The Pseudo Orbit Tracing Properties on the Space of Probability Measures

Motomasa KOMURO

Tokyo Metropolitan University
(Communicated by K. Ogiue)

Introduction

Let X be a state space of some system and $M(X)$ the space of probability measures on X. The elements of $M(X)$ are viewed as statistical states. The elements of X are imbedded in $M(X)$ as the pure states. Let T be a transformation of X and \widetilde{T} the corresponding transformotion of $M(X)$. As against (X, T) is a dynamical system in classical mechanics, $(M(X), \widetilde{T})$ can be viewed as one in classical statistical mechanics (cf. [1]).

If X is compact metric and T is continuous, then $M(X)$, provided with the weak topology, is again compact metric and \widetilde{T} is continuous. W. Bauer and K. Sigmund studied in [1] the problem of which of the properties of (X, T) (like distality, topologically mixing, expansiveness, etc...) carry over to ($M(X), \widetilde{T}$). However they did not treat the pseudo orbit tracing property defined by R. Bowen [2]. The aim of this paper is to study the property of $(M(X), \widetilde{T})$ induced by (X, T) which has the pseudo orbit tracing property.

§1. Definitions and results.

Let X be a compact metric space with metric d and $M(X)$ the space of Borel probability measures on X. The Prohorov metric \tilde{d} on $M(X)$ is defined by $\widetilde{d}(\mu, \nu)=\inf \left\{\varepsilon: \mu(A) \leqq \nu\left(A^{*}\right)+\varepsilon\right.$ and $\nu(A) \leqq \mu\left(A^{*}\right)+\varepsilon$ for all Borel sets $A \subset X\}$ for $\mu, \nu \in M(X)$. Here $A^{*}=\cup_{x \in A}\{y \in X: d(x, y) \leqq \varepsilon\}$. As V. Strassen showed in [7], one has $\widetilde{d}(\mu, \nu)=\inf \left\{\varepsilon: \mu(A) \leqq \nu\left(A^{\bullet}\right)+\varepsilon\right.$ for all Borel sets $A \subset X\}$. The induced topology is just the weak topology for measures. It turns $M(X)$ into a compact space (cf. [5, P. 45]). For $x \in X$, let $\pi(x) \in$ $M(X)$ be a point measure defined by $\pi(x)(A)=1$ if $x \in A,=0$ otherwise.

[^0]π is a homeomorphism from X onto a closed subset of $M(X)$. It is obvious that $M(X)$ is convex and the point measures are just the extremal points of $M(X)$. Let $M_{n}(X)=\left\{\mu=(1 / n)\left(\pi\left(x_{1}\right)+\cdots+\pi\left(x_{n}\right)\right), x_{i} \in X\right.$ not necessarily distinct for $n=1,2, \cdots$. Then $M_{n}(X)$ is a closed subset of $M(X)$ and $U_{n \geq 1} M_{n}(X)$, the measures with finite support, is dense in $M(X)$.

Let T be a homeomorphism of X (i.e. from X onto itself). T induces a map $\widetilde{T}: M(X) \rightarrow M(X)$ defined by $(\widetilde{T} \mu)(A)=\mu\left(T^{-1} A\right) \quad(\mu \in M(X), A \subset X$; Borel). It is easy to see that \widetilde{T} is a homeomorphism of $M(X)$, sending $\pi(x)$ into $\pi(T x)$. Clearly $M_{n}(X)(n \geqq 1)$ is \widetilde{T}-invariant. We denote the restriction of \widetilde{T} to $M_{n}(X)$ by same symbol \widetilde{T}. It is well known that the set of T-invariant measures $\{\mu \in M(X): \widetilde{T} \mu=\mu\}$, which is just the set of fixed points of \widetilde{T}, is a nonempty convex closed set ([3, P. 17]). Let $X_{n}=X \times \cdots \times X$ (n-times) and a metric d_{n} on X_{n} define by $d_{n}(x, y)=$ $\max _{1 \leq i \leq n} d\left(x_{i}, y_{i}\right)$ for $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right), \boldsymbol{y}=\left(y_{1}, \cdots, y_{n}\right)$ in X_{n}. T induces a homeomorphism T_{n} of X_{n} defined by $T_{n}(x)=\left(T x_{1}, \cdots, T x_{n}\right) \quad(x=$ $\left.\left(x_{1}, \cdots, x_{n}\right) \in X_{n}\right)$.

A sequence $\left\{x_{i}\right\}_{i=a}^{b}(-\infty \leqq a \leqq b \leqq \infty)$ in X is δ-pseudo orbit of T if $d\left(T x_{i}, x_{i+1}\right)<\delta$ for $a \leqq i \leqq b-1$. The δ-pseudo orbit $\left\{x_{i}\right\}_{i=a}^{b}$ is said to be ε traced if there is $x \in X$ with $d\left(T^{i} x, x_{i}\right) \leqq \varepsilon(a \leqq i \leqq b) . \quad(X, T)$ has the pseudo orbit tracing property (abbrev. P.O.T.P.) if for every $\varepsilon>0$ there is $\delta>0$ such that every δ-pseudo orbit of T is ε-traced. (X, T) is tracing if for a sequence $\left\{x_{i}\right\}_{i=0}^{\infty}$ with $\lim _{t \rightarrow \infty} d\left(T x_{i}, x_{i+1}\right)=0$ there is $x \in X$ with $\lim _{i \rightarrow \infty} d\left(T^{i} x, x_{i}\right)=0$. In general the tracing does not imply the P.O.T.P.. (X, T) is said to be T-connected if for every $x, y \in X$ and every $\alpha>0$ there are α-pseudo orbits $\left\{x_{i}\right\}_{i=0}^{a}$ and $\left\{y_{i}\right\}_{i=0}^{b}$ so that $x_{0}=x=y_{b}$ and $y_{0}=y=x_{a}$. (X, T) is topologically mixing if for every nonempty open sets U and V of X there is $N>0$ such that $U \cap T^{-n} V \neq \varnothing$ for every $n \geqq N$. (X,T) satisfies specification if for every $\varepsilon>0$ there is $M=M(\varepsilon)>0$ such that for every $k \geqq 1$ and k points $x_{1}, \cdots, x_{k} \in X$, for every set of integers $a_{1} \leqq$ $b_{1}<\cdots<a_{k} \leqq b_{k}$ with $a_{i+1}-b_{i} \geqq M(1 \leqq i \leqq k-1)$ and for every $p \geqq b_{k}-a_{1}+M$ there is $x \in X$ with $d\left(T^{n} x, T^{n} x_{i}\right) \leqq \varepsilon\left(a_{i} \leqq n \leqq b_{i}, 1 \leqq i \leqq k-1\right)$ and $T^{p} x=x$. (X, T) satisfies weak specification if (X, T) satisfies the definition of specification except the periodic condition; $T^{p} x=x$. Our results are following.

Theorem 1. Let T be a homeomorphism of a compact metric space X and \widetilde{T} an induced homeomorphism of $M(X)$. Then the following holds.
(1) If (X, T) has the P.O.T.P., then $\left(M_{n}(X), \widetilde{T}\right)$ has also the P.O.T.P. for every $n \geqq 1$.
(2) If (X, T) is tracing, then $\left(M_{n}(X), \widetilde{T}\right)$ is also tracing for every $n \geqq 1$.

Theorem 2. Let \widetilde{T} be as in Theorem 1. The following holds.
(1) If $(M(X), \widetilde{T})$ is tracing, then $(M(X), \widetilde{T})$ has the P.O.T.P..
(2) If $(M(X), \widetilde{T})$ has the P.O.T.P., then $(M(X), \widetilde{T})$ satisfies specification.

Remark. By Theorem 2(2) it follows that if $(M(X), \widetilde{T})$ has the P.O.T.P. (resp. tracing), then (X, T) is topologically mixing (cf. Propositions 21.3 and 6.9 in [3]). There is (X, T) which has the P.O.T.P. (resp. tracing) but is not topologically mixing (for example $X=\{0,1\}$ and $T=i d$.), so ($M(X), \widetilde{T}$) need not have the P.O.T.P. (resp. tracing) even if (X, T) has the P.O.T.P. (resp. tracing).

§2. Proof of Theorem 1.

For $n \geqq 1$, let us define a $\operatorname{map} \varphi_{n}: X_{n} \rightarrow M_{n}(X)$ by $\varphi_{n}(x)=(1 / n) \sum_{i=1}^{n} \pi\left(x_{i}\right)$ $\left(\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right) \in X_{n}\right)$. Clearly φ_{n} is a continuous surjection at most n ! to one. Moreover φ_{n} satisfies following;

Lemma 1. For every $\boldsymbol{x}, \boldsymbol{y} \in X_{n}, \tilde{d}\left(\varphi_{n}(\boldsymbol{x}), \varphi_{n}(\boldsymbol{y})\right) \leqq d_{n}(\boldsymbol{x}, \boldsymbol{y})$.
Proof. Let $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right), \boldsymbol{y}=\left(y_{1}, \cdots, y_{n}\right) \in X_{n}$ be given. Put $d_{n}(\boldsymbol{x}, \boldsymbol{y})=c$, then $d\left(x_{i}, y_{i}\right) \leqq c(1 \leqq i \leqq n)$. For every Borel set $A \subset X$ if $y_{i} \in A$ then $x_{i} \in A^{c}$. Hence we have $\varphi_{n}(\boldsymbol{x})\left(A^{c}\right) \geqq \varphi_{n}(\boldsymbol{y})(A)$, and so by the definition of $\widetilde{d}, \widetilde{d}\left(\varphi_{n}(\boldsymbol{x}), \varphi_{n}(\boldsymbol{y})\right) \leqq c=d_{n}(\boldsymbol{x}, \boldsymbol{y})$.

Lemma 2 (marriage lemma [4]). Let $B=\left\{b_{1}, \cdots, b_{n}\right\}$ and $G=\left\{g_{1}, \cdots, g_{n}\right\}$ be finite sets of cardinal n and $P(G)$ the family of subsets of G. Let Ψ be a map from B into $P(G)$. If Ψ satisfies that $\# \cup_{b \in E}\{\Psi(b)\} \geqq \# E$ for every subset E of B, then there is a permutation $\sigma:\{1, \cdots, n\} \rightarrow\{1, \cdots, n\}$ such that $g_{\sigma(i)} \in \Psi\left(b_{i}\right)(1 \leqq i \leqq n)$.

Lemma 3. Let $n \geqq 1$ and $0<\delta<1 / n$ be given. For $\mu \in M_{n}(X)$, take $\boldsymbol{x} \in X_{n}$ with $\varphi_{n}(\boldsymbol{x})=\mu$. Then for every $\nu \in M_{n}(X)$ with $\widetilde{d}(\mu, \nu)<\delta$ there is $\boldsymbol{y} \in X_{n}$ such that $\varphi_{n}(\boldsymbol{y})=\nu$ and $d_{n}(\boldsymbol{x}, \boldsymbol{y})<\delta$.

Proof. Take $\delta_{0}>0$ with $\tilde{d}(\mu, \nu)<\delta_{0}<\delta(<1 / n)$. We express $x=$ $\left(x_{1}, \cdots, x_{n}\right) \in X_{n}$ and $\nu=(1 / n) \sum_{i=1}^{n} \pi\left(z_{i}\right)$. To distinguish between x_{i} or z_{i} $(1 \leqq i \leqq n)$ we put $S=\{1, \cdots, n\}$ and $x_{i}^{\prime}=\left(x_{i}, i\right)$, $z_{i}^{\prime}=\left(z_{i}, i\right) \in X \times S(1 \leqq i \leqq n)$. For $B=\left\{x_{i}^{\prime}, \cdots, x_{n}^{\prime}\right\}$ and $G=\left\{z_{i}^{\prime}, \cdots, z_{n}^{\prime}\right\}$ we define a map $\Psi: B \rightarrow P(G)$ by $\Psi\left(x_{i}^{\prime}\right)=\left\{z_{j}^{\prime} \in G: d\left(\tau\left(x_{i}^{\prime}\right), \tau\left(z_{j}^{\prime}\right)\right) \leqq \delta_{0}\right\} \quad(1 \leqq i \leqq n)$ where $P(G)$ is the family of subsets of G and $\tau: X \times S \rightarrow X$ is a natural projection. In order to apply

Lemma 2 we show that \# $U_{x_{i}^{\prime} \in E} \Psi\left(x_{i}^{\prime}\right) \geqq E$ for every subset E of B. Indeed, by $\widetilde{d}(\mu, \nu)<\delta_{0}$, it follows that $\nu\left((\tau E)^{\delta_{0}}\right) \geqq \mu(\tau E)-\delta_{0}$ where $(\tau E)^{s_{0}}=\{x \in X$: $\left.d(x, \tau E) \leqq \delta_{0}\right\}$. Since $\mu(\tau E)=\# E / n$ and $\delta_{0}<1 / n$, we have $\nu\left((\tau E)^{\delta_{0}}\right)>(1 / n)$ (\# $\#-1$). For every Borel set $A \subset X, \nu(A)=(1 / n)\left(\sum_{t=1}^{n} \pi\left(z_{i}\right)\right)(A)=k / n$ for some $0 \leqq k \leqq n$, so $(1 / n)\left(\sum_{i=1}^{n} \pi\left(z_{i}\right)(\tau E)^{d_{0}}\right) \geqq \# E / n$. Since \# $\cup_{x_{i}^{\prime} \in E}\left\{\Psi\left(x_{i}^{\prime}\right)\right\}=$ $\#\left\{z_{j}^{\prime} \in G: d\left(\tau x_{i}^{\prime}, \tau z_{j}^{\prime}\right) \leqq \delta_{0}, x_{i}^{\prime} \in E\right\}=\sum_{i=1}^{n} \pi\left(z_{i}\right)\left((\tau E)^{\delta_{0}}\right)$, we get \# $\cup_{x_{i}^{\prime} \in E}\left\{\Psi\left(x_{i}^{\prime}\right)\right\} \geqq \# E$.

Hence by Lemma 2 there is a permutation $\sigma: S \rightarrow S$ with $\Psi\left(x_{i}^{\prime}\right)=z_{\sigma(i)}^{\prime}$ $(1 \leqq i \leqq n)$. Put $y_{i}=z_{o(i)}$ and $y=\left(y_{1}, \cdots, y_{n}\right) \in X_{n}$. Then we have $\varphi_{n}(y)=$ $(1 / n) \sum_{i=1}^{n} \pi\left(y_{i}\right)=(1 / n) \sum_{i=1}^{n} \pi\left(z_{\sigma(i)}\right)=\nu \quad$ and $\quad d_{n}(x, y)=\max _{1 \leq i \leq n} d\left(x_{i}, z_{\sigma(i)}\right)=$ $\max _{1 \leq i \leq n} d\left(\tau x_{i}^{\prime}, \tau z_{(i)}^{\prime}\right) \leqq \delta_{0}<\delta$.

Lemma 4. (1) If (X, T) has the P.O.T.P., then $\left(X_{n}, T_{n}\right)$ has the P.O.T.P. for every $n \geqq 1$. More precisely, given $\varepsilon>0$ if there is $\delta>0$ such that every δ-pseudo orbit of T is ε-traced, then every δ-pseudo orbit of T_{n} is ε-traced.
(2) If (X, T) is tracing, then so is $\left(X_{n}, T_{n}\right)$.

Proof. (1): Let $\varepsilon>0$ be given and $\delta>0$ be a number decided by the P.O.T.P. of (X, T) corresponding with ε. Let $\left\{\dot{\boldsymbol{x}}^{k}\right\}_{k=-\infty}^{\infty}$ be a δ-pseudo orbit of $\left(X_{n}, T_{n}\right)$. If one denotes $x^{k}=\left(x_{1}^{k}, \cdots, x_{n}^{k}\right)(k \in Z)$ then $\left\{x_{i}^{k}\right\}_{k=-\infty}^{\infty}$ $(1 \leqq i \leqq n)$ is a δ-pseudo orbit of (X, T) because $d\left(T x_{i}^{k}, x_{i}^{k+1}\right) \leqq d_{n}\left(T_{n} x^{k}, \boldsymbol{x}^{k+1}\right)<\delta$ $(1 \leqq i \leqq n, k \in Z)$. By assumption, there is $y_{i} \in X(1 \leqq i \leqq n)$ with $d\left(T^{k} y_{i}, x_{i}^{k}\right) \leqq \varepsilon$ $(k \in Z)$. Put $\boldsymbol{y}=\left(y_{1}, \cdots, y_{n}\right)$ then $d_{n}\left(T_{n}^{k} y, \boldsymbol{x}^{k}\right)=\max _{1 \leq i \leq n} d\left(T^{k} y_{i}, x_{i}^{k}\right) \leqq \varepsilon$; i.e. $\boldsymbol{y} \in X_{n} \varepsilon$-traces $\left\{\boldsymbol{x}^{k}\right\}_{k=-\infty}^{\infty}$.
(2): Let a sequence $\left\{x^{k}\right\}_{k=0}^{\infty}$ of X_{n} satisfy that $\lim _{k \rightarrow \infty} d_{n}\left(T_{n} x^{k}, x^{k+1}\right)=0$. If one denotes $x^{k}=\left(x_{1}^{k}, \cdots, x_{n}^{k}\right) \quad(k \in Z)$ then it follows that $\lim _{k \rightarrow \infty} d\left(T x_{i}^{k}\right.$, $\left.x_{i}^{k+1}\right) \leqq \lim _{k \rightarrow \infty} d_{n}\left(T_{n} x^{k}, x^{k+1}\right)=0 \quad(1 \leqq i \leqq n), \quad$ so there \quad is $\quad y_{i} \in X \quad$ with $\lim _{k \rightarrow \infty} d\left(T^{k} y_{i}, x_{i}^{k}\right)=0$. Putting $\boldsymbol{y}=\left(y_{1}, \cdots, y_{n}\right) \quad$ we have $d_{n}\left(T_{n}^{k} \boldsymbol{y}, \boldsymbol{x}^{k}\right)=$ $\max _{1 \leq i \leq n} d\left(T^{k} y_{i}, x_{i}^{k}\right) \rightarrow 0(k \rightarrow \infty)$. This proves the lemma.

Proof of Theorem 1. (1): Let $n \geqq 1$ and $\varepsilon>0$ be given. By assumption there is $0<\delta<1 / n$ such that every δ-pseudo orbit of (X, T) is $\varepsilon / 2$-traced. Then, by Lemma 4(1), every δ-pseueo ordit of (X_{n}, T_{n}) is $\varepsilon / 2$-traced. At first we show that for every $m>0$, every finite δ-pseudo orbit $\left\{\nu_{k}\right\}_{k=0}^{m}$ of ($\left.M_{n}(X), \widetilde{T}\right)$ is $\varepsilon / 2$-traced. Since φ_{n} is surjective there is $\boldsymbol{x}^{0}=\left(x_{1}^{0}, \cdots, x_{n}^{0}\right) \in X_{n}$ with $\varphi_{n}\left(x^{0}\right)=\nu_{0}$. Then, since $\widetilde{d}\left(\widetilde{T} \nu_{0}, \nu_{1}\right)<\delta$, by Lemma 3 we can find $x^{1}=\left(x_{1}^{1}, \cdots, x_{n}^{1}\right) \in X_{n}$ such that $\varphi_{n}\left(x^{1}\right)=\nu_{1}$ and $d_{n}\left(T_{n} x^{0}, x^{1}\right)<\delta$. As $\tilde{d}\left(\widetilde{T} \nu_{1}, \nu_{2}\right)<\delta$, by Lemma 3 we have again $x^{2}=\left(x_{1}^{2}, \cdots, x_{n}^{2}\right) \in X_{n}$ such that $\varphi_{n}\left(\boldsymbol{x}^{2}\right)=\nu_{2}$ and $d_{n}\left(T_{n} x^{1}, x^{2}\right)<\delta$. Repeated this process we get a δ-pseudo orbit $\left\{\boldsymbol{x}^{k}\right\}_{k=0}^{m}$ of $\left(X_{n}, T_{n}\right)$ with $\varphi_{n}\left(\boldsymbol{x}^{k}\right)=\nu_{k}(0 \leqq k \leqq m)$. Hence there is $\boldsymbol{y}=$ $\left(y_{1}, \cdots, y_{n}\right) \in X_{n}$ which $\varepsilon / 2$-traces $\left\{x^{k}\right\}_{k=0}^{m}$. Put $\mu=(1 / n) \sum_{i=1}^{n} \pi\left(y_{i}\right) \in M_{n}(X)$, then we have

$$
\widetilde{d}\left(\widetilde{T}^{k} \mu, \nu_{k}\right)=\widetilde{d}\left(\varphi_{n}\left(T_{n}^{k} \boldsymbol{y}\right), \varphi_{n}\left(\boldsymbol{x}^{k}\right)\right) \leqq d_{n}\left(T_{n}^{k} \boldsymbol{y}, \boldsymbol{x}^{k}\right) \leqq \varepsilon / 2 \quad \text { (by Lemma 1) ; }
$$

i.e. $\left\{\nu_{k}\right\}_{k=0}^{m}$ is $\varepsilon / 2$-traced by μ.

Now let $\left\{\nu_{k}\right\}_{k=-\infty}^{\infty}$ be a δ-pseudo orbit of ($\left.M_{n}(X), \widetilde{T}\right)$. For every $m>0$ let us put $\nu_{j}^{\prime}=\nu_{j-m}(0 \leqq j \leqq 2 m)$. Then by the above argument there is $\mu_{m}^{\prime} \in M_{n}(X)$ which $\varepsilon / 2$-traces $\left\{\nu_{j}^{\prime}\right\}_{j=0}^{2 m}$. Put $\mu_{m}=\widetilde{T}^{m} \mu_{m}^{\prime}$ and take a limit point $\stackrel{\mu}{\mu}$ of sequence μ_{m}. Then, since for every $k \in Z$ there is $m>|k|$ so that $\widetilde{d}\left(\widetilde{T}^{k} \mu_{m}, \widetilde{T}^{k} \mu\right) \leqq \varepsilon / 2$, we get $\widetilde{d}\left(\widetilde{T}^{k} \mu_{,} \nu_{k}\right) \leqq \widetilde{d}\left(\widetilde{T}^{k} \mu, \widetilde{T}^{k} \mu_{m}\right)+\widetilde{d}\left(\widetilde{T}^{k+m} \mu_{m}^{\prime}, \nu_{k+m}^{\prime}\right) \leqq \varepsilon / 2+$ $\varepsilon / 2=\varepsilon$. This shows that $\left(M_{n}(X), \widetilde{T}\right)$ has the P.O.T.P..
(2): Let $n \geqq 1$ be given and $\left\{\nu_{k}\right\}_{k=0}^{\infty}$ be a sequence of $M_{n}(X)$ with $\lim _{k \rightarrow \infty} \widetilde{d}\left(\widetilde{T} \nu_{k}, \nu_{k+1}\right)=0$. Without loss of generality we may assume $\widetilde{d}\left(\widetilde{T} \nu_{k}, \nu_{k+1}\right)<1 / n(k \geqq 0)$. By same argument as in the proof of (1) we get a sequence $\left\{\boldsymbol{x}^{k}\right\}_{k=0}^{\infty}$ of X_{n} such that $\varphi_{n}\left(\boldsymbol{x}^{k}\right)=\nu_{k}(k \geqq 0)$ and $\lim _{k \rightarrow \infty} d_{n}\left(T_{n} x^{k}\right.$, \boldsymbol{x}^{k+1}) $=0$. Since $\left(X_{n}, T_{n}\right)$ is tracing (by Lemma $4(2)$), there is $\boldsymbol{x} \in X_{n}$ with $\lim _{k \rightarrow \infty} d_{n}\left(T_{n}^{k} x, x^{k}\right)=0$. Then for $\mu=\varphi_{n}(x)$ it follows that $\widetilde{d}\left(\widetilde{T}^{k} \mu, \nu_{k}\right)=$ $\widetilde{d}\left(\varphi_{n}\left(T_{n}^{k} x\right), \varphi_{n}\left(x^{k}\right)\right) \leqq d_{n}\left(T_{n}^{k} x, x^{k}\right) \rightarrow 0(k \rightarrow \infty)$. The proof is completed.

§3. Proof of Theorem 2.

We shall prove Theorem 2 by a series of lemmas.
Lemma 5. Let μ, ν and $\mu_{i}(i=1,2)$ belong to $M(X)$.
(1) $\tilde{d}(\alpha \mu+(1-\alpha) \nu, \beta \mu+(1-\beta) \nu) \leqq \beta-\alpha$ for $0 \leqq \alpha \leqq \beta \leqq 1$.
(2) $\tilde{d}\left(\alpha \mu_{1}+(1-\alpha) \mu_{2}, \nu\right) \leqq \max \left\{\tilde{d}\left(\mu_{1}, \nu\right), \tilde{d}\left(\mu_{2}, \nu\right)\right\}$ for $0 \leqq \alpha \leqq 1$.

Proof. (1): Let a Borel set $A \subset X$ be given. Then we calculate

$$
\begin{gathered}
(\beta \mu+(1-\beta) \nu)\left(A^{\beta-\alpha}\right)+(\beta-\alpha)-(\alpha \mu+(1-\alpha) \nu)(A) \\
=\alpha\left(\mu\left(A^{\beta-\alpha}\right)-\mu(A)\right)+(1-\alpha)\left(\nu\left(A^{\beta-\alpha}\right)-\nu(A)\right) \\
\quad+(\beta-\alpha)\left(1+\mu\left(A^{\beta-\alpha}\right)-\nu\left(A^{\beta-\alpha}\right)\right) \geqq 0
\end{gathered}
$$

where $A^{\beta-\alpha}=\cup_{x \in A}\{y \in X: d(x, y) \leqq \beta-\alpha\}$. From this we have conclusion.
(2): Put $c=\max \left\{\tilde{d}\left(\mu_{1}, \nu\right), \tilde{d}\left(\mu_{2}, \nu\right)\right\}$ and take $\varepsilon>c$. For every Borel set $A \subset X$, since $\mu_{i}\left(A^{\imath}\right)+\varepsilon-\nu(A) \geqq 0(i=1,2)$, we have

$$
\begin{aligned}
& \left(\alpha \mu_{1}+(1-\alpha) \mu_{2}\right)\left(A^{v}\right)+\varepsilon-\nu(A) \\
& \quad=\alpha\left(\mu_{1}\left(A^{v}\right)+\varepsilon-\nu(A)\right)+(1-\alpha)\left(\mu_{2}\left(A^{c}\right)+\varepsilon-\nu(A)\right) \geqq 0 .
\end{aligned}
$$

Therefore $\tilde{d}\left(\alpha \mu_{1}+(1-\alpha) \mu_{2}, \nu\right) \leqq \inf \{\varepsilon: c<\varepsilon\}=c$, proving the lemma.
Lemma 6. Let T be a homeomorphism of X and \widetilde{T} an induced homeomorphism of $M(X)$. Then $(M(X), \widetilde{T})$ is \widetilde{T}-connected.

Proof. Let $\mu, \nu \in M(X)$ and $\alpha>0$ be given. Take $n \geqq 1$ with $1 / n<\alpha$.

For $0 \leqq i \leqq n$ let us define μ_{i} and ν_{i} by $\mu_{i}=(1-(i / n)) \widetilde{T}^{i} \mu+(i / n) \widetilde{T}^{i-n} \nu$ and $\nu_{i}=(1-(i / n)) \widetilde{T}^{i} \nu+(i / n) \widetilde{T}^{i-n} \mu$. Obviously $\mu_{0}=\mu=\nu_{n}$ and $\nu_{0}=\nu=\mu_{n}$. By Lemma 5(1) we have

$$
\begin{aligned}
\tilde{d}\left(\widetilde{T} \mu_{i}, \mu_{i+1}\right) & =\tilde{d}\left(\left(1-\frac{i}{n}\right) \widetilde{T}^{i+1} \mu+\frac{i}{n} \widetilde{T}^{i+1-n} \nu,\left(1-\frac{i+1}{n}\right) \widetilde{T}^{i+1} \mu+\frac{i+1}{n} \widetilde{T}^{i+1-n} \nu\right) \\
& \leqq \frac{i+1}{n}-\frac{i}{n}<\alpha \quad(0 \leqq i \leqq n-1)
\end{aligned}
$$

and similarly $\tilde{d}\left(\widetilde{T} \nu_{i}, \nu_{i+1}\right)<\alpha(0 \leqq i \leqq n-1)$. This proves the lemma.
Lemma 7. If (X, T) is tracing and T-connected, then (X, T) has the P.O.T.P..

Proof. Suppose the lemma is false. Then there is $\varepsilon>0$ such that for every $k \geqq 1$ there is a ($1 / k$)-pseudo orbit $\left\{x_{1}^{k}, \cdots, x_{N_{k}}^{k}\right\}$ of (X, T) such that there is no $z \in X$ with $d\left(T^{j} z, x_{j}^{k}\right) \leqq \varepsilon\left(1 \leqq j \leqq N_{k}\right)$. By T-connectedness, there is a ($1 / k$)-pseudo orbit $\left\{z_{0}^{k}, \cdots, z_{L_{k}}^{k}\right\}$ with $z_{0}^{k}=x_{N_{k}}^{k}$ and $z_{L_{k}}^{k}=x_{1}^{k+1}(k \geqq 1)$. Renewing the indices of a sequence

$$
\left\{\cdots, x_{1}^{k}, \cdots, x_{N_{k}}^{k}, z_{1}^{k}, \cdots, z_{N_{k}-1}^{k}, x_{1}^{k+1}, \cdots\right\}
$$

we have a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ which satisfies $\lim _{n \rightarrow \infty} d\left(T x_{n}, x_{n+1}\right)=0$. Since (X, T) is tracing, there is $z \in X$ with $\lim _{n \rightarrow \infty} d\left(T^{n} z, x_{n}\right)=0$. Therefore for some $k>0,\left\{x_{i}^{k}\right\}_{i=1}^{N_{k}}$ is ε-traced. This is a contradiction.

If $(M(X), \widetilde{T})$ is tracing, by Lemmas 6 and $7,(M(X), \widetilde{T})$ has the P.O.T.P.. This prove Theorem 2(1). Next we show Theorem 2(2).

Lemma 8. Assume (X, T) is T-connected and has the P.O.T.P.. If the set of fixed points under T is nonempty, then (X, T) is topologically mixing.

Proof. Let $U, V \subset X$ be nonempty open sets. There are $x \in U, y \in V$ and $\varepsilon>0$ such that $B(x ; \varepsilon) \subset U$ and $B(y ; \varepsilon) \subset V$, where $B(z ; \varepsilon)=\left\{z^{\prime} \in X\right.$: $\left.d\left(z, z^{\prime}\right) \leqq \varepsilon\right\}$. Since (X, T) has the P.O.T.P., there is $\delta>0$ so that every δ-pseudo orbit of (X, T) is ε-traced. Take a fixed point $p \in X$ under T. By T-connectedness, there are δ-pseudo orbits $\left\{x_{i}\right\}_{i=0}^{a}$ and $\left\{y_{i}\right\}_{i=0}^{b}$ such that $x_{0}=x$, $x_{a}=p=y_{0}$ and $y_{b}=y$. Put $N=a+b+1 \geqq 0$. Given $n \geqq N$, since a sequence

$$
\left\{x_{0}, x_{1}, \cdots, x_{a}, p, \cdots, p(n-N \text { times }), y_{0}, \cdots, y_{b}\right\}
$$

is a δ-pseudo orbit, there is $z \in X$ which ε-traces this sequence. As $d(x, z)=d\left(x_{0}, z\right) \leqq \varepsilon$ and $d\left(y, T^{n} z\right)=d\left(y_{b}, T^{n} z\right) \leqq \varepsilon$, we have $z \in B(x ; \varepsilon) \cap$ $T^{-n} B(y ; \varepsilon) \subset U \cap T^{-n} V$; i.e. (X, T) is topologically mixing.

Lemma 9. If (X, T) is topologically mixing and has the P.O.T.P., then (X, T) satisfies weak specification.

Proof. Let $\varepsilon>0$ be given. There is $\delta>0$ such that every δ-pseudo orbit is ε-traced. By topological mixing and the compactness of X, there is $M>0$ such that for every $x, y \in X, T^{n} B(x ; \delta) \cap B(y ; \delta) \neq \varnothing$ for every $n \geqq M$, where $B(z ; \delta)=\left\{z^{\prime} \in X: d\left(z, z^{\prime}\right) \leqq \delta\right\}$. For every $k \geqq 1$, let k points $x_{1}, \cdots, x_{k} \in X$ and a set of integers $a_{1} \leqq b_{1}<\cdots<a_{k} \leqq b_{k}$ with $a_{i+1}-$ $b_{i} \geqq M(1 \leqq i \leqq k-1)$ be given. By choice of M, there are $y_{i} \in B\left(T^{b} x_{i} ; \delta\right)$ $(1 \leqq i \leqq k-1)$ with $T^{a_{i+1}{ }^{-b}} y_{i} \in B\left(T^{a_{i+1}} x_{i+1} ; \delta\right)$. Then a sequence $\left\{T^{a_{1}} x_{1}, \cdots\right.$, $\left.T^{b_{1}-1} x_{1}, y_{1}, \cdots, T^{a_{2}-b_{1}} y_{1}, T^{a_{2}} x_{2}, \cdots, T^{b_{k}} x_{k}\right\}$ is δ-pseudo orbit, so there is $z \in X$ with $d\left(T^{n} z, T^{n} x_{i}\right) \leqq \varepsilon\left(a_{i} \leqq n \leqq b_{i}, 1 \leqq i \leqq k\right)$. This proves the Lemma.

We remarked in $\S 1$ that the set of fixed points of $(M(X), \widetilde{T})$ is nonempty. Hence if $(M(X), \widetilde{T})$ has the P.O.T.P., by Lemmas 6, 8 and 9 , ($M(X), \widetilde{T})$ satisfies weak specification. Therefore the proof of Theorem $2(2)$ is completed by the following lemma.

Lemma 10. If $(M(X), \widetilde{T})$ satisfies weak specification, then $(M(X), \widetilde{T})$ satisfies specification.

Proof. Let $\varepsilon>0$ be given and $M=M(\varepsilon)>0$ an integer determined from the definition of weak specification. For every $k \geqq 1$, let k points $\mu_{1}, \cdots, \mu_{k} \in M(X)$ and a set of integers $a_{1} \leqq b_{1}<\cdots<a_{k} \leqq b_{k}$ with $a_{i+1}-b_{i} \geqq M$ ($1 \leqq i \leqq k-1$) and $p \geqq b_{k}-a_{1}+M$ be given. Using weak specification, we can find a sequence $\nu_{j} \in M(X)(j=1,2, \cdots)$ such that $\widetilde{d}\left(\widetilde{T}^{n+m p} \nu_{j}, \widetilde{T}^{n} \mu_{i}\right) \leqq \varepsilon$ ($a_{i} \leqq n \leqq b_{i}, 1 \leqq i \leqq k, 0 \leqq m \leqq j$). Take a limit point ν of the sequence ν_{j}. Then it follows that $\widetilde{d}\left(\widetilde{T}^{n+m p} \nu, \widetilde{T}^{n} \mu_{j}\right) \leqq \varepsilon\left(a_{i} \leqq n \leqq b_{i}, 1 \leqq i \leqq k, m \geqq 0\right)$. Put $\mu=\lim _{s \rightarrow \infty}(1 / s) \sum_{m=0}^{s-1} \widetilde{T}^{m p} \nu$ for some $\{s\}$. By Lemma $5(2)$, we have for $a_{i} \leqq n \leqq b_{i}(1 \leqq i \leqq k)$,

$$
\begin{aligned}
& \widetilde{d}\left(\widetilde{T}^{n} \mu, \widetilde{T}^{n} \mu_{i}\right)=\lim _{s \rightarrow \infty} \tilde{d}\left((1 / s) \sum_{m=0}^{s-1} \widetilde{T}^{n+m p} \nu, \widetilde{T}^{n} \mu_{i}\right) \\
& \quad \leqq \lim _{s \rightarrow \infty} \max \left\{\widetilde{d}\left(\widetilde{T}^{n+m p} \nu, \widetilde{T}^{n} \mu_{i}\right) ; 0 \leqq m \leqq s-1\right\} \leqq \varepsilon
\end{aligned}
$$

Also, by Lemma $5(1)$, we have $\widetilde{d}\left(\widetilde{T}^{p} \mu, \mu\right) \leqq \lim _{s \rightarrow \infty}\left\{\widetilde{d}\left(s^{-1} \sum_{m=1}^{s} \widetilde{T}^{m p} \nu,(s-1)^{-1} \times\right.\right.$ $\left.\left.\sum_{\tilde{m}_{m=1}^{s-1}}^{\widetilde{T}^{m p}} \nu\right)+\widetilde{d}\left((s-1)^{-1} \sum_{m=1}^{s-1} \widetilde{T}^{m p} \nu, s^{-1} \sum_{m=0}^{s-1} \widetilde{T}^{m p} \nu\right)\right\} \leqq \lim _{s \rightarrow \infty} 2 / s=0$, hence $\widetilde{T}^{p} \mu=\mu$. This completes the proof.

References

[1] W. bauer and K. Sigmund, Topological dynamics of transformations induced on the space of probability measures, Monatsh. Math., 79 (1975), 81-92.
[2] R. BowEN, ω-limit sets for Axiom A diffeomorphisms, J. Differential Equations, 18 (1975), 333-339.
[3] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes Math., 527, Springer, Berlin-Heidelberg-New York, 1964.
[4] P. Halmos and H. Vaughn, The marriage problem, Amer. J. Math., 72 (1950), 214-215.
[5] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York and London, 1967.
[6] K. Sigmund, On minimal centers of attraction and generic points, J. Reine Angew. Math., 295 (1977), 72-79.
[7] V. Sterassen, The existence of probability measures with given marginals, Ann. Math. Statistics, 36 (1965), 423-439.

Present Address:

Department of Mathematics
Faculty of Sciences
Tokyo Metropolitan University
Furazawa, Setagaya-ku, Tokyo 158

[^0]: Received August 12, 1983.
 Revised January 19, 1984.

