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Introduction

In the present paper we discuss the fundamental properties of modified
Fourier hyperfunctions.

It is about a quarter of a century ago that Professor Sato in-
troduced and developed the theory of hyperfunctions in [42], [43] and
[44]. In [42], among many important discussions, he introduced Fourier
hyperfunctions to define the Fourier transformation of hyperfunctions in
the case of one variable. Roughly speaking, a Fourier hyperfunction is
presented as a difference of boundary values of holomorphic functions with
infra-exponential growth from a complex domain to a real domain. (These
holomorphic functions which present a Fourier hyperfunction are called
the defining functions of the Fourier hyperfunction.) Indicated by Sato
[42], Kawai [16], [17] treated the theory of Fourier hyperfunctions of
several variables. Kawali [16], [17] also discussed its applications to linear
partial differential equations with constant coefficients. Modified Fourier
hyperfunctions were proposed by Professors Sato and Kawai for the
purpose of their applications to the so called division problem in the
theory of linear partial differential equations. Kawai [17] referred the
matter, and announced the publishment of the paper on the theory of
modified Fourier hyperfunctions. (See pp-468, 469 in Kawai [17].) But
it has not been published.

On the other hand, the theory of vector valued Fourier hyperfunc-
tions was developed by Ito-Nagamachi [10], Nagamachi-Mugibayashi [31]
and Junker [11], [12]. Nagamachi-Mugibayashi [31] also introduced
(axiomatic) hyperfunction fields. Further, Nagamachi-Mugibayashi [32],
[33] introduced (vector valued) Fourier hyperfunctions of the second type
and mixed type to show the equivalence of the relativistic and Euclidean
field theory. Afterward, Nagamachi [29], [30] treated the theory of (vector
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valued) Fourier hyperfunctions of mixed type. Saburi [38] also treated
the theory of modified Fourier hyperfunctions.

Here we have to give an explanation on the terminology. What
Nagamachi-Mugibayashi called the Fourier hyperfunctions of the second
type are the modified Fourier hyperfunctions in our terminology. A
Fourier hyperfunction of mixed type is a hyperfunction which is a
(original) Fourier hyperfunction in some variables and a modified Fourier
hyperfunction in other variables. Therefore there are three types of
Fourier hyperfunctions at present: the (original) Fourier hyperfunctions,
modified Fourier hyperfunctions and the Fourier hyperfunctions of mixed
type.

The sheaves of these three types of Fourier hyperfunctions are
defined on the radial compactification D" of the Euclidean space R". (See
Definition 1.1.1 in Kawai [17] (p-227) for the definition of the radial
compactification D* of R*.) Each sheaf of these three types of Fourier
hyperfunctions is flabby. Each space of global sections of sheaves of
these three types of Fourier hyperfunctions are stable under the Fourier
transformation. The distinction of these three types of Fourier hyper-
functions is essentially in the distinction of types of the domain of
the defining functions. (Compare the definitions of the sheaves & of
defining holomorphic functions of Fourier hyperfunctions, &,,, of defining
holomorphic functions of modified Fourier hyperfunctions and é’;,, of
defining holomorphic functions of Fourier hyperfunctions of mixed type:
Definition 1.1.2 in Kawai [17], Definition 1.1.2 in the present paper and
Definition 2.3 in Nagamachi [29].)

From the functional analytic view point, each Fourier hyperfunction
of these three types can be regarded as an analytic functional with
non compact carrier contained in the real domain. Therefore our theory
can be regarded as a part of the theory of analytic functionals. The
theory of analytic functionals and their Fourier transformation was
developed by Martineau [24] in details. Afterward Morimoto [25], [27]
introduced the theory of analytic functionals with noncompact carrier and
their Fourier transformation. There are several works on the theory
of analytic functionals with noncompact carrier besides Morimoto [25],
[27]. Those are Zharinov [46], [47], de Roever [37], Morimoto-Yoshino
[28], Sargos-Morimoto [41], Yoshino [45] and others.

The aim of the present paper is to give complete proofs of the
theorems on fundamental properties of the sheaf <2 of modified Fourier
hyperfunctions on D*. More explicitly, we discuss the flabbiness of the
sheaf <2, a duality between the sheaves <2 and %, of rapidly decreasing
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real analytic functions on D" and Fourier transforms of modified Fourier
hyperfunctions. (See Definition 1.1.5 and 1.1.6 in the present paper for
the definitions of the sheaves <2 and .%v,,.)

The plan of the present paper is as follows:

We give the definition of modified Fourier hyperfunctions in §1.1.
We describe pricisely the properties of the sheaf <2 of modified Fourier
hyperfunctions in §1.2.

We need three preparations to show the flabbiness of the sheaf <@
and a duality between two sheaves <2 and .. on D*. One of them is
the vanishing theorems of cohomology groups with values in the sheaves
@ume of holomorphic functions with the infra-exponential growth and o
of holomorphic functions with some exponential decay condition. Those
theorems are prepared in our previous paper Saburi [40]. We review
those theorems in §2.1. Next one is the Grauert theorem for the sheaf
e (Theorem 2.2.2). The last one is an approximation theorem for the
sheaf .&7,, (Theorem 2.3.1). We prove these theorems in §§2.2 and
2.3 respectively.

Under the preparations in §2, we prove the flabbiness of the sheaf
# (Theorem 3.2.2) and a duality theorem between the sheaves .2 and
4, (Corollary 3.2.3) in §3.

In §4, we discuss the Fourier transforms of modified Fourier hyper-
functions. First we review the Fourier transformations of the space
S3.(D") of global sections of the sheaf .o,, and the space <2(D") of global
sections of the sheaf <2 (Theorem 4.1.1 and p-251). Next we give a
presentation of a modified Fourier hyperfunction as “a difference of
boundary values of holomorphic functions from a comrlex domain to the
real domain D"’ (4.8.2). We also give a presentation of the Fourier
transform of a modified Fourier hyperfunction as “a difference of boundary
values of holomorphic functions from a complex domain to the real domain
D™’ (Definition 4.2.2). Finally we discuss the Fourier-Carleman-Leray-
Sato transformation for the modified Fourier hyperfunctions in §4.8.

Here we clarify the connection between the present work and Naga-
machi-Mugibayashi [383]. In [38], they introduced the modified Fourier
hyperfunctions as analytic functionals and established their fundamental
theory. On the other hand, we attempt to give its foundation by using
the cohomologial theory of the sheaves &,,, and &,,, in the present paper.
We also notice that the contents of the present paper were discussed in
our previous work Saburi [88]. Saburi [38] includes some mistakes. We
give improvements for them in the present paper. (See Remark at the
end of §2.3 and Remark to the proof of Proposition 4.2.1.)
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§1. The definition of modified Fourier hyperfunctions and their
fundamental properties.

1.1. Definitions and notations.

In this section we give the definition of modified Fourier hyperfunec-
tions.

We denote by D* the radial compactification of R*. (For the definition
of the radial compactification of R*, see Definition 1.1.1 in Kawai [17].)
We identify C* with R™, and denote its radial compactification by @Q".
Then the closure of R* in @" is nothing but D".

DEFINITION 1.1.1. For an a«€ R and for an open set U in C", we
denote by <”*(U) the space of holomorphic functions defined as follows:

o(U)={7 e PWY; |1 f las=sup |f@le~" <o} .
2*(U) is a Banach space with the norm ||-|l.v -

DEFINITION 1.1.2. (The sheaf of slowly increasing holomorphic func-
tions) We denote by .., the sheaf on Q" whose section module &, (W)
over an open set W in Q" is given by the following:

COund W)={f € O(WNC); || flle,wrner<oo
for any W'cW and any &>0},

where the notation W< W means that W’ is a relatively compact (open)
subset of W. »

If 0<e”’<é& and W' W”, then the natural restriction mapping:
(W= (W) is compact. Hence the space &, (W) is a Fréchet-
Schwartz space with the seminorms {||-||., wnen}-

DEFINITION 1.1.3. (The sheaf of rapidly decreasing holomorphic
functions) We denote by &,., the sheaf on Q" whose section module
(W) over and an open set W in Q" is given by the following:

O W)={f e 2(WNC"); for any W'CW there
exists an &>0 such that | fll_.wncn<oo}.

REMARK. The restrictions of the sheaves #,,, and &, to C" coincide
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with the sheaf £ of holomorphic functions on C~.

DEFINITION 1.1.4. (The topology of £, (K)) Let K be a compact set
in Q. Then we equip £, (K) with the following locally convex inductive
limit topology of Banach spaces: '

CuK)=lim ind &~4(W) ,
e>0,WDK

where W runs all open sets in Q" containing K.
With this topology &,..(K) is a dual Fréchet-Schwartz space.

DEFINITION 1.1.5. (The sheaf of rapidly decreasing' real analytic
functions on D*) We denote by .9,, the restriction of the sheaf 7,
to D".

REMARK. The restriction of the sheaf .o7,, to R" coincides with the
sheaf & of real analytic fuuntions on R".

DEFINITION 1.1.6. (The (pre)sheaf of modified Fourier hyperfunctions)
We denote by <2 the presheaf on D” whose section module 2(Q) over
an open set 2 in D" is the n-th relative (or local) cohomology group
with values in the sheaf #,, on Q" with supports on Q2:

'—%(‘Q)—:H}S(ﬁ; ﬁinc) ’

where 2 is an arbitrary open set in Q" containing 2 as a closed subset.
We call an element in <2(2) a modified Fourier hyperfunction on 2. For
a compact set K in D", we denote especially by Z2[K] the space of all
modified Fourier hyperfunctions on D" whose supports are contained in K.

1.2. Properties of 2.

Now we go on to describle the fundamental properties of modified
Fourier hyperfunctions, which are proved in later sections.

(i) The presheaf 2 constitutes a flabby sheaf on D". The restric-
tion of <2 to R" coincides with the sheaf <# of hyperfunctions on R".

(ii) Let K be a compact set in D*. Then SZ[K] is linearly to-
pologically isomorphic to the strong dual space .%7..(K) of 7, (K).

(iii) The Fourier transformation .&# gives a linear topological auto-
morphism of .%7,,(D"). Therefore we can define a Fourier transformation
Z, of S2(D") as the dual transformation of the Fourier transformation
Of '-%lac(Dn)‘

On the other hand we can define another Fourier transformation of
Z(D") as follows. Let f be a modified Fourier hyperfunction on D".
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We decompose f as >)<;<»f;, with suppf; contained in the closure of
j-th orthant I'; in R*. After this decomposition we define the Fourier
transform #f of f as the cohomology class {{f;, ¢*)} € Hpn(Q"; Pino),
where {f}, e’y is defined by the duality given above, as far as e’ "“* ¢
Al T)).

It will be proved that the two definitions of the Fourier transformation
of “2(D") given above coincide.

§2. The sheaves &,,, and .

2.1. Vanishing theorems of cohomology groups with values in the
sheaves #,,, and Z,,,.

In this section we review soft resolutions of the sheaves ~,,, and
1., and vanishing theorems of cohomology groups with values in these
sheaves. For the details and the proof of the theorems in this section,
see Saburi [40].

First we mention soft resolution of the sheaves ~,, and &,,,. We
denote by %9 the sheaf of differential forms of type (p, ¢) on C*
whose coefficients are locally square summable functions.

DEFINITION 2.1.1. We denote by .2°»? the sheaf on Q" whose section
module Z7*?(W) over an open set W in Q" is given by the following:
g(p,q)(W)z{fe %,a(p.q)(Wn Cn); g |f|28—'l'ld)\-
KNnCc»
for any Kc W and any e>0} ,

where d\ is the Lebesque measure on C"=R*™. Moreover we denote by
Z®? the sheaf on Q" whose section module .27"»?(W) over an open
set W in Q" is given by the following:

2N W)=(f € 27 00(W); 3f € 27> (W)},
where 9f is defined in the sense of distributions.

DEFINITION 2.1.2. We denote by 2'*? the sheaf on Q" whose section
module Z7»?(W) over an open set W in Q" is given by the following:

Z 2N (W)= {f € L""(W); for any Kc W there

exists an &>0 such that S |flze“"d>\.<oo} .
KNncs
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Moreover we denote by 2»? the sheaf on Q" whose section module
Z"»?(W) over an open set W in Q" is given by the following:

?/1.(11"1)( W) ={f e ?(p,q)( W); f c ?(p,qﬂ)( W)} .

Here we note that 229 (W) is a Fréchet-Kémura space. The strong
dual space of Z2»?(W) is represented by a dual Fréchet-Kémura space
Zoms " P (W). (In the terminology of Komatsu [18], Fréchet-Kémura
spaces are referred as F'S* spaces and dual Fréchet-Komura spaces are
referred as DF'S* spaces.) The pairing between these two spaces is given
by the following:

Swnc”f/\g fOI‘ (f’ g) c g(p,q)( W) x ?(n—p,n-—q)( W) .

PROPOSITION 2.1.1. We have the following soft resolutions for the
sheaves 2,,, and 2,,, on Q:

N 0 ? ]
0 O e —> ZEHOY —— F7L0OD > oo > ZPLOm 50,
O ydec ae— ?1,(0’0) ‘—?_') ?1'(0’1) a > o o o a > ?L(O,n) 0 .

Next we mention vanishing theorems of cohomology groups with
values in the sheaves #~,,, and 2,,..
We give two definitions for domains in Q.

DEFINITION 2.1.3. We ecall an open set W in @ to bhe acute if it
satisfies the following condition:

sup [Im z|/(|Re z| + A) <1 for some A>0.

zeWNC»

DEFINITION 2.1.4. We call an open set V in Q" to be &,,,-pseudoconvex
if it is acute and if there exists a strictly plurisubharmonic C* function
p on VNC" which satisfies the following condition (P):

P {( 1) {ze VNC* p(2)<c}aV for any ceR,
(i) ?z%lc)np(z)<°° for any KcV.

Using the terminology given above, we describe vanishing theorems
- of cohomology groups with values in the sheaves £, and Z,.:

THEOREM 2.1.2. (The Cartan theorem B for the sheaf ~,,,. Cf.
Exposé 18 in Cartan [3].) Let V be an &, .-pseudoconvex open set in Q".
Then we have
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HY(V; Ce)=0 (¢g=1).

THEOREM 2.1.3. (The Cartan theorem B for the sheaf #,,. Cf.
Exposé 18 in Cartan [3].) Let K be a compact set in Q. Suppose that
K has a fundamental system of meighborhoods consisting of Zi..-pseudo-
convex open sets in Q. Then we have:

HY(K; Ou)=0  (¢21).

THEOREM 2.1.4. (The Malgrange theorem for the sheaf -, Cf.
Malgrange [22].) Let W be an acute open set in Q. Then we have

HYW; Z4.)=0 .

Here we give examples of £,,,-pseudoconvex open sets in @, which
play important roles in §4.

EXAMPLE. For >0, we put
U,={z e C* |Im z[*<&(Re 2+ 1)} , =0, .

If 0<d<1, then V, is an &...-pseudoconvex open set in Q". We put

ps(z)=—1/(|Im z|*—8*(|Re 2*+1)). Then p, gives a strictly plurisubharmonic

C~ function on VNC" satisfying the condition (P) in Definition 2.1.4.
We give another example. We put

U,={zeC; Imz; #0}, T;={200e8S27%2eU},
3=(UJUT,)0 Va (j=1’ ) n)‘*

If 0<d<1, then Vi is an Z,,,-pseudoconvex open set in Q" (=1, ---, n).
We put 7;(2)=(14+; |22+ |Re z;/)/|Im 2,* and pj(2)=7;(2)+ps(2). Then
p? gives a strictly plurisubharmonic C~ function on ViNCr satisfying the
condition (P) in Definition 2.1.4.

2.2. The Grauert theorem for sheaf 2.

In this section we see that there exist sufficiently many #,,.-pseudo-
convex open sets. That is, for any open set 2 in D", there exists a
fundamental system of neighborhoods of 2 consisting of #,,.-pseudoconvex
open sets in @Q".

We need some preparations.

We note that there exists a diffeomorphism @ of D* onto B (=the
closed unit ball in R* centered at the origin):

x/| x| if y=x0 € S%1

(@) w(y)-_—{x/l/—lxlz—}-l if y=weR:.
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Then we have the following

LEMMA 2.2.1. Let W be an open set in D* and a € C*(w(W)). Then
we have the following estimation for the derivatives of w*a, the pullback
of a by w:

@21 | aa w*a(@)| S Al al(w @)/l +1)

L

@22) |2 _—wa(@)|SBIrale @)+ Pal(o @)+

Dadiad}

xe WNR*, (t,j=1,:--,k).

Here A and B are constants independent of a and x, and, for a C*
Sfunction b on R*, we put

Pbl(@)=sup |-2-b@)| , IPbl(x)= sup —'af—b(x)].
153k | 02, 184,55k axiax,-

ProOOF. This is an immediate consequence of a direct calculation.
Q.E.D.

Now we go on to the Grauert theorem for the sheaf ~,,,:

THEOREM 2.2.2 (Cf. §8 in Grauert [6]). Let 2 be an open set in D"
and W an open neighborhood of Q2 in Q". Then there exists an -
pseudoconvex open set V im Q" such that QCVC W and VND*=4Q.

Proor. We identify Q" with D**, and denote again by w the diffeo-
morphism of Q" onto B(=B?*) defined as in (w). We denote by mg the
natural projection o°f C" to R"={zeC*; Im2=0}). Put W'=Wnzz(2NC".
Then we have (W' NC") =02 and W' ND*=R2. Without loss of generality,
we can assume that W’ is acute. Here we rewrite W’ by W.

a) We choose a real valued C> function v on w(W) NB satisfying the
following conditions:

i) zew(W)NB; vz)<clcw (W) for any cER,

ii) My=sup,cxns{7(2), P7I(2), [7*7|(2)} <o for any Kcw(W).

We can take an exhaustion {K,} of W consisting of compact subsets of
W which satisfies the following conditions:

i) K,cK,., °

iv) 7wa(K,NC*)Crr(K,;, NC™).

We also choose a positive valued C= function a on m’(Q)nB satisfying
the following conditions:
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v) inf{a(®); « € w[Tr(K,+. N C*)\m(K, NC")]}>CMyx
vi) {xrew(Q); alx)<clcw(?) for any ceR,
vii) Np=SuDeezns{a(®), Fal(), |7?a|(x)} < for any L& w(Q).
We will specify later the constant C in v) (which does not depend
on K,)). We put

(”=1’ 2 - ‘),

v+1)

p(z)= ;1 a(w(Re2)+7(w(2) ze WNC".

Then p, is C* on WNC". Moreover there exists an open set W’ in @"
such that Qc W' W and p, is strictly plurisubharmonic on W' NC*. We

will find this open set W’ by an explicit calculation of the Hermitian
quadratic form:

tW [a 2097, pl(z):lw ze WNnC*, weC".

We denote z=z+1 —1y(x, y € R*). We note that the following estima-
tions hold:

5 C.
2.2.3 sup |2 ¥ wekR.
( ) 1stan |0; |2fF+11  (je| +1)°

2.2.4 sup | & | me R
( ) 1shisn| gp.ox; |lef*+11 (lz|+1)*

Using (2.2.1), (2.2.2), (2.2.3) and (2.2.4), we have the following estimation
from bellow:

: Pk 1 a(w@)
| 2 oo s(w@)) |wz o

[”’2“ =2 Taf+1
—n JI—T{B'(IVGI(W@))+lV’al(m*(x)))+C;a(w(w))}
(] +1)
+ (AT al (@) + Catw @) Jul ze WnCr wees.

Hence, if we put U,={zeC"; |Imz|<e(|Rez|+1)}, we have the following
estimation from below:

t 0’ ( ly|
“L o207, \ |x|2+1a(w(x)))]w

1 a(‘m’(x))l |2
2 |z|*+1

T lz SC’[a(‘w’(w))+|Va|(1D’(w))+leal(m’(w))]lWIz zeWnU,weC",
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where C’ is a constant which does not depend on z and a.
Thus applying (2, 2, 2) also to [0°/62,0Z,;7(2)], we have

tig| 0 > 1 a(w(@)
[aia— Pi(z )] =72 TFITI wf

[sC'{a(w(x))+lVal(m’(w))+leal(ﬁf(w))}

—le2+1 |
+B"{1Vvl<m«<z>>+IVsz(mz»}]le
1 a(w@®)) ’ ,
g2 Joc|*+1 wl= | ]2 r3ech(x)+2BMw(k>]|w|

ze KNU,weC (KcW).

Therefore, if we put C=3nB" (C is the constant in v) not yet fixed) and
6 _-B"Mm’(Ky)/C Nw(xR(Ky))(v 1 2 ), we have

4'w |:az 5%, pl(z)] [ol? [GnB"Mw(K) 3nB’,Mw(Ky)—2nB" W(K.,)]

~ e+
— nB”Mw(K ) [ ||?;v_l!_1 >O
ze(K\K,_)NU,,weC" (v=1,2, ---, K,=¢) .
Hence if we put W=wn (U AU, N (K \K,_1)), p.(z) is strictly plurlsub-

harmonic on WNC*. It is clear that W’ satisfies W W and W N D*=0.
b) Next, for w e R" and positive number 8, put

0|Im z|*—|Re(z—w)| }
Im z[? ’

qw,,(z)=max{0, 2

Then g, , is a plurisubharmonic function of C*. We can choose a sequence
{w,}c2\S2™* and a sequence of positive numbers {5,JC R so that
viii) q(z)=32, q,(2) is a locally finite sum,
ix) q()>1 on (0 W:\a,,nlz)ncn,
xX) V=W'Nn{zeC q(z)<1} contains £,
where ¢, is a suitable mollification of Qw,,s, and dp» denotes the boundary
of £ in D~
¢) We put

p=p,+1/1—q).

Then p is a strictly plurisubharmonic C= function on VN C* which satisfies
the condition (P) in the definition of 7, -pseudoconvexity (Definition
2.1.4.). V is what we need. Q.E.D.
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2.3. An approximation theorem in .&7,,.

In this section we prove an approximation theorem in the sheaf
... The essential part of the proof of this theorem relies, as in
Kawai [16], [17], on the theory of L* estimates for the & operator in
Hormander [8], [9] and the theory of topological spaces such as Fréchet-
Schwartz spaces, dual Fréchet-Schwartz spaces, Fréchet-Komura spaces
and dual Fréchet-Komura spaces in Komatsu [18], ]19], [20].

THEOREM 2.3.1. Let K be a compact set in D*. Then %, (D") 18
dense in ,(K).

For the proof of the theorem, we need some preparations.

DEFINITION 2.8.1. For ac€ R, we denote %% the sheaf on Q" whose
section module ~7%%(W) over an open set W in Q" is given by the following:

OE(W)={f e AWACH I fllfuxnen= | _If@PedN< oo
for any Kc W} ,

where d) is the Lebesgue measure on C*=R*. We also denote by &35
the sheaf on Q" whose section module &52*(W) over an open set W in
Q" is given by the following:

Lx(W)={f € L (WNC); ||flllaxnen<ee for any Kc W},

where &%, denotes the sheaf of locally square summable functions on
C*=R™.
For any open set W in Q*, 2734 W) is a Fréchet-Schwartz space, and
<222(W) is a Fréchet-Komura space with the seminorms ({|||:|||s,xnen}-
ok4(W) is a closed subspace of <42*(W). The strong dual space of <55 (W)
is represented by the dual Fréchet-Komura space

2 (W)={f e &% (W); supp fc W}.

We note that for any a and a’ satisfying o’'<a, Z¥'(W)c oz:(W) and
loc (W)C loc (W) hOId

LEMMA 2.3.2. Let K be a compact set in Q", {W,} be a decreasing
approximating sequence of K consisting of open sets in Q" such that
W;nc W,. Then we have the following linear topological isomorphism:

(2.3.1) O K)=lim ind Z57(W) .



FOURIER HYPERFUNCTIONS 243

PrROOF. Consider the following injective sequence:

L oW ey £ oW
o omE(Wnen s gur(wn) L -

where o is the natural restriction mapping. Then we find the isomor-
phism (2.8.1) by virtue of the continuity of p. Q.E.D.

LEMMA 2.8.3. Let W be an acute open set in Q. Then for any o
and a€ R (a'<a), OLE(W) is dense in OZXW).

Proor. Let feoi2(W). Then since W is acute, f,(z)=
f(2)exp(—A/v)") e 52 (W) hold for any ve N, where 2'=z22+4---+22,
Moreover by the Lebesgue dominated convergence theorem, we have

IS, — fllle,xnen —— 0 (¥ — o)
for all Kc W. This shows the lemma. Q.E.D.
We need another

LEMMA 2.3.4. Let K be a compact set in D*. Then there exists a
decreasing approximating sequence {V,} of D" consisting of ,,.-pseudo-
convex open sets in Q" and a decreasing approximating sequence {W;} of
K consisting of open sets in Q" satisfying the conditions:

i) | V,oV,>..-oD"
Uu u
WoW,>-.-oK.

ii) For any j and for any Lc W,, there exist an open set U such
that LcUc W; and a strictly plurisubharmonic C* function &
on V;NC" such that

<0 on LNC",d>0 near oUNC" and sup #z)<co .

zeV;neCn
PROOF. First we construct V; and W;. We put

U={zeC"; Im2P<2-(Re2P+1)}, V,=U,.

We note that V; is pseudoconvex.
We say that an open set W in Q" is of type (E), if there exist open
sets {2.}i=; in Q" such that

W= QQ,, , where .Q,,=(f),, and
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w,={zcC"; [Rez —a,/*—|Im2z[*>B,, Imz[’<A,(Re 2"+1)},

where B, and A, are positive numbers and a, € R". Since K is a compact
set in D", there exists a decreasing approximating sequence {W;} of K
consisting of open sets of type (E) in Q" satisfying the condition i).

Next, for any given compact subset L of W;, we find an open set
U in Q" and a strictly plurisubharmonic C= function ¢ on V;NC" satisfying
the condition ii). Here we fix the index j of W; and V,, and rewrite
W, and V; as W and V respectively, and put d=277.

Since W is of type (E), it can be written as

W= QQ,‘ ’ Where kaa—.)k and
w,={z € C*; |Re 2—a,*—|Im 2|*> By, |Im 2’ < A,([Re 2[*+1)} .
Here we note that we can choose A,’s as A,=A (i.e. independent of k).

Then, for any compact set L in W, there exists an open set W' of type
(E) in Q" such that

LcWecWw,
W'= QQQ , where Q;:(I); and

w,={z€C"; |Re z—a,|*—|Im z|*> B;, [Im z|’< A’'(|Re 2[*+1)} ,

Here we note B.>B,>0, A’<A<d, dist@LNC", oW'NC")>0 and
distG@W’'NC*, dWNC">0. We take positive ¢ which satisfies d+2¢<1
and is smaller than

(1/4)dist(@LNC" aW’'NC") and (1/4)dist@W’'NC", aWNC™).

Here we put

1

I o S
(o)t o Vi P *alry

Pri(2) =

where we put

hy(z)=|Re z—a,[’—|Im 2|* ,

o, = d+2¢
1—(d+2¢)

1
Bi+a; ’

|@wl?+ (d +2¢) + 1 and 7,=

and X is a positively valued molifier with the support contained in the
e-ball in C* centered at the origin. We note that the following inequalities
and equality hold:
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hi(2)+a,=1 if ze U,
(%)

0* _2(z,—a,)(Z;—a;)
02,0%; ' +(2)= (he(2)+a)?

(%) {"/fk(z)<0 if |Rez—a,*—|Imz*> B,

() =0 if zeU;, and |Rez—a,*—|Im2)’<B;,

where we put U.,.={zeC*; |Imz’<(d+2¢)(Rez2+1)}. From (x), we
find that 4, is C= and plurisubharmonic on a neighborhood of VN C™.
Moreover we can find that @, is C* and strictly plurisubharmonic on a
neighborhood of V' NC", and ¢,<1 on there.

Then, if neccesary, by a slight modification of the choice a,’s, we

can make the function

[Im 2z* _1}
A’'(|Re z|*+1)

Y (z)=max {sgp Pi (2),

satisfy the assumption of Lemma A.l in Appendix on a neighborhood of
VNC». Thus by Lemma A.l, the function ¢=2Xxy defines a strictly

plurisubharmonic C* function on VNC*. Now we put
U=W., where W.,={zeC dist(z, W)<3¢} .

Then, from (xx) and the definitions of functions @, and 4, we find that
the function ¢ and the open set U satisfies the condition ii). Q.E.D.

Now we go on to the proof of Theorem 2.3.1:

PROOF OF THEOREM 2.3.1. a) By Lemma 2.3.4, there exist a decre-
asing approximating sequence {V} of D" consisting #,,,-pseudoconvex open
sets in @" and a decreasing approximating sequence {W;} of K consisting
of open sets in Q" satisfying the conditions i) and ii) in Lemma 2.8.4.

b) Since 7, ,(K) is a dual Fréchet-Schwartz space it is sufficient to
show the following statement (x) by Theorem 6’ in Komatsu [18] and
Lemma 2.8.2:

2, —1/

() When j is sufficiently large, % 24(V,) is dense in ZEVi(W,).

In what follows, we assume that j is sufficiently large, and rewrite
as V=V;, W=W, and ¢=1/j.

Using the terminology of the Hahn-Banach theorem, we can interpret
(x) as follows:

“If pelobs(W)]' vanishes on &%;%(V), then u=0c¢c[ZE(W)].”

loc
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Since ~%7«(W) is a subspace of 7% (W), there exists a U € 3 comp(W)
such that

{py, v) = S vidn vETET(W)

wnen

again by the Hahn-Banach theorem, where #% denotes the complex con-
jugate of u. Therefore it is sufficient to show that u is orthogonal to

i (W). :
¢) Put L=suppu. Then by Lemma 2.8.4, there exist a strictly

plurisubharmonic C= function ¢ on VNC" and an open neighborhood U of
L in W such that

8<0 on LNC*, >0 on aUNC* and sup Hz)<oo .

zeVNC™

We put 9*(z)=max{6(z), 0}. _

d) We put g,.(z)=cosh(4eV'?’) (z*=2i+---+2.). Then by Lemma 3.1.5
in Saburi [40], we have the following estimation for sufficiently small
e>0:

exp(—4e|2)) <|g.(2)| ' <Cexp(—3elz]) (ze VNC"),

where C is a constant independent of z. Hence we have w/g,, € Li;vomp(W).
On the other hand, for a positive a, we put

OV e C; g|z|+2 log(|z?+1) +ad*(2))

_{vnenem; | lof exp(—elzl—2 log(laf + 1) —ad*(Ndn< =}
Then we have v/g. € Zx%(V), for any ve Z(VNC"; elz|+2log(|z[*+1)+

ad*(z)) and any a>0.
Hence by the assumption for g, we have

S v (u/F)dN= Swncn(v/g«)udx =t v/g.) =0
for any v € YV NC™; ¢lz| +2 log(|2|*+1) + ad*(z)) and any a>0. Therefore
by Proposition 2.3.2 in Hormander (8], there exists f € L}, (VN C"; —e¢lz|).
such that
bf =u/Gu, supp fC{ze VNC*; #(2)<0},

where we followed the notation in Hormander [8], [9]:

L, ,(VNCr —elz|) = {f € AoV NeH); Svncn|f(2)|ze""d>\.< 00} .
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¢) We choose Xe C(VNC") (0=X=1) such that -

X=1 on LNC*, =0 on C"\(UUN),
supp(@X)CN and sup(GX)<co ,

where N is a neighborhood of U in W which does not meet L. Then
for each ve 7%, %(W), we have \

Xvg,. € LV NC"; e|z| +2log(|z]*+1)) ,
0(Xvg..) € L3, ,(VNC™; ¢lz]) and supp(@(Xvg..))CN .

Hence we have
vy = S vAAN = S V9. (U/J i )dN = S vg.Dfdr= S d(Xvg..) - FAr=0
wnen vnen vnen vynen

for any ve Z57*(W). Here we recall that <% %(W) is dense in &z (W)
by Lemma 2.3.3. Hence we have also

g, v) =0 for any ve i (W) .
Thus we have pu=0¢[Z2(W)]. Q.E.D.

REMARK. To prove the theorem in this section, we followed mostly
to the proof of Theorem 2.2.1 in Kawai [17]. But, by preparing Lemmas
2.3.2 and 2.3.3, we attempt to improve the original proof of Kawai’s.
Here we note that there is a mistake (or misprint?) in Kawai’s proof.
That is, the claim (b)-(iv) for the strictly plurisubharmonic funection %(z)
on U;NC" in that proof:

(b)-(@{v) SBI% Hr)< oo for any LcQ;
ze LNC™?
is not sufficient for the proof of the theorem. (Here we followed Kawai’s
vnotations) It should be replaced by
(b)-Gv)’ sup H(z)< oo for any LcU,;.

ze LNC™

Because, as his proof relied on Proposition 2.3.2 in Hormander [8], the
required condition that the function #(z) should satisfy is as follows:

C=

a

{ve FA2(U;NC; W8t —0'||z|| +2 log(1 +|2]%)); dv=0}

1

ueO(U;NC"); Smcnlulze"”‘”d V<oo, VL Uj} .

18

CcB=

o —



248 YUTAKA SABURI

(Here we also followed Kawai’s notations.) It is obvious that a sufficient
condition for the above condition is not the claim (b)-(iv), but (b)-@Iv)’.
But fortunately, since the function #(z) constructed there satisfies the
claim (b)-(iv)’, the proof can be saved.

In connection with the above problem, Nagamachi-Mugibayashi [33]
made a same mistake as Kawai’s. In Appendix in [33], they tried to
prove the approximation theorem in the sheaf ¢ following to the proof
of Theorem 2.2.1 in Kawai [17]. Here, because of the same reason as
above, we also have to say that the claim

(b)-(@{v) s&gn Hr)< oo for any Lc,

for the strictly plurisubharmonic function #(z) on U? N C" should be replaced
by the claim
(b)-(iv)’ sup Hz)< o for any LcU:.
. ze LNC®
(Here we followed the notations of Nagamachi-Mugibayashi [33].) Further
we note that the function &(z) constructed there does not satisfies the

claim (b)-(iv)’ in general. Because, in their case, the function ¢(z) (defined
there) does not satisfy the claim (b)-(iv)’ in general.

o(z)=0(z]") on U;\2,.

We confess that when we wrote Saburi [38], we were not aware of the
above mistake in Nagamachi-Mugibayashi [33]. So, in Saburi [38], we
referred the approximation theorem in Nagamachi-Muguibayashi [33]. But
we can now rectify the mistake by showing Lemma 2.3.4 in the present
paper.

§ 3. Duality theorems and pure codimensionality of D" with respect
to the sheaf &,,,.

In this section we show the fundamental properties of the sheaf =2
of modified Fourier hyperfunctions. These are stated in Theorem 3.2.2
and its Corollary. Here, as in §2.3, we use the theory of Fréchet-
Schwartz spaces, dual Fréchet-Schwartz spaces, Fréchet-Komura spaces
and dual Fréchet-Komura spaces in Komatsu [18], [19], [20]. We also use
the general theory of local (or relative) cohomology groups. As to the
general theory of local (or relative) cohomology groups, we refer to
Godement [5], Grothendieck [7] and Morimoto [26].

3.1. Martineau-Harvey duality for the sheaves #,,, and Z,...
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In this section we treat the Serre duality and the Martineau-Harvey
duality for the sheaves #,,, and Z,...
First we start with the Serre duality:

THEOREM 3.1.1 Let V be an open set in Q. Assume HY(V; 0’,",)=
0(g=1). Then we have the following linear topological isomorphism:

3.1.1) [Hi(V; Cudl 2HIZWV; D) -

REMARK. The above theorem also holds under the assumption
dim H(V; &)< (g=1).

ProOF OorF THEOREM 3.1.1. Consider the following dual complexes:

3.1.2) 00— 2oonV) s gronyy 2,2, grem(yy—0
(8.1.2) 0 — 2/.50(V) S ETIV) e ZER(V) 0.

We recall that the j-th cohomology group of the complex (3.1.2) is iso-
morphic to HY(V; ~,,.,), and the j-th cohomology group of the complex
(8.1.2) is isomorphic to H?,.,(V; 2°,..,). Here we note that 22*»?(V) are
Fréchet-Komura spaces, and 9 is a densely defined closed operator of
those spaces. Hence by the assumption HY(V; #.,.)=0, we find that 2
has a closed range. Thus by the Serre-Komatsu duality theorem (Theorem
19 in Komatsu [18], p-381), we have the isomorphism (3.1.1). Q.E.D.

COROLLARY 3.1.2. Let V be an acute open set in Q", K a compact
set in V. Suppose

H(V; &:.0)=0 (¢=1),
HYK; &..)=0 (¢=1),

then we have the following linear topological isomorphism:
3.1.3) [HY(V\K; @...)] = Himy(V\K; D) .

PROOF. a) Similarly to the proof of Theorem 3.1.1, consider the
following dual complexes:

(8.1.4) 3, 3, FN
0 » Z7ONV\K) — 220 (V\K) > v » 2" (V\K) — 0

(3.1.4Y | ) I

0 — Z 0w (V\K) f—%—- Z oW (V\K) e— o+ — Z7 G0 (V\K) «—0 .

n—1 1
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It is sufficient to show that —& have closed ranges in (3.1.4)".
| We recall the following exact sequence:

(3.1.5) 0— Hgo,,.,( V\K; ﬁdu) EE— Hgomp( V; ﬁdcc) BE— HO(K; ﬁdcc)
_— Htamp( V\K; ﬁdec) _ Halsomp( V; ﬁdao) — HI(K; ﬁdac)

—) s 0 e
— H:omp( V\K; &)dcc) _ H?omp( V; ﬂdec) E— Hn(K; ﬁdu)

—0.
Here we list up the vanishing terms in (8.1.5): By the assumption;
(3.1.6) HY(K; Ou.)=0  (¢21).
By the assumption and Theorem 3.1.1;
3.1.7) Heus(V; uee)=0  (0=g=n-1).
By the uniqueness of analytic continuation;
(3.1.8) Hmp(V\K; &.)=0 .

Therefore we have the following isomorphisms:

(3-1'9) HO(K; ﬂdcc)EH:omp( V\K; ﬁdco) ’
(3.1.10) Himo(V\K; Zus)=0  (2=g=n-1),
(3.1.11) Heompo(V\K; Cuee) =Hoomso(V; Cuse) -

Hence by (8.1.10), we have the closedness of Im(—3d,) (2=<g¢=n-—1).

b) We will prove the closedness of Im(—a,) (¢g=1, n).

First we will see the closedness of Im(—a,). Since V is acute, V\K
is also acute. Then we have

HYV\K; &2,,.)=0

by the Malgrange theorem for the sheaf #7,,, (Theorem 2.1.4). Hence we
have the closedness Imd, in (3.1.4). Then by the Serre-Komatsu duality
theorem (Theorem 19 in Komatsu [18] p-381,, we have the closedness of
Im(—a,).

Next we will see the closedness of Im(—a,). Consider the following
commutative diagram:
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"V\K

0 — ZER(V\K) 2 2 8 (V\K)

0 — Zom(V)  — Zam (V)

n

where ¢ denotes the natural inclusion mapping. We note that ¢ is con-
tinuous. By the assumption HYV; £...)=0, we have the closedness of
Im3’. Hence we have the closedness of Im(—a)) by the Serre-Komatsu
duality theorem. On the other hand, we have Im(—a%‘¥)=¢"'(Im(—2a%}))
by (8.1.11). Thus by the continuity of ¢, we have the closedness of
Im(—os\%). Q.E.D.

Now we go on to the Martineau-Harvey duality theorem for the
sheaves 7,,, and &,

THEOREM 3.1.8. Let K be a compact set in Q". Suppose that K has
a fundamental system of meighborhoods comsisting of ...~pseudoconvex
open sets in Q. Then we have the following linear topological isomor-
phism: |
Hi(V; Cie)=0 (g#n)

3.1.12
( ) HE(V; ﬁing)gﬁd'ec(K) ’

where V is any open neighborhood of K.

PROOF. a) By the excision theorem, we may assume that V is &~
pseudoconvex, because K has a fundamental system of neighborhoods con-
sisting of #,,.-pseudoconvex open sets in Q. Then by the Cartan theorem
B for the sheaves ..o and 7, (Theorems 2.1.2 and 2.1.3), we have

(8.1.13) HY(V; Cun)=H'(K; Tp)=0  (¢21).

Hence K and V satisfies assumptions in Theorem 3.1.1 and Corollary 3.1.2.
b) Consider the following exact sequenc:

(3.1.14)  0— H; 8V Pipe) — BV Oons) — HAV\K; Dind)
— Hi(V; One) — H(V; O,.) — H(V\K; o)

— e e e

E— H}L(( V; ﬁinc) -_— Hn( V; ﬁ)‘tno) — Hn( V\K; 01:1;0)

—0.

Here we list up the vanishing terms in (3.1.14): By the uniqueness of
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the analytic continuation;

(3.1.15) %(V; @) =0 .

By (3.1.13)

(8.1.16) H(V; &..)=0 (g=1) .

Hence we have

(3.1.17) Hx(V; Cine) = Pine( VK)o V)
(3.1.18) HY(V; Ou)=H"7(V\K; 7))  (q22)

¢) Now we will show (3.1.12) in the case g=1. By Corollary 3.1.2,
(8.1.11) and Theorem 38.1.1, we have the following isomorphism:

(3.1.19) i V\K)=[H(V\K; Z..0)I'
E H:omp( V\K; ﬁdu) E H:amp( V; ﬁd")
= [HO( V; ﬁinc)]’ = ﬁ:nc( V) .

Recall that ~,,(V) and Z,,(V\K) are Fréchet-Schwartz spaces, and so
reflexive. Then by (3.1.19), we have

(3.1.20) Oud VIK)Z (V) .
Hence by (3.1.17) and (3.1.20), we have
HY(V; @.)=0.

d) Next we will show (3.1.12) in the case 2<g=sn—1. If 2<¢=<
n—1, we have by (3.1.18), Corollary 38.1.2 and (8.1.10)

[Hi(V; Cu)I'=[H"(V\K; OL.)) =Himi P (V\K; &4,,)=0 .
Hence we have
H(V; @o)=0 2=q=n-1).

e) At last we will show (3.1.12) in the case g=n. By (8.1.18),
Corollary 3.1.2 and (8.1.19), we have

@.1.21) [HXV; L) =[H"(V\K; Z..)]
EHiomp( V\K; ﬂdao) EHgomp(K; ﬁdce) = ﬁdu(K) .

Recall that #,,,(K) is a dual Fréchet-Schwartz space and so reflexive.
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Then by (3.1.21), we have
WV OLaE il K) .
Thus we have completed the proof. Q.E.D.

REMARK. We can regard (3.1.20) as the Hartogs phenomenon in the
case of the sheaf ~,,,.

3.2 Pure codimensionality of D" with respect to the sheaf ~,,.

In this section we treat the pure m-codimensionality of D" with
respect to the sheaf #~,,, on Q. Moreover we show that the presheaf
2 of modified Fourier hyperfunctions of D" constitutes a flabby sheaf.

THEOREM 3.2.1. D" is pure m-codimensional with respect to the sheaf
Oine O Q™.

Proor. Put

VU: {zeC"; |Im z|2<%lRezlz+1} , V=U.

By the excision theorem, it is sufficient to show
(3.2.1) HY(V\0pn2; Oire) =0 (g#m)

for any open set 2 in D". Here 0,.2 denotes the boundary of 2 in D".
In what follows, we rewrite 0,.2 by 02.
We first show

(8.2.1) 2(V\oR; @,e)=0 (g#n—1,n) .

Consider the following exact sequence:

(3.2.2) 0 — H3o(V; @) — HH(V; Do) — HR(V\OR2; D)
— H}o(V; Oue) — BV o) — HH(V\O2; )
)

— Hio(V; Oie) — HY(V; o) — HY(V\OZ; 2,0)

— 0.

Here we list up the vanishing terms in (3.2.2): By the Grauert theorem
for the sheaf #,,, (Theorem 2.2.2), there exists a fundamental system of
neighborhoods consisting of &,,.-pseudoconvex open sets in Q" for any
compact set in D*. Hence we have
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(3.2.3) Hi(V; Ounl)=HYV; Tu)=0  (g#n)

by the Martineau-Harvey duality theorem for the sheaves ~,,, and &,,..
Hence by the exactness of (3.2.2), we have

3.2.1) HY(V\o2; Z;..)=0 (g#=n—1,n).

Next we show
3.2.1" H3(V\o2; Z.,..)=0 .
By Theorem 2.3.1 and the Martineau-Harvey duality theorem, the mapping

j: H.’a‘a( V; &){nc) e H%( V; ﬂtnc)
Ul N
A 30(02) ——— 4.(2)

is injective. Then the‘exactness of the following sequence
0 — H3 {(V\02; &) — 3.(092) — V4.(2)
implies (3.2.1"). Q.E.D.

THEOREM 3.2.2. The presheaf <2 of modified Fourier hyperfunctions
on D" constitutes a flabby sheaf.

ProoF. By the Malgrange theorem for the sheaf #,,. (Theorem 2.1.4),
the restriction of the sheaf 7,0 to an aucute open set in @" has its
flabby dimension not greater than n. On the other hand D" is pure n-
codimensional with respect to the sheaf 7, ¢» by Theorem 3.2.1. Thus
we find that the presheaf .2 constitutes a flabby sheaf on D". (See
Crollary 4.9.5 in Morimoto [26], for example.) Q.E.D.

COROLLARY 3.2.8. For a compact set K in D", we have the following
linear topological isomorphism:

Z[K] — 7. (K),

where Z[K] is the space of all modified Fourier hyperfunctions on D"
supported by K.

ProOOF. This is a consequence of Theorem 3.2.2, the Martineau-Harvey
duality theorem for the sheaves ,, and ;. (Theorem 3.1.3) and the
Grauert theorem for the sheaf #,,, (Theorem 2.2.2). Q.E.D.
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§4. Fourier transformation of modified Fourier hyperfunctions.

In this section we treat the Fourier transformations of &, (D") and
B (D).

4.1. The Fourier transformation of o7, (D").

In this section we review the Fourier transformation of ~,,.(D")
developed by Nagamachi-Mugibayashi [33].

For 2, { € C", we write z=x+1"—1y, L=&+V—17 (2, ¥, & n€ R™), and
2-: =20+ -+2,.C,.

DEFINITION 4.1.1. (Fourier transformation of .%,,(D"). For @e
V,.(D") we define its Fourier transform .#¢ by
(4.1.1) 0= _p@eTds,
R'n

where { moves a complex neighborhood of R" (determined by ®).

THEOREM 4.1.1. (Proposition 3.2 in Nagamachi-Mugibayashi [33]) The
Fourier transformation of 57, (D") is a linear topological automorphism.

For the proof of the theorem, we need following
PROPOSITION 4.1.2. For ¢>0, we put
U={z=x+1"—1y e C* |y|<e(lx|+1)} .

Then the Fourier tramsformation Z 1s a bounded limear operator of
O~ U, (C5.(D™) into &~ (U,) for any & (0<e'<e/V &€+1).

Proor. First we note that, for o€ ~7*(U,),
(4.1.2) |P(2)e % <Pl v, eXD(—&l2| —2-9—Y &) (ze U, LeC™
holds. Hence we have especially
(4.1.2)  |p(@)e’ 7| <||P|..v, exD(—Elo| — 2+ 7)) (xe R, LeCm) .

From (4.1.2"), we have sFpe 7 (U,) (U ={{eC" |n/<e}) for pe &#*(U,).
Next we consider to extend the domain of holomorphy of &%, and
to obtain the boundedness of .&#-
For >0, 8 (0<B<1) and a€ R" (Ja|]=1), we put

S,,={z=x+V"—1yeC"; xe R", y=08(z|+1)a},
U, s,={C=¢+V—1npeC" a-£>Blgl, I7I<o(lg|+1)} .
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Then for @€ &7*(U,), we define

Z",?(C):Ss P(2)e " dz - (0<d<e) .
a,8

Then using (4.1.2), we have

(4.1.8) FasP €U, p,s) s

(4.1.4) | FaaPOI=Cl Pl g e (L€ U.ps),

where positive numbers ¢’ and B8 (0<4’<9, 0<B<1) satisfy ¢’=608, and C
is a constant independent of a, d, 8’ and 8.
From (4.1.4) we have

(4.1.5) | F2 s PO =ClPlp, e (L€ Uppa) -
On the other hand we have
(4.1.6) FasP () =FP(L) CeUNU,ps,s)

by the 3 closedness of pe’"*‘dz. Here we note
U,,,,,,> :

Thus, from (4.1.3), (4.1.5) and (4.1.6), we find that the Fourier transfor-
mation gives a bounded operator of O—*(U,) into O~*(U,.) (0<¢&'<e/V e +1).
Q.E.D.

PrROOF OF THEOREM 4.1.1. We note that &, is a dual Fréchet-
Schwartz space. Then we find that the Fourier transformation gives a
closed linear operator of .97, (D") into itself by Proposition 4.1.2 and
Theorem 6’ in Komatsu [18]. Hence, also by Theorem 6’ in Komatsu [18],
we find the continuity of .&©

Next we define

Fo@=(5-) |, 2@ A (@esm D).
w/ Jmn
Then & gives also a continuous linear operator of .o7,,(D") into itself,
and satisfies #.& =identity.

These show that & gives a continuous linear automorphism of

Az D). QE.D.

4.2. The Fourier transformation of Z (D).

U={=g+V=TIneC% =0, In<atu( Y _

3B

In this section we treat the Fourier transformation of #2(D"), and
give an explicit presentation of the pairing between 2 (D")=H3«(Q"; &)
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and .7, (D"). _

We have shown in §3.2 that <2(D") is isomorphic to the strong dual
space 7;.(D") of o7, (D" (Corollary 3.2.3). Hence using Theorem 4.1.1,
we can immediately define a Fourier transformation of .2(D"):

DEFINITION 4.2.1. We denote by .&; and .&,; the dual operators of
Fourier transformation .  and the inverse Fourier transformation &
of &7, (D") respectively:

(4.2.1) (Faf, P> ={f, &P  (f, P) e B(D") X %,.(D") ,
(4.2.2) (Faf, PY=LS, FP) ([, P) € B(D") X Ao D) .

We call &; and &, the Fourier transformation and the inverse Fourier
transformation of .22(D") respectively.

Z, and &, are linear topological automorphisms of <2(D"), and .&;=
Z7 ! hold.

Next we define a mapping of 2(D")=Hz.(Q"; &.,,) to 7..(D") which
is a linear topological isomorphism.

First we present H3«(Q"; <,,.) as a cohomology group of a covering.
By the excision theorem, we have H3.(Q"; 2,..)=H3.(V; £,..) for any open
neighborhood V of D" in @*. We put

U—_—{z e C*; Im z]<—:21-(lRe z]2+1)’/2} L V=0, V.=V,
Vi={ze V;Imz;#0 if zeC"Imw,;#0 if z=w.ecS¥r
(j—_-]_, MR n) ’
7‘={Vj}7=0 and V’={Vj}?=1 . ‘
V is an open neighborhood of D" in Q. 7 is an open covering of V.
7"’ is an open covering of V\D". V, (=0, 1, ..., n) are ¢,,,-pseudoconvex.

Since any finite intersection of £, .-pseudoconvex open sets is also -
pseudoconvex, we have

H‘l(k(,iij; ino)=0 (=1, 1=m=<n, ij ey

by the Cartan theorem B for the sheaf <7,,, (Theorem 2.1.2). Hence by
the Leray theorem for local cohomology groups (see for example, Morimoto
[26]), we have

H?)"'(Qn; ﬂmc)g Z"( V; ﬂinc)EHn( 7; 7"; ﬁinc) .
Then again by the Cartan theorem B for the sheaf ~,,,, we have
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H( 7, 7 CudZZY(Y"; Oud| 25 Ouwe)  (n=1),
HY( 7, 77 Oua) E H T Tind) (n=2) .

Since the number of elements of 7 is n, we have C*?"; &..) =0.
Hence we have Z" Y¥'; &) =C*(7"; O..) and

Hn—l(y"; ﬁtno)’:cﬂ_l(y'; ¢>tma)/acﬂ_-z(y‘,; y{no) (ngz) .
We denote by I', the p-th orthant in R*, and put

V,=Vn@®xv =1T,),

then an element f in C*%(?'; &.,..) is a 2"-tuple of holomorphic functions:
f= {fp :n=1 (fp € ﬁinc( Vp))'

Thus we have found that Hz.(Q"; £..,) is presented as a cohomology
group of a covering:

O V\D)| (V) (n=1)

. ﬁn(Q"; ﬁi“): {Hn—l(y"; ﬁino) (ngz) ’

and f € H3(Q"; &.,.,) is presented by 2"-tuple of holomorphic functions:

f= [{fp}?:——l] (fp € ﬁ‘tno( Vp)) .
Next we go on to define a pairing between H3.(Q"; &7;,,) and ¥, (D"):

DEFINITION 4.2.2. Let a®’ be a unit vector in I',, the p;th orthant
in R* (p=1, ---,2"). Then for a >0, we put

S, ,={z=x+1V"—1y € C*; x € R", y=0(|z|*+1)"*a"'} |
(p=1’ %y 21.)-
We define a linear mapping ¢: Hp«(Q™; @:.0) —»M,’.AD") as

423 <« »=3Tsene) | fi@e@d

Sg(

(f, ) € H3n(Q"; Tune) X Hao D), f=l{fi},

where & is a sufficiently small positive number determined by .

'The convergence of the integral (4.2.8) and the continuity of c¢f
follow from the growth conditions of the sheaves #,, and &, The
integral (4.2.8) is independent of a choice of {a”’} and & by virture of F]
closedness of f,pdz (p=1, ---,2"). We can also check that ¢f=0 holds
for f=0¢ Hp(Q"; &.,.) by using of the 3 closedness of f,pdz (p=1, ---, 27).
Hence ¢f is independent of the choice of a representative {f,} of f. Thus
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we have found that ¢ is well defined. ,
Next we will find that ¢ is isomorphic. To prove this, we first show
the injectivity of ¢, and next we construct ¢'.

PROPOSITION 4.2.1. ¢ H3«(Q"; 20) — 0o (D*) defined by (4.2.3) 1is
injective.

PROOF. We show in the case n=1. (The proof goes similarly when
n=2.)

Since H)(Q; Z.,e) =T ne(V\D)/Z,no( V), an element f in HYQ; 2,.) is
presented by an element F' in 2, (V\D): f=[F].

Let ¢f=0 and f=[F]. To prove the injectivity ¢, it is sufficient to
show Fe 27, (V). |

By Lemma A.2 in Appendix, we can find Je 2,,,(Q) such that

(4.2.4)  |[J(@)I2C,A+]2P)A+|F()
(6([Re 2]*4+1)"2< Tm 2| <(-1-—6)(|Re z|2+1)1/2)
2
holds, where C, is a positive constant and 0<d6<1/4. We put 7,=
S,;US_,;. For te V\D, we choose § (0<d<1/4) so that d([Re t*+1)2<

Im | <((1/2)—6)(|Re t|*+1)”* holds (see FIGURE 1). Then by (4.2.4) and the
Cauchy integral formula, we have

- I F(z)dz
(4.2.5) F(t) _W:—TL% s (E—2)J(2)

J(t) S FRdz  J@®) S _FRdz _ _g ) .

T 2m/ 1) (G—2)J(2) 27V 1 G—2)T ()
Im 2z
7+~d‘ //
V=T(4-9) X
7 ) Re z

_—  |-/=1s

—/=1(+-9)
/‘Yi-—"/\

z-plane

FIGURE 1
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Here we are going to show @, =0. Note |[Im ¢/>d(|Re ¢[*+1)* holds
and recall the estimation (4.2.4). Then we find exp(—(1/»)z®)/(t—2)J(?) €
..(D) as a function of z for any ve N. Hence by the assumption ¢f =
0, we have

v=12, ---).
Then by the Lebesgue dominated convergence theorem, we have

_( exp(—@1/v)2)F'(z) . F(z)dz
O‘Sn (t—2)J(2) az 'Sn.(t—z)J(z)

(Y —— o0) .,

Thus we have proved @,(t)=0. Moreover we have F(t)=—®,(f). Hence
for the proof of the proposition, it is sufficient to show @, € 2, (V).
We can easily find the holomorphy of @,(f) on the domain

{t eC; [Im ¢ <(%— 6>(IRe t|2+1)"2} .

Since the estimation (4.2.4) holds we can shift the path 7v,, , of the
integral @,(t) by moving 6 in the interval (0, 1/4). Then we can find
the holomorphy of @,(t) on the whole of U.

The rest is to show that &,(t) has the infra-exponential growth on
any domain of a form KNC (Kc V). This is an immediate consequence
of the fact Je 7,,,(Q) and the estimation (4.2.4). Q.E.D.

REMARK TO THE PROOF OF PROPOSITION 4.2.1. In Saburi [38], to show
Fe”,(V), we used the function exp(—(t—=z)*) (instead of J(t)/J(z)) as
a damping function in the Cauchy integral (4.2.5):

But Professor Nagamachi told us that it is hard to show the infra-
exponential growth of the function F' on any domain of a form KNC
(Kc V). In fact we had made a mistake in estimating the function F
by using the integral (4.2.5)' in Saburi [38]. Afterward Professor Kaneko
showed us the existence of holomorphic function J with infra-exponential
growth such as in (4.2.4). Without his suggestion we could not obtain
the results in this section. Here the author expresses his sincere gratitude
to Professor Keneko for his helpful suggestion.
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Next we construct ¢*. It is constructed through defining another
Fourier transformation & of 2(D"). # and .&; coincide through .
We will prove this fact and the isomorphy of ¢ at the same time.

We need some preparations.

LEMMA 4.2.2. (Lemma 4.15 in Nagamachi-Mugibayashi [33].) As to
the decomposition of supports of elements of ..(D"), we have the follow-
ing exact sequence:

(4.2.6.) @O A (F,NT) B .(T,) £, (D) — 0,
»

1=p,q527

where I', is the p-th orthant in R", and we put

e’ ‘M"G(Fpn FG)={{#P,G}P%Z=1; #p,q € ‘%'Gc(rpnrq)’ #?,G_l_”qd’:o} ’

1=p,¢s27"

and the mappings a and B are defined as follows:

2n

on 2"
(4 44 {#p’q}p?;":l I_‘_‘"{qé‘i #p,q} . ) B: A{f"p}t’z:l I E #P .

p=

ProOF. We note that o7, (K)=<2[K] holds for each compact set K
in D* by Corollary 3.2.3 and that .22 is flabby by Theorem 3.2.2. Then
by the Meyer-Vietoris theorem for flabby sheaves (See for example,
Morimoto [26], p-208.), we have the exactness of the sequence (4.2.6).

LEMMA 4.23. Let I" be a proper cone in R" with the vertex at the
origin. For pre o7, (I), we put Fp)=_tt,, e ((-2=20+ - +2,5.).
Then Fp defines a holomorphic functihm on R*x1V —1I'°, where we put
I’°°={776R"; M, 2)>0 for any xzel'}). Moreover we have Fe o, (R"X

V' —1r°).

PrROOF. We note that, for any (e R"x1 —1I°, ¢""%* defines an
element in #,,(I") as a function of z. Then we have the lemma by the
definition of o7, (I"). ‘ | Q.E.D.

Using Lemmas 4.2.2 and 4.2.3, we can define another Fourier trans-
formation of 7. (D"):

DEFINITION 4.2.2. For a pe 2D (=.7..(D"), using the decom-
position p=3 p, (¢, € 7%,(,)) in Lemma 4.2.2, we put

F =l e Hpn(V; 200)
S0 =1 SEnBE)tty.0, €77 € T W)



262 YUTAKA SABURI

where we put

W,=R*xv —1I; (I3=T,), V= {z eC; [Im 2| <-;-(|Re 2+ 1)1/2} ,

and b is a unit vector in I',. We call & and &, the Fourier trans-
form of p and p, respectively.

By Lemmas 4.2.2 and 4.2.3 we can check that s does not depend
on the decomposition p=3> g, (¢, € 7.(I,)). Hence the above definition
of the Fourier transformation & of <2(D") is well defined.

Now we construct ¢

DEFINITION 4.2.3. We define a linear operator £ of .7, (D") into
Hin(V; Oine) bY £=F 0 F,.
We will show x=¢":

PROPOSITION 4.2.4. The linear operator
| tok: Meo(D") — SFu(D")
18 the identity.
ProOF. We have to show the following equality:

(eor(p), PY =y, )  for any (&, P) € V(D) X 4 (D") .

We put v=F,u, and decompose v as v=3,v, (v,€ ¥.(I';)), where I', is
the p-th orthant in R*. Then we have

(oK (h), Py = Lo T o Fafty P
=3 [sen@| o000

p=1

=3 kflsgn(a"’ | 11sen@p),.., e Do

p=1 Sa(p),s i=1

I

; S v,., e Tpl)>dL .
Sa(p), a

=1

Here we note that the integral S e ¢t p(0)dl converges in the top-
Sa(p),8

ology of &, (I,)(p=1, ---,2") for any @ € 97, (D"). Hence we have

Con), Py =3 | @y TR 0>

Salp),3

AT ~1='=<p<c>dc>
=y, FP) ={Fqlt, FP)=th P) - Q.E.D.
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Now we have _
THEOREM 4.2.5. ¢ 18 a linear isomorphism of Hy(V; &,,,) onto Sg..(D").

ProOF. This is an immediate consequence of Propositions 4.2.1 and
4.2.4. Q.E.D.

REMARK. As a consequence of above results, we have &;=¢o &
4.3. Fourier-Carleman-Leray-Sato transformation.

In this section we treat Fourier transforms of modified Fourier
hyperfunctions supported by a proper cone.

Let I' be a proper closed cone in R"® with the vertex at the
origin and fe<2[']. Then the function J()=(f,, e~ defines an
element in &, (R"xV —1I'°) by Lemma 4.2.8. Considering a suitable
covering of V\D (V=U, U={zeC"; [Im 2| <(1/2)(|Re 2[*+1)*2}), we find that
J defines an element [J] in Hz.(V; 2,,,)=2(D"). Conversely we have
the following.

THEOREM 4.3.1. Let I' be a proper convex closed cone in R"™ with

the vertex at the origin and Je &, (R"xV —1I'°). Then we have g=
FodJ] e [T,

REMARK. The Fourier transformation gives an linear automorphism
of Z2(D*). Hence by Lemma 4.2.8 and Theorem 4.3.1, we find that if
I' is a cone such as in :I‘heorem 4.3.1, then & gives an isomorphism

of 2[I"] onto Z,.(R"xV —1I'°).

PROOF OF THEOREM 4.3.1. First we prove in the case n=1. In this
case, I' is the closed half line &®, in <. Since ., (D") is dense in
(") (Theorem 2.8.1), it is sufficient to show the following inequality
for any ¢ (0<ek).

4.3.1) Kg, I=Cllel.r,=C sup |p(z)les!  for any @eZ(U),

where

U={z=2+1V"—1y; ly|<e(lx|+1)},
I''={ze U,; Re z= —¢} ‘

and C is a constant independent of o.
To have the estimation (4.8.1), we decompose the integral:
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(4.3.2) @ Py=I) Fo)=| JOFP0

= _JoFp@d+| J0Fp0

where 4§ is a positive number with 0<d<e, and we put

A,=A7+A7,
Ay ={C=e+V=1n; n=58(l|+1), ¢<0},
Af={L=¢+V—1n; n=08(¢|+1), £20} .
(See FIGURE 2.) Moreover we take a positive ¢’ (0<d’'<e), and put
B;=Ba:+BJI ’
B-={z=2+V —1y; y=06(x+20'—1), x< -5},
Bi={z=2+V —1y; y=—06(x+1), 2= -0},
B;-=Bai+BJI ’
Bif={z=z+V —1y; y=—0@&+20'—1), £< -9} ,
Byii={z=z+1V"—1y; y=0@+1), 2= —08"} .
(See FIGURE 3.) We decompose again the integral (4.8.2) as follows:

(4.3.37) I;=-1—S J(C)S P(2)e—"" 1 dzdl
21 Jay Bf

= 1 —V=1gez 1 ey
_?ﬂ:—s A;J(C) SBai¢)(Z)e ¢ dZdC'l‘ES A;J(C)Ssdl‘?(z)e “rdedl

=J-+J7,
(4.3.3.%) ::=_1-§ J(C)S P(2)e—""Te5dzdl
2w Jaf By
1

=§;§ RS SBa:¢(z)dde o A;J(C)SBJISD(Z)e‘“"_‘"’dde

=Jt+Jt.

Here we estimate the integrands. Since Fe 2, (Rx1V’ = 1R,) I'°=I'=R,)
and ¢ € ~2~%(U,), we have

4.3.4)  JQP@e™ " S ||l p,xl|Plle.r, €XDP(—el2] +6,C| + 29+ ¥E)
& 2)eE,xTI.,
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! Im &
Ao\ATr\" A
V=17
0 ~——————Re ¢
€-plane
FIGURE 2
Imz

Rez
—d"

B3 T

¢

z-plane

Ficure 3

where ¢, is an arbitrary positive number, and we put
E,={{=¢+V"—1y; ¢ R, |7|=5(l¢| +1)} .

Since ¢, is arbitrary, we take ¢ as 0<e,<6/(6+1). Then we have
immediately from (4.3.4)

(4.3.5) T3+ 1T =Ce, Dl r, -

Therefore we have to estimate the rests J- and J*. To obtain the
estimation for those integrals, we deform their paths. We put

a,={{=e+V —19; £=0, n>d},
By ={z=x+1V"—1y; =¥, |y|<(—8&+1)} .

Then, thanks to the estimation (4.3.4), we can deform the integrals
J- and J* as follows (See Figure 4 and 5.):
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Im2

. P
\/ B

vy—1¢
—Re z

B, B o Bs
z-plane

FIGURE 4

Im¢

¢-plane
Fi1GURE §

(4.3.6) serdi=o ()

- s
(S—a,xBa’_" + Sagx Ba:)
Saax (Ba:—-Bat)

agx (—83,3") )
Since B, is contained in I',, we have from (4.3.4) and (4.3.6)
(4.3.7) [J=+J* < Bl@ll.r, - |

Since C(g, 6) in (4.8.5) and B in (4.3.7) do not depend on @, we have
the estimation (4.8.1). Thus we have proved the theorem in the case

n=1.
Next we go on to the proof in the case n=2. For simplicity, we

prove only in the case n=2.
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Since I' is a closed convex cone, we have

F= n He N .He-':{weRz; w'£>0} .

gerensn—t

Hence it is sufficient to show that g € .7,.(H.,) =<2[H,] holds for all ¢e
rens:.

We take an ec I'°NS* and fix it. Similarly to the case n=1, it is
sufficient to show the following inequality:

(4.8.1) g, PYI=Alloll.z,  (@eO(T.)
for any €>0, where A is a constant independent of @, and we put
U.={z=2+V =1y e C |y|<e(lx|+1)},

H={z=x+vV—1yec U,; xc H,—e¢e} ,
H,={xe R* x-e> —¢lx|} .
First we prepare the paths of the integral (g, #>. We denote the
closed j-th qadrant by I';, We take e¢fec —I";NS* (j=1, 2, 3, 4) such that

e"-sg—l—/—%-.lsl for any ¢el’; (1=1,2,8,4).
Then, for 6>0, we put

S,=jf_JlS§ , where
Si={l=g+1V —1neC ee I, n=05(lg|+1)e},
Ti=T,iUT,;, where '
H={z=2+V =1y e C*; x e H;, y=0(lx|+1)e’} ,
T,i={z=2+V —1y e C* x € H,, y=0(|x|+1)e’}
(71=1,2,3,4),

where H: is the complement of H,. We choose a sufficiently small 6>0
and decompose the integral (g, ) as follows:

@<, @) =| IO, pe T dzde

I

)y

Il

SS;.J(Q Srgqa(z)e-“:ﬁ-“-“)dzdc

=1
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2

.J(C)S P(z—de)e—""T =30 gpdl
£ Jn, 3

S 3

4

+ % S s,.J (C)S . Plz— Se)e= "R t-1d dr

i=
4 4

= T3 T

i=1

o,

Now we are going to estimate the integral (g, #). Since Je

O B2 XV —1I'°) and @ € £27%(U,), we have the following estimation for
the integrand:

(4.3.8) ITQ)P(2)e~" | < |||, 5, exp(—elz| +&,[C[+2-p+y &)
(C’ z) € EJX ﬁc ’

where ¢, is an arbitrary positive number, and we put
E,={{=¢+V"—1neC% |n|=d(|&|+1), n=Ne, A=6}

Since ¢, is arbitrary, we assume that ¢, is sufficiently small in what
follows.

We note (T,j—de)C H, for a sufficiently small §>0. Then using the
estimation (4.3.8), we have the estimation (4.3.1) for terms J% (=1, 2, 3, 4).
Hence we have to estimate the rests J2 (=1, 2, 8, 4).

Similarly to the case m=1, we deform the paths of the integrals.
We note that the following estimation holds:

(4.3.9) Re[—V —1Z-(z—de)]
=Re[—1V —1(¢+V —1vé(ig| + 1)e- (x—de+1 —1pd (|| +1)e)]
=(x—de)-vo(|&| +1)e+ po(jx| +1)ei ¢
< —vélz| |&| —vé*(lel +1) — (/v 2)(|=| + 1)lg|
=—d'(g]

for (& 2)e S, xTi (=1, 0sp<1)

for a sufficiently small ¢’ (=1, 2, 8, 4). Then, thanks to the estimations
(4.3.8) and (4.3.9), we can justify the following deformation of the inte-
grals J2 (5=1, 2, 8, 4):

JL+JE =

S 1 1 +S 2 1_§ 1 1+S 1 2
syxryt sixr,t ajxry ! ~ajxT,

= 14
Sa;x(raj_r,,f) Sa}x(—ﬂb
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JE+Jt =

S 3 3+S 4 4 S 2 B+§ 2 4
S3x7, 5 Jsjxr,t J-aixry®  Jaixr,t

Sagxw,,_f—r,,f) Sagx(—ﬂ,?) ’
where we put

a;={{=¢+1V"=1peC’ £=0, &=0, n=\(&| + 1)e, =5} ,
ai={{=¢+1V"=Ine % £=0, &=<0, n=n(¢|+1)e, A 24} ,
Bi={z—0eeC? z=x+1"—1y, x € 0H,, y=n(z|+1)e’
(=1 or 2),0=n=0},
Bi={z—deeC* 2=x+1V —1y, x € 0H,, y=n(|z|+1)e’
(j=8 or 4),0=<\<9}.

We note that B} and B% are contained in H,. Then again by the estima-
tions (4.3.8) and (4.3.9), we have the estimation (4.3.1) for the integrals
JL+JE and JE4JL. Q.E.D.

Appendix.
Here we prove some lemmas which we used in the text.

LEMMA A.1. Let W be an open set in C", 4 a locally summable
plurisubharmonic function on W. Suppose that + satisfies the following
conditions:

i) 4 s of class C* and strictly plurisubharmonic on am open subset

U of W such that the Lebesgue measure of F=W\U 1is zero.
ii) If we extend the second derivatives 0°[02,0Z, of + on U to W as

O :
Viu(2) =1 02,;0%, (2) if zeU

0 of zekF,

then ;. defines a &2, function on W.
Then, for any non-negative C* fumnction X with the support contained in
the e-ball in C" centered at the origin, the convolution Xx+ defines a
strictly plurisubharmonic function on W,={ze€ W; dist(z, dW)>¢}.

ProOF. Consider the distributional derivatives 4°y/02,0z, on W (1<7,
k<m). Since + is plurisubharmonic on W, we find that the Hermitian
matrix [(0%/02;07,)(X *r)(2)]; 2=, is positive semidefinite on W, for any
X € D(B,), where B, is the ¢-ball in C" centered at the origin.
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Next we put
2
Th= S _ Vik -

02,02,

We note that the supports of T, are contained in F', and that the following
equation holds:

32
az,-a'z',,

(X*a[r) = X*a/r_,-,, + X* Tjk .

From the assumptions i) and ii) for «, we find that the Hermitian matrix
[X*4r;2(2)]; =1 is Dositive definite on W,. Hence it is sufficient to show the
positive semidefiniteness of the Hermitian matrix [X+Ty(2)];%-. on W..
We will prove this by contradiction.

Suppose there exist we W, and a € C* such that

gﬂ_:u__ AT y(w)a;@, <0 .

] 1

We fix these w and a.

Since the Lebesgue measure of F is zero, for any >0, there exists
an open neighborhood U, of F in W such that the Lebesgue measure of
U, is smaller than 8. We take a C~ function o, on W such that

0=<p0,=1, ;=1 on a neighborhood of F' and suppp,cU,.

We put o,(z)=p,(w—2z). Then, since the supports of T, are contained
in F', we have

(0. X)* T (w) = o s(w —2)X(w —2), T;(2))
= {0,(2)X(w—2), T (2)) ={X(w—2), T (2))
=A*T(w) .

On the other hand, since «+;, are 71, funections, the integrals
(0:X)*¥r;(w) tend to zero as & tends to zero. Hence there exists a 6,>0
such that

. J_% . (O3, X)x Y (W) ;0. < — —;— f_‘, Xx T (w)a;ay, .

k=1

Then we have

> L (@) w)a

Jrk=1 azjaik
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= JZ,‘ (03X % (W) ;, + %L (03,X)* T j(w)e ;@

< —‘;—' zk“ X}* Tjk(w)a,-c_tk +Zk Xx T_.,-,,(w)ajc'?,,

-%— T (w)a;a, <0 .

Ik

This contradicts to the positive semidefiniteness of the Hermitian matrix
[(0°/02,0Z,)((ats, X)*4r)(2)] on W.. : Q.E.D.

LEMMA A.2. For 6>0, we put
V,,=ﬁ,, ,  where U,={zeC"; Imz*<é*(Rezl*+1)}.

Then for any fe @, V,) and any 6 (0<6<1/2), there exists an entire
Sunction J of finfra-ewponential type such that

J@)=A+ 2" f@)  (2eU) .

ProOF. This is an immediate consequence of the following two
lemmas:

LEMMA A.3. (Proposition 8.1.6 in Kaneko [15].) Let @ be a monotone
increasing function on the half line [1, ) with >1 and lim,.., @)= .
Then the infinite p’roduct

(A1) JE)= H( G C:k))z) CeCr, =Lt - +L2)

defines a entire function on C" of infra-exponential type. Moreover we
have the following estimation from below:

3 (4] 1
A2 J©)|=C 1 I = —=—=|Re (|, 1} ) .
a2 PozCexp((og3)Bl)  (Imismax{FiRec) 1))

LEMMA A.4. (Lemma 8.1.7 in Kaneko [15].) For any given countable
family {f.} of continuous positive functions on the half line [0, ) with
the infra-exponential growth, we can find a monotone increasing function
® on the half line [1, o) such that >1, lim,.,p(t)=x and

LG exs(Ls)  620,k=1,2, ),

where C, are constants independent of t.
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