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Introduction

Let &#™ be the space of the pseudo-differential operators of order m
‘definred on a compact manifeld N without boundary. In this paper, we
are mainly concerned with the case that m is a non-positive integer. We
shall denote by G.&#™ the group of all invertible elements in 1+.<#™. The
purpose of this paper is to show the following:

THEOREM. If m is a mown-positive integer, then GZF™ is a regular
Fréchet-Lie group under a certain topology (cf. §1). Moreover, GF™ i3
x-closed and the x-operation is continuous with respect to the above topology,
"~ where *-operation is a mapping which assigns to an operator its adjoint
one.

In [7], the authors defined the concept of regular Fréchet-Lie groups
and gave two fundamental theorems. Roughly speaking, a regular
Fréchet-Lie group is a Lie group modeled on a Fréchet space, on which
product integrals can be well-defined. As was seen in {7], [8], this concept
is not only an amenable object among infinite dimensional groups, but
also has a lot of concrete examples. Every strong ILB-Lie group de-
fined in [3] or [4] is a regular Fréchet-Lie group (cf. [7]. §6). Moreover,
we added in [9] another example which related to both general relativity
and G.&° the group of all invertible Fourier-integral operators of order
0 defined on N. Now, by the above theorem, we have had one more
toncrete example of regular Fréchet-Lie groups. Moreover, the above
result will play an important role in the next paper for the proof that
G is a regular Fréchet-Lie group, which will be done by the parallel
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manners as in [9].

In §1 we shall repeat several notations and several remarks. Also
in §1 we shall give the precise statement of the above theorem, for the
theorem is in fact proved for a slightly general class GZ&#%,, where m’
is sufficiently small integer, or — . The above theorem is obtained as
a special case that m’'=— o, i.e. GFA"=GF",.

Remark that &#° is an associative algebra and <™ (m=<0) is an ideal
of <. In §4, we shall show that & is a Fréchet-algebra under certain
topology. This fact is also proved for a slightly general class <23,
where m' is a sufficiently small integer or —oo, and F°'=F .. The
Fréchet algebra structure for & plays an essential role in the proof of
our theorem. Thus, in §§2-3, we shall develop a general theory of Fréchet-
algebras and a reduction of our theorem. By this, what we have really
to do is reduced to establish several estimates of the norm of operators.
This will be done in §4 by using similar computational methods as in [2].

§1. Notations, remarks and the precise statement of the theorem.

Let N be an n-dimensional closed C* riemannian manifold. As usual,
C*(N) means the space of all C-valued C* functions on N. We denote
also by C7(INxN), the space of all C-valued C~ functions on NxN
—(diagonal set). For an element Ke C(NxN), we denote by Ko the
integral operator defined by

(1) Ko H@=| K@ nfwdy, fec-a,

where dy=1"217 —"Xx volume element on N.

As a matter of course, (1) does not make sense in general. If K is
contained in the dual space of C*(Nx N), then Ko is an operator of C*(N)
into its dual space C—=(N). If K(z, -) € C~=(N) for every x, and x~K(z, -)
is a C~ mapping of N into C~~(IN), then Ko is an operator C=(N) into
itself. :

Let p be the distance function and 7, the injectivity radius of N.
If o(x, y)<r, then there exists uniquely X € T, (the tangent space of N at
x) such that | X|=p(x, y) and y=-,X, where -,X is an abbreviated notation
of Exp,X (cf. [6] p. 359). We denote by 4(r,/12) the points (x, y) e Nx N
such that p(z, ¥)<7,/12 and fix the cut off function v,€ C*(Nx N) of the
breadth 7,/4 (cf. [56] p. 358). If supp K, support of K, is contained in
A4(r,/12), Kof can be written in the form

Kof@=| K@ X)W X)ef) @ X)X
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where (v,f)'(x; X)=yv,(z, -, X)f(x, -,.X), (dy/dX) is the Jacobian between
y=.,X and X and dX=1"27 —*x the volume element on 7T.,.

DEFINITION 1.1. The operator Ko in (1) is called a pseudo-dlfferentlal
operator of order m, if K can be written as follows

(2) K=K, +K,,

where supp K, C 4(r,/12), K, € C>(Nx N), and that K,(x, -, X)(dy/dX)(x, -, X)
is a Fourier transform (as a distribution) of a function A(x; &) € 3%, that
is

gﬂ . = . —4E1 X
(3) K%, - X0={ , Aw e e,

where the definition 3 is given by [5], p. 365, 3.2 (m=0) is a Fréchet
space under the C> topology by identifying this as a function space on
D} through the diffeomorphism z: D%—T% (cf. [5] (10)).

Let &™ be the linear space of all pseudo-differential operators of
order m. In what follows, we shall define a series of topologies T, on
™ so that (™, T,.) may be a topological algebra.

Consider in general a C~ riemannian manifold M. Let T, be the
tangent space at z, and let (X% --., X") be an orthonormal coordinate
system on T,. Then using the abbreviated notation, (X +ee, X™) can
be regarded as a normal coordinate system at z (cf. [5] p. 359). For a
C= function f on M, we define

(4) orf =(2) | Feux, e, X

where a=(ay, :++, @,). Obviously, this derivative depends on normal
coordinate systems. However, the symmetric tensor 3., d2f(dX)* is
independent of the choice of normal coordinates, where (dX)* means the
symmetric tensor product (dX)* ... (dX)*». We shall denote this by & Lf.
For Ke C~(NxN), we define a norm |K|, by
(5) IKlk—mg max 0205 K(x, v)|
Similarly, one can define a norm | |, for C~ functions on S*N, the unit
cosphere bundle on N (cf. [5], [6]).
For the cotangent bundle T*N, we use a normal loeal trivialization
at z, denoted by -, (X*, -+, X", &, --+, &,) (cf. [6] p. 359). If A is in 3
then, by definition of 3.2, A can be written in the form ‘
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(8) A ) =(@n(T; EF™ + g ,(2; E)™ 1+ = o+ 0@ E)r™" ()
+ Am"(z; E)

for every m’'<m, where a,€C~(S*N), A, €22, r=[¢| and ¢ is a fixed
C~ function on R, ¢(r)=0, for r=7r,/3, ¢(r)=1 for r=r,/2.
For every m'<m, we define a norm |A],., of A2 by

|Alm',k= E ‘Iam'+clk+]Am’In'.k
(7) |

|Amlw,e=max sup (1+[g)~""*9|0:0{A] .

t+isk (z:6)eT
C>(S*N) and C>(N X N) are Fréchet spaces under the system of norms

{Il ls; k=0}. However >,» is not complete under the system of norms
{| 1w k=0} if m' is fixed. We shall denote this topology by T..., and
denote by >.%..., the completion of (3.2, T\,:). Obviously, T, _, is stronger
than T,., for

( 8 ) ‘IAIm’,kgllAlm"—l,k ’ A € ZE .

Hence {T,; m'<m} forms an inverse system of topologies. The inverse
limit topology of this system will be denoted by 7T_... Now, it is not
hard to see that 3.2= N S.tm» and (8 T_.) is a Fréchet space. More-
over T_.. is the C~ topology on D% by identifying }.2 to the function
space of D through the diffeomorphism 7: D¥—Tx.

Now, let Ko € &#™. By definition (3), the inverted Fourier transform
A(x; &) of K,(dy/dX) is contained in > 2. We denote by 275, the totality
of Ko such that the inverted Fourier transform A(xz; &) of K,(dy/dX) (cf.
(2)) is contained in 32 .. Obviously, #™c.Z#n, for every m’'=m.

We define a norm |[K,|..,. by

(9) K m e =|Alnr i, m=m.

For every m'=<m, we define a norm | Ko|, : by

(10) I|K°IIM'.k=x=i££K2{IKllm',k+lelk}

where the infimum is taken over all partitions of K in (2) and (3).

ZFn,, and hence <™ are topological vector spaces under the system of
norms {|| ||, £K=0}

LEMMA 1.1. A2, is a Fréchet space for every m'=wm. Moreover,
P™= Ny P2, and hence F™ 18 a Fréchet space under the inverse lamat
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topology.

PROOF. For the first statement, we have only to prove the complete-
ness of #m,. Let {K'} be a Cauchy sequence in Z#n,. It is enough
to see that there exist subsequence {K'*o} and Ko € 2%, such that K'o
converges to K in #n,. Set ¢,=2""* §,=2""* and k,=2". Since
{K'} is a Cauchy sequence in 72, there exists a subsequence {K'»o}
such that I, <l.,,, n=0,1,2 ---, and for any p=n

11) || K20 — K'o||p i, <&n «

By definition of || || there exist {Lis+vis}, {Lis+t»} such that K'+1—
Ki»=Lis+vis - Lln+tis where supp Lir+tisC d(r,/12), Lir+v*» € C*(NX N), and

| Kt tt0 = Koy 8, | Lin39] . + | Livitel,
So we get
[Livtvisl,, . <1/2", | Lintotnl, <1/2% .

Hence it is easy to see that

oo

ZL{“-HJ” and iLzluﬁ.rln
n=0

=0

converge in >.% .., and C> topology respectively. Put

K= g Listvts | K,= 5_‘, Lis+vis and K=K, +K,,
then since supp K,c4(r,/12), K,e C*(NxN) and Ko € Fn,, we get that
K'no converges to Ko in Fu).
For the second statement, remark at first ™ C Nu Fmy, hence we
have only to show the converse. Let Ko € N, Z#%,. Then, for every m'
there is a partition K=K™"+K{™" such that K" € C*(WxN) and

K{mﬂ%(x, -,,X)=§T* A™(x; e Pde, A"V € 3Ewmn -

By the system {4™”, m'<m}, we can determine an asymptotic series
@p+ap_ 4+, and there is an element 4 € 3% such that A~a,+ap_,+---,
and the support of the Fourier transform of A is contained in 4(r,/12).
Define K,(x,y) by (3). Then, it is easy to see that (K—K)o is an
operator of order — and hence K—K,eC>(NxN). It follows Ko €
G, O
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We shall identify " with N.. 22, and denote it sometimes by Z#™..,.
In §4 we shall prove the following:

PROPOSITION 1.2. (a) For every m, m’ such that 0=m=m'> — «,
FPmny 18 an associative Fréchet algebra.

(b) For every i, j such that m=1, j=m', Pl Pl C PLEE+im) gpd
each P, 18 a closed subspace of Fm,.

(c) Suppose m'< —n—1. There is a positive constant C, such that
1f Ko, Lo € 2™, then

”K°L°”m’,kéck ”Konm',k ”Lollm'.a(k) ’

where o(k) is a function of k such that d(k)=k.
(d) =*-operation is continuous with respect to P,, where *-operation
18 a mapping which assigns to an operator its adjoint one.

We shall define on 1+.23,, the same topology as Z#=%, through the
natural identification, and for G2, we shall use the relative topology
in 1+ Zn,.

Although most of the results stated in the above proposition are
rather well-known for experts, our main theorem can be obtained by a
fairy general method in Fréchet algebras. So, we shall show at first in
the next two sections how Proposition 1.2 yields our main theorem.

Remark finally that

Pan] Pan=C=(S*N)D - - - BC=(S*N) ,

(m—m’)

and that
GF oGP = G(P | F o)

the group of all invertible elements in 1+.222, /2%, (cf. Lemma 2.2 in
§2). Especially, for every m'< —1, G#%,/G 25}, is naturally isomorphic
to the multiplicative group of the nonvanishing C= functions on S*N.
Hence, this is a regular Fréchet-Lie group (ef. Proposition 6.6 in [8]).
Moreover, the result in [6] §4 shows that for every m=<0, G&#2, is an
open subset of 1+ .23, and if K is sufficiently close to 0, then (1—K)™*
is given by 3.2, K'.

§2. Filtered | algebras.

Let a’ be an (associative) Fréchet algebra with unit 1 and with a
series of closed ideals a°>a'Da?D --- Da™ (0=m'> — ) satisfying the
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following:

( i ) at.aqi cCqmex {t+s,m’}

(ii) There are Fréchet subspaces F, F_,, .-, F,.., such that a™=
F.®F,_ @ :-- @F,, ., Pa™ for every m, 0=m=m'.

For every m with 0=m>=m’, we denote by Ga™ the group of all
invertible elements in 1+a™ For such an m, a’/a™ is also a Fréchet
algebra with unit. Thus, G(a’/a™) is the group of all invertible elements
in a’/a™. The goal of this section is to show the following:

THEOREM 2.1. If Ga™ is an open subset of 1+a™ and a regular
Fréchet-Lie group wunder the relative topology, then so is Ga™ Jor each
m, m'Sm=-—1. If moreover G(@°/a~*) is an open connected subset of
a’/at and a regular Fréchet-Lie group under the relative topology, then
so s Ga°.

The above theorem will be proved by induction in several lemmas
bellow. If m=—1, nothing is to be proved for the first statement. Thus,
we assume m< —1, and assume that Ga™ is an open subset of 1+a™ and
a regular Fréchet-Lie group under the relative topology. We have only
to show that Ga™*' is an open subset of 1+a™*' and a regular Fréchet-

Lie group whenever m’'+1< —1.
Recall that a™+'=F,., @a™. First of all, we have the following:

LEMMA 2.2. Ga™*' i3 an open subset of 1+a™*, and Ga™*/Ga™
18 isomorphic to the additive group F,.., hence it is isomorphic to
G(am’+1/am')-

PROOF. Let a, bea™*! be sufficiently close to 0. Then abea™ for
m’'<—1, and 1—ab is invertible by virture of the assumption that Ga™
is an open subset of 1+a™. Since (1+a)(1—a)=1—a? is invertible, so is
1+a, hence Ga™'*' is an open subset of 1+a™*'., Recall also that

1+a)A+b)=14+a+b+ab=1+a+b)(1+1A+a-+b)ad).
Since 1+ (1+a+b)"abec Ga™', we see that
A+a)A+b)=1+a+b (mod Ga™).

Therefore Ga™*!/Ga™ is locally isomorphic to F,.,, but this implies
Ga~'*'/Ga™~'=F,,,. Obviously, F,. .,=G@™*/a™). : O

By the above result, we have an exact sequence

{1} — Ga™ — Ga™*+1 —— F,,,, — {0} .
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Note that F,.., is a regular Fréchet-Lie group (cf. [7] §3, Lemma 3.9).
Hence in what follows we shall apply Theorem 5.4 in [8] §6.

Define a mapping 7: F,.,,—1+a** by Y(a)=1+a. If a is sufficiently
close to 0, then 7(a) € Ga='**. If beF,.,, is sufficiently close to 0, then
Y(a+b) is invertible and hence

ra, b)=7(@+b) " (a)Y(b)=1+7(a+b)'abe Ga™' .
For the above a € F,.,, and 1+¢ € Ga™, we set a;(a, 1+¢)=7(a)*(1+c)V(a).
LeEMMA 2.8. 7, and a; are C* mappings.

ProoF. Note that 7(a+b)'=1—(a+b))1—(a+b)*>)'. Since Ga™ is
an FL-group, and the multiplication in a™** is continuously bilinear, we
see that Y(a+b)* is C~ with respect to a, b. Hence 7, is C=. Note
again that 7(a)'=(1—a)(1—a*~'. Hence, by the same reason as above,
a, is C=. O

PROOF OF THEOREM 2.1. Assume 7 and a; are defined for a,beV,
where V is a neighborhood of 0 of F,..,,. The conditions (Ext. 2), (Ext. 3)
in the definition in [8] are obtained by Lemma 2.3. Moreover, it is easily
seen that 77(V)=VxN. By Theorem 5.4 of [8], we have only to show
that Ga™'*+! is generated by n~(V), where # is the natural projection of
Ga™'** onto F,.,,. However, #7(V)DGa™, and #~(V)D1+V. Thus,
7~ (V) generates Ga™'+. Thus, we get the first statement of Theorem 2.1.

Now, it is not hard to see that Ga’/Ga~* is naturally isomorphic to
an open subgroup F,,=G(a’/a”?). Note that F,, is naturally imbedded
in F,, hence in a® by using the splitting a’=FPa~'. For every aeca’/a™?,
we denote by (@) the element of F, such that 7(@)+a~'=a. Obviously,
v is a continuous linear mapping and hence C=. If @ is sufficiently close
to 1, then Y(@) € F,,. Remark that the multiplication in a° is a continuous
bilinear mapping and hence C~. Hence setting

y@v®)=v@h)+v.,@ 8, 7_.(@ bdea?,
we see that 7_, is C~. Remark that Y@ 1r=v@*HA+7v_@ a*))'. Thus,
it is not hard to see that »; and a, are C*. Hence by the same reasoning
as above, Ga° is a regular Fréchet-Lie group. It is easy to see that Ga’

is an open subset of a’, and the above topology for Ga’ is the relative
topology. d

§3. Invertible elements in Fréchet algebras.

In this section, we shall eonsider a Fréchet algebra a satisfying the
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following:

(A) Ga is an open subset of 14-a.

(B) There is a system of semi-norms {| [;; =0} where k’s are
integers, satisfying the following:

(i) |a|i=Z|@less, and {| |i; £=0} gives the topology of a.

(ii) There are constants C, (=1) and a function (k) (=k) such that
labl, =Cy lali [blsw-
The goal of this section is as follows:

THEOREM 3.1. Assumptions being as above, Ga is a regular Fréchet-
Lie group under the relative topology.

We shall begin with the following:
LEMMA 3.2. Ga is an FL-group under the relative topology.

PROOF. Obviously, multiplication is C~. Hence, we have only to
show the smoothness of the inversion. If a €a is sufficiently close to 0,
then 1—a € Ga by the assumption. We shall show at first that (1—a)™* is
continuous at a=0. For an arbitrarily fixed k, take a so small that
Cilalsay <1, where Ci=max {C, 1], C;,}. Then for any m (<o),

(1—0) "~ 1L 3 (Ci lalw)'+ | —a) ™",
=3 (Ci lals) +1(1 =) = LL(C lals)™** + (Ci lala)™** .
Therefore,

1 m+1 ,
l—a)?*—1|,= C ‘
I( ) lk—l—(cilalaw))'"ﬂ gi (C lalsw)

SCATIEC T
=1 1—-Cilalsw

Thus, (1—a)~! is continuous at a=0, and hence Ga is a topological
group.

Note that 1—(a+b)=1—a)(1—(1—a)~'b), hence if b is sufficiently close
to 0, then for every m,

A—(a+d) = iZZO (1—a)7B)'Q1—a) '+ (@A —a) o)A ~(a+b)™.

By the continuity of the multiplication, we see that

(D ) (1—a)(d, -+, b)=r!({(1-a)?b)Ad—a)™?, where i(c)=c¢™,
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defines a continuous mapping of Gaxa--- xa into a. It is now easy
to prove that i(1—a)=(1—a)™* is C~ and the r-th derivative of 7 is given
by Drs. : |

To prove that Ga is a regular Fréchet-Lie group, we have to consider
product integrals on Ga. So, let {(1+h,(s, t), 4,)} be a sequence of step
functions on [0, €] xJ, J=[a, b], such that lim,., |4,|=0 and {1+A,} con-
verges uniformly on [0, ¢] xJ with their partial derivatives {o%,/0s} to a
C'-hair 1+h(t, s) defined on [0, e] xJ. We set

(12) 0 =T1 A+h, 4)  (cf. [7] §9) .

We have only to show that lim,.. g,(t) converges uniformly on J to a
curve g(t) in Ga.

LEMMA 3.2. Let M,,,‘=ma;x |0h,/ds],, and set N,,=CiM, .., where
Ci=max {C,|1|,.C,}. Then,

lgz(t)"llké(l+(t"‘t;)Nz,k)(1+(t5"“tj—1)Nt,k) °*e (1+(t1—to)Nl,k)_1 ’

where 4,={t,, t,, - -+, tn} and j is the number such that telt; t;,,). Thus,
if we set N,=lim, .. N,, then

T 10.t) ~ L S —1 .

PrOOF. Note that
GO =A+ht—t;, t)DA+hi(t;—t;_yy t;2)) o+ A+hy(Ei—E L) -
Hence by using (B) (ii), we see

lgl(t)_llké(l_l_ck' ’hl(t—tj’ tj)ld(k)) s (1+C:, lhl(tl_tOr to)la(k))—l .

—tg—1

t
Remark that |h,(t,—t,_,, ti—l)]a(k)és ¢ M, ;. dt, hence the first inequality

0
follows immediately. Since |4;|=max |t,,,—t,| tends to 0 as | >, we see
easily the second inequality. 3

LEMMA 3.3. Notations and agsumptions being as above, let 4, be a
subdivision of 4,. Then (1+h, 4,)’'s are step functions on [0, €] XJ and
g,(t) =11 A +hy, 4;) converges to 0 uniformly on J as lim,., |4,|=0.

Proor. Let 4,={¢t,¢, ---, t,}, t,=a, t,=b, and les 7 be the integer
Su(:h that te[t’, tj+1). We set 1+W¢(j)= :,- (1+h1, A;), and 1+w;(i)=
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IIé+ U +hy, 4) for 0<i<j—1. Then obviously
¢ I .
1;[ (1+h,, Al)=;[__](; A +w,(2)) .

Hence, wusing the telescope equality a,a,_;--- a,a,—b,b,_, +-+ bb,=
D=1y v @pyy(@;—b)b,_; - -+ b, and by the above lemma, we see that

j .
(13) g:8)— 1T A+ (2)|
=Const. i e* bt |y (¢, — 12, t) =Wy (2) s xy X Pk P11~
=0
éCOl’lSt. eDk(t—a) i“ |hl(t¢+1_t‘, t;)""w;(i)la(k) .
=0

Let t,=a,<a,<+--<a,=t,, be the dividing points of 4, contained in
[t, ti1). Then

L) =(1+]777 L, tds)- - (14|77 Pags, t)as)
Hence remarking A,(t..,—t,, t¢)=S G (0h,/os)(s, t,)ds, we have

1—t
st t)—wi@low < | | Lags, )= Do, 1)

=1 S“H—l-“t

ds
(k)

a’“( t)— a’“«) )|, ds+0040 .

i=0 JO

Note that (0h,/ds)(s, ) is continuous in s, and {(6%./ds)(s, t)} converges

uniformly to (6k/ds)(s,t). Hence for any &>0, there is I, such that if

l=l,, then |(0h,/08)(s, t.) — (0h:/38)(0, t,)|suy <& for every s, 0<s8=|4,|. Thus,
[Py(Eisi—tsy tt)—wz(i)la(k)§2(t¢+1—tt)5+0(ldl|2) .

Hence,

0(®)—T] (L+hy, B)| S20—a)e'+0(4))—0 . O

PROOF OF THEOREM 3.1. First of all, we shall show that {g,(¢)} is a
Cauchy sequence in the uniform topology on J. Thus, consider |g,(t)—
g,()].. Assume I’=1l, and let 4, be a common subdivision of 4, and 4,.
By the above lemma we have only to show

t ~ t ~
1;2 ];1 1+ hy, A,)—l;[ (1+hy, 4y) k=0
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uniformly on J. Let 4,={t, ¢, -+, t,}. Then by the same manner as in
(13), we have the following by setting te([t;, t;;.):

i ~ t ~
1T (L ho, BT QU +he, B,
j
<Const, g%~ ‘goa |Ry(t s —Ey £ — Ry (Ciya—ts, ta)lau:) .
Now, remarking

(=)ot 2= A, ¢)dg

0 0s

and that {(9h,/038)(s, t)} converges uniformly to (0k/3s)(s, t), we can obtain
easily the desired result.

Thus, we see that lim,_.. g,(t) converges uniformly in 14+-a. Note that
g,(t) e Ga for every I. Hence g,(t)'g,(t) is sufficiently close to 1, if I,
U’ are sufficiently large. Since Ga is an open subset of 14a, we can
conclude that lim,._. g,(t)g,(t) € Ga, if 1 is sufficiently large, and hence
lim,... g,(t) € Ga. Thus, by the above result and Lemma 3.2 we obtain
that Ga is a regular Fréchet-Lie group. O

Proposition 1.2= Theorem

In the remainder of this section, we shall show how Proposition 1.2
yields our main theorem.

By the above general results, we see easily that G.Z#%,, is a regular
Fréchet-Lie group for every m, m’ such that m'Sm=<0, —cc<m’'< —n—1.
Remark G.#°/G.F#™ =G(F|FP™)=G(F %] Fn) m<0. Hence for the proof
that G is a regular Fréchet-Lie group, we have only to show that
GP* 1=, G is a regular Fréchet-Lie group. By Proposition 4.1 in
[6], we see that Go#—"' is an open subset of 1+<*"~*. Hence G is
an FL-group, because GZ#~"! is the inverse limit of {GF.", m'= —n—1}.

To prove the convergence of the product integrals, we remark at
first that such ones converge in GZ#%, for every m'=—n—1. Hence by
definition of the inverse limit topology, we have the convergence of the
product integrals in G.<#™. O

§4. Proof of Proposition 1.2.

In this section, we shall give the proof of Proposition 1.2, and hence
of our main theorem because of the general results in §§2~3.

Before proving Proposition 1.2, we consider several lemmas for
estimates which are used to get (¢) of Proposition 1.2.
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For A(x; &) € 3.2 ), We denote by P(4, v) the operator in F#g, defined
by

14) P, »H@=\ \  Aw Qe sy @ X)dxde,
Ta; z

where v is a cut off function of the breadth ¢ less than 37,8, where 7,

is the injectivity radius of N.

LEMMA 4.1. Let h(z, ¥) be a C> function such that h=0 for o(z, ¥)=0,
and for p(x, y)=0, (0,<0,<r,). Let A be an element of 3T m. Set

M, v)=hz, 1) | , A@ e ovde,  y=-.X.

Then, if m< —n—1, there is a constant C, ,(>0) such that |M|,=Cpn i|Alm.
for2Ae>® . Moreover, for a general m, |M|.=<Cpi|Alniimintae

PrROOF. For sufficiently small Z, We T,, we have

M(-,Z, - ,W)=h(:.Z, -yW)S . A(+,Z; e~ de |
=2

T'

where Y=Y(x; X, Z, W) is a smooth function such that - W=- .Y
and Y(x; X,0,0)=X. By using normal coordinate expression at x, that
is, §=(dExp,)3¢, Y=(dExp,)7'Y and -,(Z, &=(-.Z; (d Exp,);™'¢), where
(diExp,)z: T,— T, is the differential of the exponential mapping Exp,, the
above integration can be rewritten as

. 2\ - iE10 A& 7%
[, ACAZ, Do TP ILdE

Then, we get

o\ o\ al 8!
— ) 555 ) M2, -, W)=
aZ) <a W) ( Y ) 01;1%0;8;‘“ a,!azlas! 31!)82!

ag

x(2)" aiw)“h(~,,z, . W) S (< {4c.2, ?))—;l—g—(x; 2)}

(G () e,

where a, 8, ;, + -+ are multi-indices. Remark that

(7967)“(5%7)#3“‘“’5 _ =Puy@ X, He@m,
W=0
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where P(a,,,(x; X, ) is a polynomial in & of degree |+ B3] whose coefficients
are C~-functions in X. Thus, we have

o20iMe, 1) =(2) (2) M- 2, -, Wla o

oWw.
- ”’12213 Py y.0,(@ ¥) ST* 0 Az, 8P oy 50(x; X, £)e €10
'“1"-’:zl’sllal z
1811581

= Zp Fapaz:h(wo y)X_T sT* (-}'-3,)'{32’1A(x; G)P(az,p,)(x; X’ E)v}e—t(elX)dE ,

X1%2, Py

where F,, ., s (x, ¥) is a smooth function vanishing on o(x, ¥)<6,, p(x, y)=0,,
and the integrand of each term is of degree m+|a,+ 3, —|Y| with respect
to ¢ Take [Y|Zzm+|a,+B+n+1 or |Y|=|a,+B,| in case m< —n—1,
then

020 M(2, y)| <3 Const. IAI"‘"“"*"'ST* (14 |g])m-Iri+iae 181G

S{ConSt- |Alm, i tmtnts -
~ (Const. |A],,, (in case m< —n—1). O

For A€ 3.8 m(m=0) and MeC~(NxN), P(A, v)oM- is a smoothing
operator whose kernel is given by

Kz, 2)=\| A@; O 10u(a, - X)M(-.X, 2dXde .

LEMMA 4.2. Notations being as above, there is a constant Chn,i such
that IKlkécm.k IAIm,k IM,k+m!(o,m+'n+1}-

PROOF. For sufficiently small W, Ze T,, by using normal coordinate
expressions, we have

KW, -2)=(, | AC.W Qe W, o X)M( X, - D)ixde
o”W .zW

={,.\, A, gre @S W, MY, - 2)

xJ(z; Y, W)dYdE ,

where .. ,S(x; Y, W)=-,Y (cf. [5], (8)) and J(x; Y, W)=(dX/dY)(d¢/dE)
(x; Y, W). We see easily that

ke, 0=(;5) () Ko W, 2,
Z=0
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- Ia1+§$lal ST* ST,, Fop o5 Y)OSA@; 8)Qup(@; Y, £)e™* 0, M(-, Y, 2)d Yd¢ ,

where F, ,, is a smooth function which vanishes on |Y]|=2¢/3 and @,
is a polynomial in ¢ of degree |a,| such that

(%) e TPl e=Qu(a; ¥, e

Thus, we have
0%0¢K(z, z)
= 3 |lomae 00w ¥, 9lel el e P 0@ 1)
legt+aglSlal
xXotM(-,Y, 2)dYde

= 3 SS 0u Az, &)||&]|~te 1 Py(x; &, Oy)
leytagl S la)
X{Qup(®; Y, &)F, o,(2; Y)OEM(-, Y, 2)}dYd¢ ,

where ||g||=1+|&,|+ - +]|&.], P, is a differential operator of order [ with
respect to Y variable whose coefficients are uniformly bounded. Remark
that the integrand is of degree m+|a,|—1 with respect to & If we take
l=Zm+|a,|+n+1 in each term, we get desired result. O

For Me C>(NxN) and A€ >'2 .., we consider Mo P(A4, v). We denote
by ¥z, the tangent vector Y e T, such that -,Y=z and po(y, 2)=|Y]| (cf.
[5] p. 859). Using these notations, the smooth kernel of Mo P(A, v) is
given by :

(15) Kz, 2)= SN S Mz, ¥)A(y; e)e—E1"" u(y, z) dsdy

Since »(y, 2)=0 whenever po(y, 2)=2¢/3, one may assume p(y, z)<2¢/3,
hence there exists uniquely Ze T, such that -, Z=y, o(y,2)=|Z|. If
+, Y=z, then Y and Z are related by Y= —(d Exp,),Z. We shall denote
n=(d Exp,)?¢, and -.(Z, 9)=(-.Z; (d Exp,);7'n) (cf. [5] p. 859). Thus, (15)
can be rewritten as

) K@ 2={,| Ma DA menn(v W L) 2z .

Note that v(d Y/dz)(dy/dZ)(de/dn) is a C~ function in (z; Z) which is identi-
cally zero, if |Z|>2¢/3.

LEMMA 4.3. Notations being as above, 1f m=—mn—1, then
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| Kl S Cp il M| Alm . Moreover, for a general m, we have |K|,=
Cm,klMlk+m+n+llA|m,k+m+n+1'

PrOOF. We see easily that

K(-,Y, .,W)=§ . M(-,Y, - wZ)A(- . w(Z, p))e<n®

oW T.'W

dY dy d¢\.. w-
x(» Lo dv)( W; Z)dZdy

=§T* ST M(.’Y’ .‘X)A('-(X, T(a:; X, W)ﬁ))eﬂ;ls?(s;x,w))
xv(-, W, - X)J(z; X, W)dXd7 ,

where - X=-. 7, Z=S(z; X, W) and T(z; X, W) is a linear mapping such
that T(x; X, W)=(d Exp,)¥(d Exp_w):'(d Exp,)%, T(z2, X,0)=I and J=
(dY/dz)(dy/dZ)(de/dn)(dZ[dX)(dn/dF). Differentiating K by Y and Z, we
have

92t K(w, )= 3 “ N, s,(2; X)o=M(z, -, X)
181+Bz1518!

X aellA('s(Xr v))R(Pl)(z; X, v)Q(pg)(Z; X) 77)0“”'”dXd77 ’

where N, 4 is a smooth function vanishing on [X]|=2¢/3 and R4, (2; X, 7)
is a polynomial in 7 of degree |3,| such that ‘

9 Y 4¢. : % - 5 A(. .
(337) AC 420 TG X, WiDlin-u= 5, BACLZ, DR us(e3 X, 7).
Thus, by the same manner as in the proof of Lemma 4.2, we have

20tK@, D= 3 || e 1 00Np e X)-
X EM(=, + X)IA( X, MBisyp(2; X, NQusp(2; X, Dli7l|7}e* " Pd Xdy .

Take l=m+|B,|+n+1, or I=|B,| in case m<—n—1, we get the desired
result. ]

For Ae>2 .., and Be> 2 ., Wwe consider an operator given by
P(A, v)o P(B, v).
By (85) in [6], P(A, v)o P(B, v) is given as follows:

an (P, PEIN@=| | Aw OB @ ¢ D2 Z)izig

where
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(18) B"(z; ¢, Z)=S§ Bz, X'+ 7, Z, 7"+ &) X dy"

B'(x, X, Z, 7)=B(- (X, E(x; Z, X)7)F(%; Z, X) ,
F(x; Z, X)=v(, - X(: X, -.Z2)](z; Z, X) ,

where E(x; Z, X) is a linear transformation of 7% which is identity when
X and Z are outside some compact set in T,, and J is a C= function of
(x; Z, X) involving various Jacobians. Let »' be another cut off function
of the breadth 4¢(<387,/2). Then, B"(x; &, X)'(x, - ,X)=B"(x; &, X) and by
the result of [5] §4, (17) can be rewritten as

(19) P(4, v)o P(B, v)=P(C, "),
where
(20) Clx: 5)=ST* ST A(z; e+7)B"(@; £+, Ve 4 Ydy .

LEMMA 4.4. Notations being as above, there is a constant C,., such
that

IB”lm','k é Cm',lelm',k+n+l+max{m’.Ik-—m’l} ’

" where

(21) |B"| = max max (14 |&)~™'**|5:8:05B"| .

l+e+tsk (236,2)

Proor. For sufficiently small We T,, using normal coordinate ex-
pression and the same manner as in the proof of Lemma 4.3, we can
write

B"CAW, ¢ 2)=\ | BC.(H@w Z+X', W), E@w; Z, Z+X', W)e-+7"))
x F(a; Z, X', W)ekn\Saxwiq X1dy' |

where H is a smooth function and H(x; Z+ X', 0)=Z+ X’, E(x; Z, Z+ X', W)
is a linear mapping such that E(x; Z, Z+ X', 0)=(d Exp,)3Sr**(x; Z, Z+ X")
S(w; X, Z)=8,(x; X, Z)(X—Z) (cf. [5], (4)).

(22) 920%B"(x; 8, Z)=2, SS Gy, ag.as, by b1, 12 % Zy X)

X opiggt (- (Z+ X), SEw; Z, Z+X)E+7")
x%*ﬁ(a,,rz,v(x; Z, X', (47" NQp(x; X', =91 XX dy"

where summation is taken over |a,+a,+a | <lal, 8.+ B.I=18], 17.+7|=|7],
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and ﬁmz,w is an polynomial in (¢+7%") of degree |a,|+|7,|. Deviding each
term of integrands by (1+|7”])' and integrating by parts, we get

1+ [eh)—™**520%07 B (%; &, Z))|

—m’+ 18|
=Const. |Blu, a1+ 171+181+1 ST* a +:ll77n|)z(1:|:_lfl7"|) 7"

gConst. |B|m’,|a|+lﬂl+|7’l+l ST* (1+ l7}"|)—l+lm'_lﬁlld7?n .

Take I=n+1+|m’'—|B||, we get the desired result. O
Now, keeping Lemma 4.4 in mind, we see the following lemma.

LEMMA 4.5. Notations and assumptions being as in (17-20), there
18 a constant C, such that |Claim e =CilAl|mi|B"|n sy0, where o(k)=k+n+
1+max{m+m/, [k—m—m'|} and |B"|, . 8 defined by (21).

PrOOF. For sufficiently small We T,,
C(- (W, &)
= ST: ST, A(- (W3 E+D)BY(- (W, E+7, S(ax; Z, W)))
X e~ IS (5; Z, W)dZd] .
Then,

050103 =3 || Fuyepapepn®s 2102005 £+1)
X 052082053 B" (x; £+7, Z)Q (23 Z, Me "D dZdy) .

X 02208202 B" (x; £+ 7, Z)Qup(®; Z, N)}||7||"le~ D dZdy) .
Thus, we have
A+ leh=""~"#12302C(=; &)
<Const. |Aln, ia1+18:|B" w121+ 18141 * S

1 1+ |$| —m—n'+|#ld }
r2 A+ DN 1+ e +7] ) 7

=Const. |Ala,iat+11lB”|w, a1 +18141 * ST* L+ [p[)~t+immi=ttlidy |

If we take I=|m+m'—|B||+n+1, we get the desired result. O
Now, we shall prove (c¢) of Proposition 1.2. Let Ko, Lo € F#n (m=
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—n—1). For any 6>0, there exist K,, K,, L, and L, such that K=
K,+K,, L=L,+L,, supp K,, supp L,c4(r,/12), K,, L,e C*(Nx N) and

”Ko llm,k—l_ag |K1|m,k+ |K2!k )

(23)
||L°”m,k+3g |L1|m,k+ ILzIk .

Moreover, there exist 4, Be>® ., and Koo, Lo can be written as
(Ko f)@)=(P(A, v)f)&x), (L, f)x)=(P(B, v,)f)x) where v, is a cut off
function of breadth »,/4. Compute KoL- by using above decomposition
and we get

(24) HK°L°”m,k=”(K1°+K2°)(L1°+L2°)”m,k
= ||K1°L1°||m,k+ || Ko Lo ||, + ”K2°L1°”m,k+ || Kzo Lyo ”m,k
= ]]K1°L1°”m,k+ |K1°L2°Ik+ |K2°L1°Ik+ IK2°L2°|k .

The last inequality results from the fact that K,oL,o=P(A4, v)oL,o and
K,oL,o=K,oP(B, v,) are smoothing operators (cf. Lemmas 4.2, 4.3) and
the definition of operator norms (ef. (11)).

By (23) and (24), we have only to prove the following:

(i) 1Ko Lol S Co sl Kol Ll
(ii) B0 Lol S Con Kol s Ll

(iif) 23 AR={oA) K] AT

(iv) 1: &3 ARToN) AN} ANS

where d0(k)=3k+2(n+1)—38m.

Inequality (iv) is trivial and (ii), (iii) are proved by Lemma 4.2 and
Lemma 4.3.

By (19),

Ko L,o=P(A, v,)°P(B, v,)=P(C, V'),
S0 we can write as
K1°L1° =P(C, ”1)+P(C’ (1—”1)”') ’

where v, is a cut off function of breadth less than »,/12. The symbol
function of P(C, v,) is given by

Cod(e, =\, Clas e+mPu(es iy,

where U, is a Fourier transform of v, (cf. (8)) and P(C, 1—y,)»') is a
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smoothing operator, denote its kernel function by M, then
| Kyo Lyo || m,s = Const. {|{C+D,|, .+ | M]:} .

It is easy to see |CxD,|..=Const.|C|... By (8) and Lemma 4.5, |C|, .=
|Clom e =Const. |A| . +|Blmsa. On the other hand, by Lemma 4.1, |M|. =
Const. |C|,. . <Const. [A|. i|Blmsxn. Thus, we have

“K1°L1° ”n,ls é Cm,k|Alm,lelu,6(k) =Cu,h|K1|m,le1|n,l(k) .

This proves (i), hence we get (¢) of Proposition 1.2.

Now, we shall compute *-operation to prove (d) of Proposition 1.2.
For Ko e <#n,, consider a decomposition K,, K, given by (2), (3) such that
K=K,+K,, and

9 e vy . Ao HEIT)
K@ - 2@ X) ST: Az; £)e 0 dg

for some A€>.® ... The adjoint operators of K,, K, can be written as

(25) (K ou)(y)=(P(C, v)u)y) ,
(K ou)y)= SN Ky(z; p)u(z)dz ,

where

Cw; 0=\ Bw; t+7, Ve~ravdy,

B C, D=AC (Y, 05 25 B Y. Y0,

and v, is a cut off function of breadth 3r,/4.
By the above argements, we see that K* is an element of 9’(,,,, and
has the following decomposition satisfying the conditions in (2), (3),

(26) K*=L,+L,,

where
Ly(y, z)=S *S *C(y, g+O0(v; C)e““"‘”dideig(y, z),

Ly, 2)= S C(y; Qe *“'2((1 —v,)v,)(y, z)dC (y, 2)
+K;(y’ Z), z_'yZO A
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Compute |L,|,/ ,(m'=m), |L,|, in (25), (26), then one gets,

(27) | Ll 6 S Comr 1l Al 3y m 1)
| Lol S Coir 1 Al e’ 3y 0m2 10 + | Kol

where 6,(m’, k)=k+38(m—m')+n+1+max {m', |k+m—2m’|},
0,(m/, k)=2k+3(n+1)—m' .

Thus, by (27) and the definition of operator norms, we obtain

| K*o ”m',k§Cm',kHK° ”m',m&xwl(m’,k),dg(m’,k)) .

This proves (d) of Proposition 1.2.

Now, it remains to show that (<, T,.) is a Fréchet algebra for
every m', m'=m=0. Since FL, - Fh,CFIEH (| <4, jEm=0) is
well known, and 4., is a closed subspace of 2, by Lemma 1.1, we
have only to consider the case m=0. Namely, what we have to prove
is that <23, is a Fréchet algebra for every m’'=<0.

Suppose Ko, Lo € &#°. By the same manner as in the proof (i)-(iv)
and the same calculation in the proof of Lemmas 4.1-4.5 for the estimates
of kernel function of KoLo, we have

”K°L° Hm',kécm',k||K° Hm',aam',k) || Lo Hm'.a,m',k)
where

o,(m/, k)y=max{k—m', k+n+1}—m’,
o(m', k)=2max{k—m', k+n+1}—Tm’'+8(n+1) .

Therefore, we can conclude .Z#},., is a Fréchet algebra for every m'=<0.
This completes the proof of Proposition 1.2.
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