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Introduction

The problem to find a surface having a given function as the mean
curvature has been studied for a long time. A particular problem of this
type, called the non-parametric problem, can be reduced to solve the
Dirichlet problem for the following quasilinear elliptic equation

$(*)$ $-div\{\nabla u/(1+|\nabla u|^{2})^{1/2}\}=c$ in $\Omega$ , $ u=\phi$ on $\partial\Omega$ .
Here $\Omega$ is a bounded domain in $R^{n}(n\geqq 2),$ $c$ is a given function on $\Omega$

and $\phi$ is a given boundary value. Since Eq. $(^{*})$ is nonlinear and non-uni-
formly elliptic, we cannot expect in general that Eq. $(^{*})$ has a classical
solution for generic $\Omega,$ $c$ and $\phi$ . In fact, some kinds of necessary con-
dition on $\Omega$ and $c$ are found by many people (see [3], [5], [7], [8], [9], [12]).

In this paper, as an approach to the problem, we introduce a parame-
ter $T(>0)$ into Eq. $(^{*})$ as follows.
$(*)_{T}$ $-div\{\nabla u/(1+|\nabla u|^{2})^{1/2}\}=Tc$ in $\Omega$ , $ u=\phi$ on $\partial\Omega$ ,

where $c$ is supposed nonnegative and bounded in $\Omega$ . And we investigate
how the solvability of Eq. $(^{*})_{r}$ depends on the parameter $T$. For this
purpose we first consider the variational problem of finding a functional
belonging to $BV(\Omega)$ which minimizes the functional

(0.1) $J_{r}(u)=\int_{\rho}(1+|\nabla u|^{2})^{1/2}$dx-T $\int_{\rho}cudx+\int_{\partial\rho}|u-\phi|dH_{n-1}$

in $BV(\Omega)$ . Here $BV(\Omega)$ is the space consisting of functions of bounded
variation in $\Omega$ and $H_{n-1}$ denotes $(n-1)$-dimensional Hausdorff measure.
For this variational problem we first consider the condition when $J_{r}$ is
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bounded from below on $BV(\Omega)$ . Our result is that $J_{T}$ is not bounded
from below on $BV(\Omega)$ in case $T$ is larger than a critical parameter $T^{*}$

$(>0)$ defined by

$T^{*}=\inf_{2F,\subset)}\{H_{n-1}(\partial E)/meas_{0}(E)\}$ where meas, $(E)=\int_{B}\iota(x)dx$ .
The condition of this type was obtained by Mosolov [11] for the first
time. However, his result [11] contains some inessential assumption
because he formulated the problem in the Sobolev space $W^{1,1}(\Omega)$ . And
also since $W^{1.1}(\Omega)$ is not reflexive, he dose not give the solution of the
variational problem. Though several people studied similar variational
problems in the space $BV(\Omega)$ (for example, see [3], [5], [7]), their condi-
tion for the lowerboundedness of the functional less clarify the relation
between the functional and the geometric property of the domain $\Omega$ than
that of Mosolov. In this paper we return to Mosolov’s formulation
and show the existence of the solution of the variational problem for
$T<T^{*}$ by using the space $BV(\Omega)$ instead of $W^{1.1}(\Omega)$ . Using the result
about the weak* topology on $BV(\Omega)$ ([1], [2]), we give a more direct
proof than that in [3], [5], [7]. Next we consider the regularity property
of the solution of the variational problem. Applying the regularity theo-
rem due to Gerhardt [3] and Giaquinta [4], we give a partial result to
this problem.

In section 1 we enumerate some properties of $BV(\Omega)$ , which will be
needed in the following sections. Section 2 is devoted to the proof of
the lower boundednesv theorem for the variational problem. In section 3
we discuss the existence and regularity property of the solution of the
variational problem. In the final section 4 we show a dependence of
solutions of Eq. $(^{*})_{T}$ on the parameter $T$ and we state some results on
Eq. $(^{*})_{r}$. for the critical parameter $\tau*$ . These theorems for Eq. $(^{*})_{T}$. are
quite different from those of $T<T^{*}$ .

\S 1. Definitions and properties of $BV(\Omega)$ .
We present here the definition of the space $BV(\Omega)$ and some proper-

ties of its elements (for more detail, see [1], [2], [6]). Throughout this
section $\Omega$ will denote a bounded domain in $R^{n}(n\geqq 2)$ with Lipschitz
boundary.

The space of functions of bounded variation in $\Omega$ is defined as follows.

$BV(\Omega)=\{ueL^{1}(\Omega);\nabla ue(C_{0}^{\prime}(\Omega))^{\mathfrak{n}}\}$ .
Here $(C_{0}^{\prime}(\Omega))$

“ denotes the dual space of $C_{0}(\Omega)^{n}$ and its norm is defined by
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$\Vert\omega||_{(C_{0}^{\prime}(\Omega))^{\mathcal{R}}}=\sup\{a)(G);GeC_{0}(\Omega)^{n}, |G|\leqq 1\}$ .
By virtue of Riesz’s representation theorem, we observe that $BV(\Omega)$ is
the function space consisting of $L^{1}$ functions whose gradient in distribu-
tion sense is a bounded vector-valued Radon measure. $BV(\Omega)$ is a Banach
space under the norm

$||u\Vert_{BV(\Omega)}=||u||_{L^{1}(\Omega)}+\int_{\rho}|\nabla u|$

where $\int_{\Omega}|\nabla u|=\sup\{\int_{\Omega}udivGdX_{1}GeC_{0}^{1}(\Omega)^{n},$ $|G|\leqq 1\}$ .

In the above definition $\int_{\Omega}|\nabla u|$ means the total variation of the vector-
valued Radon measure $\nabla u$ in $\Omega$ . And it coincides with the norm $||\nabla u||_{(C_{0}^{\prime}(\Omega))},$ .

EXAMPLE 1.1. (1) If $u$ belongs to the Sobolev space $W^{1,1}(\Omega)$ , we
may easily show that

$\int_{\Omega}|\nabla u|=\int_{\Omega}|\nabla u(x)|dx$ and $||u||_{BV(\Omega)}=||u\Vert_{W^{1,1}t^{Q)}}$ .

Thus we also see that the Sobolev space $W^{1,1}(\Omega)$ is a closed subspace of
$BV(\Omega)$ .

(2) Suppose $E$ be an open subset of $\Omega$ with $C^{2}$ boundary. We define
the characteristic function $\chi_{E}$ of $E$

$\chi_{E}(x)=1$ if $xeE$ , $=0$ if $xe\Omega-E$ .
Then, the following results are known (see [6]).

$x_{E}eBV(\Omega)$ , $\int_{\Omega}|\nabla\chi_{E}|=H_{n-1}(\Omega\cap\partial E)$ and $\chi_{E}\not\in W^{1,1}(\Omega)$

where $H_{n-1}$ denotes $(n-1)$-dimensional Hausdorff measure.
We define the area functional

(1.1) $\int_{\rho}(1+|\nabla u|^{2})^{1/2}=\sup\{\int_{\rho}(g_{0}+divG)dx;G=(g_{\iota}, \cdots, g_{n})$ ,

$g_{i}eC_{0}^{1}(\Omega),$ $i=0,$ $\cdots,$ $n,$ $\sum_{=0}^{n}g_{i}^{2}\leqq 1\}$

on $BV(\Omega)$ according to [1], [5].
By this definition we may easily show that

(1.2) $\int_{\Omega}|\nabla u|\leqq|_{\Omega}(1+|\nabla u|^{2})^{1/2}\leqq\int_{\Omega}|\nabla u|+meas(\Omega)$
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where meas $(\Omega)$ denotes the n-dimensional Lebesgue measure of $\Omega$ . Fur-
thermore we readily verify that

(1.3) $\int_{\rho}(1+|\nabla u|^{2})^{\iota/2}=\int_{\rho}(1+|\nabla u(x)|^{2})^{\iota/2}dx$ for $ueW^{1,1}(\Omega)$ .
We next state about some weak topology on $BV(\Omega)$ . We define the

following mapping.

$e:BV(\Omega)\rightarrow R\oplus(C_{0}^{\prime}(\Omega))^{n}=(R\oplus C_{0}(\Omega)^{n})^{\prime}$ ,

$c(u)=(\int_{\rho}udx,$ $\nabla u)$ .
It is easily seen that $f$ is an iniective continuous linear mapping between
Banach spaces. We identify $BV(\Omega)$ as a subspace of $R\oplus(C_{0}^{\prime}(\Omega))$“ endowed
with the weak* topology as the dual space of $R\oplus C_{0}(\Omega)$“. This weak*
topology induces a topology of $BV(\Omega)$ as follows (see [1], [2]).

DEFINITION 1.2. A sequence $\{u_{j}\}$ of $BV(\Omega)$ converges to $ueBV(\Omega)$

in the $\tilde{w}^{*}$ topology if and only if

$\lim_{j\rightarrow\infty}\int_{\rho}u_{j}dx=\int_{\rho}udx$ and $\lim_{j\rightarrow\infty}\int_{\rho}G\cdot\nabla u_{j}=\int_{\rho}G\cdot\nabla u$ for $GeC_{0}(\Omega)^{\mathfrak{n}}$ .
The $\tilde{w}^{*}$ topology has the following properties ([1], [2]).

PROPOSITION 1.3. (1) $BV(\Omega)$ is a $\tilde{w}^{*}$-closed set in $R\oplus(C_{0}(\Omega))^{n}$ .
(2) If a sequence $\{u_{j}\}$ of $BV(\Omega)$ converges to $ueBV(\Omega)$ in the $\tilde{w}^{*}$

topology, then $\{u_{j}\}$ converges to $u$ in $L^{1}(\Omega)$ .
(3) The closed balls of $BV(\Omega)$ are $\tilde{w}^{*}$-compact and their topolo$gy$ is

metrizable.
(4) $W^{1.1}(\Omega)$ is $\tilde{w}^{*}$-dense in $BV(\Omega)$ .
Concerning the boundary value of a function belonging to $BV(\Omega)$ ,

we state the following theorem (see [1], [6]).

THEOREM 1.4. There $ ex\dot{j}st\epsilon$ a bounded operator $\gamma$ (called the trace
operator) from $BV(\Omega)$ to $L^{1}(\Omega)$ sueh that

(1) If $ueW^{1.1}(\Omega)$ , then $\gamma(u)$ coincides with the trace of $u$ in the
sense of the Sobolev space $W^{1.1}(\Omega)$ .

(2) For every $GeC_{0}^{1}(R^{n})$“ the following formula holds.

$\int_{\rho}udivGdx+\int_{\rho}G\cdot\nabla u=\int_{\partial\rho}\gamma(u)G\cdot\nu dH_{n-1}$

where $\nu$ denotes the outward unit normal vector of $\partial\Omega$ .
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\S 2. Lower boundedness of the variational problem.

In this paper we discuss the solvability of the Dirichlet problem for
the quasilinear elliptic equation with a parameter $T$

$(*)_{T}$ $-div\{\nabla u/(1+|\nabla u|^{2})^{1/2}\}=Tc$ in $\Omega,$ $ u=\phi$ on $\partial\Omega$ .
Our purpose is to show the existence of the solution of Eq. $(^{*})_{T}$ belonging
to $C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$ assuming some kinds of conditions on $\Omega,$ $c,$ $\phi$ and $T$ if
necessary. As our approach to this problem we use the variational method.
We consider the following variational problem.

Find $u_{r}eW^{1,1}(\Omega)=\{ueW^{1,1}(\Omega);\gamma(u)=\phi\}$

(2.1) such that $I_{r}(u_{r})\leqq I_{r}(v)$ for all $veW_{\phi}^{1,1}(\Omega)$

where $I_{r}(u)=\int_{\Omega}(1+|\nabla u|^{2})^{1/2}$dx-T $\int_{\rho}$ cudx.

If a solution of Eq. $(^{*})_{T}$ may exist in $C^{2}(\Omega)\cap W^{1,1}(\Omega)$ , it becomes a solution
of $(2.1)_{T}$ . Conversely, if there exists a solution of $(2.1)_{T}$ and it belongs
to $C^{2}(\Omega)$ , then it is also a solution of Eq. $(^{*})_{T}$ . However, because the
space $W^{1.1}$ iv not reflexive, the general argument choosing a weakly con-
vergent subsequence from a bounded sequence fails. We overcome this
difficulty by considering the following problem instead of $(2.1)_{T}$ .

Find $u_{r}eBV(\Omega)$ such that $J_{T}(u_{T})\leqq J_{T}(v)$ for all $veBV(\Omega)$

(22)
where $J_{T}(u)=\int_{i2}(1+|\nabla u|^{2})^{1/2}-T\int_{f}cudx+\int_{\partial\rho}|\gamma(u)-\phi|dH_{n-1}$ .

From Theorem 1.4 and (1.3) we readily see that $I_{T}(u)=J_{T}(u)$ whenever
$ueW^{1,1}(\Omega)$ , that is, $J_{T}$ is a extension of $I_{T}$ to the space $BV(\Omega)$ . The
relation between $(2.1)_{T}$ and $(2.2)_{T}$ is stated in the following result due to
Williams [14].

PROPOSITION 2.1. Let $\Omega$ be a bounded open set of $R^{n}w\prime ith$ Lipsch,itz
boundary and let $ceL^{n}(\Omega)$ and $\emptyset eL^{1}(\partial\Omega)$ , Then, we have

(2.3)
$\mu=\inf_{W_{\phi}^{1.1}(\Omega)}I_{r}=\inf_{BV_{\phi}(f)}J_{r}=\inf_{2BV(J)}J_{r}$

where $BV_{\phi}(\Omega)=\{ueBV(\Omega);\gamma(u)=\phi\}$ .
The remainder of this section is devoted to prove the following theo-

rem about the existence of a finite infimum $\mu$ (cf. [11]).

THEOREM 2.2. Let $\Omega$ be a bounded domain of $R^{n}$ with Lipschitz
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boundary and suppose that $ceL^{\infty}(\Omega),$ $a\geqq 0$ in S7 and $\phi eL^{1}(\partial\Omega)$ . Then,
the functional $J_{T}$ is bounded from below on $BV,(\Omega)$ if and only if

(2.4) $0\leqq T\leqq T^{*}=\inf_{E\subset J}\{H_{-1}(\partial E)/meas_{0}(E)\}$ where $meas_{0}(E)=\int_{B}cdx$ .
In the right hand of (2.4) the infimum $\dot{j}S$ taken among open sets of $\Omega$

with $C^{2}$ boundary.

PROOF. By (1.2) it is sufficient to show that the conclusion holds
for the functional

(2.5) $\Phi_{r}(u)=\int_{\Omega}|\nabla u|-T\int_{2}cudx+\int_{\partial\rho}|\gamma(u)-\phi|dH_{n-1}$

instead of $J_{T}$ .
We first prove that the condition (2.4) is necessary. It is enough

to show that if $T>T^{*}$ there exists a sequence $\{u_{j}\}$ of $BV,(\Omega)$ such that
$ 1{\rm Im}_{j\rightarrow\infty}\Phi_{T}(u_{j})=-\infty$ . Since $T>T^{*}$ , there exist $\lambda>0$ and an open set $G$ of
$\Omega$ with $C^{2}$ boundary such that

(2.6) $T>(H_{*-1}(\partial G)+x)/meas_{0}(G)$ .
If $\partial G$ intersects with $\partial\Omega$ , we take an open set

$G.=$ {$ xe\Omega$ ; dist $(x,$ $ R-G)>\epsilon$} , $(\epsilon>0)$ .
From the result of [9], Appendix we see that $\partial G$ is of class $C^{2}$ for suf-
ficiently small $\epsilon$ . Furthermore, it is readily shown that (2.6) holds for
such G. by replacing $\lambda$ with smaller one if necessary, Hence, we may
reduce the problem to the case $\partial G\cap\partial\Omega$ is empty.

By [14], Theorem 1 we take an extension $\tilde{\phi}eW^{1.1}(\Omega)$ of the boundary
value $\phi$ . We choose a cut off function $\eta eC^{\infty}(R^{n})$ satisfying

$\eta(x)=1$ if $ xe\partial\Omega$ , $=0$ if $xeU$ ,

where $U$ is a fixed neighborhood of $G$ such that $ Uc\Omega$ .
We define

$u_{j}(x)=j\cdot\chi_{a}(x)+\eta(x)\cdot\tilde{\phi}(x)$ $(j=1,2, \cdots)$

where $\chi_{o}$ is the characteristic function of $G$ . Example 1.1 (2) implies
that $u_{j}eBV,(\Omega)$ for all $j$. Then,

$\Phi_{T}(u_{j})=\int_{\rho}|\nabla u_{j}|-T\int_{\rho}cudx$ ,
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$\leqq j(\int_{\Omega}|\nabla\chi_{a}|-T\int_{a}cdx)+C$ ,

$\leqq j$($H_{n-1}(\partial G)-T$ meas, $(G)$) $+C$ ,
$<-jx+C$ .

Here $C$ denotes a constant independent of $j$ . Hence, we have

$\lim_{;\rightarrow\infty}\Phi_{T}(u_{j})=-\infty$ .
Conversely, suppose that the condition (2.4) holds. We take an exten-

sion $\tilde{\phi}eW^{1,1}(\Omega)$ of $\phi$ as the preceding case. For $ueBV_{i}(\Omega)$ we set $v=$

$u-\tilde{\phi}$ and then $\gamma(v)=0$ . We first consider the case $veC^{\infty}(\Omega)$ . We set

$A(t)=\{xe\Omega;|v(x)|>t\}$ , $a_{l}=x_{\Delta(t)}$ $(t\geqq 0)$ .
Then the following formulas are known (see [5]).

$|v(x)|=\int_{0}^{\infty}a_{l}(x)dt$ , $\int_{\rho}|\nabla|v||=\int_{0}^{\infty}(\int_{\rho}|\nabla a,|)dt$ .
Using Sard’s theorem we observe that the boundary $\partial A(t)$ of $A(t)$ is of
class $C^{\infty}$ for almost all $t>0$ . Furthermore $\overline{A(t)}\cap\partial\Omega$ is empty for all $t>0$ .
From Example 1.1 (2) we obtain

$\int_{\Omega}|\nabla|v||=\int_{0}^{\infty}H_{s-1}(\partial A(t))dt$ ,

$\Phi_{T}(|v|)=\int_{\theta}^{\infty}H_{n-1}(\partial A(t))dt-T\int_{\rho}c(x)(\int_{0}^{\infty}a_{l}(x)dt)dx$ ,

$=\int_{0}^{\infty}\{H_{n-1}(\partial A(t))-T\int_{\Omega}c(x)a_{l}(x)dx\dagger dt$ ,

$=\int_{0}^{\infty}$ { $H_{n-1}(\partial A(t))-T$ meas, $(A(t))$ } $dt\geqq 0$ .
Hence,

$\Phi_{T}(u)\geqq\Phi_{T}(v)-\Phi_{T}(\tilde{\phi})\geqq\Phi_{T}(|v|)-\Phi_{T}(\tilde{\phi})\geqq-\Phi_{r}(\tilde{\phi})$ .
For general element $u$ of $BV_{\phi}(\Omega)$ we approximate $v=u-\tilde{\phi}$ by smooth
function. Using [6], 2.12 we can choose a sequence $\{v_{j}\}$ of $C^{\infty}(\Omega)$ such
that $\{v_{j}\}$ converges to $v$ in $L^{1}(\Omega)$ , $\lim_{j\rightarrow\infty}\int_{\rho}|\nabla v_{j}|=I_{\rho}|\nabla v|$ and $\gamma(v_{j})=$

$\gamma(v)=0$ . Therefore,

$\Phi_{T}(u)\geqq\Phi_{T}(v)-\Phi_{r}(\tilde{\phi})=\Phi_{r}\langle v_{j})+\Phi_{T}(v)-\Phi_{T}(v_{j})-\Phi_{q},(\tilde{\phi})$ ,
$\geqq\Phi_{T}(|v_{j}|)+\Phi_{T}(v)-\Phi_{T}(v_{j})-\Phi_{T}(\tilde{\phi})$ ,
$\geqq\Phi_{T}(v)-\Phi_{T}(v_{j})-\Phi_{T}(\tilde{\phi})$ .
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Since $\lim_{j\rightarrow\infty}\Phi_{T}(v_{j})=\Phi_{T}(v)$ , we have the desired result
$\Phi_{r}(v)\geqq-\Phi_{T}(\tilde{\phi})$ for all $ueBV,(\Omega)$ . Q.E.D.

REMARK 2.3. (1) Using the isoperimetric inequality, we have the
lower estimate for the critical parameter $\tau*$ .
(2.7) $T^{*}\geqq n(\omega/meas(\Omega))^{1/n}\cdot||c\Vert_{L^{\infty}(9)}^{-1}>0$

where $\omega$ denotes n-dimensional Lebesgue measure of a unit ball in $R$ .
(2) Since the functional $J_{T}$ is convex, it cannot attain any critical

value except for the minimum value. Hence, Eq. $(^{*})_{T}$ does not have any
weak solution of $W^{1,1}(\Omega)$ for $T>T^{*}$ .

\S 3. Existence and regularity of solutions of variational problem.

Here we consider the existence and the regularity of solutions of
the variational problem $(2.2)_{r}$ for $T<T^{*}$ . We first prove the following
existence theorem.

THEOREM 3.1. Let $\Omega$ be a bounded domain in $R^{n}$ with $Lip$schitz
boundary. Suppose that $ceL^{\infty}(\Omega)$ with $c\geqq 0,$ $\phi eL^{1}(\partial\Omega)$ and $0\leqq T\leqq T^{*}$ .
Then, $the\gamma e$ exists $u_{T}eBV(\Omega)$ such that $u_{r}$ minimizes the functional $J_{T}$

on $BV(\Omega)$ .
We state the following lemmas which will be needed in the proof of

the above theorem.

LEMMA 3.2. If a sequence $\{u_{j}\}$ of $BV(\Omega)$ eonverges to $ueBV(\Omega)$ in
the $\tilde{w}^{*}$ topology, then

$J_{T}(u)\leqq\lim_{j\rightarrow}\inf_{\infty}J_{T}(u_{j})$

holds.

PROOF. From [1] the functional $\int_{\rho}(1+|\nabla u|^{2})^{1/2}+\int_{\partial\rho}|\gamma(u)-\phi|dH_{n-1}$ is
lower semicontinuous with respect to the $\tilde{w}^{*}$ topology. Hence, using
Proposition 1.3 (2) we have

$J_{r}(u)=\int_{\rho}(1+|\nabla u|^{I})^{1/2}+\int_{\partial\rho}|\gamma(u)-\phi|dH_{-1}-T\int_{\rho}$ cudx,

$\leqq\lim_{j\rightarrow}\inf_{\infty}\{\int_{\rho}(1+|\nabla u_{j}|^{2})^{1/2}+\int_{\partial 9}|\gamma(u_{j})-\phi|dH_{n-1}\}+\lim_{j\rightarrow\infty}T\int_{\rho}cu_{g}dx$ ,

$\leqq\lim_{j\rightarrow}\inf_{\infty}\{\int_{\rho}(1+|\nabla u_{j}|^{2})^{1/2}+\int_{\partial O}|\gamma(u_{j})-\phi|dH_{-1}-T\int_{\rho}cu_{j}dx\}$ ,

$=\lim_{j\rightarrow}\inf_{\infty}J_{r}(u_{j})$ . Q.E.D.
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LEMMA 3.3 (Miranda [10]). For any element $u$ of $BV(\Omega)$ , the follow-
ing inequality holds.

(3.1) $\int_{\Omega}\{Lu|dx\leqq n(meas(\Omega)/\omega)^{1/n}(\int_{\Omega}|\nabla u|+\int_{\partial O}|\gamma(u)|dH_{-1})$ .
PROOF OF THEOREM 3.1. By virtue of Theorem 2.2 and $T<T^{*}$ , we

have

$\mu=\inf_{BV(Q)}J_{T}=\inf_{BV(\Omega)}J_{T}>-\infty$ .
We choose a minimizing sequence $\{u_{j}\}$ of $BV_{\phi}(\Omega)$ , that is, $J_{T}(u_{j})$ converges
to $\mu$ as $j$ tends to infinity. We may assume

$\Phi_{T}(u_{j})\leqq J_{T}(u_{j})\leqq C_{1}$ where $C_{1}$ is a constant independent of $j$ .
Then we have

$(T^{*}/T)\Phi_{T}(u_{j})=((T^{*}/T)-1)\int_{\rho}\lfloor\nabla u_{j}|+\Phi_{r}.(u_{j})$ ,

$\leqq((T^{*}/T)-1)\int_{\Omega}|\nabla u_{j}|-\Phi_{T}.(\tilde{\phi})$ .
$\int_{\Omega}|\nabla u_{j}|\leqq(T^{*}\Phi_{T}(u_{j})+T\Phi_{T^{*}}(\tilde{\phi}))/(T^{*}-T)\leqq C_{2}$ ,

where $C_{2}$ is a constant independent of $j$ . Using Lemma 3.3, we obtain
$\Vert u_{j}\Vert_{L^{1}(\rho)}\leqq n(meas(\Omega)/\omega_{n})^{1/n}(C_{2}+\Vert\phi\Vert_{L^{1}(\partial\Omega)})$ .

Hence, $\{u_{j}\}$ is bounded in $BV(\Omega)$ . By Proposition 1.3 (3). There exists a
subsequence $\{u_{k}\}$ of $\{u_{j}\}$ which converges to some element $u_{T}$ of $BV(\Omega)$

in the $\tilde{w}^{*}$ topology. Using Lemma 3.2, we obtain

$\mu\leqq J_{T}(u_{T})\leqq\lim_{k\rightarrow}\inf_{\infty}J_{T}(u_{k})=\mu$ . Q.E.D.

Concerning with the regularity property of the solution $u_{r}$ of the
variational problem $(2.2)_{T}$ obtained in the above theorem, we state the
following theorem, which is derived from the result of Giaquinta [4].

THEOREM 3.4. Let $\Omega$ be a bounded domain in $R$“ with $C^{2}bounda\gamma y$

and $\phi eC^{0}(\partial\Omega)$ . Suppose that a nonnegative function $ceC^{1}(\overline{\Omega})$ satisfies
(3.2) $Tc(y)\leqq(n-1)H(y)$ for any $ ye\partial\Omega$ ,

where $H$ denotes the mean curvature of $\partial\Omega$ with respect to the inward
unit normal vector of $\partial\Omega$ . And suppose $0<T<T^{*}$ . Then, the solution
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$u_{T}$ of $(2.2)_{T}$ belongs to $C^{2.\alpha}(\Omega)\cap C^{0}(\overline{\Omega})(0\leqq\alpha<1),$ $ u_{r}=\phi$ on $\partial\Omega$ and $u_{r}$ is a
unique solution of Eq. $(^{*})_{T}$ .

REMARK 3.5. (1) In the above theorem if we consider the interior
regularity alone, we may assume that $ceC^{1}(\Omega)$ (see [4]).

(2) The condition (3.2) is initially introduced by Serrin [12] and he
shows that (3.2) is necessary to solve Eq. $(^{*})_{T}$ for any boundary value
$\phi eC^{0}(\partial\Omega)$ (see [9], [12]).

For the further regularity property we have the following theorem
using the result due to Gerhardt [3].

THEOREM 3.6. Let $\Omega$ be a bounded domain of $R$ with $C^{2,a}$ boundary

for some $\alpha>0$ and $\phi$ can be extended to an alement of $C^{2.\alpha}(\overline{\Omega})$ . Suppose
$ceC^{1}(\Omega)$ is as in Theorem 3.4 and $0\leqq T<T^{*}$ . Then, $u_{T}eC^{2.\alpha}(\overline{\Omega})$ .

PROOF. By virtue of Gerhardt’s result ([3], Theorem 3) we first
observe that $u_{r}eW^{2,p}(\Omega)$ for any $p$ with $ n<p<\infty$ . By Sobolev imbedding
theorem $u_{T}$ belongs to $C^{1.\lambda}(\overline{\Omega})$ for some $\lambda>0$ . We may regard Eq. $(^{*})_{r}$

as a linear uniformly elliptic equation whose coefficients belong to $C^{\lambda}(\overline{\Omega})$

and we have the desired result using the regularity theory for linear
elliptic equations. Q.E.D.

EXAAPLE 3.7. Let $\Omega=\{xeR^{n}; |x|<R\}$ , $\phi=0$ and $c(x)=|x|^{k}(k\geqq 0)$ .
Then, the solution $u_{T}$ of Eq. $(^{*})_{r}$ is given by

$u_{T}(x)=\int_{|_{l}|}^{R}[r^{k+1}/\{(k+n)^{2}/T^{2}-r^{2k+2}\}^{1/2}]dr$ ,
(3.3)

$0\leqq T\leqq T^{*}=(k+n)/R^{k+1}$ .
In particular, when $c=1$ we have

$u_{r}(x)=((n^{2}/T^{2})-|x|^{2})^{1f2}-((n/T^{2})-R^{2})^{1/2}$ ,
(3.4)

$0\leqq T\leqq T^{*}=n/R$ .
In this case Eq. $(^{*})_{r}$ is also solvable for $T=T^{*}$ . The graph of $u_{T}$ in (3.4)

is a portion of a sphere in $R^{n+1}$ . We also see that the solution $u_{T}$ for
$T>T^{*}$ exists in geometric sense but it cannot be represented as a graph
of some function over $\Omega$ .

\S 4. The case $T=T^{*}$ .
In this section we discuss about the case $T=T^{*}$ . First we provide

a result on the global regularity property of Eq. $(^{*})_{T}$. which is in $\infty ntrast$
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with the case $T<T^{*}$ .

THEOREM 4.1. Let $\Omega$ be a bounded domain of $R^{*}$ with Lipsehitz
boundary and let $ceL^{\infty}(\Omega)$ with $c\geqq 0$ and $c$ is not identically $ze\gamma 0$ . Sup-
pose that $ueC^{1}(\Omega)$ is a weak solution of the equation

$-div\{\nabla u/(1+|\nabla u|^{2})^{1/2}\}=T^{*}c$ in $\Omega$ ,

where $T^{*}$ is as in Theorem 2.2. Then, we have $\sup_{\Omega}|\nabla u|=\infty$ , that is,
$u\not\in C^{1}(\overline{\Omega})$ .

PROOF. By the definition of the weak solution we have

$\int_{n}\frac{\nabla u\cdot\nabla\eta}{(1+|\nabla u|^{2})^{1/2}}dx=T^{*}\int_{\Omega}c\eta dx$ for any $\eta eC_{0}^{1}(\Omega)$ .
Hence,

(4.1) $T^{*}\int_{\Omega}c\eta dx\leqq M\int_{\rho}|\nabla\eta|dx$ where $M=\sup_{\rho}\{|\nabla u|/(1+|\nabla u|^{2})^{1/2}\}$ .
Using [6], 2.12 we observe that the above inequality can be extended for
any element $\eta eBV(\Omega)$ with $\gamma(\eta)=0$ . Therefore, we choose $\eta$ as follows:

$\eta=x_{E}$ for any $ E\subset\Omega$ with $\partial EeC^{2}$ .
Then, we have

$\tau*\int_{\rho}c\chi_{E}dx=T^{*}meas_{o}(E)\leqq M\int_{\rho}|\nabla\chi_{E}\cdot|=M\cdot H_{n-1}(\partial E)$ ,

$T^{*}\leqq M\cdot H_{n-1}(\partial E)/meas,$ $(E)$ .
In this inequality we take infimum with respect to $E$. By the definition
of $\tau*$ and $M\leqq 1$ we obtain

$T^{*}\leqq M\cdot T^{*}\leqq T^{*}$ .
Therefore,

$M=\sup_{\rho}\{|\nabla u|/(1+|\nabla u|^{2})^{1/2}\}=1$

holds. This implies that $\sup_{\rho}|\nabla u|=\infty$ . Q.E.D.

We next treat the solvability of the Eq. $(^{*})_{T}.$ . However, we cannot
apply the same method for Eq. $(^{*})_{T}$. as the case $T<T^{*}$ . We so consider
the problem whether the solution $u_{T}$ of Eq. $(^{*})_{T}(T<T^{*})$ converges to a
solution of Eq. $(^{*})_{T}$. as $T$ tends to $\tau*$ . The behavior of solutions $\{u_{T}\}$

$(T<T^{*})$ is proposed by the following proposition.
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PROPOSITION 4.2. Suppose that $T_{1}<T_{2}$ and $u_{\iota},$ $u,$ $eC^{2}(\Omega)\cap C^{0}(\Omega)$ are
solutions of $(^{*})_{T}$ for $T=T_{1},$ $T_{2}$ respectively. Then,

$u_{\iota}(x)<u_{2}(x)$ for $ xe\Omega$

holds in case $\iota$ is not identicauy zero.

PROOF. By hypothesis $T_{2}>T_{1}$

(4.2) $div\{\nabla u_{2}/(1+|\nabla u_{2}|^{2})^{1/2}\}-div\{\nabla u_{1}/(1+|\nabla u_{1}|^{2})^{1/l}\}\leqq 0$ .
Using the mean value theorem, we can regard the left hand of (4.2) as
a linear elliptic equation of divergence form for $u_{2}-u_{1}$ , that is, (4.2) can
be written as follows:

(4.3) $div\{A(x)\cdot\nabla(u_{2}-u_{1})\}\leqq 0$ ,

where $A(x)=(a^{j}(x)),$ $a^{j}eC^{1}(\Omega)(i, j=1, \cdots, n)$ is defined by

$a^{ij}(x)=\int_{0}^{1}\{\frac{(1+|\nabla u_{l}(x)|^{2})\cdot\delta_{j}-\partial u_{l}(x)\cdot\partial_{;}u_{l}(x)}{(1+|\nabla u_{l}(x)|^{2})^{f2}}\}dt$ ,

$u_{l}(x)=u_{1}(x)+t\cdot(u_{f}(x)-u_{1}(x))$ .
From the maximum principle we first obtain

$\inf_{\rho}(u_{2}-u_{1})\geqq 0$ , that is, $u_{2}\geqq u_{1}$ in $\Omega$ .
We next consider a set $N=\{xe\Omega;u_{1}(x)=u_{2}(x)\}$ . We show that $N$ is

open and closed in $\Omega$ . By continuity of $u_{1},$ $u_{2}$ , the closedness is evident.
To prove, the openness we use the following weak Harnack inequality
(see [9], Theorem 8.18).

For any $ ye\Omega$ and $R>0$ with $ B_{R}(y)\subset\Omega$ , there exists a constant $C>0$

such that

$R^{-n}\int_{B_{2R}tu)}(u_{2}-u_{1})dx\leqq C\inf_{B_{R}(l)}(u_{2}-u_{1})$ ,

where $B,(y)$ is a open ball in $R^{\hslash}$ with center $y$ and radius $r$ . If $xeN$

and we choose $R>0$ with $ B_{4R}(x)\subset\Omega$ , then we obtain

$R^{-n}\int_{B_{2R}tr)}(u_{f}-u_{1})dx\leqq C\inf_{B_{R}(ae)}(u_{a}-u_{1})=0$ .
From $u_{l}\geqq u_{1}$ we have $u_{2}=u_{1}$ in $B_{2R}(x)$ . This implies the openness of $N$.
Since $\Omega$ is connected, the set $N$ is either empty or $\Omega$ . Hence, in case $c$

is not identically zero we obtain the desired result. Q.E.D.
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According to the above proposition we observe that the next two
cases may occur about the behavior of $u_{T}$ as $T$ tends to $T^{*}$ in case $c$ is
not identically zero.

(1) $\sup_{\rho}u_{T}\leqq K$ for some constant independent of $T$.
(2) $\sup_{\Omega}u_{r}\rightarrow\infty$ as $T\rightarrow T^{*}$ .

The Example 3.7 is the case (1). Concerning with the case (2) we propose
the following theorem.

THEOREM 4.3. Let $\Omega$ be a bounded domain of $R$“ with $C^{8}$ boundary
and $\phi eC^{1.a}(\partial\Omega)fo\gamma$ some $\alpha>0$ . Suppose $ceC^{1}(\overline{\Omega})$ satisfying $c\geqq 0,$ $c$ is
not identically zero and

(4.4) $T^{*}c(y)\leqq(n-1)H(y)$ for all $ ye\partial\Omega$ .
Then,

(4.5) $\lim_{T\uparrow p*}\sup u_{T}=\infty$ ,

and the Eq. $(^{*})_{T}$. does not have any solution in $C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$ .
PROOF. Contrary to the theorem we assume that there exists a

constant $K$ independent of $T$ such that

$\sup_{\Omega}u_{r}\leqq K$ for all $T<T^{*}$ .
Combining to Proposition 4.2 the sequence $\{u_{T}(x)\}$ is bounded and monotone
increasing for any $xe\overline{\Omega}$ . Hence, the limiting value $u_{T}.(x)$ exists for all
$xe\overline{\Omega}$ and $u_{T}.(x)=\phi(x)$ for all $ xe\partial\Omega$ . Furthermore we obtain

$u_{0}(x)\leqq u_{r}(x)\leqq K$ for all $T<T^{*}$ and $xe\overline{\Omega}$ ,

$\sup_{\rho}|u_{T}|\leqq C_{1}=\max\{\sup_{\Omega}|u_{0}|, K\}$ for $0\leqq T\leqq T^{*}$ ,

where $u_{0}$ is a unique solution of $(^{*})_{T}$ for $T=0$ .
We first establish the interior regularity of $u_{T^{*}}$ . We use the following

a priori estimate due to Trudinger ([9], [13]).
For any $\Omega^{\prime}\subset\Omega$ the following estimate holds.

$|\nabla u_{T}(x)|\leqq C\exp\{C^{\prime}\sup_{ye\Omega}(u_{T}(y)-u_{T}(x))/d\}$ for $xe\Omega^{\prime}$ and $T<T^{*}$ ,

where $d=dist(\Omega^{\prime}, \partial\Omega)$ and $C$, $C^{\prime}$ denote constant depending on $n$ ,
$dT^{*}\sup_{\rho}|c|$ and $d^{2}T^{*}\sup_{\Omega}|\nabla c|$ .

From this estimate we obtain the uniform gradient estimate

$\sup_{\Omega}|\nabla u_{r}|\leqq C_{2}(n, C_{1}, d, ||c\Vert_{G^{1}(\overline{\rho})})$ for all $T<T^{*}$ .
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Using the theorem of Ladyzhenskaya-Ural’t8eva ([9], Theorem 12.1) we
obtain the uniform H\"older estimate on each $\Omega^{\prime}c\Omega$ of $\nabla u_{T}(T<T^{*})$ . Com-
bining with the Ascoli-Arzel\‘a theorem we obtserve that $u_{T}.eC^{1.\beta}(\overline{\Omega^{\prime}})$ for
some $\beta(>0)$ depending on $d,$ $C_{1}$ and $C_{2}$ . And we have

$\int_{\rho},$
$\{\frac{\nabla u_{T}..\nabla\zeta}{(1+|\nabla u_{r}.|^{2})^{1/2}}-T^{*}\iota\zeta\}dx=0$ for any $\zeta eC_{0}^{1}(\Omega^{\prime})$ ,

that is, $u_{T}$. is a weak solution of $-div\{\nabla u/(1+|\nabla u|^{2})^{1/2}\}=T^{*}c$ in $\Omega^{\prime}$ . By
virtue of the regularity theory for linear elliptic equation we have $u_{T}.e$

$C^{2,a}(\Omega^{\prime})(0\leqq\alpha<1)$ . Since $\Omega^{\prime}c\Omega$ is arbitrarily chosen, we have $u_{T}.eC^{2,\alpha}(\Omega)$

$(0\leqq\alpha<1)$ and

$-div\{\nabla u_{r}./(1+|\nabla u_{r}.|^{2})^{1/2}\}=T^{*}\iota$ in $\Omega$ .
We next show the continuity of $u_{T}$. on the boundary $\partial\Omega$. We may

claim the following by applying [9], Theorem 13.15 concerning with the
boundary behavior of solutions $\{u_{T}\}(T<T^{*})$ .

For any $ x_{0}e\partial\Omega$ and any $\epsilon>0$ , there exists a neighborhood $V$ of $x_{0}$

and a function $weC^{2}(\Omega\cap V)\cap C^{1}(\overline{\Omega}\cap V)$ satisfying $w(x_{0})=0$ and

(4.6) $|u_{T}(x)-\phi(x_{0})|\leqq\epsilon+w(x)+(2/\delta^{2})(\sup_{\partial\rho}|\phi|)|x-x_{0}|^{2}$

for all $ xeV\cap\Omega$ and all $T<T^{*}$ where $V$ and $w$ depend on $n,$ $\delta,$ $C_{1}$ ,
$||c\Vert_{a^{1}(\mathfrak{H})}$ and $\Omega$ and $\delta>0$ is chosen so that any pair $x,$ $ ye\partial\Omega$ with $|x-y|<\delta$

implies $|\phi(x)-\phi(y)|<\epsilon$ .
Making $T$ tends to $\tau*$ , we get

$|u_{\tau*}(x)-\phi(x_{0})|\leqq\epsilon+w(x)+(2/\delta^{2})(\sup_{\partial\Omega}|\phi|)|x-x_{0}|^{2}$

for $ xeV\cap\Omega$ . This implies $u_{r}.eC^{0}(\overline{\Omega})$ .
Thus we construct the 8olution $u_{T}$. of Eq. $(^{*})_{T}$. belonging to $ C^{2}(\Omega)\cap$

$C^{0}(\overline{\Omega})$ . Furthermore, from the result of Giaquinta [5] we derive that $u_{T}$.
is Lipschitz continuous on 9. However, this contradicts with Theorem
4.1. Therefore, (4.5) must hold. The rest of the theorem follows
immediately. Q.E.D.

REMARK 4.4. In the above theorem the regularity hypothesis on $\partial\Omega$

and $\phi$ is needed only to apply the result of Giaquinta. His result is ob-
tained by the maximum principle and nice choices of barrier functions.
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