the series
é.(to, t)=P,(t, D,)osi* (yeN)

give it independent solutions of the Gauss-Manin system (6) associated
with the integral u=§ oPdx.

COROLLARY. Assume N¢Z and N—¢e, ¢ Z (ve N). Then the Gauss-
Manin system (6) associated with the integral u=§ F~*'dx has p in-

dependent many-valued holomorphic solutions ¢, on S\D, which are
expanded in the form

$,(t, t)=P,(t, D,Jt»"**  (veN)
near the point (L, t)={_(c, 0).

Let us show that, for each v e N, the operator P, defined as above
belongs to C[¢t][[D,]]l. The other part of Proposition 3.3 is a consequence
of Lemma 2.10. (Note here that —{p, v)=¢,—¢, and suppe,CL(y)C
N(—<p, v>).) In either case (I) or (II), set

(21) N={p=@, -+, v,) e N; 0=y,=p,—1(1=Si=n)} .

Then, for any « € N, one can find a unique index in N, which we denote
by [a], such that [a]=amod L. Then one can show by an elementary
computation in each case
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LEMMA 3.4. a) For eachve N, set LO)=@®+L)NN". Then, one has
min {{0, a); a € L(»)}={0, v)=[v|—{p, v).

b) Set N—N={v—9;v,5e N}. Then, for each ac N—N, one has
[a]ll=<p, [a]—a), or equivalently, <o, a)=—<0, [a]).

For each ve N, Lemma 3.4.a) implies that »={o, a)+{p, v) takes
minimal value |v| as « ranges in L(v). This shows that P, belongs to
CILI[D,)ID (]|=v,+ - - +,).

From these solutions ¢, (ve N), we can construct the fundamental
system of solutions ¢=P5{? in (4) by the method given in 2.2. Recall
that one has equalities

22) wy= S o du=(D, DY S 89de=(D.Di¥u  (©eN)
in H:. This shows that the column vectors

(23) 3, =4(D.DV$)sey  (¥EN)

give ¢ independent solutions of the differential system (3) of Proposition
3.1. For each couple (¥, v) € Nx N, the series (D,D,;l)”gzs,:(a,Dtgl)”P,aég“‘v’
is determined by

(24) @.D5YP= 3, _ c,(aw)%pgo

{o,a)—r={p,V~v)

(Lemma 2.4). Let us show that this operator belongs to C[¢]{[D,,ll.
Note that ¢, (a+5)=0 unless a e L([v, ¥]). If a e L({v—7P]), then one has

(25) (o, ay—<p, ¥—vy=(0g, ay—{o, [v—7])  (Lemma 3.4.b))
=0 (Lemma 3.4.3)) .

This implies that (3,D;")P, € C[t][[D,]] for ¥ veN. Remark that

(26) 0.D"YPmo=0,(0)DE*?=5,5  for v, VeN.

We define a matrix P=(P; );,.x DY P;,,=(6,D;01)7P,,, so that P|,_,=1I.
Then, by the construction of P, the matrix @=Po;) satisfies the equations
(8). As remarked in 2.2, we can conclude from this that the matrix P
coincides with the one constructed as in Theorem 2.2. Summarizing,

THEOREM 3.5. Let f(x) be a polynomial of type either
(I) fle)y=wlt+af2+---+ai» (p,22 for 1=i=<n) or
D) fle)=al+oap2+al4 - +air (0,21, p,22 for 1#£2)
and set F(t, t, €)=t,+tx,+ -+ +t.x,+f(x). According to the type of f,
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let ¢,: N*—C (ve N) be the functions defined in Lemma 3.2.1 or Lemma
3.2.II and define a matric P=(P;,); ..y of operators C[t|[[D,]] by

Pyut, D)= % . )c,(a+§)§'—D{o (reN, aeN")

o,a)—r={p,V—y

for J,veN. Consider the Gauss-Manin system associated with the
column wvector

G="()yen,  where u,=§ »oddee HE  weN).

Then, the matriz O, t)=P(, D,)oi? gives its fundamental system of
solutions, normalized by the condition P|,-,=0d;". Here A is the diagonal
matrix diag (L—¢,; v € N).

COROLLARY. Assume that ¢ Z and N—¢, & Z, and consider the
Gauss-Manin system associated with the column wvector

A= (U)yen » where u,=§ x’F~*"'dx (vVeN).

Let @(t,, t) be its fundamental system if many-valued holomorphic solutions
on S\D with ®|,-,=t;*"*. Then, the matricx @ can be developed into the

power series
P(t,, t)=P(t, D, )ty 4!
near the point (&, t)=(co, 0) by the matrix of operators P above.

3.2. Representation by hypergeometric series.
In this paragraph, we confine ourselves to the Gauss-Manin system

H} associated with the deformation

(1) F(t, t, ©)=t,+tx,+ - -+t @, P+ - - +ai»

of type (I), where p,=2 for 1<i<n. Here we consider H}? as associated
with the integral

(2) u=§ F- g

assuming that A ¢ Z. In this case, the differential system to be satisfied
by wu is presented by

{0u=(eo—7\.—1)u

3
(3) (tt’*'pi(Dt‘Dt;l)“_l)u:O A=si=n),
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where

(4) 6=t.D,,+ 3, p‘—ltiD,‘ and ao=§nj,—1-.

i =1 P,

Hereafter, we assume that A ¢ Z and A—¢,¢ Z (veN). If N is gemeric
in this sense, we know that (8) has z¢ independent many-valued holomor-
phic solutions ¢, on S\D. Moreover, we gave their explicit expansions
at the point of infinity (Corollary to Proposition 3.3). In this paragraph,
we will show, from a different point of view, that they can be re-
presented by certain hypergeometric series. In what follows we use
the notation &#,=tD,, recalling that

(5) t*Df=8,(3,—1) - - (& —k+1)=[8,; k] for keN,
where [¢; k]:=g(6—1)- - -(6—k+1).

In view of (8), consider the system of differential equations

(6) {D bu=—(6+1u  With K=h—¢,

i) @D +p. Dy Hu=0 (1=<isn).
By multiplying (6.ii) by ¢/, one can rewrite them in the form
(7) (tfito—l’ﬁ'l[z}to; pi—1]+pi[0t¢; p,—1Du=0 (1l=isn).

Here we make the transformation u(t, t)=t;*“°*"v(t, t), so that one has
the equations for v

i) 6v=0

8
(8) {ii) @ty ? [ Sy — ko—1; 9, — 1]+ p[S,; p.—1v=0 (1=Zi=<n).

Since v must be weighted homogeneous of degree zero, one might
anticipate that it would be a function depending on the variables-
(9) 2=(2y, *+,2,), z=(=1)an/phtp (1=i=n).

(The constants (—1)*¢/p? are put for convenience.) In these variables
2=(%y, *++, 2,), one has

Z9to= _<p_1, 0z>:= —iz__ﬂ(pi—l)tgz;
0t¢=p‘tﬁl‘ (1§i§n) ’

10)

so that =0. Setting w(z)=v(, t), one obtain from (9) a system of
hypergeometric equations for w:
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pi—-2

() (o1, 85+ 85 p—1le~ T (9.~ )}w=0.
= i

The differential system (11) can be solved easily, so that one sees that
(11) has p#=TJ7, (»,—1) independent solutions in power series
(12) EI‘,W a(a)zt+ eO).
To write down such solutions of (11) in an explicit manner, we introduce
the following hypergeometric series: for each v=(y, ---, »,) with 0=y, <
p;,—2, we define

(13) G,(Z)': Z (1+’Cgt2<0.y D>; <p—1; a>)za ,
aeN®? f[ 1-[ (1+ ”‘—k;ai)
i1=1 k=0 p‘l

where o0=(0,, ---, 0,), 0,=1—(1/p), (& k)=¢&(&+1)---(¢+k—1). It can be
checked directly that the power series G,(z) are convergent in a neighbor-
hood of the origin z=0. Then it is easy to show

PROPOSITION 3.6. The many-valued functions z'*G,(z) (WeN) give

Lt independent solutions of the hypergeometric equations (11), where
z”“’:zi’l/l’l. . .z;n/@n.

By comparing these 2*?G,(z) with the expression of Proposition 3.3,
we have

THEOREM 3.7. On the condition N¢ Z and n—e, e Z (ve N), consider
the Gauss-Manin system associated with the integral

u=S F-*'dx where F=t,+tx,+---+t,x,+axh1++-c+2xi,

Then, the many-valued holomorphic solutions ¢, of Corollary to Proposi-
tion 3.8 are expressed im the form

6.(t, t>=(—-"—vl,>—'"'<x—ey+1; W)Et A MGL(2)

in terms of the hypergeometric series G, defined by (13), where
2=(2y +, %) 3 #=(—L)Paf/pptd—" .

We include here some examples of such hypergeometric expression
of the solutions of Gauss-Manin systems. Examples below are restricted
to the case where f=x?+---+a2%2 and expressed in the variables z=
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(., -+, #,) multiplied by suitable constants to fit for classical hypergeo-
metric series.

Let us consider the case where f=x?+-.--+22 (p=2). Then, the
Milnor number g equals (p—1)" and the set N of indices is defined by

(14) N={p=@, -+, v)eN; 0=y,sp—2 (1=i=n)}.

To describe the solutions of the Gauss-Manin system for

(15) u= S (Cot b, + - -+t X, 2P+ oo - +a2) " (\: generic) ,
we use the variables z=(z, ---, 2,) defined by
(16) z2,=(—1)*(p—1)*7"t7/p?t§ A=si=m).

Then the hypergeometric series G, (ve N) above are rewritten in the
form

17 G)= 3, o ] —la) |
“en F=e 11;‘[1 (blm ;)
where '
(18) ay=—1 <>\,+1—_"l+k>+ﬂ , b, =2it2+k
- p p ]
The solutions ¢, (ve N) are given by
(19) ¢y==.(—t;1.')_li()v+l_ n_;l”[ ; Ivl)tvtén/p)—2—1—(p—1/p)|y|Gy(z) .

We denote by 4 the discriminant of HZ. (See 1.2) For hypergeometric
functions, see Appell-Kampé de Fériet [2].

EXAMPLE 0. Case where F=t,+tx,+ - +¢,2,+ai+---+ai. (u=1,
4d=t,—(1/4)({#}+ ---+¢2).) The solution ¢ is a power function

(n/2)—i—1
(20) o= <t0—-‘1-1-(t§+ e +t3,)) .

ExXAMPLE 1. Case where F=t,+t,x+a®. (u=2, d=t;+(4/27)¢..) The
solutions ¢,, ¢, are given by

3
@D ¢o=ta“‘2/a’F(lg—+—;—, 'g—‘i‘—g*; %; ~ b )
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ool bierd o)

Here Fl(a, b; c; z) denotes the Gauss hypergeometric function

i _ < (a; k)(b; k) 2*
(22) : F(a, b;c; 2)= % =) T

By z= —4t}/27t3, one sees that the series on the right side of (21)
converge in the region |—4t}/27t5 <1.

(23)

Moreover, the diseriminant set D={4=0} corresponds to the singularity
at z2=1 of Gauss’ hypergeometric functions. (By the transformation
formulas for Gauss’ hypergeometric functions, one can also obtain some
other types of power series expansion for ¢, and ¢,.)

ExAMPLE 2. Case where F=t,+tx+x? (p=3). (u=p—1, 4=t]"'—
(—=1D?(p—1)*"'t?/p*.) In this case, the p—1 solutions ¢, (0=v=p—2) are
expressed by generalized hypergeometric functions

Z (@i k). - -(ap_s; k) 2*

(24) 1 Fps(@sy <y @i byy v 20y bpgs 2)= =0 (b3 k) - - (byes k) K .

For example,

(25) ¢o=t(TI—(p_llp)dep—z(au sty @pgy by ooy by gy (— 1)’%) ’

where a,=M(p—1)—1/p(p—1)+4/(p—1), b,=(i+1)/p. Note that 4t{—?=
1-—=2.

ExAMPLE 8. Case where F=t,+tx,+tx,+ai+x3. (#=4.) In this
example, the discriminant 4 is given by
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2
26) A=t3+§8,-7(t$+t2)t§+<2i7) E—2)

The four solutions ¢, (¥=(0,0), (0,1), 1, 0), 1,1)) are expressed by
Appell’s hypergeometric functions F,:

27 F b; 1y Cob 24 ,) = (a; k1+k2)(b; k1+k2) . z'{l ] zl;g .
( ) 4(@, Ciy Co5 24, z) kly%zo (01; kl)(c2; kZ) k1! kzl

For example,

(28) ¢0=t0_2_(1/8)F4('%"+%y %""%;%9 'g‘; 2y, zz) ’

where z,= —4¢/2Tt} for 1=1,2. In terms of these variables (z, z,), one
has

(29) Atst=1—2(z,+2,) + (2,—2,)* .

Note that the right side defines an irreducible component of the singular
locus of Appell’s F,. (See, T. Kimura [10].)

2 e

1—2(2+2) + (21— 2)>°=0
(30)

\_

0 21

EXAMPLE 4. Case where F=t,+t,x,+ - +t,2,+ai+---+ah (u=2").
In this case, the 2" solutions ¢, v=(, - -, v,), ¥.,=0, 1) are expressed by
Lauricella’s hypergeometric functions F:

(31) FC(aﬂ b; Ciy 9y Cn3 %y **°y Z,)
(@ o+ - +k)O; bt -+ k) | 20 2"
kgpeess kn20 (01; kl) °e '(cn; kn) kl! kn!

In fact, ¢, are given by

(32) _ ¢y=(_1)|»|(7\1+1_%_l§_|; lvl)tén/-’i)—l—l—(a/z)lvltiol. Cogzm
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1. 2 n Py ™ n Pl
><F"<2+2 s T3 lTa e s

2041, o 2@t sz oo 2)

where |v|=v,+ - +v, and z,= —48/27; 1=1=n).

3.3. Case where F is a versal deformation of a simple singularity.

We pay our attention, in this paragraph, to so-called simple singulari-
ties and their versal deformations. Let f be one of the following
canonical forms of simple singularities:

Ay f(fv)=wi“+x§+--.,+x3. (I=1)
Dzi f(x):wi—1+xlx§+x§+...+xz (l;4)
(1) E;: flo)=ot+ai+ai+---+af

E: f@)=a,+ai+ai+-- -+
E: f)=2+xi+ai+---+2a .

Noting that f belongs to the type (I) or (II) in each case, we consider
a versal deformation F of f in the form

(2) F(toy t’ x) =;§I‘Vtvxv+f(x) ’ t= (tv)ueN\{o) ’

where N is the set of indices defined as in 3.0. We define the weight
o, of t, to be 1—{p, v), so that F should be weighted homogeneous of
degree 1. F'is a versal deformation of f in the sense that 4, F/,—, (veN)
form a C-basis of 2,. Moreover, it should be noted that F satisfies the
condition (A.2) of 1.2, so that the weights o, of ¢, are all positive. It
is known that, in a sense, this property characterizes the polynomials

listed in (1). (See K. Saito [15].)
Now we consider the Gauss-Manin system H}. Define

(3) up=S x0Pdx € HP e ()

for each v e N and denote by % the column vector ‘(u,),.y. Note here
that we have

(4) w,=D,Diu, u=u=\0pds,

for each ve N, since F is given by (2).

PROPOSITION 3.8. On the above assumptions, the Gauss-Manin system
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H} has a finite presentation

{toﬁ = (A, )+ Al(t)thl)'ﬁ
D, D;'i=(By(t)+BY)Dihd  (ve N\{0})

where A,(), B (t) e M (u¢: C[t)).

PrROOF. By Theorem 2.2, we know that H? has a finite presentation

(5)

R
tii= 3, A,(0)D;"i
R

D, D:;'u= ZO B¥D; " ,
\

r=

for some A, B” eM (z: C[t]). Recall that du=(e,—N—1)u, where 6=
Swen 0.t D, . Hence, by u,=D, D;;'u, one sees

0(“14):(6»_7\‘_1)“0: (8v=80+<[07 1)>) ’
so that gi=(—A—I)i. Applying the Euler operator § to the above
presentation,
— Atyii= ﬁ (0(A) + A (r—1)I— A} D75 .
Hence
R R
—A4 Z(‘,) A, D u= Zo {60(A)+ A (r—1)I—-M}Di"u .

Since (u,),ey are free over C[¢][D,, D;'], one knows
6(4,)=—[4, A, ]-(r—DA, .
Setting A,=(ai,); ..y, one obtains
0(a5,) =(&—e,+1—r)ai,=(p, ¥—v) +1—-7)as,

for ¥, ve N. Recall that {p, v) <1 for vy € N, on our assumptions. Hence,
{p, P—v)y<1 for ¥,ve N. This shows that a;,=0 unless =1, namely,
A,=0 for »=2. Similary one can show B® =0 for r=2. Q.E.D.

By Proposition 3.8 combined with Theorem 2.2, we know that there
is a unique matrix P(t, D,) of operators in M (¢ C[[t1I[[D,,]]) with P|,_,=1
such that the matrix @=Pj;" gives the fundamental system of solutions
of (3).

For the versal deformation F of (2), we consider the following
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deformation F

(6) {F(to, t, x)=t,+tx,+flx) if f is of type A;,

F'(to, t, ts, @) =t,+ .2, + .2, + f(x) otherwise .

As explained in 2.3, the Gauss-Manin system HZ (A€ C) can be reduced
to H; by an operator e¢* of exponential type. (See 2.2.) So, we can
determine the matrix P for H} from that for H}, say Q, which we have
already given in Theorem 3.5.

Let Q, € C[¢t][[D,]] (v € N) be the operators of Proposition 3.3 for H3,
so that +,=Q,0% " give p independent solutions of the Gauss-Manin
system associated with the integral

(7) v=\opdzec HY .

Then, we know by Proposition 2.9 that ¢,=e %4, are solutions of the
Gauss-Manin system associated with the integral

(8) u=§ 5Pdy e HY .

Furthermore, we know how the series ¢,=e¢ %4, (or equivalently, the
P,=¢7%Q,) can be determined explicitly. (Proposition 2.12.)

We begin with elaborating on the functions ¢, (e N) given in
Lemma 3.2.

Case (4) 1) N={0,1, ---,1—1}.
2) L)={aeN;a=vmod (+1)}={v+k(l+1); k=0}.

v+1 .
3) c,(a)—{ (l+1 k) if aeL(),
otherwise.

CaseE (D) 1) N={W, 0); 0=v=I—2}U{(0, 1)}.
2) L, 0)—{(a1, a) € N* a,=0mod 2, al_v+2 mod (I — 1)}

W+ k(A —1) +k, 2ky); k,=0, klz—’;“;}

{
{(al, a,) € N*; a,=1mod 2, a,= a‘; mod (l—l)}
{

L0, 1)

(el —1) + Ky, 2k, +1); K, =0, klz—l_"i
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—_— ki+k Y + 1 _ 1 . l. .
3) cula)= I( b 2<l—-1 2(1—1) k‘X 2’ k2> if aeL®,0
0 otherwise
_ (=D, /(—k)! if aeL(0,1) and k,<0,
coula)= -
0 otherwise.

CASE (E,) 1) N={(v, v);»=0,1, 2;,=0, 1}.
2) L, v, ={(a,, a,) € N*; a,=v, mod 4, a,=v, mod 3}
={(v,+4k,, v,+3k,); k., k,=0}.

(—1)k1+k2(’_’%l; k)(”; 1. k) if aeLW),

0 : otherwise.

3) c.a) ={

CASE (E;) 1) N={(0,0), (0, 1), (0, 2), 1,0),1,1),,2), (2 0}
2) Ly, v,)= {(al, a,) € N a,=y, mod 3, a,=v,+ a‘;”‘ mod 3}

vz-é-kl}.

= {(”1+3ku v2+3k2+k1); k=0, k.= —

—_ k1+k u_l_-. 1)2+1__1)1+1,k f
3 c,(a)=!( (2t ) (25 -2t k) for ae L),

0 otherwise.
CASE (E,) 1) N={{, v,);»=0,1,2, 3;v,=0,1}.

2) L(v, v,)={(a,, a;,) € N*; a;=v, mod 5, a,=v, mod 3}

= {(v1 +5k,, v,+3k.); k,, k.=0}.

(—1)'=1+kz(1’1'5*—1; kl)<”“’;’1; ) if acL),

0 otherwise.

3) e¢fa) ={

Remark that, in the cases other than D, with even I, {p, ¥)={p, v}
implies =y for v, P e N. Hence, for each index ve N, L(v) coincides
with the set of indices a such that (¢, a)={0,v) mod Z. As in Lemma
2.12, introduce the linear mapping l(a) as follow. Set N*=N\{0}. For
any index a=(a,),cy+ define

o {(A,) la): =3 var, e N
(D, E)) la):=((a), (@))€ N* where [(a)= z;lv.viau ’
according to the type of f. Then, Proposition 2.12 implies

PROPOSITION 3.9. On the assumptions above, comsider the Gauss-
Manin system associated with the integral (8). In each case, define an
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operator

Pt D)=, 5 @) LDi

a —1'=0”—

reZ )
o € N+t

for each ye N. Then P(t, D,) are operators in C[t][[D,]]. Moreover,
the series '

¢v(t0’ t) =P»(t: Dto)a.‘%—‘”) (1) € N)
give ¢ independent solutions of the Gauss-Manin system in question.

In defining P,, we wrote o,—1 in place of —{p, v). Since 0<0,<1
for ve N, one has (g, a)+1—0,=0 for a € N*~!, ye N. This shows that
P, e C[[tNlD,]]. Since 0¢,>0, one has

(10) t{lae N (o, a)=r+0,—1}< + for veN, reN,

which implies that P, € C[¢][[D,,]].
Next we define the matrix P=(P;,);,.y of operators by

11) P.(t, D,)=(3,D;;)P, for P,veN.
Then, by the same argument as we proved Theorem 3.5, we have

THEOREM 3.10. Let f be a canonical form of simple singularity
listed in (1) and let F be the versal deformation >,.ytx*+f. With the
Junctions ¢, (v € N) and l(a) defined before Proposition 3.9, we define

reN >

N
Put, D=, B W@+ D0 (TS0

—_—g —g~
a)—r=a, ﬂy

for ¥,ve N and set P=(P;,);,cx. Then the matrix
o(t, D,))=P(t, D,)o;

give the fundamental system of solutions of the Gauss-Manin system (5)
Jor w="(u,),cx-

In defining P;,, we used 0,—0; in place of {p, ¥—v)>. Note that
{o,a)—0,+0;>—1 for ¥, ve N, o € N*!, which follows from the inequali-
ties 0<0,<1 for ve N. Hence one sees P,~,,,=(6,D,;1)”'Py.

In the case where ¢ Z and N—¢,¢Z (e N), one can also take
o(t, D,,)=P(t, D,)t;*~7 for the fundamental system of solutions of the
Gauss-Manin system (5), which gives an explicit expansion, near the point
(s, t)=(co, 0), of the many-valued holomorphic solutions on S\D.
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By virtue of these explicit computations, we can obtain an interesting
result concerning the flat coordinate systems. The notion of flat co-
ordinate system is introduced by K. Saito- T. Yano- J. Sekiguchi [20] as a
canonical generator system of the ring of invariants of a finite reflec-
tion group. In the sequel, our attention will be restricted to the effect
of flat coordinate systems on the Gauss-Manin systems.

Consider the finite presentation (5) of Proposition 3.8. Then, by

Lemma 2.1, we know that there is a unique matrix P,e M (¢: £7(T)) such
that

12) P|;-o=I and 9, P,=B"P, (v e N\{0}) .

Noting that D, D;'u=u, (e N), one can show that the matrices B
(ve N) satisfy the condition

(13) B, =B!3, for y,v,veEN,
where we define B{” to be 0. By (13) combined with (12), one can prove
(14) atylPo,,,zy:atszo,,l, for v,v, vEN.

This shows that one can find a unique coordinate system (s,),.y defined
in a neighborhood of the origin of S such that

(15) sO=0; =P, (,veN),

which we call the flat coordinate system for Hy. (From (13), one can
show that D, =D,.) Let us define a new basis (v,),.y by
(16) v=D,Diu=\a,Fopds  (eN).

Then the column vector ¥=:(v,),.» is connected with %="%u,),.y by the
relation

17) u=Pp .

Thus, if one make use of this basis (v,),.», the finite presentation cor-

responding to (5) reduces to the form
18) {soﬁz(ﬁ(s)—AD;OI)@’
D, D;;5=B"(s)%  (veN), s=(8)ser >

as Lemma 2.1 shows. (Strictly speaking, the above arguments should
be delivered in the holomorphic category. For the details, see K. Saito
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[17], S. Ishiura- M. Noumi [9].)

On the assumption of Theorem 3.10, we have already determined the
matrix P(t, D,) for our Gauss-Manin system H}. Moreover, the matrix
P, above is nothing but the coefficient P, in the expansion

(19) P(t, Dy=3 P.®)D;, ,

as remarked in 2.1. In terms of the functions c,veN) and l(a), we
can write down the entries of P,=(P,;,); ..~ as

(20) Pu=_ 3  ol@+)l  ,5en),

0,a)=0,,—0aj
which are weighted homogeneous polynomials in t=(t,), ¢

THEOREM 3.11. On the assumption of Theorem 8.10, the flat coordi-
nate system (8,),cx for H} i8 determined by the formulas

=t+ >, co(l(a))t—:
a:

{o,a)=1

and

=3 c,(l(a))%— for veN\{0}.

ProoF. Since P,;, is weighted homogeneous of degree o,—o; for
Y,ve N, the function s, determined by the equations (15) must be
weighted homogeneous of degree g,. Hence, one has

03, =140,0+ Z o'it;Po,;u .
gen

93, + >, 03t;

g.8,=t
° ato TeN at;

Here the second term can be computed as

S o0tP=3 3 G;c,(l(a)+§)t;%

TeN PeN (o,a)=0,—0a}

= > oi(az+1e(l(a)+D)

ta+1;
$eN (s,ad=0,—a} (a+1;) !

NOF
Noting that ¢,(l(8—1;)+P)=c,(I(Q)) and (o, 8—1;)={0, B8)—0;, one has

= .8; L
(*) - Z Z yavﬁvcv(l(ﬁ)) B! g, (G'FZ)

veN (o,8=0 =0

y c,a(/s»;—‘!
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Hence we have
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K

8, =10, 0+ e,(l(a))L- Q.E.D.
<o, 25=0, a!l
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