Remark on "On Normal Integral Bases"

Fuminori KAWAMOTO Gakushuin University
(Communicated by K. Katase)

We can easily extend Theorem 2 of [1] to the following theorem. All results in [1] which follow from Theorem 2 are extended consequently. We will use the same notations as in [1].

Theorem. Suppose that l is an odd prime and $a(\neq \pm 1)$ is a rational integer without l-th power factor such that $a^{l-1} \equiv 1 \bmod l^{2}$. Then $\boldsymbol{Q}\left(\zeta_{l}, \sqrt[l]{a}\right) /$ $\boldsymbol{Q}\left(\zeta_{l}\right)$ has always a normal integral basis.

Proof. Let g be a primitive root $\bmod l(2 \leqq g \leqq l-1)$. Then, for any
 we may put $e_{0}=0$, because of our hypothesis. Let \mathfrak{p} be a unique prime ideal lying above l in $\boldsymbol{Q}(\zeta)$ and $\varepsilon=\left(\zeta^{g}-1\right) /(\zeta-1)$, which is a unit of $\boldsymbol{Q}(\zeta)$. We put $u_{j}=(-1)^{l-1-j} \varepsilon^{-l \varepsilon_{j}}(0 \leqq j \leqq l-1)$. Since $\varepsilon \equiv g \bmod \mathfrak{p}$, we have $\varepsilon^{l} \equiv g^{l} \equiv$ $g \bmod l$. Consequently, for any $i(0 \leqq i \leqq l-1)$,

$$
\begin{aligned}
\sum_{j=0}^{l-1}\binom{l-1}{j} \zeta^{i j} u_{j} a^{l-1-j} b_{j} & \equiv \sum_{j=0}^{l-1}\binom{l-1}{j} \zeta^{i j}(-1)^{l-1-j} \\
& =\left(\zeta^{i}-1\right)^{l-1} \equiv 0 \bmod l
\end{aligned}
$$

Hence, by Theorem 2 in [1], (1/l) $\sum_{j=0}^{l-1} \varepsilon^{l_{j}}\left(\sqrt[l]{a^{j}} / b_{j}\right)$ is a generator of normal integral basis. This proves our theorem.

Reference

[1] F. Kawamoto, On normal integral bases, Tokyo J. Math., 7 (1984), 221-231.

