Токуо Ј. Матн. Vol. 8, No. 1, 1985

A Remark on the Duality Mapping on l^{∞}

Marián FABIAN

Prague (Communicated by J. Wada)

Here we answer a question raised in [1]. In order to formulate this question we are to recall some notations and facts from [1]. We work with the dual $l^{\infty*}$ of l^{∞} , which can be written as the direct sum $l^1+c_0^{\perp}$. S denotes the unit sphere in l^{∞} and sm S the set of the smooth points of S. The duality mapping $F_0: S \to 2^{l^{\infty*}}$ is defined as follows

$$F_0(v) = \{\lambda \in l^{\infty*} : \lambda(u) = 1 = ||\lambda||\}, \quad v \in S.$$

ext $F_0(v)$ denotes the set of extremal points of $F_0(v)$. The mentioned question sounds as:

"Given $v \in S \setminus S$ and $\lambda \in ext F_0(v)$, does there exist a sequence $\{v_n\} \subset S \cap S$ such that $||v_n - v|| \to 0$ and that λ is a w*-cluster point of the sequence $\{F_0(v_n)\}$?"

The answer is negative in general as it follows from Propositions 1 and 2. Owing to some reasons from [1] we may and do restrict ourselves to the situation when $v \ge 0$ and $\lambda \in c_0^{\perp}$.

We recall that (see [1]) there is a one-to-one correspondence between ultrafilters and 0-1-measures, namely, given an ultrafilter \mathscr{U} on the set of natural numbers N we can define the measure on N as

(*)
$$\lambda(A) = \begin{cases} 1 & \text{iff} \quad A \in \mathcal{U} \\ 0 & A \notin \mathcal{U} \end{cases}$$

and conversely. Also, a 0-1-measure λ is in c_0^{\perp} if and only if the corresponding \mathscr{U} is free (non-principal), i.e., \mathscr{U} contains no finite sets. It is known [1] that, for $v \in S$, $v \geq 0$, ext $F_0(v)$ consists only of 0-1-measures.

PROPOSITION 1. Let $v \in S \setminus S$, $v \ge 0$, $\lambda \in ext F_0(v) \cap c_0^{\perp}$ and \mathscr{U} be the ultrafilter associated with λ by (*). Then the following assertions are equivalent:

Receved December 10, 1983

MARIÁN FABIAN

(i) There exists $\{v_n\} \subset \text{sm } S$ such that $||v_n - v|| \to 0$ as $n \to \infty$ and that λ is a w^{*}-cluster point of the sequence $\{F_0(v_n)\}$.

(ii) There exists $\{s_n\} \subset N$ such that $v(s_n) \to 1$ as $n \to \infty$ and $\lambda(\{s_n\}) = 1$. (iii) $\mathscr{F} \setminus \mathscr{U} \neq \emptyset$, where

$$\mathscr{F} = \{A \in N: H_n \setminus A \text{ is finite for each } n \in N\}$$
.

and

$$H_n = \left\{ m \in N: \frac{n-1}{n} \leq v(m) < \frac{n}{n+1} \right\}$$

PROOF. (i) \Leftrightarrow (ii) is [1, Proposition 7.6]. Let us show that (ii) \Leftrightarrow (iii). If $A \in \mathscr{F} \setminus \mathscr{U}$, then the complement A° is in \mathscr{U} and so A° is infinite because \mathscr{U} is free. Hence A° represents an infinite sequence. Now $\{s_n\}^{\circ} \in \mathscr{F} \setminus \mathscr{U}$ if and only if $\lambda(\{s_n\}) = 1$ and $H_m \cap \{s_n\}$ is finite for each m. But the finiteness of the sets $H_m \cap \{s_n\}$ is equivalent with $v(s_n) \to 1$ as $n \to \infty$.

We can see from Proposition 1 that in order to answer the above question negatively it suffices to find a v in $S \setminus S$ and λ in ext $F_0(v) \cap c_0^{\perp}$ with the corresponding \mathscr{U} in such a way that $\mathscr{F} \subset \mathscr{U}$. This idea leads to the proof of the following proposition.

PROPOSITION 2. Let $v \in S \setminus S$. Then the following assertions are equivalent:

(i) For each 0-1-measure $\lambda \in F_0(v) \cap c_0^{\perp}$, there exists a sequence $\{s_n\} \subset N$ such that $v(s_n) \to 1$ and $\lambda(\{s_n\}) = 1$.

(ii) There is $m \in N$ such that, for $n \ge m$, the sets H_n are finite.

In this case there exists a sequence $\{v_n\} \subset \operatorname{sm} S$ such that $||v_n - v|| \to 0$ and that each 0-1-measure $\lambda \in F_0(v) \cap c_0^{\perp}$, with $\lambda(v^{-1}(1)) = 0$, is a w*-cluster point of $\{F_0(v_n)\}$.

PROOF. Let (ii) hold. Take a 0-1-measure λ in $F_0(v) \cap c_0^{\perp}$. If $\lambda(v^{-1}(1))=1$, then since $\lambda \in c_0^{\perp}$, $v^{-1}(1)$ is an infinite set and, writing $v^{-1}(1)=\{s_n\}$, we have the seeking sequence. Further let us assume that $\lambda(v^{-1}(1))=0$. Then we have

$$1 = \int v d\lambda = \int v \chi_{\underset{1}{\overset{\cup}{\cup}}_{1}H_{n}} d\lambda + \int v \chi_{\underset{m}{\overset{\cup}{\cup}}_{m}H_{n}} d\lambda \leq \frac{m-2}{m-1} \lambda \begin{pmatrix} \overset{m-1}{\overset{\cup}{\cup}}_{1}H_{n} \end{pmatrix} + \lambda \begin{pmatrix} \overset{\infty}{\overset{\cup}{\cup}}_{m}H_{n} \end{pmatrix}$$

and so $\lambda(\bigcup_{m}^{\infty}H_{n})=1$. Hence the set $\bigcup_{m}^{\infty}H_{n}$ is infinite and, writing $\{s_{n}\}=\bigcup_{m}^{\infty}H_{n}$, we have that the sets $\{s_{n}\}\cap H_{i}$ are finite for $i\geq m$ by assumption. It follows that $v(s_{n})\rightarrow 1$. We now define $v_{n}\in l^{\infty}$ by

216

$$v_n(s) = egin{cases} 1 & ext{if} & s = s_n \ v(s) & ext{if} & v(s) < v(s_n) \ v(s_n) & ext{if} & v(s) \ge v(s_n) \ . \end{cases}$$

Then $v_n(s_n)=1$ and $0 \leq v_n(s_n) \leq v(s_n) < 1$ for every $s \neq s_n$ and so, by [1, Corollary 6.5] $v_n \in \operatorname{sm} S$, $F_0(v_n) = \delta_{s_n}$. Moreover $||v_n - v|| \leq 1 - v(s_n) \to 0$ as $n \to \infty$ and it is easily seen that λ is a w^* -cluster point of the sequence $\{F_0(v_n)\}$ so obtained, which proves the last assertion of Proposition 2.

Conversely, let (ii) be violated. Then $\emptyset \notin \mathscr{F}$ since there are infinite H_n . Also, if $A, B \in \mathscr{F}$, then $H_n \setminus (A \cap B) = (H_n \setminus A) \cup (H_n \setminus B)$ is finite and so $A \cap B \in \mathscr{F}$. Further, if $A \in \mathscr{F}$ then $A \cap (\bigcap_1^m H_n^\circ) \neq \emptyset$ since otherwise A would be in $\bigcup_1^m H_n$ and hence, for n > m, $H_n \setminus A = H_n$. But the last set is infinite for some n > m, contradicting the definition of \mathscr{F} . It follows there is an ultrafilter \mathscr{U} containing \mathscr{F} and all H_n° . \mathscr{U} is free, since if there would exist a finite set A in \mathscr{U} , then $A \subset \bigcup_1^m H_n \cup v^{-1}(1)$ for some m. But $(\bigcup_1^m H_n)^\circ = \bigcap_1^m H_n^\circ \in \mathscr{U}$ and $(v^{-1}(1))^\circ \in \mathscr{F} \subset \mathscr{U}$, which leads to a contradiction. Now let λ be the 0-1-measure associated with \mathscr{U} . λ is in c_0^{\perp} since \mathscr{U} is free. And, as $\mathscr{F} \subset \mathscr{U}$, Proposition 1 says that (i) is violated.

Of course, there exists $v \in S \setminus S$ violating (ii) in Proposition 2. So, by Proposition 1, the answer to our question is negative.

Reference

 I. HADA, K. HASHIMOTO and S. OHARU, On the duality mapping of l[∞], Tokyo J. Math., 2 (1979), 71-97.

> Present Address: SIBELIOVA 49 162 00 PRAGUE 6 CZECHOSLOVAKIA